

AEROSPACE MATERIAL SPECIFICATION

AMS6305™

REV. H

Issued 1973-05

Reaffirmed 2007-02

Revised 2023-02

Superseding AMS6305G

Steel, Heat-Resistant, Bars, forgings, Mechanical Tubing, and Forging Stock
0.95Cr - 0.55Mo - 0.30V (0.40 - 0.50C)
Vacuum Arc Remelted
(Composition similar to UNS K14675)

RATIONALE

AMS6305H is the result of a Five-Year Review and update of the specification. The revision updates the title to match the scope, prohibits unauthorized exceptions (3.6, 4.4.4, 5.2.1, 8.7), updates composition testing (3.1, 3.1.1), updates macrostructure (3.4.1.1, 3.4.1.2, 8.8), adds response to heat treatment consistent with similar specifications (3.4.4, 4.3.3), updates decarburization test methods (3.4.3.5), adds note on stock removal (8.5), and allows prior revisions (8.6).

1. SCOPE

1.1 Form

This specification covers a premium aircraft-quality, low-alloy, heat-resistant steel in the form of bars, forgings, mechanical tubing, and forging stock.

1.2 Application

These products have been used typically for parts such as compressor discs, turbine discs, shafts, and fasteners for use in service up to 1000 °F (538 °C) and subject to stringent magnetic particle inspection standards, but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

AMS2251 Tolerances, Low-Alloy Steel Bars

AMS2253 Tolerances, Carbon and Alloy Steel Tubing

SAE Executive Standards Committee Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2023 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: +1 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@sae.org

SAE WEB ADDRESS:

<http://www.sae.org>

For more information on this standard, visit

<https://www.sae.org/standards/content/AMS6305H/>

AMS2259	Chemical Check Analysis Limits, Wrought Low-Alloy and Carbon Steels
AMS2300	Steel Cleanliness, Premium Aircraft-Quality, Magnetic Particle Inspection Procedure
AMS2370	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Wrought Products and Forging Stock
AMS2372	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Forgings
AMS2750	Pyrometry
AMS2806	Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels, and Corrosion and Heat-Resistant Steels and Alloys
AMS2808	Identification, forgings
AS1182	Standard Stock Removal Allowance, Aircraft-Quality and Premium Aircraft-Quality Steel Bars and Mechanical Tubing
AS7766	Terms Used in Aerospace Metals Specifications

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM A370	Mechanical Testing of Steel Products
ASTM A604	Macroetch Testing of Consumable Electrode Remelted Steel Bars and Billets
ASTM A751	Chemical Analysis of Steel Products
ASTM E112	Determining Average Grain Size
ASTM E140	Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness
ASTM E1077	Estimating the Depth of Decarburization of Steel Specimens

2.3 Definitions

Terms used in AMS are defined in AS7766.

3. TECHNICAL REQUIREMENTS

3.1 Composition

Shall conform to the percentages by weight shown in Table 1, determined in accordance with ASTM A751 or by other analytical methods acceptable to purchaser.

Table 1 - Composition

Element	Min	Max
Carbon	0.40	0.50
Manganese	0.40	0.70
Silicon	0.15	0.35
Phosphorus	--	0.015
Sulfur	--	0.015
Chromium	0.80	1.10
Molybdenum	0.45	0.65
Vanadium	0.25	0.35
Nickel	--	0.25
Copper	--	0.35
Lead	--	0.001 (10 ppm)

3.1.1 Producer may test for any element not listed in Table 1 and include this analysis in the report of 4.4. Reporting of any element not listed in the composition table is not a basis for rejection unless limits of acceptability are specified by the purchaser.

3.1.2 Check Analysis

Composition variations shall meet the applicable requirements of AMS2259.

3.2 Melting Practice

Steel shall be multiple melted using consumable electrode vacuum practice (VAR) in the remelt cycle.

3.3 Condition

The product shall be supplied in the following condition; hardness and tensile strength shall be determined in accordance with ASTM A370:

3.3.1 Bars

Bars shall not be cut from plate (see 4.4.2).

3.3.1.1 Bars 0.500 Inch (12.70 mm) and Under in Nominal Diameter or Least Distance Between Parallel Sides

Cold finished having tensile strength not higher than 125 ksi (862 MPa) or equivalent hardness (see 8.2).

3.3.1.2 Bars Over 0.500 Inch (12.70 mm) in Nominal Diameter or Least Distance Between Parallel Sides

Hot finished and annealed, unless otherwise ordered, having hardness not higher than 229 HBW, or equivalent (see 8.3). Bars ordered cold finished may have hardness as high as 248 HBW, or equivalent (see 8.3).

3.3.2 forgings

Annealed having hardness not higher than 248 HBW, or equivalent (see 8.3).

3.3.3 Mechanical Tubing

Cold finished, unless otherwise ordered, having hardness not higher than 25 HRC, or equivalent (see 8.3). Tubing ordered hot finished and annealed shall have hardness not higher than 99 HRB, or equivalent (see 8.3).

3.3.4 Forging Stock

As ordered by the forging manufacturer.

3.4 Properties

The product shall conform to the following requirements; hardness testing shall be performed in accordance with ASTM A370:

3.4.1 Macrostructure

Visual examination of transverse full cross-sections from bars, billets, tube rounds (solid, not hollow), and forging stock, etched in hot hydrochloric acid in accordance with ASTM A604, shall show no pipe or cracks. Porosity, segregation, inclusions, and other imperfections shall be no worse than the macrographs of ASTM A604 shown in Table 2.

Table 2 - Macrostructure limits

Class	Condition	Severity
1	Freckles	A
2	White Spots	A
3	Radial Segregation	B
4	Ring Pattern	B

3.4.1.1 Macrostructure examination is not required for bored/hollow forgings (including ring forgings) and mechanical tubing that is produced directly from ingots or blooms (see 8.8).

3.4.1.2 If mechanical tubing is produced directly from ingots or large blooms, transverse sections may be taken from the tubing. Macrostructure standards for such tubes shall be as agreed upon by purchaser and producer (see 8.8).

3.4.2 Average Grain Size of Bars, Forgings and Tubing

Shall be ASTM No. 5 or finer, determined in accordance with ASTM E112.

3.4.3 Decarburization

3.4.3.1 Bars and tubing ordered ground, turned, or polished shall be free from decarburization on the ground, turned, or polished surfaces. Decarburization on tubing ID shall not exceed the maximum total depth specified in Table 4.

3.4.3.2 Allowable decarburization of bars, billets, and tube rounds ordered for redrawing or forging or to specified microstructural requirements shall be as agreed upon by purchaser and producer.

3.4.3.3 Decarburization of bars, for which 3.3.3.1 or 3.3.3.2 are not applicable, shall not exceed the values shown in Table 3.

Table 3A - Maximum total depth of decarburization, inch/pound units

Nominal Diameter or Distance Between Parallel Sides Inches	Total Depth of Decarburization Inches
Up to 0.375, incl	0.015
Over 0.375 to 0.500, incl	0.017
Over 0.500 to 0.625, incl	0.019
Over 0.625 to 1.000, incl	0.022
Over 1.000 to 1.500, incl	0.025
Over 1.500 to 2.000, incl	0.030
Over 2.000 to 2.500, incl	0.035
Over 2.500 to 3.000, incl	0.040
Over 3.000 to 4.000, incl	0.045

Table 3B - Maximum total depth of decarburization, SI units

Nominal Diameter or Distance Between Parallel Sides Millimeters	Total Depth of Decarburization Millimeters
Up to 9.52, incl	0.38
Over 9.52 to 12.70, incl	0.43
Over 12.70 to 15.88, incl	0.48
Over 15.88 to 25.40, incl	0.56
Over 25.40 to 38.10, incl	0.64
Over 38.10 to 50.80, incl	0.76
Over 50.80 to 63.50, incl	0.89
Over 63.50 to 76.20, incl	1.02
Over 76.20 to 101.60, incl	1.14

3.4.3.4 Decarburization of tubing, for which 3.3.3.1 or 3.3.3.2 are not applicable, shall not exceed the values shown in Table 4.

Table 4A - Maximum total depth of decarburization, inch/pound units

Nominal Wall Thickness Inches	Total Depth ID Inches	Total Depth OD Inches
Up to 0.109, incl	0.008	0.020
Over 0.109 to 0.203, incl	0.010	0.025
Over 0.203 to 0.400, incl	0.012	0.030
Over 0.400 to 0.600, incl	0.015	0.035
Over 0.600 to 1.000, incl	0.017	0.040
Over 1.000	0.020	0.045

Table 4B - Maximum total depth of decarburization, SI units

Nominal Wall Thickness Millimeters	Total Depth ID Millimeters	Total Depth OD Millimeters
Up to 2.77, incl	0.20	0.51
Over 2.77 to 5.16, incl	0.25	0.64
Over 5.16 to 10.16, incl	0.30	0.76
Over 10.16 to 15.24, incl	0.38	0.89
Over 15.24 to 25.40, incl	0.43	1.02
Over 25.40	0.51	1.14

3.4.3.5 Decarburization shall be evaluated by one of the two methods of 3.4.3.5.1 or 3.4.3.5.2.

3.4.3.5.1 Metallographic (Microscopic) Method

A cross section taken perpendicular to the surface shall be prepared, etched, and examined metallographically at a magnification not to exceed 200X in accordance with ASTM E1077. The sample shall not show a layer of complete (ferrite) or partial decarburization exceeding the limits of Table 3 or Table 4.

3.4.3.5.2 Hardness Traverse (Microindentation) Method

The total depth of decarburization shall be determined by a traverse method using microindentation hardness testing in accordance with ASTM E1077. Samples shall be hardened, in a protective atmosphere to prevent changes in surface carbon content. Samples may be tempered at the option of the producer. Measurements shall be far enough away from any adjacent surface to be uninfluenced by any decarburization on the adjacent surface. Acceptance shall be as listed in Table 3 or Table 4.

3.4.3.6 When determining the depth of decarburization, it is permissible to disregard local areas provided the decarburization of such areas does not exceed the above limits by more than 0.005 inch (0.13 mm) and the width is 0.065 inch (1.65 mm) or less.

3.4.3.7 In case of dispute, the total depth of decarburization determined using the microindentation hardness traverse method shall govern.

3.4.4 Response to Heat Treatment

3.4.4.1 Specimens as in 4.3.3 shall have hardness at the center of the specimen not lower than 331 HBW or equivalent (see 8.3) for cross sections 2 inches (50.8 mm) and under, and not lower than 302 HBW or equivalent (see 8.3) for larger cross sections, after being heated to $1750^{\circ}\text{F} \pm 25^{\circ}\text{F}$ ($954^{\circ}\text{C} \pm 14^{\circ}\text{C}$), held at heat for 60 to 90 minutes, cooled at a rate equivalent to still air cooling, reheated to $1100^{\circ}\text{F} \pm 15^{\circ}\text{F}$ ($593^{\circ}\text{C} \pm 8^{\circ}\text{C}$), held at heat for 6 hours ± 0.25 hour in air. Pyrometry shall be in accordance with AMS2750.

3.5 Quality

The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

3.5.1 Steel shall be premium aircraft-quality conforming to AMS2300.

3.5.2 Bars and mechanical tubing shall be free from seams, laps, tears, and cracks after removal of the standard stock removal allowance in accordance with AS1182.

3.5.3 Grain flow of die forgings, except in areas that contain flash-line end grain, shall follow the general contour of the forgings showing no evidence of reentrant grain flow.

3.6 Tolerances

3.6.1 Bars

In accordance with AMS2251.

3.6.2 Mechanical Tubing

In accordance with AMS2253.

3.7 Exceptions

Any exceptions shall be authorized by the purchaser and reported as in 4.4.4.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

The producer of the product shall supply all samples for producer's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

4.2 Classification of Tests

4.2.1 Acceptance Tests

Composition (3.1), condition (3.3), macrostructure (3.4.1), average grain size (3.4.2), decarburization (3.4.3), and tolerances (3.6) are acceptance tests and shall be performed on each heat or lot as applicable.

4.2.2 Periodic Tests

Frequency-severity cleanliness (3.5.1), response to heat treatment (3.4.4), and grain flow of die forgings (3.5.3) are periodic tests and shall be performed at a frequency selected by the producer unless frequency of testing is specified by purchaser.

4.3 Sampling and Testing

4.3.1 Bars, Mechanical Tubing, and Forging Stock

In accordance with AMS2370.

4.3.2 forgings

In accordance with AMS2372.

4.3.3 Specimens for response to heat treatment (3.4.4) shall be not shorter than twice the nominal diameter or distance between parallel sides or 6 inches (152 mm), whichever is less, and shall have the full cross-section of the product from which they were cut, except that sections over 2 to 4 inches (over 51 to 102 mm), inclusive, in nominal diameter or least distance between parallel sides shall be reduced to 2.00 inches \pm 0.01 inch (51 mm \pm 0.25 mm) and sections over 4 inches (102 mm) shall be reduced to 4.00 inches \pm 0.01 inch (101.6 mm \pm 0.25 mm).

4.4 Reports

4.4.1 The producer of bars, forgings, and tubing shall furnish with each shipment a report showing the producer identity, country where the metal was melted (e.g., final melt in the case of metal processed by multiple melting operations), results of tests for composition and macrostructure of each heat and for condition, and average grain size of each lot, and stating that the product conforms to the other technical requirements. This report shall include the purchase order number, heat and lot numbers, AMS6305H, product form and size (and/or part number, if applicable), and quantity. If forgings are supplied, the size and melt source of stock used to make the forgings shall also be included.

4.4.2 If the ship size/shape is cut from a larger cross section, report the nominal metallurgically worked size (see 3.3.1).

4.4.3 The producer of forging stock shall furnish with each shipment a report showing the producer identity, country where the metal was melted (e.g., final melt in the case of metal processed by multiple melting operations), the results of tests for composition, and macrostructure of each heat and the results of any additional property requirements imposed by 8.8. This report shall include the purchase order number, heat number, AMS6305H, size, and quantity.

4.4.4 When material produced to this specification has exceptions taken to the technical requirements listed in Section 3, the report shall contain a statement "This material is certified as AMS6305H(EXC) because of the following exceptions:" and the specific exceptions shall be listed (see 5.2.1.1).

4.5 Resampling and Retesting

4.5.1 Bars, Mechanical Tubing, and Forging Stock

In accordance with AMS2370.

4.5.2 forgings

In accordance with AMS2372.

5. PREPARATION FOR DELIVERY

5.1 Sizes

Except when exact lengths or multiples of exact lengths are ordered, straight bars and tubing will be acceptable in mill lengths of 6 to 20 feet (1.8 to 6.1 m), but not more than 10% of any shipment shall be supplied in lengths shorter than 10 feet (3 m).