

AEROSPACE MATERIAL Society of Automotive Engineers, Inc. SPECIFICATION

AMS 6445D Superseding AMS 6445C

Issued 7-15-63

Revised 1-15-79

400 COMMONWEALTH DRIVE, WARRENDALE, PA. 15096

STEEL BARS, FORGINGS, AND TUBING 1.05Cr - 1.1Mn (0.92 - 1.02C) (Modified 51100) Premium Quality, Consumable Electrode Vacuum Melted

SCOPE:

- Form: This specification covers a premium-quality, low-alloy steel in the form of bars, forgings, 1.1 mechanical tubing, and forging stock.
- Application: Primarily for critical bearing components requiring a through-hardening steel, usually with hardness of approximately 60 HRC and section thicknesses between 0.40 in. (10 mm) and 0.80 in. (20 mm), and subject to very rigid inspection standards.
- APPLICABLE DOCUMENTS: The following publications form a part of this specification to the extent specified herein. The latest issue of Aerospace Material Specifications (AMS) and Aerospace Standards (AS) shall apply. The applicable issue of other documents shall be as specified in AMS 2350.
- SAE Publications: Available from Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA 15096.
- 2.1.1 Aerospace Material Specifications:

AMS 2251 - Tolerances, Low-Alloy Steel Bars

AMS 2253 - Tolerances, Carbon and Alloy Steel Tubing

AMS 2259 - Chemical Check Analysis Limits, Wrought Low-Alloy and Carbon Steels

AMS 2300 - Premium Aircraft-Quality Steel Cleanliness, Magnetic Particle Inspection Procedure

AMS 2350 - Standards and Test Methods

AMS 2370 - Quality Assurance Sampling of Carbon and Low-Alloy Steels, Wrought Products Except Forgings and Forging Stock

AMS 2372 - Quality Assurance Sampling of Carbon and Low-Alloy Steels, Forgings and Forging Stock

AMS 2375 - Control of Forgings Requiring First-Article Approval

AMS 2806 - Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels and Corrosion and Heat Resistant Steels and Alloys

AMS 2808 - Identification, Forgings

2.1.2 Aerospace Standards:

AS 1182 - Standard Machining Allowance, Aircraft Quality and Premium Quality Steel Products

ASTM Publications: Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

ASTM A370 - Mechanical Testing of Steel Products

ASTM A604 - Macroetch Testing of Consumable Electrode Remelted Steel Bars and Billets

ASTM E45 - Determining the Inclusion Content of Steels

ASTM E350 - Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron

Government Publications: Available from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

AMS 6445D

2.3.1 Federal Standards:

Federal Test Method Standard No. 151 - Metals; Test Methods

2.3.2 Military Standards:

MIL-STD-163 - Steel Mill Products, Preparation for Shipment and Storage

3. TECHNICAL REQUIREMENTS:

3.1 <u>Composition</u>: Shall conform to the following percentages by weight, determined by wet chemical methods in accordance with ASTM E350, by spectrographic methods in accordance with Federal Test Method Standard No. 151, Method 112, or by other approved analytical methods:

	min max
Carbon	0.92 - 1.02
Manganese	0.95 - 1.25
Silicon	0.50 - 0.70
Phosphorus	0.015
Sulfur	0.015 Ç 🕜
Chromium	0.90 - 1.15
Nickel	0.25
Molybdenum	0.08
Copper	0.35

- 3.1.1 Check Analysis: Composition variations shall meet the applicable requirements of AMS 2259.
- 3.2 <u>Condition</u>: The product shall be supplied in the following condition; hardness and tensile strength shall be determined in accordance with ASTM A370:

3.2.1 Bars:

- 3.2.1.1 Bars 0.500 In. (12.70 mm) and Under in Nominal Diameter or Distance Between Parallel
 Sides: Cold finished, with microstructure of spheroidized cementite in ferrite matrix, having tensile strength not higher than 120,000 psi (827 MPa) or equivalent hardness.
- 3.2.1.2 Bars Over 0.500 In. (12.70 mm) in Nominal Diameter or Distance Between Parallel Sides:

 Hot finished, with microstructure of spheroidized cementite in ferrite matrix, having hardness not higher than 207 HB or equivalent except that bars ordered cold finished may have hardness as high as 248 HB or equivalent.
- 3.2.2 Forgings: As ordered.
- 3.2.3 Mechanical Tubing: Cold finished with microstructure of spheroidized cementite in ferrite matrix and having hardness not higher than 24 HRC or equivalent except that tubing ordered hot finished shall have hardness not higher than 95 HRB or equivalent.
- 3.2.4 Forging Stock: As ordered by the forging manufacturer.
- 3.3 <u>Properties:</u> The product shall conform to the following requirements; hardness testing shall be performed in accordance with ASTM A370:
- 3.3.1 <u>Inclusion Rating</u>: Steel from which the product is produced shall be subjected to the macrostructure test and to either the fracture or micro-inclusion test, as agreed upon by purchaser and vendor. If agreement is not reached by purchaser and vendor, the micro-inclusion test shall be performed.

3.3.1.1 Macrostructure: Visual examination of transverse sections from bars, billets, tube rounds or tubes and forging stock, etched in accordance with ASTM A604 in hot hydrochloric acid (1:1) at 160° - 180° F (71° - 82°C) for sufficient time to develop a well-defined macrostructure, shall show no imperfections, such as pipe, cracks, porosity, segregation, and inclusions, detrimental to fabrication or to performance of parts. Except as specified in 3.3.1.1.1, macrostructure shall be equal to or better than the following macrographs of ASTM A604:

Class	Condition	
1	Freckles	В
2	White Spots	\mathbf{C}
3	Radial Segregation	C
4	Ring Pattern	В

- 3.3.1.1.1 If tubes are produced directly from ingots or large blooms, transverse sections may be taken from tubes rather than tube rounds. Macrostructure standards for such tubes shall be as agreed upon by purchaser and vendor.
- 3.3.1.2 Fracture: Specimens, approximately 3/8 in. (9.5 mm) in thickness, shall be normalized, annealed, hardened, and fractured through the approximate center of the cross section. Such specimens shall have hardness not lower than 60 HRC. The fractured specimens shall show no imperfections such as pipe, segregation, and porosity. The fractured surfaces shall show no nonmetallic streaks over 1/16 in. (1.6 mm) in length and not more than one nonmetallic streak 1/32 1/16 in. (0.8 1.6 mm) in length for each 10 sq in. (64 cm²) or fraction thereof of such surfaces.
- 3.3.1.3 Micro-Inclusion Rating: No specimen shall exceed the following limits, determined in accordance with ASTM E45, Method D:

		Inclusion Rating		
Type	AJ	В	С	D
	×Ο			
Thin	2.0	1.5	1.5	1.5
Heavy	1.0	1.0	1.0	1.0

- 3.3.1.3.1 For types A, B, and C thin combined, there shall be not more than three fields of No. 2.0 A type or No. 1.5 B and C types and not more than five other lower rateable A, B, and C type thin fields per specimen. For type D thin, there shall be not more than five No. 1.5 fields. Any number of lower rateable D type thin fields per specimen is permitted. There shall be not more than one field each of No. 1.0 Type A, B, or C or three fields of type D heavy per specimen. In addition, the thickness of the D type heavy shall not exceed 0.0005 in. (0.013 mm).
- 3.3.1.3.2 A rateable field is defined as one which has a type A, B, C, or D inclusion rating of at least No. 1.0 thin or heavy in accordance with the Jernkontoret chart, Plate III, ASTM E45.
- 3.3.2 Response to Heat Treatment: Specimens as in 4.3.5, protected by suitable means or treated in an atmosphere to minimize scaling and prevent either carburization or decarburization, shall have substantially uniform hardness not lower than 63 HRC at any point below any permissible decarburization after being placed in a furnace which is at 1530°F ± 15, (830°C ± 8), allowed to heat to 1530°F ± 15, (830°C ± 8), held at heat for 30 min. ± 2, and quenched in commercial paraffin oil (100 SUS at 100°F (37.8°C)) at room temperature.

3.3.3 <u>Decarburization</u>:

Bars and tubing ordered ground, turned, or polished shall be free from decarburization on the ground, turned, or polished surfaces. Decarburization on tubing ID shall not exceed the maximum depth specified in 3.3.3.4.

AMS 64450

- 3.3.3.2 Allowable decarburization of bars, billets, and tube rounds ordered for redrawing or forging or to specified microstructural requirements other than spheroidized cementite in ferrite matrix shall be as agreed upon by purchaser and vendor.
- Decarburization of bars to which 3.3.3.1 or 3.3.3.2 is not applicable shall be not greater than shown in Table I.

TABLE I

Nominal Diameter or Distance		
Between Parallel Sides	Depth of Decarburization	
Inches	Inch	
Up to 0.500, incl	0.015	
Over 0.500 to 1.000, incl	0.020	
Over 1.000 to 1.500, incl	0.025	6->
Over 1.500 to 2.000, incl	0.030	756AA5U
Over 2.000 to 2.500, incl	0.035	CALL
Over 2.500 to 3.000, incl	0.040	50
Over 3.000	0.045	M
TABLE I	(SI)	
Nominal Diameter or Distance	SO,	

TABLE I (SI)

Nominal Diameter or Distance	\circ
Between Parallel Sides	Depth of Decarburization
Millimetres	Millimetres
	, o ·
Up to 12.70, incl	0.38
Over 12.70 to 25.40, incl	0.51
Over 25.40 to 38.10, incl	0.64
Over 38.10 to 50.80, incl	0.76
Over 50.80 to 63.50, incl	0.89
Over 63.50 to 76.20, incl.	1.02
Over 76.20	1.14

- Decarburization of tubing to which 3.3.3.1 or 3.3.3.2 is not applicable shall be not greater than 0.025 in. (0.64 mm) on the ID and 0.025 in. (0.64 mm) on the outside diameter.
- 3.3.3.5 Decarburization shall be measured by the microscopic method or by Rockwell Superficial 30-N scale or equivalent hardness testing method on hardened but untempered specimens protected during heat treatment to prevent changes in surface carbon content. Depth of decarburization, when measured by a hardness method, is defined as the perpendicular distance from the surface to the depth under that surface below which there is no further increase in hardness. Such measurements shall be far enough away from any adjacent surface to be uninfluenced by any decarburization or lack of decarburization thereon.
- 3.3.3.5.1 When determining the depth of decarburization, it is permissible to disregard local areas provided the decarburization of such areas does not exceed the above limits by more than 0.005 in. (0.13 mm) and the width is 0.065 in. (1.65 mm) or less.

3.4 Quality:

3.4.1 Steel shall be premium quality conforming to AMS 2300; it shall be multiple melted using vacuum consumable electrode process in the remelt cycle.

- 3.4.2 The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from internal and external imperfections detrimental to usage of the product.
- Bars and tubing ordered ground, turned, or polished shall be free from seams, laps, tears, and cracks open to the ground, turned, or polished surfaces.
- Product ordered to surface conditions other than ground, turned, or polished shall, after removal of the standard machining allowance, be free from seams, laps, tears, cracks, and other defects exposed to the machined surfaces. Standard machining allowance shall be in accordance with AS 1182.
- Sizes: Except when exact lengths or multiples of exact lengths are ordered, straight bars and tubing will be acceptable in mill lengths of 6 - 20 ft (1.8 - 6.1 m) but not more than 10% of any shipment shall be supplied in lengths shorter than 10 ft (3 m).
- Tolerances: Unless otherwise specified, tolerances shall conform to all applicable requirements of PDF of ams6 the following:
- 3.6.1 Bars: AMS 2251.
- 3.6.2 Mechanical Tubing: AMS 2253.
- QUALITY ASSURANCE PROVISIONS:
- Responsibility for Inspection: The vendor of the product shall supply all samples and shall be responsible for performing all required tests. Results of such tests shall be reported to the purchaser as required by 4.5. Purchaser reserves the right to perform such confirmatory testing as he deems necessary to ensure that the product conforms to the requirements of this specification.
- 4.2Classification of Tests:
- 4.2.1 Acceptance Tests: Tests to determine conformance to all technical requirements of this specification are classified as acceptance tests and shall be performed on each lot.
- 4.2.2 Preproduction Tests: Tests of forgings to determine conformance to all technical requirements of this specification are classified as preproduction tests and shall be performed on the first-article shipment of a forging to a purchaser, when a change in material or processing requires reapproval, or when purchaser deems confirmatory testing is required.
- 4.2.2.1 For direct U.S. Military procurement of forgings, substantiating test data and, when requested, preproduction forgings shall be submitted to the cognizant agency as directed by the procuring activity, the contracting officer, or the request for procurement.
- 4.3 Sampling: Shall be in accordance with the following; a heat shall be the consumable electrode remelted ingots produced from steel orginally melted as a single furnace charge.
- 4.3.1 Bars and Mechanical Tubing: AMS 2370.
- 4.3.2 Forgings and Forging Stock: AMS 2372.
- 4.3.3 Samples for macrostructure (3.3.1.1) testing shall be full cross-sectional specimens obtained from the finished billet or suitable rerolled product representing the top and bottom of at least the first, middle, and last usable ingots of each heat.
- 4.3.4 Samples for micro-inclusion rating (3.3.1.3) shall consist of not less than six specimens from each heat obtained from the full cross-section of billet stock taken from the top and bottom of at least the first, middle, and last usable ingots.