400 COMMONWEALTH DRIVE, WARRENDALE, PA 15096 ## AEROSPACE MATERIAL SPECIFICATION AMS 5570L Superseding AMS 5570K Issued 2-4-39 1-1-83 Revised STEEL TUBING, SEAMLESS, CORROSION AND HEAT RESISTANT 18Cr - 11Ni - 0.40Ti (SAE 30321) Solution Heat Treated UNS S32100 ### 1. SCOPE: - 1.1 Form: This specification covers a corrosion and heat resistant steel in the form of seamless tubing. - 1.2 <u>Application</u>: Primarily for parts requiring both corrosion and heat resistance, especially when such parts are welded during fabrication, and also for parts requiring oxidation resistance up to 1500°F (815°C) but useful at that temperature only when stresses are 10w. - 2. APPLICABLE DOCUMENTS: The following publications form a part of this specification to the extent specified herein. The latest issue of Aerospace Material Specifications (AMS) shall apply. The applicable issue of other documents shall be as specified in AMS 2350. - 2.1 SAE Publications: Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096. - 2.1.1 <u>Aerospace Material Specifications</u>: AMS 2243 - Tolerances, Corrosion and Heat Resistant Steel Tubing AMS 2248 - Chemical Check Analysis Limits, Wrought Corrosion and Heat Resistant Steels and Alloys, Maraging and Other Highly-Alloyed Steels, and Iron Alloys AMS 2350 - Standards and Test Methods AMS 2371 - Quality Assurance Sampling of Corrosion and Heat Resistant Steels and Alloys, Wrought Products Except Forgings and Forging Stock SAE Technical Board rules provide that: "All technical reports, including standards approved and practices recommended, are advisory only. Their use by anyone engaged in industry or trade or their use by governmental agencies is entirely voluntary. There is no agreement to adhere to any SAE standard or recommended practice, and no commitment to conform to or be guided by any technical report. In formulating and approving technical reports, the Board and its Committees will not investigate or consider patents which may apply to the subject matter. Prospective users of the report are responsible for protecting themselves against liability for infringement of patents." ## AMS 5570L - 2.2 <u>ASTM Publications</u>: Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. - ASTM A262 Detecting Susceptibility to Intergranular Attack in Stainless Steels - ASTM A370 Mechanical Testing of Steel Products - ASTM E353 Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys - 2.3 <u>U.S. Government Publications</u>: Available from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120. - 2.3.1 Federal Standards: Federal Test Method Standard No. 151 - Metals; Test Methods 2.3.2 Military Standards: MIL-STD-163 - Steel Mill Products, Preparation for Shipment and Storage - 3. TECHNICAL REQUIREMENTS: - 3.1 Composition: Shall conform to the following percentages by weight, determined by wet chemical methods in accordance with ASTM E353, by spectrographic methods in accordance with Federal Test Method Standard No. 151, Method 112, or by other analytical methods approved by purchaser: | g | Click | min | max | |---|------------|---------|---------| | | Carbon | | 0.08 | | | Manganese | | 2.00 | | | Silicon | 0.40 | - 1.00 | | | Phosphorus | | 0.040 | | | Sulfur | | 0.030 | | | Chromium | 17.00 | - 19.00 | | | Nickel | 9.00 | - 13.00 | | | Titanium | 5x(C+N) | - 0.70 | | | Molybdenum | | 0.75 | | | Copper | | 0.75 | | | Nitrogen . | | 0.10 | - 3.1.1 <u>Check Analysis</u>: Composition variations shall meet the requirements of AMS 2248. - 3.2 <u>Condition</u>: Solution heat treated and, unless solution heat treatment is performed in an atmosphere yielding a bright finish, descaled. - 3.3 <u>Fabrication</u>: Tubing shall be produced by a seamless process. Any surface finishing operation applied to remove objectionable pits and surface blemishes shall be performed prior to final solution heat treatment. A light polish to improve surface appearance may be employed after solution heat treatment. Passivation treatment shall follow any polishing treatment. - 3.4 <u>Properties</u>: Tubing shall conform to the following requirements; tensile and bend testing shall be performed in accordance with ASTM A370: - 3.4.1 Tensile Properties: Shall be as specified in Table I. ## TABLE I | | | | | gation
2 in. | |---------------------------|-------------------|------------------|--------|-----------------| | Nominal OD | Wall Thickness | Tensile Strength | %, min | | | Inches | Inches | psi, max | Strip | Full Tube | | Up to 0.188, incl | Up to 0.016, incl | 120,000 | | 33 | | op 00 00100, 1.101 | Over 0.016 | 105,000 | | 35 | | Over 0.188 to 0.500, incl | Up to 0.010, incl | 115,000 | 30 | 35 | | | Over 0.010 | 105,000 | 30 | 35 | | Over 0.500 | Up to 0.010, incl | 120,000 | 25 | 30 | | | Over 0.010 | 105,000 | 30 | 35 | ## TABLE I (SI) | | | | | minal | MIL | | in | gation
50 mm | |------|---------|------------|--------|--------|------|------------------|-------|-----------------| | | Nomina | 1 OD | Wall 7 | hickne | ess | Tensile Strength | | , min | | | Millim | etres | Mill | imetro | es | MPa, max | Strip | Full Tube | | | Up to | 4.70, incl | Up to | 0.40, | incl | 825 | | 33 | | | op 50 | | | 0.40 | | 725 | | 35 | | Over | 4.70 to | 12.50, inc | Up to | 0.25, | incl | 795 | 30 | 35 | | | | SM. | Over | | | 725 | 30 | 35 | | Over | 12.50 | .0 | Up to | 0.25, | incl | 825 | 25 | 30 | | | · | 1 Po | Over | 0.25 | | 725 | 30 | 35 | 3.4.2 <u>Flarability</u>: Specimens as in 4.3.1 shall withstand flaring at room temperature, without formation of cracks or other visible defects, by being forced axially with steady pressure over a hardened and polished tapered steel pin having a 74 deg included angle to produce a flare having a permanent expanded OD not less than specified in Table II. # AMS 5570L #### TABLE II | Nominal OD
Inches | Expanded OD
Inches | Nominal OD
Inches | Expanded OD
Inches | |----------------------|-----------------------|----------------------|-----------------------| | 0.125 | 0.200 | 0.750 | 0.937 | | 0.188 | 0.290 | 1.000 | 1.187 | | 0.250 | 0.359 | 1.250 | 1.500 | | 0.312 | 0.421 | 1.500 | 1.721 | | 0.375 | 0.484 | 1.750 | 2.106 | | 0.500 | 0.656 | 2.000 | 2.356 | | 0.625 | 0.781 | | 10. | ### TABLE II (SI) | | | | X * | |-------------|-------------|--------------|-------------| | Nominal OD | Expanded OD | Nominal OD 🙏 | Expanded OD | | Millimetres | Millimetres | Millimetres | Millimetres | | | | | | | 3.18 | 5.08 | 19.05 | 23.80 | | 4.78 | 7.37 | 25.40 | 30.15 | | 6.35 | 9.12 | 31.75 | 38.10 | | 7.92 | 10.69 | 38.10 | 43.71 | | 9.52 | 12.29 | 44.45 | 53.49 | | 12.70 | 16.66 | 50.80 | 59.84 | | 15.88 | 19.84 | - | | 3.4.2.1 Tubing with nominal OD between any two standard sizes given in 3.4.2 shall take the same percentage flare as shown for the larger of the two sizes. χO - 3.4.2.2 Flarability requirements for tubing over 2.000 in. (50.80 mm) or under 0.125 in. (3.18 mm) in nominal OD shall be as agreed upon by purchaser and vendor. - 2.4.3 Embrittlement: Specimens from tubing, after sensitizing treatment, shall pass the copper/copper sulfate/sulfuric acid test performed in accordance with ASTM A262, Practice E, without evidence of inter-crystalline surface attack. After exposure, full cross-sectional specimens of tubing 0.625 in. (15.62 mm) and under in nominal OD shall be flattened to a total thickness under load of three times the wall thickness of the tubing and l-in. (25-mm) long specimens of tubing over 0.625 in. (15.62 mm) in nominal OD shall be split and bent 180 deg, with outside surface of tube on inside of bend, around a diameter equal to the nominal wall thickness without showing cracks or other defects. In either flattening or bending, the fold shall be made parallel to the axis of the tube. - 3.5 Quality: Tubing, as received by purchaser, shall be uniform in quality and condition and shall have a finish conforming to the best practice for high quality aircraft tubing. It shall be smooth and free from heavy scale or oxide, burrs, seams, tears, grooves, laminations, slivers, pits, and other imperfections detrimental to usage of the tubing. Surface imperfections such as handling marks, straightening marks, light mandrel and die marks, shallow pits, and scale pattern will not be considered injurious if the imperfections are removable within the tolerances specified for wall thickness but removal of such imperfections is not required. - 3.6 Sizes: Except when exact lengths or multiples of exact lengths are ordered, straight tubes will be acceptable in mill lengths of 6 20 ft (2 6 m) but not more than 10% of any shipment shall be supplied in lengths shorter than 10 ft (3 m). - 3.7 <u>Tolerances</u>: Unless otherwise specified, tolerances shall conform to all applicable requirements of AMS 2243. - 4. QUALITY ASSURANCE PROVISIONS: - 4.1 Responsibility for Inspection: The vendor of tubing shall supply all samples for vendor's tests and shall be responsible for performing all required tests. Results of such tests shall be reported to the purchaser as required by 4.4. Purchaser reserves, the right to sample and to perform any confirmatory testing deemed necessary to ensure that the tubing conforms to the requirements of this specification. - 4.2 Classification of Tests: - 4.2.1 Acceptance Tests: Tests to determine conformance to requirements for composition (3.1), tensile properties (3.4.1), and tolerances (3.7) are classified as acceptance tests and shall be performed on each heat or lot as applicable. - 4.2.2 <u>Periodic Tests</u>: Tests to determine conformance to requirements for flarability (3.4.2) and embrittlement (3.4.3) are classified as periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser. - 4.3 Sampling: Shall be in accordance with AMS 2371 and the following: - 4.3.1 Specimens for flarability (3.4.2) test shall be full tubes or sections cut from tubes. The end of the specimen to be flared shall be cut square, with the cut end smooth and free from burrs, but not rounded. - 4.4 Reports: