

AEROSPACE INFORMATION REPORT

SAE AIR4275

Issued 1991-04-01

Submitted for recognition as an American National Standard

JET REFERENCE FLUID STUDY FOR FUEL TANK SEALANTS

	TABLE OF CONTENTS	DAGE
PARAGRAPH	No.	PAGE
1.	SCOPE	3
1.1 1.2 1.3	Background	3 4 4
2.	BASIC CONSIDERATIONS	. 5
2.1 2.2 2.3	Historical	5 7
3.	Availability TESTS PERFORMED DURING COMMITTEE'S INVESTIGATION	9
3.1 3.2 3.3 3.4 3.5	Effects of Metal Ions Effects of Aromatic Compounds Effects of Paraffins and Cycloparaffins Effects of Sulfur Compounds Miscellaneous	9 10 10 10
4.	JRF-2 FORMULATIONS	11
4.1 4.2 4.3	Composition	11 12 12

SAE Technical Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

	TABLE OF CONTENTS (Continued)	
PARAGRAPH	·	PAGE
5.	IMPROVED CHALKING TEST	13
5.1 5.2	Fluid Makeup Procedure	13 13
6.	COMMERCIAL SOURCES OF JRF-2 AND METAL IONS	14
7.	LONG TERM TASKS	14
8.	CONCLUSIONS	14
APPENDIX A	Composition, Yesterday - Today - Tommorrow	15
APPENDIX B	Correlation of Aviation Turbine Fuel Properties	16
APPENDIX C	Air Force Aero Propulsion Laboratory Technical Report, "Analysis of Aircraft Fuels and Related Materials, Tables 64, 77, 78, 79	20
APPENDIX D	Mercaptans in Jet Fuels	23
APPENDIX E	Effect of Aromatic Fuel Components on Polysulfide Fuel Tank Sealants	26
APPENDIX F	Effect of Alkane and Cyclonexand Fuel Components on Polysulfide Fuel Tank Sealants	64
APPENDIX G	Comparison of JRF-2 and Original JRF in 7 and 14 Day Immersion Tests	88
APPENDIX H	Test Report JRF Round Robin Test	90
APPENDIX I	JRF-2 Evaluation	94

1. SCOPE:

1.1 Background:

Standard reference fluids, or test fluids, have long been used to evaluate the effects of hydrocarbon fuels on various materials, such as integral fuel tank sealants. Standard fluids are required because hydrocarbon fuels, such as JP-4, vary widely in composition depending on crude source, refining techniques, and other factors. To ensure reliable and reproducible results when determining the fuel resistance of materials, reference fluids of known composition, using worst case fuel compositions, are used. The current Jet Reference Fluid (JRF) called out in military sealant specifications was developed in the mid-1950s specifically as a JP-4 type test fluid formulation to be used for the accelerated laboratory testing of integral fuel tank sealants.

In August 1978, chalking of the polysulfide sealant in integral fuel tanks of some new aircraft at Edwards Air Force Base in California was discovered after only 1 year of service. Although chalking of polysulfide sealants had been observed occasionally in the past, the rate of chalking was unprecedented. The results of an investigation showed that the rapid chalking of the polysulfide sealant was caused by a chemical reaction involving metal ions (copper, cadmium, lead and iron) and mercaptan sulfur in the fuel. It was also noted that qualification testing of the sealant used had not predicted the chalking that occurred in service. Further investigation disclosed that the sealant had passed the chalking test in the military specification because the JRF used in the specifications chalking test did not contain trace metal ions as did the fuel removed from the tanks of the affected aircraft. The special Air Force investigating team included in its final report a recommendation that the JRF specification be reviewed and revised.

The above chalking incident coupled with concerns resulting from deficiencies observed with the current JRF, and from changing sources of JP-4 indicated that an update of the JRF formulation in the sealant specifications was needed. A proposal was made to the SAE Aerospace Sealing Committee (G-9) which then formed a subcommittee for the development of a new Jet Reference Fluid (JRF) for evaluation of integral fuel tank sealants with Mr. W. F. Anspach as its chairman. The subcommittee members were:

W. F. Anspach, Chairman

P. A. House

C. R. Martel

C. Nadler

R. E. Meyer

R. N. Gilliland

H. Weltman

K. Q. Lovinggood

Wright Patterson AFB Materials Lab, AFWAL/MLBT Wright Patterson AFB Materials Lab, AFWAL/MLSE AFWAL/POSF

Naval Air Development Center Products Research & Chemical Formerly of Essex Chemical

Products Research & Chemical (since retired)

General Dynamics Fort Worth, Texas McDonnell Douglas Long Beach, CA

1.2 Program Organization:

The organization of the committee and its functions were discussed at a meeting in Long Beach, CA on 23 May 1979. The prime purpose of this meeting was to define objectives, establish the scope of effort, and to develop a program plan so that it could get started on the technical effort. Simply stated, the objective of this committee was to develop a new JRF for sealant evaluation which would reasonably reflect the worst to be expected from fuels derived from existing and expected sources, provide reliable sealant differentiation, and have none of the known deficiencies of the current JRF.

1.3 Approach:

The current JRF called out in MIL-S-8802 and MIL-S-83430 sealant specifications was selected as a suitable starting point for discussion and planning. Knowledge of the rationale used for the development of the current JRF and the selection of its components coupled with the problems encountered with its use was considered essential to the development of a new replacement fluid. Establishing the scope of effort proved to be difficult. However, there was general agreement that a broad, two-level program to define the requirements for, develop the composition of, and fully evaluate a new JRF was needed. It consisted of a short-term effort addressing current, urgent problems and a long-term effort to address the full spectrum of fuels, seal and sealant materials, and potential environments. As a minimum, the new JRF should address the following:

- a. Both military and commercial requirements with emphasis on the military
- Composition of JRF to simulate existing fuels (i.e., JP-4, JP-5, JP-8, and Jet A) and future alternate fuels as developed
- c. The effects of JRF on the following classes of materials: polysulfides, fluorosilicones, fluorocarbons, and nitriles
- d. Problems experienced with the current JRF
- e. Analytical techniques and handling/storage requirements to ensure adequate quality control of the JRF
- f. The potential requirement for more than one JRF (i.e., high and low aromatics content) for different applications
- g. An appropriate method for governing the new JRF with provisions for future review and revisions
- h. Appropriate and adequate testing

Although a detailed program plan was not accomplished at that time, the following considerations for the Short-Term Program and the Long-Term Program were initially identified:

- a. Short-Term Program:
 - (1) Consider polysulfide sealants only
 - (2) Concentrate on reliable sealant differentiation
 - (3) Establish a common source
 - (4) Establish analytical techniques for quality control
 - (5) Establish problem contaminant content (i.e., metal ions and mercaptan sulfur)

1.3 (Continued):

(6) Revise current chalking test

(7) Formulate to better represent the worst to be expected from fuels derived from existing and expected sources

b. Long-Term Program

(1) Evaluate mercaptan content

(a) kind

(b) level

(2) Formulate to represent future fuel compositions

(3) Evaluate potential problem fuel components

(a) sulfur compounds

(b) additives

(c) aromatics composition and content

(d) nitrogen compounds

(4) Consider other sealant materials (i.e., fluorosidicones, fluorocarbons, and nitriles)

It was later decided that the mercaptan study as well as aromatics, nitrogen compounds, and other sulfur compounds and additives needed to be addressed in the short-term program in order to properly formulate a new JRF.

2. BASIC CONSIDERATIONS:

2.1 Historical:

The history/background of the current JRF was traced to determine the basic factors considered by the formulating committee (ARTC Panel W-83, 1955 to 1956) in determining its composition. A fairly complete picture was pieced together from information obtained from the files of former members of the W-83 Panel and from the microfilm files of the Aircraft Industries Association (AIA) in Washington, D.C.

As early as 1953 concern was expressed by the Aircraft Industry that the reference fluid Type III called out in MIL-H-3136 for testing rubber and sealants for acceptability with 115/145 octane aviation gasoline might not be appropriate as a screening fluid for rubbers and sealants to be used with JP-4. It was suspected that the composition of JP-4 would vary widely due to different sources of crude oil and due to differences in refining techniques. The unknown variety of as yet unidentified contaminants might well introduce new deleterious effect.

This was brought to the attention of the Coordinating Research Council (CRC) Inc., an organization to which the aircraft industry and the oil industry belonged. They failed to act, prompting the formation of a W-83 subcommittee of the Aerospace Research and Testing Committee of AIAA (ARTC) in July 1955. Subsequently CRC recommended several consultants from the oil companies to assist in the study to establish an appropriate JRF composition to screen rubber and sealants to be exposed to JP-4.

2.1 (Continued):

The ARTC Plan was as follows:

- a. Learn from the oil companies the variability in composition of JP-4 to be expected from different sources of crude oil and different refining methods.
- b. Establish a base fluid, then add various aromatics, mercaptans, olefins, and other types of compounds (such as sulfides, sulfones, nitrogen bearing compounds, oxygenated materials (peroxides), and organometallic compounds). These compositions would be evaluated on the basis of their effects on EC-801 (a lead catalyzed polysulfide sealant) then qualified to the MIL-S-7502 specification.

A detailed set of experiments was then conducted to establish the composition of a representative JRF. The composition selected was:

Toluene (TT-T-548)
Cyclohexane (95 MOL% min)
Iso Octane (MIL-S-3136 TYPE I)
Tert-Dibutyl Disulfide (Phillips)
Tert-Butyl Mercaptan (Phillips)

30 Volumes 60 Volumes

10 Volumes

0.015 epercent by weight of the other components

The total sulfur content of this JRF composition is 0.4% and the mercaptan sulfur is 0.0045%.

Recommendations were also made to limit the test temperature to 160°F due to volatility and to set a maximum shelf life of 90 days on the mixed JRF. The data found in the documents did not give a complete basis for the composition selected for the JRF. Whether additional data were available and not presented or whether some of the selection of elements of composition were arbitrarily selected is not known. The following "gaps" of information were noted:

- a. No data were available to support the selection of 0.4% sulfide sulfur as an upper limit.
- b. No mention was made of any implementation of plans to evaluate the effects of organometallic compounds.
- c. No data were available to show the variability in composition of production JP-4, thus no direct data could be reviewed on the concentrations of organic materials.

2.1 (Continued):

The current JRF is called out in the MIL-S-8802 and MIL-S-83430 sealant specifications and in general has served well since its development. As one might expect, however, some problems, deficiencies, and concerns have been identified. Some of the major problems are listed below:

- a. The JRF is inadequate for use in the MIL-S-8802 chalk tests because it lacks controlled metal ion content.
- b. It has been difficult to establish a reliable common source.
- c. The composition relative to the composition of current fuels (i.e., JP-4, JP-5, and JP-8) is questionable (see Table 1).
- d. Analysis for quality control purposes is difficult.
- e. The aromatics components and content may not be appropriate.
- f. It does not contain common fuel additives or suitable simulants.
- g. The sulfur compounds may not be appropriate or adequate.

It was clear that the time had come to upgrade the current JRF or develop a new one.

2.2 Composition of Fuels From Existing and Expected Sources:

Mr. C. R. Martel of the Air Force Wright Aeronautical Laboratories Aeropropulsion Laboratory searched the literature for information on the hydrocarbon composition and nitrogen content of jet fuels produced from various sources. He compiled data showing typical compositions for JP-4, JP-5, and JP-8 and Jet A fuels from three different sources; petroleum, shale, and coal (see Table 1). The data included percentage ranges for paraffins, cycloparaffins, alkyl benzenes, naphthalenes, and sulfur. He also tabulated concentration ranges for the following impurities: mercaptan sulfur, total sulfur, total nitrogen, and trace metals (see Table 2).

It was observed that jet fuel derived from shale presented a less severe environment than that derived from petroleum because the aromatic content is considerably lower 66 to 13% versus 9 to 19% for JP-4). Nitrogen is higher (0.01% versus 0.0027%); present jet fuel specifications, however, limit nitrogen to 0.01% maximum to maintain fuel stability.

JP-4 from coal could contain higher concentrations of aromatics (19 to 30%); however, all present jet fuel specifications limit the aromatic content to 25% maximum since higher concentrations greatly reduce engine life. JP-4 from coal will contain twice the concentrations of cycloparaffins (62 to 73%) compared with present JP-4 from petroleum (27 to 40%). This is not expected to be more detrimental since tests with 100% cycloparaffins produced sealant changes (volume swell) which were less significant than a model jet fuel mix containing 20% aromatics. (Current original JRF composition contains 30% aromatics).

A comparison of anticipated compositions of jet fuel made from petroleum, shale oil, and coal is given in Appendix A. Additional information concerning the composition of JP-4, -5 and -8 are given in Appendices B, C, and D.

TABLE 1 - Composition of Fuels

Fuel Type	Source	Paraffins (%)	Cyclo— Paraffins (%)	Alkyl Benzenes (%)	Naphthalenes (%)	Sulfur (%)
JP-4	Petroleum	39–64	27–40	9–19	0–1	0-0.15
	Shale	49–67	20-45	6-13	0	0.006
	Coal	5-11	62-73	19-30	0	0.0003
					1/2	0.002
JP-5	Petroleum	31–51	21-50	11–27	1-4	0-0.23
JP-8	Shale	44-51	30-40	8-22	0-2	0.002
Jet A	Coal	5-13	53-66	20-41	0	0.003
				OF		0.0005

NOTE: Oil shale fuels are quite similar to petroleum. Aromatics content is dependent upon degree of hydrotreatment required to remove nitrogen.

Coal fuels are quite different with low paraffins content. Cycloparaffin and aromatics content will depend upon degree of hydrotreatment used.

TABLE 2 - Fuel Impurities

Fuel Type	Source	Mercaptan Sulfur (wt %)	Total Sulfur (wt %)	Total Nitrogen (wt %)
CJP-4	Petroleum	0-0.001	Unknown	Unknown
	Oil Shale	Unknown	Unknown	0-0.01
	Coal	Unknown	0-0.001	0-0.002
JP-5, 8	Petroleum	0-0.002	0-0.16	Unknown
Jet A	Petroleum	0-0.005	0-0.23	Unknown
Kerosene	Oil Shale	Unknown	0-0.001	0-0.24
Kerosene	Coal	Unknown	0-0.003	0-0.005

NOTE: Expect N $_2$ must be held to <100 ppm for fuel stability. Sulfur tends to be removed along with N $_2$.

AIR4275 SAE

Possible Relaxation of Restrictions on Jet Fuel Compositions for Greater Availability:

Relaxation of freezing and boiling point limitations would permit the use of high boiling fractions.

Fuels from coal would contain a significantly higher content of cycloparaffins. Fuel specification limits might be raised.

The higher nitrogen of shale oil fuels could be reduced by hydrotreating. Nitrogen levels are kept low for acceptable jet fuel storage stability.

Fuel icing inhibitors and fuel biocides at the current 0.2 to 0.5% levels in jet fuels have no detrimental effects on sealants (Navy study per NADC). These limits are not expected to change.

TESTS PERFORMED DURING THE COMMITTEE'S INVESTIGATION:

Special tests were run by AFML, NADC, and General Dynamics, Fort Worth Division. These laboratories, along with McDonnell Douglas Long Beach and two sealant suppliers, Essex Chemical Corporation and Products Research and Chemical Corporation, also participated in a Yound robin test program.

3.1 Effects of Metal Ions:

PROSEAL 890

Exploratory tests with metal ions at 10, 5, and 1 ppm indicated that copper ions and cadmium ions caused rapidochalking of sealant in the JRF solution. Calcium, iron, lead, magnesium, manganese, and nickel ions also caused chalking, but at a much slower rate. Metallic naphthanates were found by NADC to be the most stable organometallic vehicle for the introduction of metal ions into a JRF formulation.

Initial round robin tests utilized the original JRF composition but modified it to include 0.10 ppm by weight of copper ions and 0.10 ppm by weight of cadmium ions. This "first fix" recognized the effects of cadmium fasteners on sealant in F-16 fuel tanks where chalking had been observed.

Specimens of sealant (1/8 in x 1/8 in x 5 in) cut from cured sheets were suspended totally immersed in a closed glass container containing 900 cc of the test fluid at 140°F. The fluid was changed twice per week (Mondays and Thursdays) and was examined for chalking daily and rated as no chalk, slight chalk, moderate chalk, or heavy chalk. This was continued until all samples exhibited heavy chalk. The sealants used were:

A polysulfide, dichromate cured system qualified. PR-1422 to MIL-S-8802

A manganese dioxide cured polysulfide qualified

to MIL-S-8802

PROSEAL 899 A manganese dioxide cured polysulfide qualified

to MIL-S-83430

The samples showed a slight chalk in 1 to 2 weeks and a heavy RESULTS: chalk in 3 to 4 weeks.

3.1 (Continued):

A modified procedure was evaluated in which the concentration of copper and cadmium ions was increased to 0.5 ppm each and the immersion conducted at 77°F. Under these conditions, no significant chalking was observed until after six or seven days. It was decided that this was a satisfactory procedure and should be incorporated into MIL-S-8802. The detailed test procedure is shown in Section 5 of this report.

3.2 Effects of Aromatic Compounds:

The results showed that test fluids composed of 40% cyclohexane, 35% iso-octane, and 25% aromatic, the bicylic aromatic compounds (and alkyl derivatives) caused much greater swell (22 to 35%) than the alkyl benzenes (7 to 14%); however, bicyclic compounds occur in jet fuels only in low concentrations (less than 1%). Only indene and tetralin chemically degraded the sealants, but this occurred at a concentration of 5% or greater. No degradation was apparent at concentrations less than 1% (swell and weight loss data shown in Appendix E).

3.3 Effects of Paraffins and Cycloparaffins:

Regarding the effects of paraffins and cycloparaffins, sealant properties were observed before and after immersion in various fluids for 266 h at 140°F. The study included alkanes, alkenes, and cycloalkanes in the C_6 to Cla range. Results were compared with control samples of JP-4, -5, and -8 (from petroleum) and a sample of JP-4 derived from shale oil. The results showed that the effects of alkanes, alkenes, cycloalkanes, and mixtures on sealant properties were roughly equivalent to that of the control samples. When blends were prepared containing 20% toluene in addition, the volume swell was 2 to 3 times greater than the same blends without toluene added. Alkanes as pure compounds affected the sealant less than cycloalkanes. Within any given class of compound (alkanes, alkenes, cycloalkanes) there was little variation in results over the range of carbon numbers studies. It was, therefore concluded that a single alkane and a single cycloalkane should be adequate for representing these classes in the JRF formulation and should be present in proportions representative of current jet fuel compositions Iso-octane and cyclohexane were selected considering purity and availability as well as low cost. (Data shown in Appendix F).

3.4 Effects of Sulfur Compounds:

Mercaptan sulfur appears to react with certain elemental metals. In the cases of copper and cadmium, the ions thus produced can cause chalking of sealants. It is important to note that if metal is present only in ionic form, the chalking rate is independent of mercaptan concentration. Mercaptans appear to have no effect on sealant volume or weight. Chalking tests were run with JRF containing metal ions both with and without mercaptans present. When mercaptans were absent no chalking occurred. The conclusion was drawn that both metal ion and mercaptan must be present in order to produce chalking.

3.4 (Continued):

Regarding disulfides, similar tests were run with and without disulfides being present. Although there was some indication that the presence of disulfides intensifies volume swell, it has little effect on chalking.

The concentration limits of total sulfur in jet fuels is not expected to change. As refineries switch to the use of higher sulfur crude oils, they will be forced to use hydrodesulfurization. This could result in a reduction in the average sulfur content of jet fuels in the future. A decision was made to maintain the total sulfur concentration in the new JRF at 0.4% by weight and to adjust to that level through the use of tertiary butyl disulfide as was done in the past with the original JRF.

3.5 Miscellaneous:

Conclusions concerning other potential deleterious contaminates are as follows:

- a. Peroxides Current fuel specifications are adequate to prevent the formation of peroxides in jet fuels, thus no test of the effects of peroxides on sealant is necessary.
- Acidity Fuel specifications control the acidity of fuels to acceptable levels.
- c. Thiophenes (Aromatic Sulfur Compounds) No information is available regarding the current levels of thiophenes in jet fuels. They are easily removed by hydrotreating. There is no evidence that these materials currently present a problem.

4. JRF-2 FORMULATION:

4.1 Composition:

Based on the preceding surveys and laboratory tests, a formulation was established that represents the worst to be expected from fuels derived from existing and expected sources. Furthermore, the formulation provides reliable sealant differentiation and has none of the known deficiencies of the current JRF. The fluid was designated JRF-2. The composition is shown below along with the current JRF and typical JP-4 fuel. The toluene level was reduced from 30 volumes to 25 volumes to better simulate the highest level to be expected in typical fuels. Current JP-4, -5, -8, and Jet A fuel specifications limit the aromatics to 25%; consequently, testing at higher levels was considered to be unrealistic. The cyclohexane level was reduced from 60 to 35 volumes and the iso-octane was increased from 10 to 40 volumes. This was to better represent the ranges of paraffins and cycloparaffins actually found in typical fuels. Tertiary dibutyl disulfide and tertiary butyl mercaptan were retained at their previous levels and trace amounts of copper and cadmium ions (0.5 ppm each) have been added for

4.1 (Continued):

fluids to be used for chalking tests. Since the presence of trace amounts of metal ions has no apparent affect on sealant properties other than chalking, they may be omitted for all other tests.

TABLE 3 - JRF-2 Formulation

	JRF-2	ORIG. JRF	JP-4
	5K1 – Z	JKI	01 -4
			CV
Toluene (TT-T-548)	25 Vo1	30	10-20%
Cyclohexane (Tech Grade)	35	60	27-40%
Iso-Octane (TT-S-735 TY I)	40	10	39-64%
Tertiary Dibutyl Disulfide	1	1	/ Protal Sulfur
•			0.03% wt)
Tertiary Butyl Mercaptan ² 0.01	5+0.0015 wt%	(Merca)
		Sul fur	•
	9	0.0004	1% wt)
Copper Ions ^{3,4} 0.50 ppm by wt	0 0	0-0.02	25 ppm
Cadmium Ions ⁵ 0.50 ppm by wt	0, 11,	0-0.01	• •
,	N.S.		• •
¹ Total sulfur content: 0.400 ± 0	.005\wt%		
² Mercaptan sulfur content: 0.005		,	
³ To be added as soluble naphthale			entration
of 0.50 ± .05 ppm by wt.			
4Metal ions added to JRF-2 compos	sition for cha	ılkina t	ests only
⁵ See Footnote 4.			.cscs only.
~0			

4.2 Preparation of the New JRF-2 Formulation:

Omitting the metal ions, mix the ingredients in the proportions given in the JRF-2 composition shown above. If the solution is to be used either immediately or at a later date for chalking tests with metal ions added, store the mixture from the start in amber glass containers.

Analyze for total sulfur and mercaptan sulfur.

The procedure for adding metal ions for chalking tests is described in 5.1.

4.3 Comparison of JRF-2 and Original JRF:

Tests were conducted by subcommittee members to compare the old and new formulations. Tensile strength, elongation, hardness, and volume change of three sealant samples were measured following 7- and 14-day immersion in the two fluids. Data are shown in Appendix G.

5. IMPROVED CHALKING TEST:

5.1 Fluid Makeup:

Combine the five individual components of JRF-2. (NOTE: Do not use commercial JRF-2 unless analysis shows the mixture to contain less than 0.05 ppm copper or cadmium ions).

Add copper and cadmium ions from a standard reference concentrate of copper and cadmium naphthanates certified to contain 500 ppm copper and 500 ppm cadmium. Add 1.0 mL of this concentrate to 999 mL of the other 5 components. This will result in a final copper and cadmium concentration of $0.5 \text{ ppm} \pm 0.05 \text{ ppm}$ each. Store fluid in amber-glass (avoid contact with any metals).

There is currently no suitable quantitative analysis available for metal ion concentration. The desired method of preparing the JRF-2 with metal ions, therefore, must be done carefully.

5.2 Procedure:

Cut four 1/8 in x 1/8 in x 5 in specimens from a sheet of the sealing compound that has been cured for 14 days at $77^{\circ}F + 2^{\circ}$ and 50% RH \pm 2%. The specimens shall be suspended on nylon cord in a closed glass container with 900 mL of test fluid so that the specimens are totally immersed in the fluid. Aluminum foil shall be used to seal the lids of the containers. No metal items shall be allowed to be in contact with the fluid or specimens during the immersion period. The specimens shall not touch each other, so that all sides are exposed to the fluid. The immersion temperature shall be $77^{\circ}F \pm 2^{\circ}$. The tests will be started on a Wednesday and the fluid changed on the following Friday. The specimens shall be examined for chalking on the following Monday. Remove specimens from the fluid and allow the fluid to evaporate. The specimens are not to be blotted or wiped.

Examine strips in well lighted area. Use an original specimen for comparison with the specimens under test to detect chalking.

5.2.1 Rating Criteria:

SLIGHT CHALK - Initial observation of white or light gray formation, usually starting at edges of the sealant.

MODERATE CHALK - The white or light gray formation has spread to about one-quarter to one-half of the surface area.

HEAVY CHALK - The white or light gray formation has spread to about three-quarters or more of the surface.

Observations of chalking greater than moderate after 5 days of immersion shall be cause for rejection of the test sealant.

6. COMMERCIAL SOURCES OF SUPPLY FOR JRF-2 AND METAL IONS:

Phillips Petroleum, Borger, Texas, will manufacture and sell the JRF-2 composition (without metal ion added). It will be available in drums and in smaller containers. The amount of metal ion that might be imposed upon the solution from the container itself is not considered to be significant in affecting sealant properties for any immersion tests except the chalking test. It is strongly recommended that JRF-2 solutions to be used for chalking tests be made up directly in the laboratory of the using facility and that the resultant solution be stored in amber glass containers.

Metal ions (copper and cadmium) as the naphthanates can be purchased as primary standards in Drakeol #9 oil from National Spectrographic Labs., Inc., 7650 Hub Parkway, Cleveland, OH 44125; telephone number (216) 447-1550.

7. LONG TERM TASKS:

After completing all of the short term tasks, the subcommittee evaluated the remaining tasks that were a part of the long-term program. These tasks included consideration of formulations to represent future fuel compositions and consideration of other sealant materials such as fluorosilicones, fluorocarbons, and nitriles. Regarding future fuels, it was decided to delay their consideration until their compositions are known. It was also decided that the JRF subcommittee would not study other sealing materials. A new subcommittee could be formed if such additional studies become warranted.

8. CONCLUSIONS:

The efforts of the jet reference fluid subcommittee may be summarized as follows:

- a. Conducted surveys to determine compositions of jet fuels derived from current and expected sources
- b. Conducted laboratory tests to determine the effects of fuel constituents on polysulfide sealants
- Conducted laboratory tests to determine the effects of fuel contaminants, including sulfur compounds and metal ions, on polysulfide sealants
- d. Based on the preceeding studies a new JRF formulation (JRF-2) was devised and recommended for committee approval; the new fluid reasonably reflects the worst to be expected from fuels from existing and expected sources, provides reliable sealant differentiation and has none of the known deficiencies of the current JRF
- e. A test fluid formulation was devised for testing for chalking of polysulfide sealants (JRF-2 plus metal ions)
- f. A test procedure for chalking was established
- g. Sources were identified for JRF-2 fluid and for metal ion concentrates
- h. Consideration of future fuels and sealants other than polysulfides was postponed to a later date

PREPARED BY SAE AMS COMMITTEE D

APPENDIX A

COMPOSITION, YESTERDAY - TODAY - TOMORROW

TABLE A1 - JP-4 Composition, JP-5, 8, Jet A Yesterday-Today-Tomorrow

				Arc	omatics	\$\section \section \sect	ur	
Fuel Type	Source	Paraffins (%)	Cyclo Paraffins	Alkyl Benzenes	Naphthalenes	Mercaptan	Total	Total Nitrogen ^l
					1/1/2			
	Petroleum	39–64	27–40	9-19	0-1	0-0.001	0-0.2	0-0.002
JP-4	Shale	49–67	20-45	6–13	0	?	0.006	0-0.01
	Coal	5–11	62–73	19-30	0		0-0.002	0-0.002
JP-5	Petroleum	31-51	21–50	G1-27	1–4		0-0.23	
JP-8	Shale	44-51	30–40	8–22	0-2		0.002	
Jet A	Coal	5–13	53-66	20-41	0		0.003	

APPENDIX B

CORRELATION OF AVIATION TURBINE FUEL PROPERTIES

B.1 Some of the important properties of aviation turbine fuels produced from petroleum were correlated with density and aromatic content in order to provide a framework for estimating the properties of aviation turbine fuels produced from synthetic fuels.

B.2 COMPOSITION:

The composition of various jet fuels was evaluated by Kearns (36). JP-4 and JP-5 differ in the molecular weight of their aromatic components. JP-5 also has a lower concentration of paraffins. Table B1 lists the composition of these fuels as determined by Kearns. Those compositions are compared with a straight run kerosene.

Table B2 illustrates the effects of molecular structure on the physical properties of jet fuel hydrocarbon components. Paraffins have the lowest density, melting point, boiling point, and highest heating value per carbon atom. Aromatics have the highest density, melting point, boiling point, and lowest heating values. Naphthenes fall between aromatics and paraffins in properties but resemble aromatics more closely.

A correlation based on Siemssen's (35) work is presented in Figure Bl. The calculations are based on a naphthene density of 0.8233 g/cm³, an aromatic density of 0.9195 g/cm³, and a paraffin density of 0.7487 g/cm³. Note that these densities were obtained from a regression of the composition presented by Armstrong et al., (33). Eisen's results (15) do not fall on the triangular graph probably because the COED based jet fuel contains higher molecular weight naphthenes than are present in petroleum based fuel. The naphthene density seems to be on the order of 0.85 g/cm³ as compared with the correlation number of 0.8233 g/cm³. Also, the product from Western Kentucky coal appears to have higher molecular weight cyclic compounds than the Utah coal jet fuel product.

¹Prepared by Exxon Research and Engineering Company, Government Research Laboratory, Linden, New Jersey 07036. March 1975. Section VI.

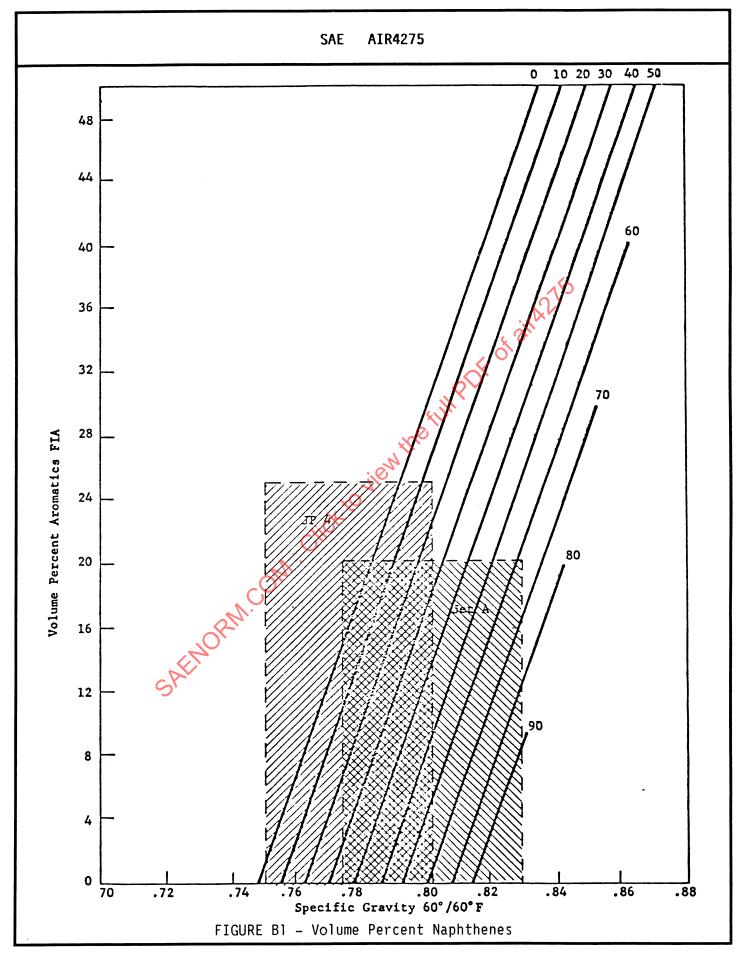

SAE AIR4275

TABLE B1 - Composition of Jet Fuels in Volume Percent (36) JP 4 JP 5 Kerosene Benzenes C 9 13.1 1.7 0.3 C10 4.1 4.6 1.4 C11 1.1 2.5 1.6 C12 0.5 1.0 1.0 C13 0.3 0.7 0.8 C14 0.5 0.2 C15 0.1 0.3 C16 0.2 Indanes C10 0.1 0.3 0.2 JEM. Chick to view the full of 1.0.1 1.0 C11 0.1 1.0 C12 1.5 C13 1.2 C14 0.7 C15 0.3 C16 0.1 Indenes C11 C12 0.1 C13 0.2 C14 0.2 C15 0.1 Naphthalenes C10 0.1 C11 0.6 C12 1.5 C13 1.0 C14 0.3 C15 0.1 Totals 38.7 30.8 41.7 Non Condensed Cycloalkanes 32.1 34.4 27.2 Condensed Cycloalkanes 7.4 16.8 12.9 Olefins 1.9 0.0 2.8 Aromatics 19.9 18.0 15.4

SAE AIR4275

TABLE B2 - Properties of Hydrocarbons in the Jet Fuel Range

		Hydrogen		Density	MP	ВР	LHV
Name	Formula	% (w)	MW	g/cm ³	°C	°C	kJ/g
Aromatics							
Benzene	C ₆ H ₆	7.74	78.11	0.879	5.5	80.1	40.1
Naphthalene	C ₁₀ H ₈	6.29	128.16	1.025	80.2	217.9	40.2
Toluene	C6H5CH3	8.75	92.13	0.866	- 95	110.8	40.5
Xylene o	C ₆ H ₄ (CH ₃) ₂	9.50	106.16	0.881	-25	144	40.8
m	$C_6H_4(CH_3)_2$	9.50	106.16	0.867	-47.4	139.3	40.8
p	C6H4(CH3)2	9.50	106.16	0.861	13.2	138.5	40.8
Naphthenes					1/2		
Cyclohexane	C ₆ H ₁₂	14.37	84.16	0.779	6.5	80	43.4
Decalin cis	C ₁₀ H ₁₈	13.13	138.24	0.895	51	193	42.8
trans	C ₁₀ H ₁₈	13.13	138.24	0.872	-32	185	42.8
Methyl Cyclohexane	C ₇ H ₁₄	14.37	98.18	0.769	-126.3	101	43.4
Dimethyl Cyclohexane	7 14			OX			
cis 1,2	^C 8 ^H 16	14.38	112.13	0.796	-50.1	129.7	43.4
trans 1,2	C8H16	14.38	112.13	0.776	-89.2	123.4	43.4
cis 1,3	C8H16	14.38	112,13	0.776	-75.6	120.1	43.4
trans 1,3	С ₈ Н ₁₆	14.38	1(12.13	0.784	-90.1	124.5	43.4
cis 1,4	C8H16	14.38	112.13	0.783	-87.4	124.3	43.4
trans 1,4	C ₈ H ₁₆	14.38	112.13	0.763	-37.0	119.4	43.4
Paraffins		*0					
h-hexane	CH (CH) CH	6.38	86.17	0.659	- 94	69	44.7
i-hexane	CH ₃ (CH ₂) ₄ CH ₃	16.38	86.17	0.654	-153.7	60.2	44.6
neo-hexane	(CH ₃) ₃ C C ₂ H ₅ .	16.38	86.17	0.649	-98.2	49.7	44.6
	(CH ₃) ₂ CHCH(CH ₃) ₂	16.38	86.17	0.662	-129.8	58.0	44.6
n-heptane	C ₇ H ₁₆ C 3'2	16.09	100.21	0.684	-90.61	98.4	44.6
n-octane	C ₈ H ₁₈	15.88	114.23	0.703	-56.8	125.7	44.4
n-decane	С10 ^H 22	15.59	142.28	0.730	-29.7	174.0	44.2

APPENDIX C²

AIR FORCE AERO PROPULSION LABORATORY TECHNICAL REPORT, "ANALYSIS OF AIRCRAFT FUELS AND RELATED MATERIAL, TABLES 64, 77, 78, 79

TABLE C1 - Hydrocarbon-Type Analysis

	JP-8		Xylene C	omposite	2040	Solvent
	Weight, %	Average Carbon No.	Weight, %	Average Carbon No.	Weight, %	Average Carbon No
_						
Paraffins	41.8	12.1	-	/ -	-	
Cycloparaffins	37.5	12.0	- ~	グ –	-	_
Dicycloparaffins	6.1		-, 1	-	_	-
Tricycloparaffins	1.1		, ch	-	_	_
Alkylbenzenes	7.5	10.9	100.0	8.9	35.5	10.5
Indanes/Tetralins	3.8		×O -	_	6.8	11.0
Indenes	0.7		_	-	0.09	11.0
Naphthalene ^l	_2	Ji/C	_	-	18.6	10.0
Naphthalenes	1.5	11.6	_	_	39.0	11.2
Acenaphthenes	_	. .	_	_	_	_
Acenaphthylenes	_	Oh,	_	-	_	_
Tricyclic aromatics	- (-	-	-	-
Analytical Method	ASTM D 2549		ASTM D 2789		ASTM D 2425	
	and ASTM D 2425			·		

¹Refers to the unsubstituted compound.
²Dash indicates none was detected.

²From Hodgson, F.N. and Tobias, J.D., Analysis of Aircraft Fuels and Related Materials, Monsanto Research Corp., Dayton, OH 45407. March 1979.

TABLE C2 - Boiling Point Distribution (ASTM D 2887)

	•	ank B-11	JP-4, (Temperature)
		rature)	•
Percent Recovered	°C	°F	°C \\ \\ \\ \
0.5 (initial boiling point)	26	78.8	all
5.0	69	156	£ 69"
10.0	89	192	75
20.0	103	217	98
30.0	119	246	117
40.0	134	273	127
50.0	153	307	151
60.0	178	352	170
70.0	199	390	189
80.0	278	424	211
90.0	237.5	459	235
95.0	252	485	252
99.5 (end point)	279	534	275

TABLE C3 - Heat of Combustion

_	Q		
CAET		Gross, BTU/1b	Net, BTU/lb
Ŋ,	JP-4, Tank B-11	20 046 20 031 Average 20 039	18 717
	JP-4, 8-24-77	20 092 20 089 Average 20 091	18 767

TABLE C4 - Hydrocarbon-Type Distribution

Compound Type	Volume Percent JP-4, 8-24-77	Volume Percent JP-4, Tank
Paraffins	60.5	62.1
Monocycloparaffins	24.6	21.4
Dicycloparaffins	4.3	5.3
Alkylbenzenes	8.5	8.7
Indanes & Tetralins	1.6	1.5
Naphthalenes	0.5	1.0
Average Carbon Number	8.7	9.5

6.7 9.5

GAENORM. COM. Cick to view the full Pale of the Comment o

APPENDIX D

MERCAPTANS IN JET FUELS

Mercaptan sulfur compounds found in aviation turbine fuels (jet fuels) tend to have the same chemical types as found in the fuel. Thus, fuels composed predominately of paraffinic molecules would tend to have primarily paraffin-derived mercaptans, while fuels having a high concentration of aromatics would tend to have mercaptans of the mercapto-benzene (thiophenol) type.

The specification limit for military aviation turbine fuels is 0.001% mercaptan sulfur by weight. However, if the fuel is determined to be "Doctor Sweet" by ASTM D 484, the fuel is normally acceptable. For the Doctor test to be negative (i.e., sweet) the mercaptan present must not exceed the following concentration:

Methanethiol (Methyl mercaptan)	0.002%
Ethanethiol (Ethyl mercaptan)	0.0006%
Propanethiol (Propyl mercaptan)	0.0009%
2-methyl-2 propanethiol (tert-butyl mercaptan)	0.0004%
3-methyl-1 butanethiol (i-amyl mercaptan)	0.0003%
Heptanethiol (n-heptyl mercaptan)	0.0001%
Mercapto benzene (thiophenol)	0.002%3

Thus, an acceptable jet fuel by the Doctor test may have less than 0.0001% by weight mercaptan sulfur (if the only mercaptan present is heptanethiol) or as much as 0.002% mercaptan sulfur (if the mercaptan present is either methanethiol or mercapto benzene).

An analysis of the mercaptan sulfur compounds found in jet fuel kerosene distillates could not be found. However, for straight run gasolines from mid-continent crude oils the mercaptans usually consisted of methanethiol, ethanethiol, propanethiol, butanethiols, and pentanethiols with hexyl mercaptans and heavier mercaptans occasionally present. Mercapto benzene was present in some cases.⁴

In Table D1 the boiling range of typical jet fuels, the boiling points for the jet referee fuel constituents, and the boiling points for various mercaptan sulfur compounds typically found in gasoline and heavier distillate fuels are listed. As the mercaptans present in a distillate fuel will have the same boiling range as the fuel, a JP-4 fuel would be expected to contain ethanethiol, propanethiols, butanethiols, and higher molecular weight mercaptans. JP-5 and JP-8 fuels, which have a significantly higher initial boiling point than JP-4, would have hexanethiol and heavier mercaptans. Mercapto benzene, which has a boiling point within the boiling ranges of JP-4, JP-5, and JP-8, would be expected to be found in all three fuels.

³"Jet Fuel Treatment," by K. M. Brown, UOP Process Division, Universal Oil Products Company, presented at the South East Fuel Quality Assn., Jet Fuel Quality Protection Group, Memphis, TN, 23 Sept. 71.

⁴"Petroleum Refinery Engineering," W. L. Nelson, 4th Edition, McGraw-Hill Book Company, New York, NY.

Shell Research Limited⁵ noted that mercapto benzene was more severe than tert-octyl mercaptan in its attack on Thiokol type (polysulfide) rubbers. As it is known that mercapto benzene may be present in JP-4, JP-5, and JP-8 in concentrations as high as 0.002% by weight, the Jet Reference Fuels should possibly contain mercapto benzene as the primary mercaptan sulfur compound to generate a worst-case fuel for elastomer testing.

A series of tests is recommended to compare the rate of attack of various mercaptan compounds on polysulfide sealants of the MIL-S-8802 variety. The mercaptans to be tested should include tert-octyl mercaptan, mercapto benzene, and butanethiol. These tests should help to determine the choice of mercaptan ation attion attion when the full PDF of airent the full PDF of aire compound(s) to be used in future jet reference fuels. Concentrations of the mercaptans should range between 0.001 and 0.005% by weight.

5"The Corrosion of Certain Aero-Gas Turbine Fuel System Components by Mercaptans and the Effect of the Latter on Synthetic Rubbers", Shell Research Limited, Thornton Research Centre Report K. 127, March 1955.

TABLE D1 - Boiling Points of Mercaptan Compounds and Fuels

Product	Boiling Point, °C
JP-4 (Distillation range)	0-320
	41X*
JP-8 (Distillation range)	100–320
JP-5 (Distillation range) JP-8 (Distillation range) Jet Reference Fuel Constituents Toluene Cyclohexane Isooctane Mercaptans Ethanethiol n-Propanethiol 2-Propanethiol 2-Methyl-2-propanethiol (tert butyl mercaptan)	N O
Toluene	2 111
Cyclohexane	81
Isooctane	100
Mercaptans	
Ethanethiol	37
n-Propanethiol	67-68
2-Propanethiol	57-60
2-Methyl-2-propanethiol (tert butyl mercaptan)	64.2
1-Butanethiol (n-butyl mercaptan)	97-98
2-Butanethiol	85-95
1-Hexanethiol	151
2-Hexanethiol	140
Cyclohexanethiol	158-160
1-Heptanethiol	177
1-Octanethiol	199
2-Octanethiol	186
1-Nonapethiol	220
Mercapto benzene (thiophenol)	170
Mercapto toluene (toluenethiol)	194-195

APPENDIX E

EFFECT OF AROMATIC FUEL COMPONENTS ON POLYSULFIDE FUEL TANK SEALANTS

TABLE E1 - Effect of Aromatics on Polysulfide Sealants

Fluid Immersion

Specimens

1 in x 2 in x 0.075 in \pm 0.005 in 4 per jar

<u>Sealants</u>

MIL-S-8802 MIL-S-8802 MIL-S-83430 Chromate cure – RTV for 14 days MnO₂ cure – RTV for 14 days MnO₂ cure – RTV for 14 days

Data

Volume change
Weight change
Hardness change (Dry)
Tensile strength change (Dry)
Elongation at break change (Dry)

Swollen & dried Swollen & dried

TABLE E2 - Composition of Jet Fuels in Volume Percent

	JP-4	JP-5	Kerosene
A1kanes	38.7	30.8	41.7
Cycloalkanes	39.5	51.2	40.1
01efins	1.9	0	2.8
Aromatics	19.9	18.0	15.4

TABLE E3 - Composition of Jet Fuels in Volume Percent

	JP-4	JP-5	Kerosene
Benzenes			
C9	13.1	1.7	0.3
C10	4.1	4.6	1.4
C11	1.1	2.5	1.6
C12	0.5	1.0	1.0
C13	0.3	0.7	0.8
C14		0.2	0,5
C15		0.1	0.3
C16			5 0.2
Indanes		33	
C10	0.1	0.3	0.2
C11	0.1	0.1	1.0
C12	0.1	1.0	1.5
C13		0.4	1.2
C14	111	0.1	0.7
C15	.01		0.3
C16	JII		0.1
C11 C12 C13 C14 C15 C16 Indenes C11 C12 C13 C14 C15 Naphthalenes	Q		
C11 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0.1	
C12		0.1	0.1
C13		0.1	0.2
C14			0.2
C15			0.1
Naphthalenes			
C10 C10	0.1	0.4	0.1
611	0.2	1.5	0.6
, CC12	0.2	1.7	1.5
0 `C13		0.4	1.0
C14		0.1	0.3
C15			0.1
Totals		•	
Alkanes	38.7	30.8	41.7
Noncondensed Cycloalkanes	32.1	34.4	27.2
Condensed Cycloalkanes	7.4	16.8	12.9
Olefins	1.9	0.0	2.8
Aromatics	19.9	18.0	15.4

TABLE E4 - Hydrocarbon-Type Analysis

	JP-	-8	Xylene C	omposite	2040	Solvent
	Wt. %	Average Carbon No.	Wt. %	Average Carbon No.	Wt.	Average Carbon No.
			40-41-54-6-7-4-6-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	00 ^k		
Paraffin	37.5	12.1	-	, ?	-	_
Cycloparaffins	41.8	12.0	- 6	-	-	-
Dicycloparaffins	6.1		- X	_	-	-
Tricycloparaffins	1.1		-200	8.9	15.5	18.8
Alkylbenzenes	7.5	10.9	100.0	8.9	35.5	10.5
Indanes/Tetrolins	3.8		.01-	_	6.8	11.0
Indenes	0.7		1/10-	-	10.09	11.0
Naphthalene ¹	_2		×O -	_	18.6	10.0
Naphthalenes	1.5	11.6	_	_	39.0	11.2
Acenaphthenes	_	clio.	_	_	_	
Acenaphthylenes	-	.0.	-	-	_	_
Tricyclic aromatics		. 12	-	_	_	_
Analytical Method	ASTM D 2549	·O/2	ASTM D 2789		ASTM D 2425	
	and)				
	D 2425					

1Refers to the unsubstituted compound.

²Dash indicates none was detected.

TABLE E5 - Identification of "Xylene Bottoms" by Kouats Indices on a 117 m OU17 Column

			7,3	
Compound	K.I. Sample	K.I. Library	alk.I.	Area %
		, 0		
Ethyl Benzene	944.17	944.10	+0.07	0.45
P-Xylene	948.53	948,44	+0.09	0.87
M-Xylene	949.96	950.03	-0.07	2.68
0-Xylene	981.50	981.56	-0.06	3.63
Cumene	1006.04	0 1006.06	-0.02	10.29
N-Propyl Benzene	1035.57	1035.65	-0.08	8.65
1 Ethyl 3 Methyl Benzene	1046.45	1046.12	+0.33	33.03
1,3,5 Trimethyl Benzene	1051.49	1051.36	+0.13	7.89
1 Ethyl 2 Methyl Benzene	1070.54	1070.46	+0.12	6.93
1,2,4 Trimethyl Benzene	1081.29	1080.84	+0.45	19.63
Iso-Butyl Benzene	083.01	1082.90	+0.11	0.18
Sec-Butyl Benzene	1090.44	1090.33	+0.11	0.36
1 Methyl 3 Isopropyl Benzene	1104.02	1103.84	+0.18	0.45
1,2,3 Trimethyl Benzene	1120.47	1120.33	+0.14	1.89
1 Methyl 3 Propyl Benzeme	1134.72	1134.57	+0.15	0.50
Indane	1147.67	1147.39	+0.28	0.53
Total		,		97.96

	en l	н сн						
	Structure	H O H	H C C C CH 3	\Box	\triangleright	\bigcirc	£	
		$\langle \bigcirc \rangle$	$\langle \bigcirc \rangle$	$\langle \bigcirc \rangle$	$\langle \bigcirc \rangle$			
- Aromatic Solvents	Solvent	Butylbenzene	Cumene	Indene	INGana	Tetralin Tetralin	l-Methylnaphthalene	
TABLE E6 - Aroma	Structure	SN	ENORM. ON	CH ₃ ortho, meta and para	H ₃ C CH ₃ Indana	H C - CH ₃	$C - C - CH_3$	
	Solvent	Benzene	Toluene	Xylene	Mesitylene	Ethylbenzene	Propylbenzene	

TABLE E7

Aromatic Compound	Fluid	Composit	ions To B	e Run
•	Α	В	e Sight.	D
Indene	х	, (·		х
Phenanthrene (solid)	X			^
Benzene	X	X		
Toluene	x X	X	х	
Xylene ortho	· Sk	X	^	Х
meta	X	X		•
para	Х	Х		
Ethyl benzene	Х	Х		
Cumene (isopropyl benzene)	X	Х		Х
1,3,5 Trimethylbenzene (mesitylane)	Χ	Х		Х
Acenaphthene (solid)	X			
Tetralin	Χ	X		Х
Indane				Х
Propylbenzene	Χ			Х
Butylbenzene	Χ			
Xylene bottoms	Х	Х	Х	
2040 Solvent	X	X .	Х	
1-Methylnaphthalene	X	•		Х

TABLE E8 - Aromatic Test Fluids

JP-4 spec simulation with max aromatic and max cycloparaffin

			, 0)	
40%			AY .	
35				
25		1110		
100	*	e		
. 40	CN			
45	jie			
15)			
40 CX				
35				
20				
5				
			•	
	35 25 100 40 45 15 40 35	35 25 100 40 45 15 40 40 45 20	35 25 100 40 45 15 15 40,CK	35 25 100 40 45 15 40, CK 35 20

TABLE E9 - MIL-S-83430

		25% A	romatic		2	0% Toluene	, 5% Aromat	ic
Cycloaromatics	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.
CH3 L				-28		of airAr		
\bigcirc	+12.4	-6.6	+33	-28	+12.4	-6.6	+33	-28
Toluene				o o	FUII!			
				· S.M. F.V.				
	+22.2	-6.1	+11	O 11-11	+15.0	-6.3	+19	-21
Indane			Click					
		ean. Of						
	Revert	ed			Rever	ted		
Indene	SAEN							
\sim								
	Revert	ed			+13.3	-6.3	+16	-19
Tetralin								•

TABLE E9 (Continued)

		25% A	romatic	
Naphthalenes	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.
CH3	+12.4	-6.6	+33	15 -28 -28 -28 -28 -28 -28 -28 -28 -28 -28
Toluene			ok of	
		٧	III	
		· entire		
Naphthalene	***	Ne		
CH ₃	M +22.9	-6.3	+15	-26
Acenaphthene	+35.0	-1.3	+25	+33
2040 Fluid	+16	+7	+17	-26

~ 4	_		T	n		\mathbf{a}	-	-
SA	-	Α	1	ĸ	71	,	•	~

	'		Original				After	r Fluid Immersion	ersion		
								Swollen	en	Q	Dry
Aromatic Compound	pun	Hard.	Vensile Strength	% Elong.	Hard.	Tensile Strength	% Elong.	Vol. Ch.	Wt. Ch.	Vol. Ch.	¥t. Ch.
Toluene	100%	49	391	360	72	613	230	+142	+74	-25	-17
	25	49	391	. 360	99	519	260	+12.4	+5.6	-11.4	9-9-
	വ	49	391	360	67	448	300	1.8-	+3.2	-11.6	-6.7
	0	49	391	360	Con No.	458	335	+2.2	+0.1	-10.8	-6.0
Xylene Bottoms	100%	49	391	360	69	7,530	280	+38	+20	-17.5	-11.0
	25	49	391	360	65	470 (1)	300	+10.1	+4 .3	-11.3	9-9-
	വ	49	391	360	29	490	11/180	9.9+	+2.5	-11.7	-6.7
	0	49	391	360	64	458	335	+2.2	+0.1	-10.8	-6.0
2040 Fluid	100%	49	391	360	68	470	315	1330 1330	+200	-14.7	-10.9
	25	49	391	360	89	458	265	× 415.9	+8.4	-12.2	1.7-
	5	49	391	360	29	489	310	+11.0	+5.4	-11.9	-6.8
	0	49	391	360	77	450	335	c c	,		

							-		
SI	ΔI	F	A	T	R	Δ	2	7	Ę

						JAE (MIR427.						
Effect of Aromatics on Polysulfide Sealants – 100% Aromatics	After Fluid Immersion (266 h @ 140°F)	, h	¥t. Ch.	·	-18.1	-17	-14.7	-11.5	-11.0	-11.7	-10.3	6.8	-18.3
		Dry	Vol. Ch.		-26.0	-25	-21.3	-17.9	-17.5	-18.1	-16.8	-14.7	-25.4
		Swollen	₩t. Ch.		+200	+74	+50	+22	+20	+24	7 +9.5	+10	+515
			Vol. Ch.		+600	+140	+95	+44	+39	01 \$ ird	61+	+50	096+
			% Elong.		140	230	205	220	250	235	255	255	290
			Tensile Strength		260	615	585	585	580	290	475	540	525
			Hard.		77	Cist	74	וג	70	73	70	וג	63
			% Elong.	2M.	360								
	Original		Tensile Strength		390								
E11 -			Hard.		49								
TABLE			Aromatic Compound	Pro Seal 899	Benzene	Toluene	Xylene, ortho	Xylene, meta	Xylene, para	Ethyl Benzene	Cumene	1,3,5 Trimethyl Benzene	l—Methylnaphthalene

						SAE	AIR42	75					
		Dry	¥t. Ch.				-11.0	-10.9	-6.0	-10.0	-17	-11.3	
	0°F)	ů	Vol. Ch.				-17.5	-14.7	-10.8	. 15.8	-23	-17.0	
	(266 h @ 140°F)	Swollen	₩t. Ch.				+20	+200	1.0+	CV+137	+106	+53	
	Immersion	Swo	Vol. Ch.				+39	+330	42.2 Ox	Six 25.	+186	+92	
(p	After Fluid Immersion (266 h		% Elong.			·	280	355	335	145	140	130	
Ell (Continued)			Tensile Strength				530	365	460	735	650	595	
E E11			Hard.		, c	ich	69	ı	64	83	80	80	
TABLE	_		% Elong.	رة م	'V .					155			
	Original	S	Tensile Strength % El							465			
			Hard.							74			
			Aromatic Compound	Pro Seal 899 (Continued)	Indane	n, Propylbenzene	Xylene Bottoms	2040 Fluid	None	<u>PR 1422</u> Benzene	Toluene	Xylene, ortho	

						SAE	AIR427	5						
		Dry	¥t. Ch.		-7.5	-6.7	-13.5	-14.0	-5.7				-7.7-	
)°F)	Ω	Vol. Ch.		-12.8	-11.6	-20.0	-21.6	-10.6				-12.6	
	266 h @ 140°F)	Jen	Wt. Ch.		+35	+32	+29	+10	+17		べつ		+30	
	After Fluid Immersion (266 h	Swollen	Vol. Ch.		+59	+54	+52	+19	+28	of aird	l'		+53	
G.	fter Fluid		% Elong.		165	160	120	75	185				200	
Ell (Continued)	A		Tensile Strength		640	625	C 1520	355	575				595	
E E11 (Hard.		80	CIENT	83	7.1	79				76	
TABLE			% Elong.	M.	OW									
	Original		Tensile Strength											
			Hard.											
			Aromatic Compound	<u>PR 1422</u> (Continued)	Xylene, meta	Xylene, para	Ethyl Benzene	Cumene	1,3,5 Trimethyl Benzene	l-Methylnaphthalene	Indane	n, Propylbenzene	Xylene Bottoms	

						SAE	AIR42	75						
		ί.	Wt. Ch.		-10.2	-1.2		-22.4	-20	-16.2	-12.6	-12.3	-12.8	
)°F)	Dry	Vol. Ch.		-14.9	-2.1		-30.3	-28	-23.0	-18.6	-18.1	-18.8	
	266 h @ 140°F)	len	₩t. ch.		+127	40.7		+245	99+	+42	419	+17	+21	
	Fluid Immersion (266 h	Swollen	Vol. Ch.		+197	7.1+		+655	+130	St STAN	+39	+35	+43	
G.	After Fluid		% Elong.		250	185		120	220	190	215	115	225	
Ell (Continued)	₹		Tensile Strength		505	535	ION'Y	570	620	009	290	260	565	
E E11 (Hard.		. O'	C*11		11	75	92	74	73	73	
TABLE			% Elong.	CON				415						
	Original	S	Tensi <i>le</i> Strength					370						
			Hard.					46						
			Aromatic Compound	<u>PR 1422</u> (Continued)	2040 Fluid	None	Pro Seal 890	Benzene	Toluene	Xylene, ortho	Xylene, meta	Xylene, para	Ethyl Benzene	

					SAE	AIR427	' 5					
		₩t. Ch.		-11.5	-9.7				-12.2	-19.6	-5.9	
P.F.)	70	Vol. Ch.		-17.4	-14.9				-18.0	-26.5	-10.0	
(266 h @ 140	l]en	₩t. Ch.		1 6.5	+7.6				+16	00 2	+0.2	
Immersion (Swol	Vol. Ch.		+16	+17			K	of girl	+337	+3.5	
Vfter Fluid		% Elong.		245	245		Kei	MPV	255	260	300	
		Tensile Strength		200	535	ojiev			540	470	480	· ·
		j. Hard.		01 M	C/S				72	74	99	
al		%	PM.					-				
Origin												
		Hard.	_									
		Aromatic Compound	Pro Seal 890 (Continued)	Cumene	1,3,5 Trimethyl Benzene	l-Methylnaphthalene	Indane	n, Propylbenzene	Xylene Bottoms	2040 Fluid	None	-
	Original After Fluid Immersion (266 h @ 140°F)		Original After Fluid Immersion (266 h @ 140°F) Swollen Dry Tensile Hard. Strength % Elong. Vol. Ch. Wt. Ch. Vol. Ch. Wt.	Original After Fluid Immersion (266 h @ 140°F) Swollen Dry Tensile Hard. Strength % Elong. Hard. Strength % Elong. Vol. Ch. Wt. Ch. Vol. Ch. Wt.	Original After Fluid Immersion (266 h @ 140°F) Swollen Bry Tensile Tensile Strength % Elong. Hard. Strength % Elong. Vol. Ch. Wt. Ch. Vol. Ch. Wt. 1] 890 (Continued)	Original After Fluid Immersion (266 h @ 140°F) Swollen Dry Tensile Tensile Tensile Strength % Elong. Vol. Ch. Wt. Ch. Vol. Ch. Wt. Ch. Wt. Ch. Tensile 1890 (Continued)	Original After Fluid Immersion (266 h @ 140°F) Swollen Dry Tensile Tensile Tensile Tensile 11 890 (Continued) To 500 245 +16 +6.5 -17.4 -11.5 Anathyl Benzene To 500 245 +17 +7.6 -14.9 -9.7	Swollen Strength Elong Hard. Strength Elong Vol. Ch. Wt. Ch. Vol. Ch. Wt. Ch.	Swollen Swollen Strength Strength Swollen Dry	Swollen Strength Strength	Swollen Strength Stength Stength Swollen Dry	Shallen Original After Fluid Immersion (266 h @ 140°F)

SAE	AIR4275
-----	----------------

		Original			A1	After Fluid Immersion (266	Immersion (266 h @ 140°F)	0°F)	
		SA					Swollen	Jen	0	Dry
Aromatic Compound	Hard.	Tensile Strength	Elong.	Hard.	Tensile Strength	% Elong.	Vol. Ch.	Wt. Ch.	Vol. Ch.	Wt. Ch.
Pro Seal 899			COM							
Benzene	46	391	360	eli	515	250	+14.7	+7.0	-11.8	-6.8
Toluene	49	391	360	99	613	260	+12.4	+5.6	-11.4	9.9
Xylene, ortho	49	391	360	29	534	270	1.1.1	+5.1	-11.6	9.9
Xylene, meta	49	391	360	99	505	1718 1718 1718	+9.5	4.	-11.5	-6.7
Xylene, para	49	391	360	99	530	255	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.7+	-11.5	-6.6
Ethyl Benzene	49	391	360	29	522	250	14.6.6±	4.3	-11.6	-6.7
Cumene	49	391	360	65	497	255	+10.1	4.	-11.2	6.5
l,3,5 Trimethyl Benżene (Mesitylene)	49	391	360	67	518	265	+7.4	+3.0	-11.1	-6.4

					S	AE A	IR4275				
		Dry	¥t. Ch.		est. +3	est5.1	-1.3		-6.3	-6.1	-6.8
	۰۶)	ů	Vol. Ch.				-5.6		-11.2	-11.3	-11.9
	266 h @ 140	Jen	₩t. Ch.				+22.6		+13.0	+11.7	43.5
	mmersion (3	Swollen	Vol. Ch.		mine		+35.0		+22.9	+28.2.	18. 6
<u> </u>	After Fluid Immersion (266 h @ 140°F)		% Elong.		ky to dete	icky	480	ne (J)	265	320	270
E12 (Continued)	Af	2	Tensile Strength		Too soft and sticky to determine	Very soft and sticky	4900		450	435	491
E E12 (Hard.		Too so	Very	56		65	61	99
TABLE			% Elong.	W.C.	360	360	360	360	360	360	360
	Original		Tensile Strength % Elong.		391	391	391	391	391	391	391
			Hard.		49	49	49	49	49	49	49
			Aromatic Compound	Pro Seal 899 (Continued)	Indene	Tetralin	Acenaphthene	Phenanthrene	l-Methylnaphthalene	Indane	n, Propylbenzene

SAE	AIR4275
SME	M1K42/3

						SAE	AIR427	5						
		Dry	₩t. ch.		4.1	-3.9	-3.8	-4.0	-3.9	-3.8	-4.5	-3.7		
)°F)	Q	Vol. Ch.		9-9-	-6.2	-6.0	-6.1	-5.9	-6.1	-7.3	-5.9		
	266 h @ 140°F)]en	₩t. Ch.		+8.2	- · 9 -	+5.7	+4.3	44.3	4.7.	+2.6	+3.4		
	Immersion (Swollen	Vol. Ch.		+14.4	+10.8	+10.2	+8.0	- 	MAZ,	+5.0	+6.1		
Ç p	After Fluid Immersion (266 h		% Elong.		155	145	155	17. S. S.	145	160	140	150		
TABLE E12 (Continued)	At		Tensile Strength		575	575	593	587	266	550	503	575		
			Hard.		<i>8</i> %	C7 61	79	79	67	78	76	79		
TABL		'	% Elong.	CON	155	155	155	155	155	155	155	155		
	Original	SA	Tensine Strength		464	464	464	464	464	464	464	464		
		SA	SA	Hard.		74	74	74	74	74	74	74	74	
			Aromatic Compound	PR 1422	Benzene	Toluene	Xylene, ortho	Xylene, meta	Xylene, para	Ethyl Benzene	Cumene	1,3,5 Trimethyl Benzene		

SAE	Α	IF	242	75

		Dry	Wt. Ch.		est. +4	est3.4			-3.0	-3.5	-3.4
)°F)	Q	Vol. Ch.						-5.7	-8.7	-5.6
	266 h @ 140°F)	len	₩t. Ch.						+17.3	-8.3	()
	Immersion (Swollen	Vol. Ch.		rmine				**************************************	910.6	+7.0
,	After Fluid Immersion (266 h		% Elong.		.Too soft and sticky to determine	cky		re full	071	85	140
ABLE El2 (Continued)	A		Tensile Strength		ft and stic	Very Soft and sticky	jent		260	216	531
E E12 (Hard.		Too so	Very			, <i>LL</i>	29	7.1
- ABI			% Elong.	W.C.C.	155	155	155	155	155	155	155
	Original	Ç	Tensile Strength		464	464	464	464	464	464	464
			Hard.		74	74	74	74	74	74	74
			Aromatic Compound	PR 1422 (Continued)	Indene	Tetralin	Acenaphthene	Phenanthrene	l-Methylnaphthalene	Indane	Propylbenzene

						SAE	A1R42	/5						
ıtic		Dry	Wt. Ch.			9-9-	-6.5				9.9-	-6.5	-5.6	
5% Aromatic	0°F)	a	Vol. Ch.			-11.4	-10.8				-11.1	1.11-	-9.8	
20% Toluene,	266 h @ 140°F)	Jen	₩t. Ch.			+5.6	+5.8			1	+5.9	+5.3	+8.6	
ä	Immersion (Swollen	Vol. Ch.			+12.4	+13.2		40	air421	+13.1	+12.1	+17.4	
- Fluid	After Fluid Immersion (266		% Elong.			260	300	efull	O,		300	285	300	
Sealants	Af		Tensile Strength			520	16.084				465	460	465	
on Polysulfide			Hard.		V. C	10t 99	65				99	99	99	
1			% Elong.	V.	360	360	360	360	360	360	360	360	360	
Effect of Aromatics	Original	S	Tensi <i>l</i> e Strength		390	390	390	390	390	390	390	390	390	
ect of /			Hard.		49	49	49	49	49	49	49	49	49	
TABLE E13 - Effe			Aromatic Compound	Pro Seal 899	Benzene	Toluene	Xylene, ortho	Xylene, meta	Xylene, para	Ethyl Benzene	Cumene	l,3,5 Trimethyl Benzene	l-Methylnaphthalene	

						SAE	AIR42	75				- Area
		Dry	₩t. Ch.		-6.3	-6.5				-6.3		
)°F)	ā	Vol. Ch.		-11.0	-11.0				-10.8		
	266 h @ 140°F)	Jen	₩t. Ch.		+7.1	+5.6				+6.0	1 5	
	Immersion (Swollen	Vol. Ch.		+15.0	+12.6			4	01+ 01+ 01/1/	(L)	
(p	After Fluid Immersion (266 h		% Elong.		285	270			erted	290		
El3 (Continued)	Ā		Tensile Strength		465	475	O STORY		pe:	455		
E E13 (Hard.		. 67	Cigotha Cigoth			Reverted	99		
TABLE		'	% Elong.	2M.	3600	360	360	360	360	360		
	Original		rensile Strength)	390	390	390	390	390			
			Hard.		49	49	49	49	49	49		
	'		Aromatic Compound	Pro Seal 899 (Continued)	Indane	n, Propylbenzene	Xylene Bottoms	2040 Fluid	Indene	Tetralin		-

SAE	AIR4275

						JAL	AIRAL						
		, k	¥t. Ch.		6.8-	-7.7	-7.8	-7.8	7.7-	7.7-	-7.5	-7.6	
ics)	°F)	Dry	Vol. Ch.		-12.5	-12.2	-12.4	-12.4	-12.3	-12.2	-12.1	-12.1	
% Aromat	266 h @ 140°F)	eu	¥t. Ch.		+7.1	+5.9	+5.4	+4.3	4.5	4.7	4 .3	+3.5	
Blend (25% Aromatics)	mmersion (2	Swollen	Vol. Ch.		+17.0	+14.8	+13.8	+11.8	+12.2	412.6	+11.8	+10.1	
- Fluid E	After Fluid Immersion (266 h		% Elong.		260	275	265	023	270	260	290	250	
on Polysulfides	Af		Tensile Strength		459	493	11687	492	513	485	484	496	
on Polys			Hard.		990	10×30	99	65	65	99	29	67	
Aromatics			Elong.	W. C.	415	415	415	415	415	415	415	415	
Effect of A	Original	C	Tensife Strength	7.		370	370	370	370	370	370	370	370
1		Ĭ	Hard.		46	46	46	46	46	46	46	46	
TABLE E14	,		Aromatic Compound	Pro Seal 890	Benzene	Toluene	Xylene, ortho	Xylene, metä	Xylene, para	Ethyl Benzene	Cumene	1,3,5 Trimethyl Benzene	

					9	SAE A	IR4275	5					
	0°F)	Dry	Vol. Ch. Wt. Ch.			est1.1			-11.7 -7.12				
.E E14 (Continued)	After Fluid Immersion (266 h @ 140°F)	Swollen	Tensile Hard. Strength % Elong. Vol. Ch. Wt. Ch.		Reverted - glob on bottom of jar	Very soft and sticky	rien		65 470 245 Ax +25.3 +13.4	Staira	765		
TABLE			% Elong.	5W.	415	415	415	415	415	415	415		
	Original		Tensile Strength		370	370	370	370	370	370	370		
			Hard.		46	46	46	46	46	46	46		
			Aromatic Compound	Pro Seal 890 (Continued)	Indene	Tetralin	Acenaphthene	Phenanthrene	l-Methylnaphthalene	Indane	Propylbenzene	-	

1	TA	ABLE E14	TABLE E14 (Continued)			·			
Original			Afte	r Fluid I	After Fluid Immersion (266 h @ 140°F)	.66 h @ 140)°F)		
S					Swollen	e U	0	Dry	
Tensile Hard. Strength	Elong.	g. Hard.	Tensile Strength %	% Elong.	Vol. Ch.	Wt. Ch.	Vol. Ch.	₩t. ch.	
	V:								
74 465	155	W . C,							
74 465	155	10 6Z	6575	145	+10.8	6.1	-6.2	-3.9	SAE
74 465	155	76	520 4	210	+10.4	+6.0	-6.2	-3.9	AIR42
74 465 155	55			EUII					275
74 465 155	35			O,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
74 465 19	155				air A2				11 - 11 A A A A A A A A A A A A A A A A
74 465 1	155	75	505	225	+9.6	+5.2	-6.3	-4.2	
74 465 1	155	76	560	210	+10.2	+5.9	-5.6	-3.5	

						SAE	AIR427	5				
		ý	₩t. Ch.		-2.9	-3.5	-3.3			+10.5	-3.7	
	I°F)	Ory	Vol. Ch.		-5.0	-6.4	-5.7			+19.0	-5.7	
	266 h @ 140°F)	len	Wt. Ch.		+9.4	+7.2	7.7+			+27.7	₹,946.5	
	After Fluid Immersion (266 h	Swollen	Vol. Ch.		+15.6	+12.0	+13.1		€.	O.E	+11.5	
ਜ਼ਿ	fter Fluid		% Elong.		165	200	200	the	JII PO	260	200	
TABLE E14 (Continued)	Ą		Tensile Strength		530	435	655 (0)	W.		57	520	
E E14 (Hard.		9/	Ckick	76			40	76	
TABL			% Elong.	DN.	1550	155	155	155	155	155	155	
	Original		rensile Strength),	465	465	465	465	465	465	465	
			Hard.		74	74	74	74	74	74	74	
			Aromatic Compound	PR 1422 (Continued)	l-Methylnaphthalene	Indane	n, Propylbenzene	Xylene Bottoms	2040 Fluid	Indene	Tetralin	

				•		SAE	AIR42	275						
		Dry	Wt. Ch.			7.7-	-7.3				-7.2	-7.0	6.9-	
	0°F)	ā	Vol. Ch.			-12.2	-11.6				-11.4	-11.3	1.11-	
	.266 h @ 140°F)	len	¥t. Ch.			+5.9	+5.3			<u> </u>	+5.7	4.8	47.9	
	After Fluid Immersion (266	Swollen	Vol. Ch.			+14.8	+12.8		ok of	Sirah	+13.9	+12.2	+17.5	
(p	fter Fluid		% Elong.			275	290	efulls	O,		290	270	280	
E14 (Continued)	A		Tensile Strength			495	10.84				460	200	495	
E E14			Hard.		, c	ick 99	19				67	89	89	
TABLE			Elong.	V. 0	415	415	415	415	415	415	415	415	415	
	Original	S	Tensile Strength		370	370	370	370	370	370	370	370	370	
			Hard.		46	46	46	46	46	46	46	46	46	
			Aromatic Compound	Pro Seal 890	Benzene	Toluene	Xylene, ortho	Xylene, meta	Xylene, para	Ethyl Benzene	Cumene	1,3,5 Trimethyl Benzene	l-Methylnaphthalene	

						SAE	AIR42	275			
		Dry	Wt. Ch.		-7.0	-7.2				-7.0	
)°F)	ā	Vol. Ch.		-11.3	-11.4				-11.4	
	266 h @ 140°F)	len	₩t. ch.		46.7	4.9				+5.4	275
	After Fluid Immersion (266 h	Swollen	Vol. Ch.		+15.5	+12.5				ДВ.0	KAL.
(p	fter Fluid		% Elong.		280	260		, ve	MIRC	300	
TABLE E14 (Continued)	A		Tensile Strength		490	510	to jie	Mille	ted	485	
E E14			Hard.		<i>L</i> 9	· Glic	L		Reverted	29	
TABL			% Elong.	an	415	415	415	415	415	415	·
	Original		Tensile Strength	Ö,	370	370	370	370	370	370	
	·		Hard.		46	46	46	46	46	46	
	'		Aromatic Compound	Pro Seal 890 (Continued)	Indane	n, Propylbenzene	Xylene Bottoms	2040 Fluid	Indene	Tetralin	-

					Si	AE A	IR4275								
		Dry	¥t. Ch.	-17	-6.6	-6.7	-6.0		-17	-3.9	-3.1	-1.2*			
		ā	Vol. Ch.	-25	-11.4	-11.6	-10.8		-23	-6.2	-5.2	-2.1*			
	hersion	Jen	¥t. ch.	+74	+5.6	+3.2	- O-		+106	+6.1	. 4.1	+0.7*			
	After Fluid Immersion	Swollen	Vol. Ch.	+142	+12.4	- 8	+2.2		+186	+10.8%	+7.5	+1.7*			
Ð	Afte		% Elong.	230	260	300	335	IIII	140	145	170	185			
- Toluene			Tensile Strength	613	519	*0 84/8	458		651	575	577	533			
LE E15			Hard.	72	· Colic	67	64		80	79	78	7.1			
TABLE			% Elong.	360	360	360	360		155	155	155	155			
	Original	Ornginal S	S	S	Tensi1e Strength	391	391	391	391		464	464	464	464	
			Hard.	49	49	49	49		74	74	74	74			
			Aromatic Content	100%	25%	15%	%0		100%	25%	15%	. %0	*Some fluid lost.		

					SAI	E AIF	R4275	
		Dry	₩t. ch.	-20	7.7-	-7.0	-5.9*	
		ā	Vol. Ch.	-28	-12.2	-11.5	-10.0*	
	ersion	len	Wt. Ch.	99+	+5.9	+3.3	+0.2*	450
	After Fluid Immersion	Swollen	Vol. Ch.	+130	+14.8	+9.7	+3.5*	of airA212
Ĝ	Afte		% Elong.	220	275	330	300	he full PDF of airA2TS
TABLE E15 (Continued)			Tensile Strength	618	493	460	1168 X	
E E15 (Hard.	75	99		99	
TABL		·	% Elong.	. 415	415	415	415	
	Original		rensile Strength	370	370	370	370	·
			Hard.	46	46	46	46	
			Aromatic Content	100%	25%	15%	%0	*Some fluid lost.

					SA	NE A	[R4275					
		Dry	¥t. Ch.	-11.0	9.9-	-6.7	-6.0	7.7-	-3.3	-3.3	-1.2*	
		ā	Vol. Ch.	-17.5	-11.3	7.11-	-10.8	-12.6	-6.0	-5.7	-2.1*	
	ersion	1en	₩t. Ch.	+20.0	4 £.	+2.5	-0.1	+30.3	+5.1	+3.4	+0.7*	
	After Fluid Immersion	Swollen	Vol. Ch.	+38.8	+10.1	9.9+	+2.2	+52.9	91.8	. 6.1	+1.7*	
toms	Afte		% Elong.	280	300	280	335	200	200	190	185	
- Xylene Bottoms			Tensile Strength	530	470	490	458	597	544	548	533	
E16 - X			Hard.	69	. G8/C	67	64	76	78	78	77	
TABLE		·	% Elong.). 980	360	360	360	155	155	155	155	
	Original	S	Tensile Strength	391	391	391	391	464	464	464	464	
			Hard.	49	49	49	49	74	74	74	74	
			Aromatic Content	%00L	25%	15%	%0	100%	25%	15%	. %0	*Some fluid lost.

					SA	E AII	R4275	
		Dry	Wt. Ch.	-12.2	-7.4	-7.2	-5.9	
		0	Vol. Ch.	-18.0	-11.8	-11.6	-10.0	
	ersion	len	Wt. Ch.	+16.1	+4.2	+2.6	+0.2	1/5
	After Fluid Immersion	Swollen	Vol. Ch.	+34.1	+11.8	+8.4	+3.5	c of aira2'
<u> </u>	After		% Elong.	255	295	280	300	ne full PDF of airA2T5
E16 (Continued)			Tensile Strength	542	449	475	11894	
E16 (Hard.	72	99.	Jick Lo	99	
TABLE			% Elong.	W 15	0 W 314	415	415	
	Original		Leosile Strength	370	370	370	370	
			Hard.	46	46	46	46	
			Aromatic Content	2001	25%	15%	%0	*Some fluid lost.

		Dry	Wt. Ch.	-10.9	1.7-	-6.8	0.9-		-10.2	-3.4	-3.1	0.9-						
		0	Vol. Ch.	-14.7	-12.2	-11.9	-10.8		-14.9	9.9-	-5.3	-10.8						
	ersion	len	Wt. Ch.	+199.7	+8.4	+5.4	10.1		+127.4	+11.3	+7.0	+0.1						
	After Fluid Immersion	Swollen	Swoll	Swol	Swo1	Swo1	Swol	Vol. Ch.	+330.5	+15.9	+11.0	+2.2		4 97.1	911.5.71+	+11.4	+2.2	
jd			% Elong.	315	265	310	335	JII P	250	185	165	185						
2040 Fluid			Tensile Strength	470	458	*0 8/6	458		507	527	499	533						
E E17 -				Hard.	89	. Chick	29	64		92	79	77	7.7					
TABLE			& Elong.	3600	360	360	360		155	155	155	155						
	Original	S	Tensile Strength	391	391	391	391		464	464	464	464						
			Hard.	49	49	49	49		74	74	74	74						
			Aromatic Content	100%	25%	15%	%0		100%	25%	15%	, %0						

					SAE	AIR42	275	
		,	₩t. Ch.	-19.6	-7.8	-7.2	-5.9	
		Dry	Vol. Ch.	-26.5	-12.4	-11.7	-10.0	
	ersion	en	₩t. ch.	+199.9	+8.0	+5.2	+0.2	ر ^ک م
	After Fluid Immersion	Swollen	Vol. Ch.	+336.6	+16.5	+12.2	+3.5	WIII PDF of airA2T5
<u>-</u>	After		% Elong.	260	285	300	300	MIROX
TABLE E17 (Continued)			Tensile Strength	47.1	455	480	418 HV	
E E17 (Hard.	74	. @ic	99	99	
TABL			Elong.	GF/	415	415	415	
	Original	S	Tensile Strength	370	370	370	370	·
			Hard.	46	46	46	46	
			Aromatic Content	,100%	25%	15%	%0	

TABLE E18 - Effect of Aromatics on Polysulfide Sealants

Fluid Immersion

Fluid Temp Time 500 cc 140°F & 158°F ± 1.8 266 h (266 h ± 0.25)

Specimens

1 in x 2 in x 0.075 in \pm 0.005 in 4 per jar

<u>Sealants</u>

MIL-S-8802 MIL-S-8802 MIL-S-83430 Chromate cure – RTV for 14 days MnO_2 cure – RTV for 14 days MnO_2 cure – RTV for 14 days

Data

Volume change Weight change

Hardness change (Dry)

Tensile strength change (Dry) Elongation at break change (Dry) Swollen & dried Swollen & dried

TABLE E19	_	Effect	of	Naphthalenes	on	MIL-S-83430

		25% Nap	hthalene		20% Toluene, 5% Naphthalene			
	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.	Vol. Ch.	Wt. Ch.	T.S. Ch.	% E. Ch
CH ₃ Toluene	+12.4	-6.6	+33	-28	+12.4	-6.6 Of aird	7 ⁽² 33	-28
Naphthalene	+24.1	-6.6	+22	-22 -22	ne 21.2	-6.4	+17	-34
CH ₃ ,Methylnaphthalene	+22.9	-6.3	OM +15Click	-26	+17.4	-5.6	+19	-17
Acenaphthalene	+35.0	-1.3	+25	+33				
	+16	- 7	+17	-26	+16	- 7	+17	- -26

·			SAE AIR4275		
	. % E. Ch.			-28	138
4% Toluene 1% Cycloaromatic	T.S. Ch.			1 +	+ 8
24% Toluene				-6.1	-5.9
	Vol. Ch.			S. KAZTIS	+26.4
20% Toluene 5% Cycloaromatic	% E. Ch.	-28	-21	REVERTED \$47.5 -6.1 +1	<u>6</u>
10% Toluene 5% Cycloaromatic	T.S. Ch.	+33	E the to	Q	+16
20% Toluene 5% Cycloarc	Wt. Ch.	9.9	**************************************	REVERTE	-6.3
	Vol. Ch.	25W.	115		+13.3
oaromatic	% E. Ch.	ORM. 8	F		•
omatic	T.S. C.				
25% Cycloaromatic	Wt. Ch. T.	-6.6 +33	-6.1	REVERTED	REVERTED
25	Vol. Ch. Wt	+12.46	+22.2 -6		
	°^	CH ₃ +1	1.7 +2.	Indene	Tetralin

				Si	AE AIR427	5	
		Dry	¥t. Ch.	-6.6	-6.4	-6.1	-5.9
		ū	Vol. Ch.	-10.4	-10.1	-9.7	4.6-
	. uo	len	Wt. Ch.	-13.5	+10.0	+7.5	+12.1
	After Fluid Immersion	Swollen	Vol. Ch.	+24.1	+21.2	+17.5	6. Sirky
	After Flu		% Elong.	310	265	230 Still PC	250
E21			Tensile Strength	200	10 480 10 10 480	465 ************************************	485
TABLE E21			Hard.	22	11072	72	22
			% Elong.	M. Og 4	400	400	400
	Original		Tensile Strength	410	410	410	. 410
			Hard.	57	57	57	57
			Aromatic Compound	Pro Seal 899 Naphthalene @ 25%	Naphthalene @ 5% with 20% Toluene	Indene @ 1% with 24% Toluene	Tetralin @ 1% with 24% Toluene

					S	AE AIR42	75	
TABLE E21 (Continued)	Original After Fluid Immersion	Swollen Dry	P		A. Click	to lient		of airA2TS
	0ri	Sh	Tensile Hard. Strength				78 515	
			Aromatic Compound	PR 1422	Naphthalene @ 25%	Naphthalene @ 5% with 20% Toluene	Indene 0 1% with 24% Toluene	Tetralin @ 1% with 24% Toluene

APPENDIX F

EFFECT OF ALKANE AND CYCLOHEXAND FUEL COMPONENTS ON POLYSULFIDE FUEL TANK SEALANTS

TABLE F1 - Analysis of Control Fuels

				$-\sqrt{2}$
	JP-4	JP-4	JP-5	JP-8
	Pet.	Shale	Pet.	Pet.
Composition	(%)	(%)	(%)	(%)
			₩.	······································
Paraffins	61.4	45.6	45.4	43.2
Monocycloparaffins	23.6	43.4	38.9	39.9
Dicycloparaffins	5.0		2.8	3.7
Alkylbenzenes	8.5	7.4	7.5	7.4
Indanes & Tetralins	1.0	73.6	3.0	3.9
Indenes & Dihydro- naphthalenes	<u></u>	7/12_		
Naphthalenes	0.5	TRACE	2.4	1.9
Total Paraffins	90.0	89.0	87.1	86.8
Total Aromatics	1.0.0	11.0	12.9	13.2
01efins	1.5	1.0	1.7	2.1
Hydrogen (wt %)	14.5	14.3	13.8	13.9
Sulfur:				
Mercaptan (wt %)	0.0004	0.0005		0.0004
Total (wt %)	0.03	0.03		0.11
Additives (anti-icing)	0.07	0.10	<u></u> -	0.14

TABLE F2 - Effect of Alkanes/Cycloalkanes on Polysulfide Sealants

Fluid Immersion

Fluid Temp Time

Specimens

1 in x 2 in x 0.075 in \pm 0.005 in 4 per jar

<u>Sealants</u>

MIL-S-8802 MIL-S-8802 MIL-S-83430 Chromate cure - RTV for 14 days

<u>Data</u>

Volume change Weight change

Hardness change (Dry) Tensile strength change (Dry)

Elongation at break change (Dry)

Swollen & dried

TABLE F3 - Test Matrix

Test Fluid		Α	В	С	D	, DE
					40	
Hexane	c ₆	Х	Х	Х	\ O.	Х
Heptane	C ₇	Х	Х		/	
N - Octane	C ₈	Х	Х	O,		
N - Nonane	c_{9}	Χ	Х	111		
N – Decane	C ₁₀	X	Х	K/X		X
N — Undecane	c ₁₁	X	X 📈	2		
N — Dodecane	c ₁₂	Χ	X 🐪	•		
N - Hexadecane	C ₁₆	X	C. X	X		Х
I - Hexene	c ₆	Х	X	Х		Х
I - Octene	c ₈	X.O	Х			
Iso-Octane	c ₈	X	Х	X		X
Cyclohexane	C ₆	C) _X	Х		Х	Χ
Decalin	c ₁₀ , C	Х	Х		Х	Х
Methylcyclohexane	C	Х	Х			
JP-4, Petroleum /	U,					Х
JP-4, Shale	J					Х
JP-5, Pet.						Χ
JP-8, Pet.						Х

		1/2
TABL	E F4 - Fluid Blends	Six A.L.
Blend A	Iso-Octane	45 45
	Cyclohexane	45
	Paraffin/Cycloparaffin	10
Blend B	Iso-Octane	35
	Cyclohexane	35
	Toluene	20
	Paraffin/Cycloparaffin	10
	ile	
Blend C	Cyclohexane	50
	Paraffin	50
Blend D (Yso-Octane	50
	Cycloparaffin	50
Blend E	Paraffin/Cycloparaffin	100
an.		
O		

	TABLE F5				
	Alkan	e 10%	45 Iso-Octane 45 Cyclohexane		
MIL-S-8802 - Chromate Core Alkane	Vol. Ch.	Wt. Ch.	T.S. Ch.	% E. Ch.	
c-c-c-c-c	+3.0	-2.0	+9.7	1 +8.8	
Hexane			~ C O. (V.)		
			50,		
c-c-c-c-c	+2.7	-1960)	+10.7	+2.9	
Heptane	i	ewithe full			
	Click to V				
c-c-c-c-c-c	+2.9	-2.0	+14.6	0	
n-Octane					
(FOK					
c-c-c-c-c-c	+2.7	-2.1	+15.5	+2.9	
n-Nonane					
c-c-c-c-c-c-c	+2.7	-2.0	+12.6	-2.9	
n—Decane					

SAE AIR4275

TABLE F5 (Continued)

	Alkan	e 10%	45 Iso- 45 Cycl	Octane ohexane
MIL-S-8802 - Chromate Core Alkane	Vol. Ch.	Wt. Ch.	T.S. Ch.	% E. Cł
c-c-c-c c	+2.6	-2.0	618.4	+5.9
Iso-Octane		- Fall PC) `	
c=c-c-c-c Hexene	+3.0 EN	-2.1	+17.5	-2.9
Alkane c-c-c-c-c c Iso-Octane c=c-c-c-c Hexene	+4.2	-1.9	+5.8	+5.9
SAL	+3.0	-2.0	+9.7	+8.8
JP-4, Shale				

SAE	AIR4275

TABLE F5 (Continued)

	Alkan	e 10%	45 Iso- 45 Cycl	
MIL-S-8802 - Chromate Core Alkane	Vol. Ch.	Wt. Ch.	T.S. Ch.	% E. Ch
	+2.9	-1.9	+6.8	1 √+8.8
JP-5, Pet.			of air	
	+3.0	-2.0full	+8.7	+11.8
JP-8, Pet.	Ü	enti		
64	. Click to a			
JP-8, Pet.				

		SAE TA	AIR42 ABLE F6					
			DLE TO					
		A1 kan	e 10%		Tol	uene 20%,	, Alkane l	10%
MIL-S-83430 Alkane	Vol. (Wet)	- Wt.	т.s.	% E.	Vol. (Wet)	Wt.	т.s.	% E
c-c-c-c-c	+5.7	-5.3	+15	-30	+15.3	. A 6.0	+21	-34
Hexane					+15.3	· · · · · · · · · · · · · · · · · · ·		
					⁵ O _X			
c-c-c-c-c	+5.7	-5.3	+20	16 33 Ju	+14.7	-6.0	+17	-35
Heptane	+5.4		jew					
		**************************************	Ô					
c-c-c-c-c-c	+5.4	C 5.4	+17	- 26	+14.4	-6.0	+20	-33
n-Octane	V. COV	,						
c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-	SRIP			MANUFACTOR STATES OF THE STATE				
c-c-c-c-c-c- c -c-c-c-c-c-c-c-c-c-c-c-c-	+5.0	-5.4	+17	-33	+14.5	-6.0	+18	-31
n-Nonane								
c-c-c-c-c-c-c	+4.7	- 5.2	+17	-30	+14.2	-5.9	+21	-33
n-Decane								

		TABLE F6	(Conti	nued)				
		Alkan	e 10%		Tol	uene 20%,	Alkane 1	0%
MIL-S-83430 Alkane	Vol. (Wet)	Wt.	т.s.	% E.	Vol. (Wet)	Wt.	T.S.	% [
c c c-c-c-c c Iso-Octane	+5.0	-5.3	+17	-30	+14.1	-5.9\c	> +20	-33
				4	"bok			
c=c-c-c-c	+6.2	-5.4	+20	-31 (1)	+15.4	-6.0	+23	-34
Hexene			je	-31 FI				
	+5.6	-5.011°	+18	-28	+5.6	-5.1	+18	-28
JP-4, Pet.							· · · · · · · · · · · · · · · · · · ·	
SA	+3.3	-5.2	+18	-33	+3.3	-5.2	+18	-3 3
JP-4, Shale								
	+1.6	-5.2	+17	-28	+1.6	-5.2	+17	- -28
JP-5, Pet.								

		SAE						
	1	TABLE F6	(Conti	nued)				
		Alkan	e 10%		Tol	uene 20%,	Alkane l	0%
MIL-S-83430 A1 kane	Vol. (Wet)	Wt.	т.s.	% E.	Vol. (Wet)	Wt.	Т.S.	%
	+1.8	-5.2	+20	-28	+1.8	JIKA 51,25	+20	<u>-</u> 28
JP-8, Pet.					10			
					3/			
				ine full	2			
			ilen	thefull	2			
		· **	to jiew	thefull	2			
		, Click	to jiew	thefull				
		V. Click	tolien	thefull				
	ORM. ON	N. Click	tojen	thefull				
CAE	NORM.COM	N. Click	io view	thefull				

			SAE	AIR4275				
			TABI	_E F7				
	Iso-0	ctane 45%,	Cyclohexan	e 45%	Iso-0	ctane 35%,	Cyclohexan	e 35%
		10% Cyc	loalkane		20%	Toluene,	10% Cycloal	kane
MIL-S-83430 Cycloalkanes	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.
Cyclohexane	+6.3	-5.4	+23	-30	+15.8	75.3ird	+26	-30
Decalin	+7.1	-5.5	+16	40 -36 N th	+15.8	-6.2	+18	-35
C H ₃ Methylcyclohexane	+6.5	-5.2C	-18	-31	+15.6	-5.8	+21	-33
	+5.6	-5.1	+18	-28	+5.6	-5.1	+18	-28
JP-4, Petroleum			·····					
	+3.3	-5.2	+18	-3 3	+3.3	-5.2	+18	-33
JP-4, Shale								

		-	TABLE F7	(Continue	d)			
	Iso-0	ctane 45%,	Cyclohexan	e 45%	Iso-C)ctane 35%,	Cyclohexan	ie 35%
		10% Cyc	loalkane		20%	% Toluene,	10% Cycloal	kane
MIL-S-83430 Cycloalkanes	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch
			+17 +20			., 221	3	
	+1.6	-5.2	+17	-28	+1.6	∑5.2	+17	-28
JP-5, Petroleum					"IL DA			
				ine	O.			
	+1.8	-5.2	+20	110-28	+1.8	-5.2	+20	-28
JP-8, Petroleum			-lick to)				
		COM	,					
	SAENOR	TU.						
	CAEN							
								•

				AIR4275 _E F8				
		100% Alkane	e/Cycloalkane	ıe			Cyclohexano	
MIL-S-83430 Alkane/Cycloalkane	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch.	Vol. Ch. (Wet)	Wt. Ch.	T.S. Ch.	% E. Ch
c-c-c-c-c Hexane	+0.6	-5.1	+21	-29	+12.3	-5.3\ ²	+15	-35
c-c-c-c-c c l c	-0.5	-4.9	+18	O view the	3 +5.6	-5.3	+17	-34
Cyclohexane	+14.6	-5.6 CM.	+20	-33	+5.6	-5.3	+20	-33
Decalin	SAEN				+6.7	-5.7	+12	-36
JP-4, Petroleum	+5.6	-5.1	+18	-28	+5.6	-5.1	+18	-28

				1-	
T	ABLE F9 – A	nalysis of C	ontrol Fue)
				& SILLY	
				0,	
	JP-4	JP-4	JP-5	JP-8	
Composition	Pet.	Shale	Pet	Pet.	JRF
				*	
			SO.		
Paraffins	61	46	4 5	43	10
Cycloparaffins	29	43	42	44	60
Aromatics	10	11 . 0,10	13	13	30
Mercaptan Sulfur	0.0004	0.0005		0.0004	0.00
Total Sulfur	0.03	0 03		0.11	0.40
Hydrogen	14.5	14.3	13.8	13.9	
		(O)			

		Original				Afteı	After Fluid Immersion	ersion		
		S					Swollen	len	ā	Dry
Paraffin/ Cycloparaffin	Hard.	Tensile Strength	Elong.	Hard.	Tensile Strength	% Elong.	Vol. Ch.	₩t. ch.	Vol. Ch.	¥t. Ch.
PR 1422			CO							
Hexane	78	515	170	78	565	185	+3.0	+1.4	-2.9	-2.0
Heptane	78	515	170	101×87	570	175	+2.7	+1.3	-3.0	-1.9
n-Octane	78	515	170	78	100 59 0 7	170	+2.9	+1.4	-3.0	-2.0
n-Nonane	78	515	170	78	595	S (S)	+2.7	+1.3	-3.1	-2.1
n-Decane	78	515	170	78	280	165	1-2.7 Ox	+1.3	-3.0	-2.0
Iso-Octane	78	515	170	78	610	180	42.6 X	+1.3	-2.9	-2.0
Hexene	78	515	170	78	605	165	+3.0	ئ +1.5	-3.0	-2.1