

Aircraft Rescue and Fire Fighting Vehicles Utilizing Foam

Tentatively Adopted 1957

May, 1957

NOTICE

This pamphlet circulates for review and comment the recommendations of the Sub-committee on Aircraft Rescue and Fire Fighting which were tentatively adopted at the 1957 NFPA Annual Meeting.

Readers are warned that this text does not represent an official recommendation of the National Fire Protection Association in its present form. There are several technical problems remaining to be solved in connection with the Procedures outlined herein and experimentation and study are continuing on other methods of accomplishing the purposes for which these Procedures are recommended.

Comments are solicited on this Tentative Standard from all those interested. Such comments should be forwarded to the NFPA prior to September 15, 1957 to receive full Committee consideration.

Price: 50 cents*

NATIONAL FIRE PROTECTION ASSOCIATION

International

60 Batterymarch Street, Boston 10, Massachusetts

National Fire Protection Association

International

Executive Office: 60 Batterymarch St., Boston 10, Mass.

The National Fire Protection Association was organized in 1896 to promote the science and improve the methods of fire protection and prevention, to obtain and circulate information on these subjects and to secure the cooperation of its members in establishing proper safeguards against loss of life and property by fire. Its membership includes two hundred national and regional societies and associations (list on outside back cover) and seventeen thousand individuals, corporations, and organizations. Anyone interested may become a member; membership information is available on request.

This pamphlet is one of a large number of publications on fire safety issued by the Association including periodicals, books, posters and other publications; a complete list is available without charge on request. All NFPA standards adopted by the Association are published in six volumes of the National Fire Codes which are re-issued annually and which are available on an annual subscription basis. The standards, prepared by the technical committees of the National Fire Protection Association and adopted in the annual meetings of the Association, are intended to prescribe reasonable measures for minimizing losses of life and property by fire. All interests concerned have opportunity through the Association to participate in the development of the standards and to secure impartial consideration of matters affecting them.

NFPA standards are purely advisory as far as the Association is concerned, but are widely used by law enforcing authorities in addition to their general use as guides to fire safety.

Definitions

The official NFPA definitions of shall, should and approved are:

SHALL is intended to indicate requirements.

Should is intended to indicate recommendations, or that which is advised but not required.

Approved refers to approval by the authority having jurisdiction.

Units of measurements used here are U. S. standard. 1 U. S. gallon = 0.83 Imperial gallons = 3.785 liters.

Approved Equipment

The National Fire Protection Association does not "approve" individual items of fire protection equipment, materials or services. The standards are prepared, as far as practicable, in terms of required performance, avoiding specifications of materials, devices or methods so phrased as to preclude obtaining the desired results by other means. The suitability of devices and materials for installation under these standards is indicated by the listings of nationally recognized testing laboratories, whose findings are customarily used as a guide to approval by agencies applying these standards. Underwriters' Laboratories, Inc., Underwriters' Laboratories of Canada and the Factory Mutual Laboratories test devices and materials for use in accordance with the appropriate standards, and publish lists which are available on request.

Suggested Standard Test Procedures for Aircraft Rescue and Fire Fighting Vehicles Utilizing Foam

NFPA No. 412T — 1957

Foreword

The NFPA Committee on Aviation and Airport Fire Protection has approved these Tentative Suggested Standard Test Procedures for Aircraft Rescue and Fire Fighting Vehicles Utilizing Foam (NFPA No. 412-P). It has largely been the work of a special Conference Committee, representing the Sponsoring Committee and the NFPA Committee on Foam, consisting of the following individuals:

Richard L. Tuve, Chairman,

Naval Research Laboratory, Code 6150, Washington 25, D. C.

Committee on Foam

J. Faulkner

Committee on Foam Pyrene C-O-Two Company

M. M. Fischer

Committee on Aviation Chief, Mitchel Air Force Base

P. E. Johnson

Committee on Foam
Factory Mutual Engineering
Division

A. W. Krulee

Committee on Aviation Cardox Corporation

C. H. Lindsay

Committee on Foam
American LaFrance Corp.

R. Dan Mahaney

Committee on Aviation
CAA-Washington National Airport

J. F. O'Regan

Committee on Foam Rockwood Sprinkler Company

Leo E. Rivkind

Committee on Aviation Mearl Corporation

O. L. Robinson

Committee on Foam Underwriters' Laboratories, Inc.

As will be noted, certain sections of the tentative test procedures have not been completed (Article 300 and Section A-520). In submitting Section A-510 the Subcommittee reserves judgment on the adequacy of the test procedures and it is contemplated that additional work will be done during the coming year on this test method.

The chief purpose of securing tentative adoption of these recommendations at the 1957 NFPA Annual Meeting was to afford opportunity for the wide distribution of the suggested test procedures looking forward to final adoption at a future Annual Meeting. All readers are invited to submit suggestions for improvement and are urged to conduct tests following these procedures and report their findings as requested in Article 600, page 412T-11.

Committee on Aviation and Airport Fire Protection

Jerome Lederer, † Chairman

Managing Director, Flight Safety Foundation, 468 Fourth Avenue, New York 16, N. Y.

George H. Tryon, III,† Secretary

National Fire Protection Association, 60 Batterymarch St., Boston 10.

EXECUTIVE DIVISION

Harvey L. Hansberry,* Chairman Fenwal, Inc., Ashland, Mass.

- J. C. Abbott,* British Overseas Airways Corp.
- Col. Edwin E. Aldrin,† Institute of the Aeronautical Sciences.
- Ben W. Ashmead, Civil Aeronautics Board, Bureau of Safety Investigation.
- J. A. Bono, Underwriters' Laboratories, Inc.
 J. A. Brooker, Ministry of Transport and Civil Aviation (United Kingdom).
- E. Thomas Burnard, Airport Operators Council.
- Carl M. Christenson,* United Air Lines. William L. Collier, Air Line Pilots Asso-
- ciation.

 Gifford T. Cook, Chief, Fire Prevention and Crash Rescue, Headquarters, U.S.A.F.
- Allen W. Dallas,* Air Transport Association of America.
- Charles Froesch, Society of Automotive Engineers (Eastern Air Lines).

- Francis E. Kimble, Jr., National Association of State Aviation Officials (N. J. Bureau of Aeronautics).
- Jerome Lederer,† (Ex-officio), Flight Safety Foundation.
- Carl Ljunberg,**† International Civil Aviation Organization.
- W. A. McCallum, Wing Commander, Royal Canadian Air Force Fire Marshal, Department of National Defence (Canada).
- C. M. Middlesworth, † Civil Aeronautics Administration, U. S. Dept. of Commerce.
- J. A. O'Donnell,* American Airlines.
- William H. Rodda, Transportation Insurance Rating Bureau.
- W. B. Spelman,† Civil Aeronautics Administration, Office of Aviation Safety.
- Douglas C. Wolfe, American Association of Airport Executives. (Manager, Broome County Airport, Binghamton, N. Y.)

TECHNICAL DIVISION

- J. R. W. Barrette,* Parker & Co.
- George J. Bean, American Association of Airport Executives. (Manager, Worcester Municipal Airport, Worcester, Mass.)
- Neill G. Bennett,* Graviner Works.
- W. E. Bertram, * Northwest Airlines, Inc.
- Richard J. Brady,*† Port of New York Authority Fire Dept. (New York International).
- G. A. Brelie,* Ansul Chemical Company.
 John W. Bridges,* Military Air Transport Service Dept. of Defense.
- Harold J. Burke,* Pyrotronics, A Division of Baker Industries, Inc.
- C. L. Byram,*† District of Columbia Fire Dept.
- Robert C. Byrus,* Fire Service Extension, University of Maryland.
- John Cardoulis,* Hq., Northeast Air Command, U.S.A.F.
- Joseph M. Chase, Flight Safety Foundation.

- N. L. Christoffel,* United Air Lines.
- George W. Clough,* Fire Marshal, Nassau County.
- John W. Crowley, Jr.,**† National Advisory Committee for Aeronautics.
- John A. Dickinson, National Bureau of Standards.
- R. J. Douglas,* Oklahoma A. & M. College.
 John F. Dowd,* Chief, Westover Air Force Base Fire Dept., U.S.A.F.
- A. G. Downing,* Arabian American Oil Co.
- Carl Dreesen, Bureau of Aeronautics, Dept. of the Navy.
- H. A. Earsy,* United Aircraft Corp.
- Albert Edson, American Assn. of Airport Executives. (Manager, Logan International Airport, Boston, Mass.)
- Milton M. Fischer,* Chief, Mitchel Air Force Base Fire Dept., U.S.A.F.

- J. A. Glammatteo,*† Chief, Glen Echo Volunteer Fire Department.
- D. D. Gordon-Carmichael,* Trans-Canada Air Lines.
- R. B. Gottschalk,* North American Aviation.
- A. M. Grunwell, NFPA Committee on Firemen's Training, District of Columbia Fire Dept.
- L. W. Harmon,* American Airlines.
- J. B. Hartranft, Jr., † Aircraft Owners and Pilots Association.
- Vic Hewes, Air Line Pilots Association.
- K. E. Hisey,* Dade County Port Authority.
- H. A. Klein,† Wright Air Development Center, Dept. of the Air Force.
- W. E. Koneczny,† Civil Aeronautics Board, Bureau of Safety Regulation.
- Paul Kowall, Nassau County Vocational Education and Extension Board.
- A. W. Krulee, * Cardox Corporation.
- J. L. LaPointe,* Eastern Air Lines.
- Hervey F. Law,* The Port of New York Authority.
- Dr. L. G. Lederer, Airlines Medical Directors Association, Capitol Airlines.
- E. T. Lee,* Eastern Air Lines.
- Henry F. Loeffler,* (Personal).
- E. E. Lothrop, American Petroleum Institute.
 R. Dan Mahaney,† Civil Aeronautics Administration (Washington National Air-
- James E. Malcolm, Engineer Research and Development Laboratories Department of the Army.
- Daniel Mapes, Compressed Gas Association. C. L. McGlamery,* Chance Vought Aircraft, Inc.
- D. N. Meldrum,* National Foam System, Inc.
- E. J. R. Moulton, * J. S. Frelinghuysen Corp. Edward D. Nass, * Chief, Andrews Air Force Base Fire Department, U.S.A.F.
- Howard W. Naulty,* Amherst Manufacturing Company.
- A. B. Nehman, Bureau of Aeronautics, Dept. of the Navy.

- Willard Northrop, Association of Casualty and Surety Companies.
 F. E. Parker, Department of Civil Aviation, Commonwealth of Australia.
- Jesse O. Parks, * San Francisco International Airport Fire Marshal.
- John Peloubet, Magnesium Association (Dow Chemical Co.).
- R. C. Petersen,* Port of New York Authority.
- R. L. Potter,* American Airlines (Tulsa, Okla.).
- B. C. Quinn, Flight Lieutenant, Department of National Defence (Canada).
- D. B. Rees, Civil Aviation Division, Department of Transport (Canada).
- L. E. Rivkind,* Mearl Corporation.
- E. B. Rumble, National Automatic Sprinkler and Fire Control Association.
- J. K. Schmidt, Air Proving Ground Command.
- W. E. Seal, * Boeing Airplane Co.
- J. H. Sellers,* North America Companies.
- Roussel G. Smith,* Pan-American World Airways System, Pacific Alaska Division.
- William R. Smith, † Wright Air Development Center, Dept. of the Air Force.
- **Donald Squier,** Fire Equipment Manufacturers Association.
- John T. Stephan, American Assn. of Airport Executives. (Manager, Mercer County Airport, Trenton, N. J.)
- E. F. Tabisz, Underwriters' Laboratories of Canada.
- Robert W. Vreeland,* McDill Air Force Base, U.S.A.F.
- Ted R. Wagner,* Ellsworth Air Force Base Fire Dept., U.S.A.F.
- J. H. Waterman,* Trans World Airlines.
- E. J. C. Williams,† Air Ministry (United Kingdom).
- Roger H. Wingate,* Liberty Mutual Fire Insurance Co.

Alternates.

T. S. Duke. (Alternate to E. B. Rumble.)

Edward B. Heyl. (Alternate to Ben W. Ashmead.)

James C. Rogers. (Alternate to Paul Kowall.)

^{*}Serving in a personal capacity in accordance with Par. 11-b-2 of the Regulations on Technical Committee Procedure.

[†]Non-voting member.

^{**}Representation is organizational, not personal, and is for coordination purposes only.

Subcommittee on Aircraft Rescue and Fire Fighting

George H. Tryon, III,† Acting Chairman National Fire Protection Association 60 Batterymarch St., Boston 10, Mass.

J. C. Abbott*

British Overseas Airways Corp.

George J. Bean

American Association of Airport Executives (Manager, Worcester Municipal Airport, Worcester, Mass.)

R. J. Brady*†
Port of New York Authority Fire Dept.
(New York International)

George A. Brelie*
Ansul Chemical Company

J. W. Bridges*

U.S.A.F. Military Air Transport Service

J. A. Brooker
Ministry of Transport and Civil Aviation
(United Kingdom) Harold J. Burke*

Pyrotronics, Baker Industries, Inc.

E. Thomas Burnard Airport Operators Council

R. C. Byrus* University of Maryland

John Cardoulis* Hq., Northeast Air Command, U.S.A.F. J. M. Chase

Flight Safety Foundation

N. L. Christoffel* United Air Lines

G. T. Cook
Chief, Fire Prevention and Crash Rescue, Headquarters, U.S.A.F.

J. F. Dowd*
Chief, Westover Air Force Base Fire Department, U.S.A.F.

C. Dreesen Bureau of Aeronautics, Dept. of the Navy H. A. Earsy*

Fire Marshal, United Aircraft Corp.

A. L. Edson American Association of Airport Executives (Mass. Aeronautics Commission)

M. M. Fischer* Chief, Mitchel Air Force Base Fire Department, U.S.A.F.

R. B. Gottschalk* North American Aviation

A. W. Grunwell NFPA Committee on Firemen's Training (District of Columbia Fire Department)

H. L. Hansberry,* (Ex-officio) Fenwal, Inc.

K. E. Hisey,*

Dade County Port Authority

Paul Kowall

Nassau County Vocational Education and Extension Board

A. W. Krulee* Cardox Corporation

H. F. Law*

Port of New York Authority

J. Lederert, (Ex-officio) Flight Safety Foundation

Henry F. Loeffler,* (Personal)

R. D. Mahaney,†

Civil Aeronautics Administration

J. E. Malcolm,

Engineer Research an Laboratories, U. S. Army and Development

Wing Commander W. A. McCallum Fire Marshal, Royal Canadian Air Force

C. L. McGlamery*

Chance Vought Aircraft, Inc.

E. D. Nass* Chief, Andrews Air Force Base F. D., U.S.A.F.

J. A. O'Donnell* American Airlines

F. E. Parker Department of Civil Aviation, Commonwealth of Australia

J. E. Parks* San Francisco International Airport

J. A. Peloubet Magnesium Association

R. C. Petersen* Port of New York Authority

D. B. Rees Civil Aviation Division, Department of Transport (Canada)

L. E. Rivkind* Mearl Corporation

Clarence N. Sayen Air Line Pilots Association

J. K. Schmidt Air Proving Ground Command, U.S.A.F.

W. R. Smith† Wright Air Development Center, U.S.A.F.

Donald Squier Fire Equipment Manufacturers Association

J. T. Stephan American Association of Airport Executives (Manager, Mercer County Airport, Trenton, N.J.)

R. W. Vreeland* McDill Air Force Base, U.S.A.F.

T. R. Wagner* Ellsworth Air Force Base F.D., U.S.A.F.

E. J. C. Williamst Air Ministry (United Kingdom)

Douglas C. Wolfe

American Association of Airport Executives (Manager, Broome County Airport, Binghamton, N. Y.)

Alternate.

James Rogers. (Alternate to Paul Kowall.)

^{*}Serving in a personal capacity. †Non-voting member.

TENTATIVE

Suggested Standard Test Procedures for Aircraft Rescue and Fire Fighting Vehicles Utilizing Foam

NFPA No. 412T — 1957

Article 100. General

110. Purpose

- 111. These suggested test procedures are intended to fully evaluate in standard terms of reference, the degree of capability of aircraft rescue and fire fighting vehicles in accomplishing their designed mission as described in NFPA Suggestions for Aircraft Rescue and Fire Fighting Services for Airports (NFPA No. 403)*.
- 112. The test procedures are intended to produce data useful to authorities in the field in determining the suitability of equipment for meeting the operational requirements imposed upon them.

120. Scope

- 121. It is acknowledged that many requirements in this area encompass variables which are difficult to standardize and as a result these tests are summarily incomplete but accumulation of further knowledge will generate a wider scope of usefulness.
- **122.** The suggested test procedures covered herein may be divided into four categories as follows:
 - (a) Ease of Equipment Operation Testing (Article 200)
 - (b) Vehicular Performance Testing (Article 300)
 - (c) Principal Agent (Foam) Performance Testing (Article 400)
 - (d) Supplementary Agent and/or Supporting Equipment Specification (Article 500)

^{*}Published in National Fire Codes, Vol. VI and in separate pamphlet form.

Article 200. Ease of Equipment Operation Testing

210. Purpose. The ease with which qualified fire fighters are able to operate a vehicle and its rescue and fire fighting equipment will be an indication of the vehicle's utility during an actual emergency. Attention should be given to all vehicle and crew operations which are either difficult to comprehend or require extensive practice before skill in operation is acquired.

220. Test Procedures

- **221.** Tests should include all crew functions and all vehicle components such as:
 - **a.** driving the vehicle;
 - **b.** identification and operation of all equipment controls;
 - c. charging and servicing the extinguishing agent system.
- 222. Following indoctrination, the crew should perform complete fire fighting cycles with studies made of the operational procedures, the time factors involved, any difficulties experienced and the teamwork needed to gain maximum efficiency in the operation of the vehicle.
- 223. Selection and operation of controls should be as required under anticipated service usage. Turrets should be operated over their entire area of coverage and in all available ranges while hand lines should be fully extended, moved as required in actual emergencies and put back.
- **224.** Rescue equipment should be removed from the vehicle, used and returned in realistic fashion; power and hand tools for forcible entry should be tested on actual scrap fuselages to develop proper knowledge of usage.
- **225.** Charging and servicing the vehicle should include discharge, flushing and recharging.
- **226.** During the tests fire fighters should wear their standard protective clothing and masks or headgear and assume at the start of the test their assigned positions on the vehicle.
- 227. Simulated runs to an accident site should be accomplished in each instance and varied imaginary accident locations selected.
- **228.** A full and complete report should be submitted giving the results of such tests with particular attention given to any difficult operations encountered (see Article 600).

Article 300. Vehicular Performance Testing

This section to be completed by a special Conference Committee on this subject.

Article 400. Principal Agent (Foam) Performance Testing

- 410. Purpose. Effective performance of the foam available for fire fighting depends on its physical characteristics of expansion, the viscosity of the foam, the heat and solvent resistance of the foam and the concentration of the foam concentrate required. All of these characteristics cannot be readily determined by tests. However, expansion, 25 per cent drainage time (which is an indication of the viscosity of the foam) and foam concentration are measurable properties that give a relative indication of foam quality and are the characteristics that should be determined during the performance tests. The equipment used to dispense the foam should provide for optimum utilization of good quality foam. The tests recommended here are designed to gauge:
 - (a) the physical properties of the foam dispensed;
 - (b) the foam patterns that are established; and
 - (c) the effectiveness of the application in reducing heat radiation and the calculated fire control area which the vehicle can handle.

420. Test Procedures

421. Foam Physical Property Tests

a. Physical Property Tests — Turrets: Starting with full tank contents and with the turret or turrets in normal fire fighting position, generate foam on a hard surface at recommended pressures or rates using the recommended foam-forming concentrates. Obtain foam samples in duplicate according to the methods given in Section A-210. in the Appendix. Analyze the foam samples for expansion and viscosity (drainage rate) according to the test methods given in Section A-220. and A-230. in the Appendix. In addition, analysis should be made of the concentration of the foam concentrate in the foam-making solution which drains from the foam samples according to the test methods given in Section A-240. in the Appendix. Assume the full range of operating conditions for this test. If varia-

tion is to be expected when only part of the foam generating equipment is operated, this must be tested. In the case of certain vehicles where the rates vary during operation, the rates for the duration of a full run should be measured and foam samples taken at several points during the run. (These tests may be conducted simultaneously with the pattern determinations (Par. 422.a. below) if desired.)

b. Physical Property Tests — Hand Line and Auxiliary Nozzles: Operate the nozzles in a manner outlined in Par. 422.b. below and obtain foam samples as done in the turret tests (Par. 421.a. above). Tabulate the results for expansion, viscosity and concentration.

422. Foam Pattern Tests

- a. Foam Pattern Tests Turrets: These tests should be run under "no wind" conditions or as close to this as possible. The turrets should be elevated to 30 degrees and foam generated on a hard ground surface at the different nozzle settings available (such as, dispersed-stream, mid-position and straight-stream). Foam generation should be continued long enough to clearly define the useful foam pattern falling on ground. The pattern perimeters established for each nozzle setting should be carefully measured and plotted on cross-section paper showing the truck position and the outline of the foam patterns obtained. The vertical axis should show the reach in feet and the horizontal axis the pattern contour in feet for each nozzle setting. Figure 4 shows a typical turret pattern plot (see Appendix).
- b. Foam Pattern Tests Hand Line and Auxiliary Nozzles: These tests should be handled in a similar manner to those for the turrets. Hand line nozzles should be mounted on a stand 3 feet above the ground and elevated to 30 degrees to the horizontal. Outlines of the ground patterns established for straight stream and maximum dispersed-stream should be noted as done in the turret tests (Par. 422.a.). Measure the outlines secured and plot them on cross-section paper. Auxiliary nozzles, such as bumper and undertruck nozzles (if any) should be operated elevated for maximum range (if applicable) to establish their protective patterns. If variation is to be expected in nozzle performance due to only partial component operation this condition should be reproduced and tested.

423. Determination of Basic Extinguishing Capability Figure and Rate of Reducing Heat Radiation:

- **a.** Position the vehicle to discharge foam from one turret onto a hard-surfaced area. Outline the perimeter of the maximum dispersed-stream pattern or that pattern judged most effective (established for the turret from the tests outlined in Par. 422.a.) with a mud dike $1\frac{1}{2}$ to 2 inches in height. Flood the area with gasoline to a depth of $1\frac{1}{2}$ inch.
- **b.** After ignition of the gasoline and a 15 second preburn period, apply foam from the previously positioned turret without further movement of the turret or vehicle. The foam should reach all areas of fire in a fairly uniform manner under such conditions. Application should continue until the fire is virtually extinguished (95 per cent or more).
- **c.** During the extinguishment process, the rate of radiation decline should be noted by radiation heat recording device similar to that described in Section A-410. in the Appendix.
- **d.** From the foam application time and the water application rate, the total amount of water consumed for the fire of measured area is calculated. From the number of square feet of fire area extinguished and the total water used, calculate the number of gallons of water required to extinguish one square foot of burning fuel, multiply this figure by the gallons of water aboard the vehicle and record this value.
- **e.** A chart should then be made to indicate the rapidity of the reduction in heat radiation. Plot the per cent of total radiation (based on full radiation just before foam application was started) against the time of foam application.

Note: See Section A-420, in the Appendix for typical calculations of the number of gallons of water used to extinguish a square foot of fire with a multiplication of the total water aboard employing an ordinary crash truck and a chart showing a typical rate of reduction of radiation from a test fire. (Figures 5 and 6)

424. Supplementary Tests

a. Article A-500. in the Appendix gives test methods for foam "burn-back" characteristics on new foam, aged foam, and fire-aged foam and a separate test method to evaluate the flowing capabilities of foam (known as the "shadow-pattern" fire test).

Article 500. Supplementary Agent and or Supporting Equipment Specifications

510. Purpose. In order to fully describe the potentialities of an aircraft rescue vehicle the supplementary fire extinguisher equipment and auxiliary rescue devices available should be evaluated in terms of their capability of improving on or, possibly, detracting from the primary mission of the vehicle. The variables encountered in such an evaluation are a function of the combination of conditions to be met under actual usage and the degree of excellence of performance of the principal agent with which the truck is equipped. It is not possible to adequately describe these conditions in simulated field tests within the economic barriers normally applying. As a consequence, the following requirements are in the form of detailed performance specifications of the supplementary agents and/or supporting equipment available on the vehicle. The authority having jurisdiction must judge the adequacy of the supplementary equipment for his requirements on the basis of other available information concerning such equipment.

520. Test Procedures

- **521.** Built-in Equipment on Vehicle. Supplementary agents and/or equipment installed as an integral part of the vehicle should be fully evaluated on a basis of their individual performance. Water, although used principally for foam generation, may be considered also as an optional agent; carbon dioxide, dry chemical, vaporizing agents and others should be evaluated in terms of their basic extinguishing effectiveness. This entails a complete description in terms of minimum rates or density of coverage, minimum total discharges, optimum techniques in terms of flexibility and versatility of equipment and other collateral characteristics which improve the principal function of the vehicle. A full and complete technical description specification for each agent available should be so compiled and submitted.
- **522.** Portable Equipment. In the case of supporting and auxiliary equipment available on the vehicle for portable or semi-portable use such as special extinguishers for magnesium fires, dry chemical hand extinguishers, portable metal-cutting saws and torches, forcible-entry tool kits, medical first-aid kits and other rescue aids, each unit should be fully described in terms of size, weight and any information necessary for complete identification. A complete technical description specification for all such equipment should be submitted.

Article 600. Report of Results of Tests

610. Content of Reports

611. All test reports should include a statement of the operating conditions encountered (such as pressures, temperatures, wind velocities, etc.) and a full description of the materials and equipment used.

620. Submission of Reports

621. In the interest of promoting the program of standardization of performance tests for aircraft rescue and fire fighting vehicles utilizing foam a full and complete report of the tests conducted on such equipment should be submitted to the Committee on Aviation and Airport Fire Protection, National Fire Protection Association, 60 Batterymarch Street, Boston 10, Mass., U. S. A. with photographs and diagrams as may be available.

Appendix — Suggested Test Methods and Calculations

A-100. General

A-110. Purpose of Appendix

A-111. The following field tests for foam agent capabilities on aircraft rescue and fire fighting vehicles are given in order that standardization may be achieved in testing procedures.

A-120. Organization of Appendix

A-121. The test methods given are presented in the order of their mention in Article 400. of these Suggested Standard Test Procedures.

A-200. Foam Physical Property Tests

A-210. Foam Sampling (Reference Par. 421.a. and b.)

- A-211. The treatment of a foam after it has left the turret or nozzle has an important bearing on its physical properties. It is, therefore, extremely important that the foam samples taken for analysis represent as nearly as possible the foam reaching the burning surface in normal fire fighting procedure. Foam for analysis from a straight stream should be collected from the center of the ground pattern formed with the nozzle aimed for maximum reach. Similarly, for dispersed stream application foam should be sampled from the center of the resulting ground pattern area with the nozzle set for dispersed stream operation. In order to standardize and facilitate the collecting of foam samples a special collector is used as shown in Figure 1.
- A-212. The collector should be placed at the proper distance from the nozzle to be in the center of the pattern to be sampled. The nozzle should be placed in operation with the foam pattern off to one side of the collector until equilibrium is reached and then swung over onto the center of the backboard. When sufficient foam volume has accumulated to fill the sample containers (usually only a few seconds), a stop watch should be started for each of the samples to provide the zero time for the drainage tests described in Section A-230 and then the foam pattern should be directed off to one side again. Immediately after

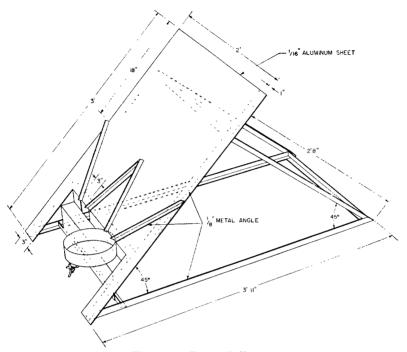


Figure 1. Foam Collector

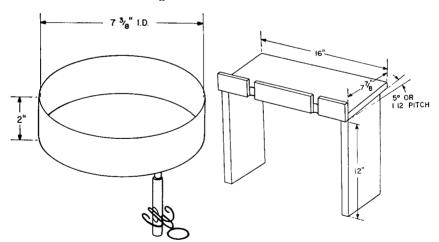


Figure 2. Foam Container

Figure 3. Stand

the nozzle has been swung away from the board the sample pans are removed, the top struck off with a straight edge, and all foam wiped off from the outside of the container. The sample is then ready for analysis.

A-213. The standard sample container is 2 inches deep and 73% inches inside diameter (capacity of 1400 milliliters) preferably made of ½6 inch thick aluminum or plastic. In the bottom at the edge, a ¼ inch drain tube with a rubber tube and pinch cock is provided to draw off the foam solution as it accumulates. This device is shown in Figure 2.

A-220. Foam Expansion Determination (Reference Par. 421.a. and b.)

A-221. The sample obtained as described previously should be accurately weighed to the nearest gram. The expansion of the foam in the sample is calculated as follows:

A-222. Apparatus Needed

- a. 2 1400 milliliter sample containers
- b. 1 foam collector
- c. 1 balance, triple beam, 1000 gram capacity

A-230. Foam Drainage Rate Determination (Reference Par. 421.a. and b.)

- A-231. The rate at which the liquid drops out from the foam mass is called the drainage rate and is a direct indication of degree of stability and the viscosity of the foam. A single value used to express the relative drainage rates of different foams is the "25 per cent Drainage Time." It is the time in minutes that it takes for 25 per cent of the total liquid contained in the foam in the sample containers to drain out.
- A-232. This test is performed on the same sample as used in the expansion determination. Dividing the net weight of the foam sample by four will give the 25 per cent volume in milliliters of liquid contained in the foam. In order to find the time required for this volume to drain off, the sample container should be placed on a stand as shown in Figure 3 and at regular

suitable intervals the accumulated solution in the bottom of the pan is drawn off into a graduate. The time intervals at which the accumulated solution is drawn off are dependent on the foam expansion. For foams of expansion 4 to 10, one minute intervals should be used and for foams of expansion 10 and above, two minute intervals should be used because of the slower drainage rate of foams in this category. In this way a time-drainage volume curve is obtained and after the 25 per cent volume has been exceeded, the 25 per cent drainage time is interpolated from the data. The following example shows how this is done:

The net weight of the foam sample has been found to be 200 grams.

Expansion =
$$\frac{1400g}{200g} = 7$$

$$25\%$$
 Volume = $\frac{200g}{4}$ = 50 ml.

Then if the time-solution volume data has been recorded as follows:

Time	Drained Solution Volume
Min.	Ml.
0	0
1.0	20
2.0	40
3.0	60

It is seen that the 25 per cent volume of 50 ml. lies within the 2 to 3 minute period. The increment to be added to the lower value of 2 minutes is found by interpolation of the data:

$$\frac{50 \text{ ml. } (25\% \text{ Volume}) - 40 \text{ ml. } (2 \text{ min. Volume})}{60 \text{ ml. } (3 \text{ min. Volume}) - 40 \text{ ml. } (2 \text{ min. Volume})} = \frac{10}{20} = 0.5$$

Therefore, the 25 per cent drainage time is found by adding 2.0 min. + 0.5 min. and gives a final value of 2.5 min.

A-233. In the handling of unstable foams it must be remembered that they lose their liquid rapidly and the expansion determination must be carried out with speed and despatch in

order not to miss the 25 per cent drainage volume. It may even be necessary to defer the expansion weighing until after the drainage curve data has been recorded. The stop watch is started at the time the foam container is filled and continues to run during the time the sample is being weighed.

A-234. Apparatus Needed

- a. 2 100 milliliter graduates
- b. 2 stop watches
- c. 1 sample stand

A-240. Concentration Determination (Reference Par. 421. a. and b.)

A-241. This test is to determine the concentration of foam liquid in the water being used to generate foam. It is useful for checking the accuracy of a unit's proportioning system and also if the concentration deviates too widely from the 6 per cent level*, it will abnormally influence the expansion and drainage time values. The test is based on the change of refractive index of the solution with change in concentration as measured by a refractometer.

A-242. The first step in this procedure is to prepare a calibration curve for the intended use. This has been found necessary because the source of water and brand or mixture of foam concentrate will affect the results. Using water from the tank and foam concentrate from the tank, standard solutions of 3, 6, and 9 per cent are made up by pipetting 3, 6, and 9 milliliters of foam concentrate respectively into three 100 milliliter graduates and then filling to 100 milliliter mark with the water. After thoroughly mixing, a refractive index reading is taken of each standard. This is done by placing a few drops of the solution on the refractometer prism with a medicine dropper, closing the cover plate and observing the scale reading at the dark field intersection. A plot is made on graph paper of scale reading against the known foam solution concentrations and serves as a calibration curve for this particular foam test series. Portions of solution drained out during the previously described drainage rate test are conveniently used as a source of sample for the

^{*}A 6 per cent concentration is used for purposes of illustration.

refractometer in analysis. Refractive readings of the unknown are referred to the calibration curve and the corresponding foam solution concentration read off.

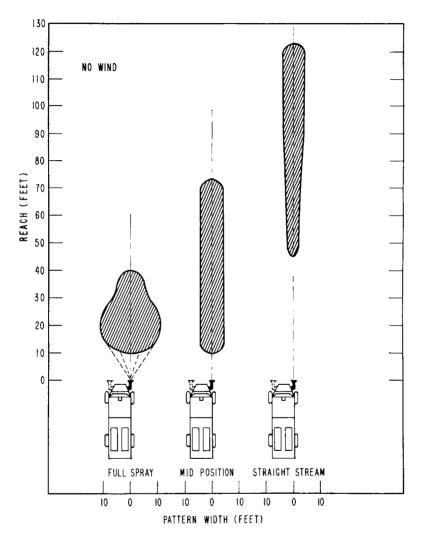


Figure 4. Typical Turret Pattern Plot (See A-311.)

A-243. Apparatus Needed

- a. 3 100 milliliter graduates
- b. 1 measuring pipette (10 milliliter capacity)
- c. 1 100 milliliter beaker
- d. 1 500 milliliter beaker
- e. 1 Refractometer (Hand Juice Refractometers such as made by Bausch and Lomb are convenient for this use) with a range of 0 to 25 per cent sugar content (1.3330 to 1.3723 index of refraction).

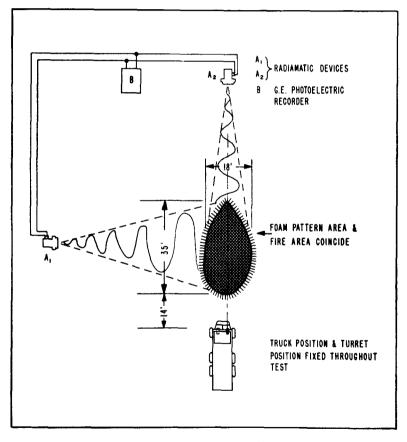


Figure 5. Plan View Diagram of Test Set-up

A-300. Foam Pattern Tests

A-310. Typical Turret Pattern Plot (Reference Par. 422.a.)

A-311. Figure 4 shows a typical plot of the ground patterns of the foam discharge of a turret nozzle which may be used as a model for reporting these and similar patterns.

A-400. Heat Radiation Tests

A-410. Description of Radiation Device (Reference Par. 423.c.)

A-411. Fire intensity during the extinguishment process is meas-

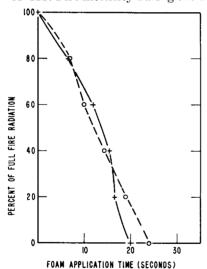


Figure 6. Radiation Reduction Graph Obtained

ured by means of a totalradiation pyrometer. Such devices are available commercially as the Brown Instrument's Radiamatic Series 939A1 Type RH. Radiation energy from the fire, proportional to its size, is converted through a thermopile to electrical energy which may be conveniently measured and recorded against a time axis. Two radiation receivers may be connected in parallel electrically (as shown in Figure 5) and mounted so that two response circles. of equal diameter and at right angles to each other, result in a complete radiation picture of the test fire.

A-420. Determination of Basic Extinguishing Capability Figure and Rate of Reducing Heat Radiation — Typical Calculations and Radiation Charting Methods (Reference Par. 423.)

A-421. The following calculations are typical of those used in the determination of the basic capability figure of foam on a fire using an aircraft rescue and fire-fighting vehicle of 1000 gals. water capacity:

Fire Area (and Pattern Area) = 500 ft^2

Average Water Application Rate
$$=\frac{275 \text{ gpm}}{500 \text{ ft}^2} = 0.55 \text{ gpm/ft}^2$$

Foam Application Time = 12 sec. = 0.20 min.

Total Water (in foam) Applied = $0.55 \text{ gpm/ft}^2 \times 0.20 \text{ min.} = 0.11 \text{ gal/ft}^2$

Basic Extinguishing Capability Figure of Vehicle (no obstructions) = $\frac{1000 \text{ gal.}}{0.11 \text{ gal/ft}^2} = 9100 \text{ ft}^2$

A-422. Figure 5 shows a plan view diagram of the radiation reduction test and Figure 6 a graph of values obtained for two separate tests on a typical vehicle. These may be used as a model for reporting these tests.

A-500. Supplementary Tests (Reference Par. 424)

A-510. Foam Blanket "Burn-Back" Characteristics

A-511. "Burn-Back" on New Foam: Lay out a test area 10 feet square on a hard surfaced terrain and outline it with a mud dike 1 to 2 inches in height. Position the vehicle in a manner to include the above test area in the center of the dispersed-pattern from one turret. Flood the area to a depth of ½ inch with gasoline. Without igniting the fuel, immediately apply foam for a period of time calculated to produce a blanket having a depth of one inch. Record the time necessary to produce this foam blanket. A fire fighter (properly clothed) should then walk through this foam blanket in a criss-cross manner, dragging a 4 foot length of 1½-inch hose behind him. Immediately after he has left the area, any exposed fuel areas are ignited with a long handled torch and permitted to burn 15 min-