INTERNATIONAL ISO/IEC
STANDARD 8824

Second edition
1990-12-15

Information technology < Open Systems
Interconnection — Specification of Abstract
Syntax Notation One{{ASN.1)

Technologies de l'information”’ — Interconnexion de systémes ouverts —
Spécification de la notation de syntaxe abstraite numéro 1 (ASN.1)

H
H

Reference number
ISO/IEC 8824 : 1990 (E)

”||||||"' '""""""""”NI||“
hlllmu.,.......un||||||”
[ll‘%"'""lu
’“"lllm,....‘....u||l||||m

l\
H

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Contents
T 80P - e 1
2 Normative referenCesottt e e e e 1
B DefiNtiONSttt e e e e, 1
4 Abbreviations e e e e 3
5 Notation used in this International Standardccovviiirinennnn... 3
51 Productions e e 3
5 i ioA$—————————————————————————— 4
5 Exampleofaproduction 4
5 Layout e 4
5 Recursion 4
5 References to a collectionofsequences 4
5 Referencestoanitem 4
5 Tags . . . o e e e 5
6 Usepfthe ASN.Inotationc.oiiiiiiiiiin ittt e, 5
7 TheASN.1characterset...........coiiiiiiiiiii ittt 6
B ASNLT M ...ttt e e e 6

81 Generalrulest O 6

82 Typereferences0c. ... Sl 6
8/3 dentifiers A 6
8/4 \Valuereferences 6
85 ModulereferenceON ..., 6
86 Comment A Y .. 7
87 Emptyitem 7
818 Numberitem L XN 7
8/9 Binarystringitem LN L 7
8]10 Hexadecimalstringitem@. 7
8/11 Characterstringitem V. 7
8[12 Assignmentitem &0 7
8/13 Singlecharacteritems e 8
814 Keyworditems 0. 8
8{15 RangeSeparator (.. e 8
816 Ellipsis e 8
9 Moduledefinition 0 8 i . 8
10 Refdrencing type and value definitions i, 10
11 Assigningtypes and values <. it i 10
12 Defifition oftypesandwaluesottt 10
13 Notation for the booleantype e 12
14 Notgtionfortheintegertypecooiiiiiiiiiiin ittt 12
15 Notation'for the enumeratedtypeooooveeveveeeeee.... 12
16 Notationfortherealtype it 12
17 Notation for the bitstringtype i 13
18 Notation for the octetstringtypet i it 14

© ISO/IEC 1990

Al rights reserved. No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without permission in
writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 e CH-1211 Geneéve 20 e Switzerland
Printed in Switzerland

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

19 Notationforthenulltype ..., 14

20 Notation for SEqUENCEIYPESttt it e e 14

21 Notation for sequence-oftypes B 15

22 Notation for settypescvvit e i 15

23 Notation for set-of typeso v inn e 15

24 Notation for ChoiCe typesvvuiiiiii e 16

25 Notation for selection typesouiiiii i e e 16

26 Notation fortagged typesiiiiiiiiiii i 17

27 Notation forthe anytype e ettt ea e 17

28 Notation for the object identifiertype DT 18

29 Notation for character stringtypes O3V L. 19

30 Notation for types definedinclauses32-35 0. ...o.... 19

31 Definition of character stringtypes 8o, 20

32 Generalized timeovutinniiiiiee e T 22

33 Universal timeottt N 22

34 Theexternaltypeovuniiiin N 23

35 The object descriptortypevvuu i i et 24

36 Subtypenotationiii el e 25

37 SubtypeValue Sets 0 . . 25

371 SingleValue ... % 25

37.2 ContainedSubtype\™" 26

373 ValueRange .oy, 26

3744 SizeConstraint™~> 26

375 Permitted Alphabet L 26

376 InnerSubtyping 26
Annexes

A The MAacroMOtationt ittt ettt e et 28

Al “ntroduction e 28

A.2 Extensionstothe ASN.1 character setanditems 28

A21 Macroreference 28

A22 Productionreference 28

A23 Localtypereference 28

A24 Localvaluereference 28

A25 Alternationitem 28

A.2.6 Definitionterminatoritem 28

A2.7 Syntacticterminalitem 29

A28 Syntactic category keyworditems 29

A2.9 Additionalkeyworditems 29

A3~ Macro definffion notation 29

A4 Useofthenewnotation 31

B 1SO assignment of OBJECT IDENTIFIER componentvalues 32

C CCITT assignment of OBJECT IDENTIFIER componentvalues 33

D Joint assignment of OBJECT IDENTIFIER componentvalues 34

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E Examplesand hintsiiiiiiiiiiiiiiin i iiiineeiiineennns 35
E1 Exampleofapersonnelrecord 35
E.1.1 Informal Description of Personnel Record 35

E.1.2 ASN.1 description of therecord structure 35

E.1.3 ASN.1descriptionofarecordvalue 36

E.2 Guidelines for use of the notation Ve 36
E21 Boolean 36

E22 Integer 36

E23 Enumerated 36

E24 Real 37

E25 Bitsting 37

E26 Octetstring 37

E27 Nul 38

E.28 Sequenceandsequence-of 38

E29 Set 39

E210 Tagged, 39

E211 Choice¢ 41

E212 Selectiontype 41

E213 Any e 42

E214 ExernalQQY. .. 42

E.3 Anexample of the use of the macronotation"O"% ... 42
E.4 Useinidentifying abstractsyntaxes & 43
ES Subtypes L LN 44
F Summaryofthe ASN.1notation........... ... 0N i 47

iv

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 :

Foreword

1990(E)

ISO (the International Organization for Standardization) and IEC (the lnternational
Electrotechnical Commission) form the specialized system for worldwide standardiz-

ation. National bodies that are members of ISO or IEC participate in,the de

lopment

of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. 1SO and IEC [technical

committees collaborate in fields of mutual interest. Other interhational orga
governmental and non-governmental, in liaison with ISO and-EC, also take (g
work.

In the field of information technology, 1ISO and AEC-have established a joint
committee, ISO/IEC JTC 1. Draft International’ Standards adopted by
technical committee are circulated to national bodies for voting. Publicati

izations,
art in the

technical
the joint
on as an

International Standard requires approvaldy at least 756 % of the national bodigs casting

a vote.

International Standard 1SO/IEC'8824 was prepared by Joint Technical C
ISO/IEC JTC 1, Information technology.

This second edition cancels and replaces the first edition (1ISO 8824 : 1987), v
been technically revised.

Annexes A, B;"C-and D form an integral part of this International Standard. A
and F are for-information only. '

bmmittee

vhich has

nnexes E

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Introduction

In the lower layers of the Basic Reference Model (see ISO 7498), each user data par-
ameter of a service primitive is specified as the binary value of a sequence of octets.

Inthe presentation layer, the nature of user data parameters changes. Application layer
standards require the presentation service user data (see ISO 8822) to carry the value

of quite ¢ ; i ofchar-
acter setg In order to specify the value which is carried, they require a defined nota-
tion which does not determine the representation of the value. This is supplemented
by the spgcification of one or more algorithms called encoding rules which determine
the value pf the session layer octets carrying such application layer values (called the
transfer gyntax). The presentation layer protocol (see ISO 8823) can negotiate which
transfer syntaxes are to be used. .

The purppse of specifying a value is to distinguish it from other possible values. The
collection|of the value together with the values from which it is distinguished is called
a type, afd one specific instance is a value of that type. More generally, a value or
type can r{ften be considered as composed of several simpler values or types, together
with the r¢lationships between them. The term datatype is often used as a synonym
for type.

In order tq correctly interpret the representation of a value (whether by marks arpaper
or bits on @ communication line), it is necessary to know (usually from the context), the
type of the value being represented. Thus the identification of a type is an‘important
part of this International Standard.

A very geeral technique for defining a complicated type is to define’a small number
of simple types by defining all possible values of the simple types, then combining
these simple types in various ways. Some of the ways of defining'new types are as fol-
lows: .

a) divenan (ordered) list of existing types, a value.can be formed as an (ordered)
sequence of values, one from each of the existing types; the collection of all
possible values obtained in this way is a new type; (if the existing types in the list

distinct, this mechanism can be’extended to allow omission of some
from the list);

iven a list of (distinct) existingtypes, a value can be formed as an (unordered)
set of values, one from each Of the existing types; the collection of all possible
values obtained in this way.is-a new type; (the mechanism can again be extended
to allow omission of some-values);

c) diven asingle existing type, a value can be formed as an (ordered) sequence
or (unordered) set\of zero, one or more values of the existing type; the (infinite)
collegtion of all possible values obtained in this way is a new type;

d) divenallist of (distinct) types, a value can be chosen from any one of them;
the set©f;all possible values obtained in this way is a new type;

€) given atype, a new type can be formed as a subset of it by using some struc-
ture or order relationship among the values.

Types which are defined in this way are called structured types.
Every type defined using the notation specified in this International Standard is as-

signed a tag. The tag is defined either by this International Standard or by the user of
the notation. .

Vi

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

It is common for the same tag to be assigned to many different types the particular
type being identified by the context in which the tag is used

The user of the notation may choose to assign distinct tags to two occurrences of a
single type, thereby creating two distinct types. This can be necessary when it is re-
quired to distinguish which choice has been made in situations such as d) above

Fourclasses of tag-are specified fmthe notatiorn:

The first is the universal class. Universal class tags are only used as)specified with-
in this International Standard, and each tag is either :

a) assigned to a single type; or
b) assigned to a construction mechanism.

The second class oftag is the application class. Application class tags arejassigned
to types by other standards. Within a particular .standard, an application class tag is
assigned to only one type. '

The third class is the private class. Private'class tags are never assigned by Interna-
tional Standards. Their use is enterprise€‘specific.

The final class of tag is the context-specific class. This is freely assigned within any
use of this notation, and is interpreted according to the context in which it is used.

Tags are mainly intended formachine use, and are not essential for the hurpan nota-
tion defined in this International Standard. Where, however, it is necessary o require
that certain types be distinct, this is expressed by requiring that they have distinct tags.
The allocation of\tags is therefore an important part of the use of this notdgtion.

NOTES

1 All typeswhich can be defined in the notation of this International Standard Have a tag.
Given(anytype, the user of the notation can define a new type with a different tag.

2\\Encoding rules always carry the tag of a type, explicitly orimplicitly, with any reprgsentation
ofa value of the type. The restrictions placed on the use of the notation are desighed to en-
sure that the tag is sufficient to unambiguously determine the actual type, provided the ap-
plicable type definitions are available.

This International Standard specifies a notation which both enables complicated types
to be defined and also enables values of these types to be specified. This is done
without determining the way an instance of this type is to be represented|(by a se-
quence of octets) during transfer. A notation which provides this facility is cglled a no-
tation for abstract syntax definition.

The purpose of this International Standard is to specify a notation for abstract syntax
definition called Abstract Syntax Notation One, or ASN.1. Abstract Syntaq Notation
One is used as a semi-formal tool to define protocols. The use of the notafion does

of the notation to ensure that their specifications are not ambiguous.

This International Standard is supported by other standards which specify encoding
rules. The application of encoding rules to the value of a type defined by ASN.1 re-
sults in a complete specification of the representation of values of that type during
transfer (a transfer syntax).

This International Standard is technically aligned with CCITT Recommendation X.208
(1988).

vii

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Clauses 7 to 30 (inclusive) of this International Standard define the simple
types supported by ASN.1, and specify the notation to be used for referen-
cing simple types and defining structured types. Clauses 7 to 30 also specify
the notation to be used for specifying values of types defined using ASN.1.

Clause 31 of this International Standard defines additional types (character
string types) which, by the application of encoding rules for character sets,
can be eq i i

Clauses 32 to 35 (inclusive) of this International Standard define certain struc-
tured types which are considered to be of general utility, but which require no
additional pncoding rules.

NOTE — It is expected that these clauses will be added to, to encompass other com-
mon datatypes such as diagnostics, authentication information, accounting informa-
tion, security parameters and so on.

The value hotation and semantic definition for types defined in these clauses
are derivejl from a definition of the type using the ASN.1 notation. This type
definition gan be referenced by standards defining encoding rules in order to
specify encodings for these types.

Clauses 3§ and 37 of this International Standard define a notation which en-
ables subtypes to be defined from the values of a parent type.

Annex A is| part of this International Standard, and specifies a notation foriex:
tending the basic ASN.1 notation. This is called the macro facility.

Annex B isfpart of this International Standard, and defines the object identifier
tree for authorities supported by ISO.

Annex C ig part of this International Standard and defines the object identi-
fier tree for authorities supported by CCITT.

Annex D ig part of this International Standard and-defines the object identi-
fier tree for joint use by ISO and CCITT.

Annex E if not part of this International Standard, and provides examples
and hints gn the use of the ASN.1 notation.

Annex F is|not part of this International Standard, and provides a summary
of ASN.1 Using the notation of cladse 5.

The text ofjthis International'Standard, and in particular the annexes B to D,
are the subject of joint ISO-CCITT agreement.

N—~s

viii

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

INTERNATIONAL STANDARD

ISO/IEC 8824 : 1990 (E)

Information technology — Open Systems
Interconnection — Specification of Abstract Syntax

Notation One (ASN.1)

1 Scqpe

This Intefnational Standard specifies a notation for abstract
syntax definition called Abstract Syntax Notation One
(ASN.1).

This Intgrnational Standard defines a number of simple
types, wi their tags, and specifies a notation for referencing
these types and for specifying values of these types.

This Intefnational Standard defines mechanisms for con-
structing [new types from more basic types, and specifies a
notation for defining such structured types and assigning
them tags, and for specifying values of these types.

This Intefnational Standard defines character sets (by ref-
erence tp other International Standards) for use within
ASN.1.

This Intemational Standard defines a number of usefulitypes
(using A3N.1), which can be referenced by users of ASN.1.

The ASN|1 notation can be applied whenever it is necessary
to define the abstract syntax of information. It.is particularly,
but not exclusively, applicable to application protocols.

The ASN|1 notation is also referenced.by other presentation
layer starydards which define encoding rules for the simple
types, the structured types, the Character string types and the
useful tyges defined in ASN:1:

2 Normative references

The follo Ning standards contain provisions which, through

ISO 6523: 1984, Data interchange=Structure for [dentifica-
tion of organizations.

ISO 7498: 1984, Informatien, processing systens - Open
Systems Interconnection-Basic Reference Model (see also
CCITT Recommendation-X.200).

ISO 8601: 1988, Data elements and interchange |formats -
Information Interchange - Representation of dates and
times.

ISO 8822:1988, Information processing systems - Open
Systéms Interconnection - Connection-oriented presenta-
tioppservice definition.

ISO 8823: 1988, Information processing systenjs - Open
Systems Interconnection - Connection-oriented presenta-
tion protocol specification.

ISO/IEC 8825: 1990, /nformation technology| - Open
Systems Interconnection - Specification of Basic [Encoding
Rules for Abstract Syntax Notation One (ASN.1).

CCITT X.208 (1988), Specification of Abstract Symtax Nota-
tion One (ASN.1).

CCITT X.121(1988), International numbering plan for pub-
lic data networks.
3 Definitions

For the purposes of this International Standard the defini-
tions given in ISO 7498 and the following definitions apply.

3.1 value: A distinguished member of a set of vialues.

reference in-this text, constitute provisions of this Interna-
tional Stgndzrd—mﬁhvmn'emmbﬂtaﬂcn—m ndi-

cated were valid. All standards are subject to revision, and
parties to agreements based on this International Standard
are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below. Mem-
bers of IEC and ISO maintain registers of currently valid In-
ternational Standards.

ISO 2375: 1985, Data processing - Procedure for registra-
tion of escape sequences.

I1SO 3166: 1988, Codes for the representation of names of

countries.

3.2 type: A named set of values.

3.3 simple type: A type defined by directly specifying the
set of its values.

3.4 structured type: A type defined by reference to one
or more other types.

3.5 component type: One of the types referenced when
defining a structured type.

3.6 tag: A type denotation which is associated with every
ASN.1 type.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

3.7 tagging: Replacing the existing (possibly the default)
tag of a type by a specified tag.

3.8 ASN.1 character set: The set of characters, specified
in clause 7, used in the ASN.1 notation.

3.9 items: Named sequences of characters from the
ASN.1 character set, specified in clause 8, which are used to
form the ASN.1 notation.

3.10 type (or value) reference name: A name associ-
ated uniquely with a type (or value) within some context.

NOTE — Reference names are assigned to the types defined in this
International Standard; these are universally available within
ASN.1. Other reference names are defined in other standards, and

NOTE — Where acomponenttype is declared to be optional,avalue
of the new type need not contain a value of that component type.

3.23 sequence-of type: A structured type, defined by
referencing asingle existing type; each value in the new type
is an ordered list of zero, one or more values of the existing
type.

NOTE — Encoding rules do not limit the number of values in a se-
quence-of value.

3.24 settype: A structured type, defined by referencing
a fixed, unordered, list of distinct types (some of which may
be declared to be optional); each value in the new type is an
unordered list of values, one from each of the component

types.

e only in the context of that standard.

3.11 ASN.1 encoding rules: Rules which specify the rep-
ion during transfer of the value of any ASN.1 type;
ASN. 1en ding rules enable information bemg transferred

racter string type: A type whose values are
strings of characters from some defined character set.

3.13 Dbopleantype: A simple type with two distinguished
values.

3.14 trup: One ofthe distinguished values of the boolean
type.

3.15 falge: The other distinguished value of the boolean
type.

3.16 intpger type: A simple type with distinguished
values whiich are the positive and negative whole numbers,
including ero (as a single value).

NOTE — Particular encoding rules limit the range of an integer, bt
such limitations are chosen so as not to affect any user of ASN.1.

3.17 enumerated type: A simple type whose.values are
given dist|nct identifiers as part of the type notation.

3.18 reditype: Asimpletype whosedistinguished values
(specified|in 16.2) are members of the'set of real numbers.

3.19 Dbitstring type: A simple-type whose distinguished
values arg an ordered sequence of zero, one or more bits.

NOTE — Encoding rulesdonotlimitthe number of bits in a bit-string.

3.20 octetstring-type: A simple type whose distin-
guished Values.are an ordered sequence of zero, one or
more octets, each octet being an ordered sequence of eight
bits.

NOTE — Encodingrules do notlimitthe number of octetsin an octet
string.

3.21 nulltype: Asimpletype consisting of a single value,
also called nuill.

NOTE — The nullvalue iscommonlyused where several alternatives
are possible, but none of them apply.

3.22 sequence type: A structured type, defined by ref-
erencing a fixed, ordered, list of types (some of which may
be declared to be optional); each value of the new type is an
ordered list of values, one from each component type.

NOTE — Whereacomponenttypeisdeclared tobe optionl, the new
type need not contain a value of that component type.

3.25 set-of type: A structured type, \defined by referen-
cing a single existing type; each value in the new type is an
unordered list of zero, one or méyevalues of thg existing

type.

NOTE — Encoding rules do not limit the number of valugs in a set-
of value.

3.26 tagged typei A type defined by referencing a single
existing type and a’tag; the new type is isomorphic to the
existing type,but is distinct from it.

3.27 choice type: A structured type, defined by referen-
cing a fixed, unordered, list of distinct types; eacH value of
the newtype is a value of one of the component

3.28 selection type: A structured type, definedl by ref-
erence to a component type of a choice type.

3.29 any type: A choice type whose compongnt types
are unspecified, but are restricted to the set of types which
can be defined using ASN.1.

3.30 external type: A type whose distinguishgd values
cannot be deduced from their characterisation as [external,
but which can be deduced from the encoding of such a
value; the values may, but need not, be describalple using
ASN.1, and thus their encodings may, but need not,|conform
to ASN.1 encoding rules.

3.31 information object: A well-defined piece oflinforma-
tion, definition, or specification which requires a|name in
order to identify its use in an instance of communigation.

3.32 object identifier: A value (distinguishable| from all
other such values) which is associated with an infprmation
object.

mguished
values are the set of all object identifiers allocated in accord-
ance with the rules of this International Standard.

NOTE — The rulesofthis International Standard permitawide range
of authorities to independently associate object identifiers with in-
formation objects.

3.34 object descriptortype: A type whose distinguished
values are human-readable text providing a brief description
of an information object.

NOTE — An object descriptor value is usually, but not always asso-
ciated with a single information object. Only an object identifier
value unambiguously identifies an information object.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

3.35 recursive definitions: A set of ASN.1 definitions
which cannot be reordered so that all types used in a con-
struction are defined before the definition of the construction.

NOTE — Recursive definitions are allowed in ASN.1: the user of the
notation has the responsibility for ensuring that those values (of
the resulting types) which are used have a finite representation.

3.36 module: One or more instances of the use of the
ASN.1 notation for type and value definition, encapsulated
using the ASN.1 module notation (see clause 9).

3.37 production: A part of the formal notation used to
specify ASN.1, in which allowed sequences of items are as-
sociated with a name which can be used to reference those
sequences in the definition of new sets of allowed sequen-

ISO/IEC 8824 : 1990(E)

b) organization code; and

¢) International Code Designator.

4 Abbreviations

ASN.1 Abstract Syntax Notation One.

uTC Coordinated Universal Time.

ICD International Code Designator.

DCC Data Country Code.

DNIC Data Network Identification Code.
RPOA Recognised Private Operating Agency.

ces.

3.38 Coprdinated Universal Time (UTC): Thetimescale
maintaingd by the Bureau Internationale de I'Heure (Interna-
tional Tinpe Bureau) that forms the basis of a coordinated dis-
seminatign of standard frequencies and time signals.

NOTES
1 The sdurce of this definition is Recommendation 460-2 of the
Consultative Committee on International Radio (CCIR). CCIR has
also defingd the acronym for Coordinated Universal Time as UTC.

2 UTCisalso referred to as Greenwich Mean Time and appropri-
ate time s|gnals are regularly broadcast.

3.39 useér (of ASN.1): The individual or organisation that
defines the abstract syntax of a particular piece of informa-
tion using ASN.1. -

3.40 subtype (of a parenttype): Atypewhose values are
specified|as a subset of the values of some other type (the
parent type).

3.41 parent type (of a subtype): Type used to define-a
subtype.

NOTE — The parenttype may itself be a subtype of some'athertype.

3.42 subtype specification: A notation.which can be
used in gssociation with the notation for-aitype, to define a
subtype of that type.

3.43 subtype value set: A notation forming part of a sub-
type spegification, specifying a‘seét of values of the parent
type whigh are to be included.in the subtype.

3.5 This [International_Standard uses the following terms
defined in ISO 8822;

a) presentation data value; and

b) (ah)abstract syntax; and

5—NotationusedinthisinternatiomatStan-
dard

The ASN.1 notation consists of a sequence of ¢haracters
from the ASN.1 character set specified in clause 7.

ASN.1 character set grouped into items. Clause § specifies
all the sequences of charactérs forming ASN.1 items, and
names each item.

Each use ofthe ASN.1 notation contains characte; fromthe

The ASN.1 notation is-$pecified in clause 9 (and| following
clauses) by specifying the collection of sequencef of items
which form valid instances of the ASN.1 notatiop, and by
specifying thie'semantics of each sequence.

In orderto specify these collections, this Internatipnal Stan-
dard<uses a formal notation defined in the following sub-
clauses.

5.1 Productions

A new (more complex) collection of ASN.1 seqlences is
defined by means of a production. This uses the [names of
collections of sequences defined in this Internatignal Stan-
dard and forms a new collection of sequences by §pecifying
either

a) thatthe new collection of sequences is to consist of
any sequence contained in any of the original collec-
tions; or

b) thatthe new collection is to consist of any sequence
which can be generated bytaking exactly one $equence
from each collection, and juxtaposing them if a speci-
fied order.

Each production consists of the following parts, ¢n one or
several lines, in order:

a) aname for the new collection of sequenaes;

c) abstract syntax name; and
d) transfer syntax name.

3.6 This International Standard also uses the following term
defined in ISO 8823:

a) presentation context identifier.

3.7 This International Standard also uses the following terms
defined in ISO 6523:

a) issuing organization; and

b) the characters

€) one or more alternative collections of sequences,
defined as in 5.2, separated by the character

A sequence is present in the new collection if it is present in
one or more of the alternative collections. The new collection
is referenced in this International Standard by the name in a)
above.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table 1 - Universal class tag assignments

UNIVERSAL 1
UNIVERSAL 2
UNIVERSAL 3
UNIVERSAL 4
UNIVERSAL 5
UNIVERSAL 6
UNIVERSAL 7
UNIVERSAL 8
UNIVERSAL 9
UNIVERSAL 10

Boolean type

Integer type

Bitstring type
Octetstring type

Null type

Object identifier type
Object descriptor type
External type

Real type
Enumerated type

UNIVERSAL 11-15

UNIVERSAL 16
UNIVERSAL 17
UNIVERSAL 18-22,25-27
UNIVERSAL 23 - 24
UNIVERSAL 28-...

Reserved for future editions of
this International Standard

Sequence and Sequence-of types
Set and Set-of types

Character string types

Time types

Reserved for addenda to this
International Standard

NOTE — If the same sequence appearsin more than one alternative,
any semantic ambiguity in the resulting notation is resolved by
other partg of the complete ASN.1 sequence.

5.2 The alternative collections

Each of the alternative collections of sequences in "one or
more altefnative collections of* is specified by a list of names.
Each nanje is either the name of an item, or is the name of a
collection|of sequences defined by a production in this Inter-
national §tandard.

The collegtion of sequences defined by the alternative.con-
sists of al| sequences obtained by taking any one.of'the se-
quences |(or the item) associated with the first name, in
combinatjon with (and followed by) any one of the sequen-
ces (or itgm) associated with the second namie, in combina-
tion with (and followed by) any one ofthe §eguences (or item)
associated with the third name, and s6 on up to and includ-
ing the lagt name (or item) in the alternative.

5.3 Example of a production

BitStfingValue ::=

bstring |
hstring |
{IdentifierList}

is a production which assaciates with the name BitString-

NOTE—{and }are the names of items containing [the single
characters{ and } (see clause 8).

In this example, IdentifierList would be defined by a further
production, either before or after the production defining Bit-
StringValue.

5.4 Layout

Each production used in this International Stgndard is
preceded and followed by an empty line. Empty lines do not
appear within productions. The production may|be on a
single line, or may be spread over several lines. Layjout is not
significant.

5.5 Recursion

The productions in this International Standard are [frequent-
ly recursive. In this case the productions are to be cpntinous-
ly reapplied until no new sequences are generated.

NOTE — Inmany cases, such reapplication resultsin an upbounded
collection of allowed sequences, some or all of which may them-
selves be unbounded. This is not an error.

5.6 References to a collection of sequendes

This International Standard references a collectipn of se-
quences (part of the ASN.1 notation) by referencing the first

Value the following sequences:
a) any bstring (an item); and
b) any hstring (an item); and

c) any sequence associated with IdentifierList,
preceded by a { and followed by a }

name (before the ::=) in a production; the name is sur-
rounded by " to distinguish it from natural language text, un-
less it appears as part of a production.

5.7 References to an item

This International Standard references an item by referen-
cing the name of the item; the name is surrounded by * to
distinguish it from natural language text, unless it appears as
part of a production.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

5.8 Tags

A tag is specified by giving its class and the number within
the class. The class is one of

universal
application
private
context-specific.

The number is a non-negative integer, specified in decimal
notation.

Restrictions on tags assigned by the user of ASN.1 are spe-
cified in clause 26.

ISO/IEC 8824 : 1990(E)

NOTE — Additional tags in the universal class are reserved for as-
signment by future editions of this International Standard.

6 Use of the ASN.1 notation

6.1 The ASN.1 notation for a type definition shall be "Type"
(see 12.1).

6.2 TheASN.1 notation for a value of a type shall be "Value"
(see 12.7).

NOTE - ltis notin general possible to interpret the value notation
without knowledge of the type.

Tags in jwe universal class are assigned in such a way that,
for strucfured types, the top-level structure can be deduced
from theftag, and for simple types, the type can be deduced
from thejtag. Table 1 summarises the assignment of tags in
the univérsal class which are specified in this International
Standarq.

6.3 The ASN.1 notation for assigning-a-typetoa type ref-
erence name shall be "Typeassignment" (see 11]).

6.4 The ASN.1 notation for assigning a value to @ value ref-
erence name shall be "Valueassignment” (see 11)2).

6.5 The notation *Typeassignment" and "Valueassign-
ment" shall only be used within the' notation "ModluleDefini-
tion" (but see 9.1).

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

7 The ASN.1 character set

7.1 An ASN.1 item shall consist of a sequence of the char-
acters listed in table 2, except as specified in 7.2 and 7.3.

Table 2 - ASN.1 characters

A to Z
ato z

8.1.2 Each item specified in the following subclauses shall
appear on a single line, and (except for the "comment" item)
shall not contain spaces.

8.1.3 The length of a line is not restricted.

8.1.4 Theitems in the sequences specified by this Interna-
tional Standard (the ASN.1 notation) may appear on one line
or may appear on several lines, and may be separated by
one or more spaces or empty lines.

8.1.5 An item shall be separated from a following item by
a space, or by being placed on a separate line, if the initial
character (or characters) of the following item is a permitted
character (or characters) for inclusion at the end of the char-
acters in the earlier item.

NOTES

1 The add:ional characters > and | are used in the macro-nota-
tion (see anfex A).

2 Where efjuivalent derivative standards are developed by na-
rds bodies, additional characters may appear in the
following items (the last five of which are defined in annex A):

typerefeflence 8.2.1)
identifiel 8.3)
valuerefdrence (8.4)
modulergference (8.5)
macroreference (A.2.1)
productipnreference (A.2.2)
localtypereference (A.2.3)
localvaluereference (A.2.4)
astring (A2.7)

When additipnal characters are introduced to accommodate a lan-
guage in which the distinction between upper-case and lower-case
letters is without meaning, the syntactic distinction achieved by
dictating thelcase of the first character of certain of the above ASN.1
items has tojbe achieved in some other way.

7.2 Wherg the notation is used to specify the valué.of a
character sfring type, all characters of the defined character
set can appear in the ASN.1 notation, surrounded by the
characters [(see 8.11).

7.3 Additional characters may appedr in the "comment”
item (see 816).

7.4 Therg shall be no significance placed on the typo-
graphical gyle, size, colour, intensity, or other display char-
acteristics.

7.5 The upper and lower case letters shall be regarded as
distinct.

8 ASN.iitems

8.2 Type references

Name of item - typereference

8.2.1 A ‘typereference” shall consistof an arbitrary number
(one or more) of letters, digits, and hyphens. The initjal char-
acter shall be an upper-case letter./A hyphen shall ngt be the
last character. A hyphen shall n6t be immediately followed
by another hyphen.

NOTE — The rules concerning hyphen are designed to avdid ambi-
guity with (possibly fallowing) comment.

8.2.2 A “typéreference” shall not be one of the rgserved
character seguences listed in table 3.

NOTE % Subclause A.2.9specifiesadditional reserved chafacter se-
quences when within a macro definition.

8.3 Identifiers

Name of item - identifier

An “identifier” shall consist of an arbitrary number [(one or
more) of letters, digits, and hyphens. The initial character
shall be a lower-case letter. A hyphen shall not be [the last
character. A hyphen shall not be immediately followefl by an-
other hyphen.

NOTE — The rules concerning hyphen are designed to avdid ambi-
guity with (possibly following) comment.

8.4 Value references

Name of item - valuereference

A "valuereference" shall consist of the sequence of charac-
ters specified for an “identifier" in 8.3. In analysing aninstance
of use of this notation, a "valuereference" is distinguished
from an *identifier" by the context in which it appears.

8.1 General rules

8.1.1 The following subclauses specify the characters in
ASN.1 items. In each case the name of the item is given,
together with the definition of the character sequences which
form the item.

NOTE — Annex A specifies additional items used in the macro nota-
tion.

8.5 Module reference

Name of item - modulereference

A "modulereference” shall consist of the sequence of char-
acters specified for a "typereference"” in 8.2. In analysing an
instance of use of this notation, a "modulereference” is dis-
tinguished from a “typereference” by the context in which it
appears.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

Table 3 - Reserved character sequences

ISO/IEC 8824 : 1990 (E)

A "bstring” shall consist of an arbitrary number (possibly
zero) of zeros and ones, preceded by a single * and followed
by the pair of characters:

B
BOOLEAN
INTEGER EXAMPLE - ’01101100'B
BIT
STRING 8.10 Hexadecimal string item
OCTET Name of item - hstring
NULL
SEQUENCE 8.10.1 An ‘“hstring" shall consist of an arbitrary number
OF (possibly zero) of the characters
SET ABCDEFO0123456 789
IMPLICIT .)
CHOICE preceded by a single ' and followed by thepair of gharacters
ANY "H
EXTERNAL
OBJECT EXAMPLE -("AB0196’H
IDENTIFIER 8.10.2 Each character js-used to denote the valuefof a semi-
OPTIONAL octet using a hexadecimal'representation.
DEFAULT
COMPONENTS 8.11 Charactepstring item
TRUE Name of item * cstring
FALSE .) , .
BEGIN A*cstring" shall consist of an arbitrary number (possibly zero)
of characters from the character set referenced by|a charac-
END terstring type, preceded and followed by *. If the|character
set includes the character *, this character shall |be repre-
sented in the “cstring” by a pair of *. The charagter set in-
8.6 Cgmment volved is not limited to the character set listed in table 2, but
is determined by the type for which the “cstring” s a value
Name ofjitem - comment (see 7.2).
8.6.1 A|"comment” is not referenced in the definition’ of the EXAMPLE - . L
ASN.1 ngtation. It may, however, appear at any time between Y ﬁ m tt 'n ﬁ] "
other ASN.1 items, and has no significance,
8.6.2 AJ|"comment” shall commence with)a pair of adjacent

hyphensjand shall end with the next pair of adjacent hyphens
or at the fend of the line, whichever accurs first. A comment
shall notfcontain a pair of adjacent hyphens other than the
pair which opens it and the pair;.if any, which ends it. It may
include dharacters which dre rot in the character set speci-
fiedin 7.7 (see 7.3).

8.7 Emptyitem

Name offitem's empty

8.12 Assignment item

Name of item - ".: =

This item shall consist of the sequence of charactgrs

NOTE — This sequence does not contain any space chafacters (see
8.1.2).

The "empty" item contains no characters. It is used in the no-
tation of clause 5 when alternative sets of sequences are spe-
cified, to indicate that absence of all alternatives is possible.

8.8 Number item
Name of item - number

A "number” shall consist of one or more digits. The first digit
shall not be zero unless the "number” is a single digit.

8.9 Binary string item

Name of item - bstring

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

8.13 Single character items

Names of items -

{
}

<

-

b P N o~

- (hyphen)

b

DEFINED

BY
PLUS-INFINITY
MINUS-INFINITY
TAGS

ltems with the above names shall consist of the sequence of
characters in the name.

NOTES
1 Spaces do not occur in these sequences.
2 Where these sequences are not listed as reserved sequences

in 8.2.2, they are distinguished from other items containing the
same characters by the context in which they appear.

An item with any of the names listed above shall consist of
the single|character forming the name.

NOTES
1 The ite:[: "|" is defined in A.2.5.

2 The item > is defined in A.2.6.

8.14 Keyword items
Names items -

BOOLEAN
INTEGER
BIT
STRING
OCTET

SEQUENCE

IMPLICIT
CHOICE

EXTERNAL

8.15 Range separator
Name of item - ..

This item shall consist of the sequence of characters

NOTE —This sequence does not contain any space chardcters (see
8.1.2).

8.16 Ellipsis

Name of itém'~...

This item ‘shall consist of the sequence of characters

NOTE —This sequence does not contain any space chardcters (see
8.1.2).

9 Module definition

9.1 A "ModuleDefinition" is specified by the following pro-
ductions:

ModuleDefinition :: =
Moduleldentifier
DEFINITIONS
TagDefault
BEGIN
ModuleBody
END
Moduleldentifier :: =
modulereference
ENUMERATED AssignedIdentifier
EXPORTS
IMPORTS AssignedIdentifier ::=
REAL ObjectIdentifierValue |
INCLUDES empty
MIN
MAX TagDefault ::=
SIZE EXPLICIT TAGS |
FROM IMPLICIT TAGS |
WITH empty
COMPONENT
PRESENT
ABSENT

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ModuleBody ::=
Exports Imports AssignmentList |
empty

Exports :: =
EXPORTS SymbolsExported ; |
empty

SymbolsExpdrted =
SymbolList |
empty

Imports :: =

ISO/IEC 8824 : 1990 (E)

NOTE — Clause 26 gives the meaning of both "EXPLICIT TAGS" and
"IMPLICIT TAGS".

9.3 The "modulereference® appearing in the "ModuleDe-
finition* production is called the module name. Module
names are chosen so as to ensure consistency and com-
pleteness of all "Assignment" sequences appearing within
the "ModuleBody" of all “ModuleDefinition" sequences with
this module name. A set of "Assignment” sequences is con-
sistent and complete if, for every “typereference" or "value-
reference” appearing within it, there is exactly one
"Typeassignment" or "Valueassignment” (respectively) asso-
ciating the name with a type or value (respectively), or exact-
ly one "SymbolsFromModule" in which the "typereference"
or "valuereference" (respectively) appears as a "Symbol".

SymbolsImported :: =
SymbolsFromModuleList |
empty

SymbYolsFromModuleList :: =
SymbolsFromModule |
SymbolsFromModuleList SymbolsFromModule

SymbolsFromModule :: =
SymbolList FROM Moduleldentifier

SymbolList ::=
Symbol | SymbolList , Symbol

Symbol ::=
typereference | valuereference

AssignmentList :: =
Assignment |
AssignmentList Assignment

Assignment ::=
TypeAssignment | ValueAssignment

NOTES

1 Annex|A specifies a "MacroDefinition" sequence which can also
appear in the "AssignmentList". Notations defined by a macro de-
finition may appear before or after the macro definition, within the
same modiule.

2 In indiyidual (but deprecated) cases, and for examples and for
the definitjon of types with-universal class tags, the "ModuleBody"
can be usgd outside of a "ModuleDefinition".

3 "Typeassignment" and "Valueassignment' productions are
specified {n clause 11.

9.4 Module names shall be used only once (except as spe-
cified in 9.10) within the sphere of interest of the,definition of
the module.

NOTE - ltisrecommended that modules/defined in ISO|Standards
should have module names of the form

ISOxocxx-yyyy

where xxxx is the number©fithe Stahdard, and yyyy i a suitable
acronym for the Standard.(e-g. JTM, FTAM, or CCR). A dimilar con-
vention can be applied‘by other standards-making bodies.

9.5 Ifthe "Assignedldentifier” includes an "Objectldentifier-
Value", the latter unambiguously and uniquely identifies the
module.

NOTE 2ltis recommended that an object identifier be assigned so
that.others can unambiguously refer to the module.

9.6 The "Moduleldentifier* in a "SymbolsFrothModule*
shall appear in the "ModuleDefinition" of another mpdule, ex-
cept thatifitincludes an "ObjectldentifierValue®, thg "module-
reference® may differ in the two cases.

NOTES

1 Adifferent "modulereference" from that used in thg other mo-
dule should only be used when symbols are to be imported from
two modules with the same name (the modules beind named in
disregard of 9.4). The use of alternative distinct nanmhes makes
these names available for use in the body of the modulp (see 9.8).

2 When both a "modulereference” and an "ObjectldenttifierValue"
are used in referencing a module, the latter shall be considered de-
finitive. ‘

9.7 Whenthe “SymbolsExported" alternative of “fExports” is
selected:

a) each "Symbol" in "SymbolsExported| shall be
defined in the module being constructed: angl

4 The g N not
necessarily determine the formation of presentation data values
into named abstract syntaxes for the purpose of presentation con-
text definition.

5 The value of "TagDefault" for the module definition affects only
those types defined explicitly in the module. It does not affect the
interpretation of imported types.

6 A'"macroreference" (see annex A), can also appear as a "Sym-
bol",

9.2 The "TagDefault" is taken as "EXPLICIT TAGS" if it is
"empty”.

by —every “Symbol*to whichTeference fromoutside the
module is appropriate shall be included in the "Symbol-
sExported® and only these *Symbol*s may be ref-
erenced from outside the module; and

c) ifthere are no such “Symbol"s, then the empty alter-
native of "SymbolsExported” (not of "Exports”) shall be
selected.

NOTES

1 The "empty" alternative of "Exports" is included for backwards
compatibility.

2 Every"Symbol" defined in a module where "Exports" is "empty"
may be referenced from other modules.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

9.8 When the "Symbolsimported" alternative of “imports* is
selected:

a) each "Symbol" in "SymbolsFromModule® shall be
defined in the module denoted by the "Moduleldentifier*
in "SymbolsFromModule®; and

b) if the "SymbolsExported" alternative of "Exports" is
selected in the definition of the module denoted by the
"Moduleldentifier” in "SymbolsFromModule" the "Sym-
bol" shall appear in its "SymbolsExported"; and

c) only those "Symbol's that appear amongst the
"SymbolList" of a "SymbolsFromModule" may appear
asthe “typereference” in any “Externaltypereference” (or
the “valuereference” in any "Externalvaluereference")

DefinedValue :=
Externalvaluereference |
valuereference

specify the sequences which shall be used to reference type
and value definitions. .

10.2 Except as specified in 9.10, the “typereference” and
“valuereference” alternatives shall not be used unless the ref-
erence is within the module in which a type or value is as-
signed (see 11.1 and 11.2) to the typereference or
valuereference.

10.3 The "Externaltypereference” and “"Externalvalueref-
erence" shall not be used unless the corresponding “typere-

which [has the "modulereference™ denoted by the "Mo-
duleldpntifier” of that "SymbolsFromModule®; and

d) if there are no such "Symbol"s, then the "empty” al-
ternatiye of "Symbolsimported” (not of *Imports*) shall
be selgcted.

NOTES

1 The "empty" alternative of "Imports” is included for backwards
compatibility.

2 A modulg where "Imports" is empty may reference "Symbol"s
defined in other modules.

9.9 A‘*Symbol"in a "SymbolsFromModule" may appear in
*ModuleBady" in a "DefinedType" (if it is a “typereference”)
or "DefinedValue® (if it is a "valuereference"). The meaning
associated|with the "Symbol" is that which it has in the mo-
dule denoted by the corresponding *Moduleldentifier".
Where the 1Symbol” also appears in an "AssignmentList* (de-
precated), [or appears in one or more other instances of
*SymbolsFfomModule®, it shall only be used in a "External-
TypeRefergnce” or "ExternalValueReference"” whose "mo-
dulereferelice' is that in "SymbolsFromModule" (see 9.10);
Where it does not so appear, it may be used in a "Defined-
Type" or "OefinedValue"® directly.

9.10 Except as specified in 9.9, a "typereference” of "value-
reference” $hall be referenced in a module différerit from that
in which it is defined by using an "Externaltypereference” or
"Externalvaluereference®, specified by the following produc-

f = type or
value respectively (see 11.1 and 11.2) within the cGrréspond-

ing "modulereference”.

11 Assigning types and values

11.1 A ‘“typereference” shall be assigned a type by{the no-
tation specified by the "Typeassignment* productior):

Typeassignment :;=
typereference
", - "

Type

The *"typereference” shall not be one of the names used to
referencethe character string types defined in clause|32, and
shall nétbe one of the names used to reference tHe types
defiried in clauses 32-35.

11.2 A "valuereference" shall be assigned a valug by the
notation specified by the “"Valueassignment" production:

Valueassignment ::=
valuereference

Type

Value

The *Value" being assigned to the “valuereference” $hall be

[¢]

tions: a valid notation (see 12.7) for a value of the type defined by
*Type".
Externaltypereference ::=
modulereference e
\ 12 Definition of types and values
typereference
12.1 A type shall be referenced by one of the sequences
Externalvaluereference ::= Type™:
modulereference Type ::= BuiltinType | DefinedType | Subtyp
° 10-1)
valuereference YR

10 Referencing type and value definitions
10.1 The productions

DefinedType ::=
Externaltypereference
typereference

10

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

BuiltinType ::= BuiltinValue ::=

BooleanType BooleanValue I
IntegerType IntegerValue |
BitStringType BitStringValue |
OctetStringType OctetStringValue [
NullType NullValue [
SequenceType SequenceValue |
SequenceOfType SequenceOfValue I
SetType SetValue I
SetOfType SetOfValue |
ChoiceType ChoiceValue |
SelectionType SelectionValue |
TaggedType TaggedValue |
AnyType AnyValue |
Objectidentifier Type Objectidentifier vValue | |
CharacterStringType CharacterStringValue |
UsefulType EnumeratedValue |
Enumerated Type RealValue

RealType

NOTE — Avalue notation defined in amadcro may also bp used as a
NOTES sequence for "Value" (see annex A).

1 Atype|notation defined in a macro can also be used as a se-
quence fof "Type" (see annex A).

2 Additignal built-in types may be defined by future editions of
this International Standard.

12.2 The "BuiltinType" notation is specified in the following
clauses.

12.3 Thee "Subtype” notation is specified in clause 36.

12.4 The type being referenced is the type defined by the
"BuiltinType" or "Subtype" assigned to the "DefinedType".

12.5 In pome notations within which a type is referenced,
the type may be named. In such cases, this International
Standard|specifies the use of the notation *NamedType™

NamgdType :=

identifier Type |
Type |
SelectionType

The notation "SelectionType" and the corresponding value
notation i[specified in clause 25:

NOTE — The notation "SelectionType" contains an "identifier"which
may form part of the value notation when “SelectionType" is used
as a "NamedType" (see 25.1).

12.6 The "identifier.is not part of the type, and has no ef-
fect on the type: The type referenced by a *NamedType" se-
quence isfthatreferenced bythe contained *Type" sequence.

12.8 Ifthetype is defined using one of the notatidns shown
on the left below, then thewalue shall be specified|using the
notation shown on the'right below:

Type notation Value notation
BooleanType BooleanValue
Integerfype IntegerValue
BitStringType BitStringValue
OctetStringType OctetStringValue
NullType NullValue
SequenceType SequenceValue
SequenceOfType SequenceOfValue
SetType SetValue

SetOfType SetOfValue
ChoiceType ChoiceValue
TaggedType TaggedValue
AnyType AnyValue
ObjectldentifierType ObjectldentifierValue
CharacterStringType CharacterStringValug
EnumeratedType EnumeratedValue
RealType RealValue

NOTE — Additional value notations may be defined by future edi-
tions of this International Standard.

Where the type is a DefinedType, the value notatiop shall be
the notation for a type used in producing the DefifedType.

12.9 The value notation for a type defined by the *Useful-
Type” notation is specified in clauses 32-35.

12,10 The "BuiltinValue" notation is specified in tll\e follow-
ing clauses.

12.7 Thevalue of atype shall be specified by one ofthe se-

quences "Value™

Value ::= BuiltinValue | DefinedValue

12.11 The value of a type referenced using the *Named-
Type" notation shall be defined by the notation "Named-
Value™:

NamedValue ::=
identifier Value |
Value

where the "identifier” (if any) is the same as that used in the
"NamedType" notation. 25.2 specifies further restrictions on
the "NamedValue" when the "NamedType" was a "Selection-
Type".

1

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

NOTE — The "identifier* is part of the notation, it does not form part
of the value itself.

12.12 The "identifier" shall be present in the "NamedValue"
if and only if it was present in the "NamedType".

NOTE —‘An "identifier" is always presentin the case of a "Selection-
Type".
13 Notation for the boolean type

13.1 The boolean type (see 3.13) shall be referenced by
the notation "BooleanType":

BooleanType ::= BOOLEAN

IntegerValue ::=
SignedNumber |
identifier

14.10 The "identifier" in "IntegerValue” shall be equal to that
of an “identifier" in the "IntegerType" sequence with which the
value is associated, and shall represent the corresponding
number.

NOTE — Whendefining an integer value for which an "identifier" has
been defined, use of the "identifier" form of "IntegerValue" should
be preferred.

15 Notation for the enumerated type

13.2 The tag for types defined by this notation is universal
class, number 1.

13.3 The value of a boolean type (see 3.14 and 3.15) shalll
be defined by the notation *BooleanValue":

BooleanValue ::= TRUE|FALSE

14 Notation for the integer type

14.1 The integer type (see 3.16) shall be referenced by the
notation "IntegerType":

InteggrType ::=
INTEGER l
INTEGER {NamedNumberList }

NamedNumberList ::=
NamedNumber |
NamedNumberList,NamedNumber

NamedNumber ::=
identifier(SignedNumber) |
identifier(DefinedValue)

SignedNumber ::= number |-number

14.4 The "DefinedValue" shall be a reference to a value of
type integpr, of of a type derived from integer by tagging.

15.1 The enumerated type (see 3.17) shall be reLerenced
by the notation "EnumeratedType":

EnumeratedType ::=
ENUMERATED {)Enumeration }

Enumeration ::=
NamedNumber |
Enumeration, NamedNumnber

NOTES

1 Each value has an identifier which is associated, in [this nota-
tion, with a distinct integer. This provides control of {he repre-
sentation of\the value in order to facilitate compatible extensions,
but the values themselves are not expected to have any ifiteger se-
manti¢s.

2The numeric values inside the "NamedNumber's in the
"Enumeration” are not necessarily ordered or contiguoug.

15.2 For each "NamedNumber®, the “identifier*|and the
"*SignedNumber" shall be distinct from all other "identifier"s
and "SignedNumber"s in the "Enumeration".

15.3 The enumerated type has a tag which is lniversal
class, number 10.

15.4 The value of an enumerated type shall be d¢fined by
the notation "EnumeratedValue":

EnumeratedValue :: = identifier

15.5 The "identifier" in "EnumeratedValue" shall bg equal to
that of an "identifier" in the "EnumeratedType" sequénce with
which the value is associated.

16 Notation for the real type

161 T

y the no-

appearing in the "NamedNumberList" shall be different, and
represents a distinguished value of the integer type.

14.6 Each "identifier” appearing in the "NamedNumberList"
shall be different.

14.7 The order of the "NamedNumber* sequences in the
"NamedNumberList® is not significant.

14.8 The tag for types defined by this notation is universal
class, number 2.

14.9 The value of an integer type shall be defined by the
notation "IntegerValue":

12

tation "RealType":
RealType::= REAL

16.2 The values of the real type are the values PLUS-IN-
FINITY and MINUS-INFINITY together with the real numbers
capable of being specified by the following formula involving
three integers, M, B and E:

MxBE

where M is called the mantissa, B the base, and E the expo-
nent. M and E may take any integer values, positive or nega-

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

tive, while B can take the values 2 or 10. All combinations of
M, B and E are permitted.

NOTES

1 This type is capable of carrying an exact representation of any
number which can be stored in typical floating point hardware, and
of any number with a finite character decimal representation.

2 The encoding (of this type) which is specified in ISO 8825 allows
use of base 2, 8 or 16 with a binary representation of real values,
and base 10 with a character representation. The choice is a sen-
der’s option.

16.3 The real type has a tag which is universal class, num-
ber 9.

ISO/IEC 8824 : 1990 (E)

17.5 Thevalue of each "number" or “DefinedValue" appear-
ing in the "NamedBitList" shall be different, and is the num-
ber of a distinguished bit in a bitstring value.

17.6 Each "identifier" appearing in the "NamedBitList" shall
be different.

NOTE — The order of the "NamedBit" sequences in the "NamedBit-
List" is not significant.

17.7 This type has a tag which is universal class, num-
ber 3.

17.8 The value of a bitstring type shall be defined by the
notation "BitStringValue™:

16.4 The notation for defining a value of a real type shall
be "ReajValue”:

RealValue ::=
NumericRealValue | SpecialRealValue

NutpericRealValue ::=
{ Mantissa, Base, Exponent } | 0

‘Mantissa 1= SignedNumber
Basg == 2| 10

Expgonent := SignedNumber
SpecialRealValue ::=

PLUS-INFINITY | MINUS-INFINITY

The form “0" shall be used for zero values, and the alternate
form fgr "NumericRealValue® shall not be used for zero
values.

17 Notation for the bitstring type

17.1 The bitstring type (see 3.19) shall be referenced by the
notation "BitStringType™:

Bit$tringType ::=
BIT STRING
BIT STRING{NamedBitDist}

NamedBitList ::=
NamedBit |
NamedBitList,NamedBit

NamedBit :: =
identifier(number) |

BitStringValue ::=
bstring |
hstring
{IdentifierList} |
{}

IdentifierList ::=
identifier |

IdentifierList,identifier

17.9 Each "identifier” in "BitStringValue® shall be the same
as an "“identifier"(in‘the "BitStringType" sequence with which
the value is associated.

17.10_ The user of the notation determines, arld can indi-
cate by*comment, whether or not the presence pr absence
of trailing zero bits is significant.

NOTE — Encoding rules enable the transfer of an arbifrary pattern,
arbitrary length, string of bits.

17.11 The "{IdentifierList}" and "{}" notations for "Bit-
StringValue" shall not be used if the presence or[absence of
trailing zero bits is significant. This notation denotes a bit-
string value with ones in the bit positions specified by the
numbers corresponding to the "identifier* sequences, and
with all other bits zero.

NOTE — The"{}"sequenceis used to denote a bitstring value which
contains no one bits.

17.12 In specifying the encoding rules for a hjitstring, the
bits shall be referenced by the terms first bit and ftrailing bit,
as defined above.

17.13 When using the "bstring" notation, the first bit is on
the left, and the trailing bit is on the right.

17.14 When using the “hstring" notation, the most signifi-
cant bit of each hexadecimal digit corresponds tp the earlier
(leftmost) bit in the bitstring.

-1 e LI I 7.1 AV
gqeaticI (Uit v aluc)

17.2 The "NamedBitList" is not significant in the definition
of atype. Itis used solely in the value notation specified
in 17.8.

17.3 The first bit in a bit string has the number zero. The
final bit in a bit string is called the trailing bit.

NOTE - This terminology is used in specifying the value notation
and the encoding rules.

17.4 The "DefinedValue" shall be a reference to a non-ne-
gative value of type integer, or of a type derived from integer
by tagging.

NOTE — This notation does notin any way constrain the way encod-
ing rules place a bitstring into octets for transfer.

17.15 The "hstring" notation shall not be used unless either:

a) the bitstring value consists of a multiple of four bits;
or ~

b) the presence or absence of trailing zero bits is not
significant.

13

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

EXAMPLE
’A98A’H
and
’1010100110001010’B

are alternative notations for the same bitstring value.

18 Notation for the octetstring type

18.1 The octetstring type (see 3.20) shall be referenced by
the notation—~OetetStringTFype™

SequenceType :=
SEQUENCE{ElementTypeList} |
SEQUENCE({}

ElementTypeList ::=
‘ElementType |
ElementTypeList,ElementType

ElementType ::=
NamedType |
NamedType OPTIONAL |
NamedType DEFAULT Value |
COMPONENTS OF Type

OctetS{ringType ::= OCTET STRING

18.2 This| type has atag which is universal class, num-
ber 4.

18.3 The|value of an octetstring type shall be defined by
the notatiof "OctetStringValue™:

OctetSfringValue ::=
bstring |
hstring

18.4 In specifying the encoding rules for an octetstring, the
octets are [eferenced by the terms first octet and trailing
octet, and the bits within an octet are referenced by the terms
most significant bit and least significant bit.

18.5 Wh¢n using the "bstring” notation, the left-most bit
shall be thgmost significant bit of the first octet. If the "bstring”
is not a multiple of eight bits, it shall be interpreted as if it con-
tained additional zero trailing bits to make it the next multiple
of eight.

18.6 Whdn using the "hstring" notation, the left-most hex-
adecimal digit shall be the most significant semi-octet of the
first octet. If the "hstring” is not an even number of héxadeci-

mal digits, it shall be interpreted as if it contained a single ad-
ditional trailing zero hexadecimal digit.

19 Notation for the null type

19.1 The|nulltype (see 3.21) shall be referenced by the no-
tation "NullType®:

NullType ::= NULL

type 'has atag which is universal class, num-

20.2 The "Type" in the tourth alternative of the “EJement-
Type" shall be a sequence type. The "COMPONENTS OF
Type" notation shall be used to define the in€lusion, at this
point in the "ElementTypelList", of all the “ElementType" se-
quences appearing in the referenced type.

NOTE — This transformation is logically-completed prior t¢ the sat-
isfaction of the requirements in the following clauses.

20.3 For each series of one'or more consecutive “Ejement-
Types® marked as OPTIONAL or DEFAULT, the tags ¢f those
"ElementTypes" and of.any immediately following “Element-
Type" shall be distinct., (See clause 26).

20.4 If "OPTIONAL" or "DEFAULT" are present, the corre-
sponding value-may be omitted from a value of the ngw type,
and from.the information transferred by encoding ryles.

NOTES

1\The value notation may be ambiguous in this casg, unless
‘identifier" sequences are present in each NamedType.

2 Encoding rules ensure that the encoding for a sequence value
in which a "DEFAULT" or "OPTIONAL" element value is opnitted is
the same as that for a sequence value of a type in whosetype de-
finition the corresponding element was omitted. This fedture can
be useful in defining subsets.

type shall be exactly equivalent to the insertion of the value
defined by "Value®, which shall be a value specification that
is valid for the type defined by "Type" in the "Name¢dType*
sequence.

20.5 If"DEFAULT" occurs, the omission of a valu?for that

20.6 The “identifier"s (if any) in all "NamedType" sequen-
ces of the "ElementTypeList® shall be distinct.

20.7 Allsequence types have atag which s universgl class,
number 16.

NOTE — Sequence-of types have the same tag (see 21.3).

19.3 The value of the null type shall be referenced by the
notation "NullValue®:

NullValue ::= NULL
20 Notation for sequence types

20.1 The notation for defining a sequence type (see 3.22)
from other types shall be the "SequenceType™:

14

208 Tt 1ce type
shall be "SequenceValue™:
SequenceValue ::= {ElementValueList} |
{}
ElementValueList ::=
NamedValue |

ElementValueList,NamedValue

20.9 The "{}" notation shall only be used if.

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

a) all "ElementType" sequences in the "Sequence-
Type" are marked "DEFAULT" or "OPTIONAL", and all
values are omitted; or

b) the type notation was "SEQUENCE{}".

20.10 There shall be one "NamedValue® for each "Named-
Type" in the "SequenceType" which is not marked OP-
TIONAL or DEFAULT, and the values shall be in the same
order as the corresponding "NamedType" sequences.

NOTE — The use of "NamedType" sequences which do not contain
an identifier is not prohibited, but can render the value notation
ambiguous if "OPTIONAL" or "DEFAULT" is used.

ISO/IEC 8824 : 1990 (E)
NOTE — This transformation is logically completed prior to the sat-
isfaction of the requirements in the following clauses.

22.3 The "ElementType" types in a set type shall all have
different tags. (See clause 26).

22.4 Sub-clauses 20.4, 20.5 and 20.6 also apply to set
types.

22.5 All settypes have atag which is universal class, num-
ber 17.

NOTE — Set-of types have the same tag (see 23.3).

22.6 There shall be no semantics associated with the order
of values in a set type.

21 Nptationforsequence-of types

21.1 The notation for defining a sequence-of type (see
3.23) frgm another type shall be the "SequenceOfType".

SeqpenceOfType ::=
SEQUENCE OF Type|
SEQUENCE

21.2 The notation "SEQUENCE" is synonymous with the
notatior] "SEQUENCE OF ANY" (see clause 27).

21.3 All sequence-of types have a tag which is universal
class, nimber 16.

NOTE —[Sequence types have the same tag (see 20.7).

21.4 The notation for defining a value of a sequence-oftype
shall bejthe "SequenceOfValue™:

SeqpenceOfValue ::= {ValueList}|{}

ValgeList ::=
Value |
ValueList,Value

The "{} notation is used when there are no~component
values i the sequence-of value.

215 ch *Value® sequence in the*ValueList" shall be the
notation for a value of the *Type" specified in the "Sequen-
ceofType".

NOTE — [Semantic significancé.may be placed on the order of these
values.

22 Nptationfor set types

221 The-notation for defining a set type (see 3.24) from
other types_shall be the “SetType*:

22.7 The notation for defining the value of a th type shall
be "SetValue™:

SetValue ::= {ElementValueList}|{

-

“ElementValueList* is specified in/20.8.
22.8 The "SetValue" shalkonly be "{}" if:

a) all "ElementType" sequences in the 'STtType" are
marked "DEFAULT" or "OPTIONAL", and all values are
omitted; or

b) thetype notation was *SET{}".
22.9 .There shall be one "NamedValue" for each “Named-
Typein the *SetType" which is not marked "OPTIONAL" or
"DEFAULT".

NOTES
1 These "NamedValues" may appear in any order.
2 The use of "NamedType" sequences which do no} contain an

identifier is not prohibited, but can render the value rfotation am-
biguous.

23 Notation for set-of types

23.1 The notation for defining a set-of type (seel3.25) from
another type shall be the "SetOfType":

SetOfType ::=

SET OF Type |
SET

23.2 The notation "SET" is synonymous with the notation
"SET OF ANY" (see clause 27).

23.3 All set-of types have a tag which is universal class,

SétTypc u=
SET{ElementTypeList} |
SET{}

"ElementTypelList” is specified in 20.1

222 The "Type" in the fourth alternative of the "Element-
Type" (see 20.1) shall be a settype. The "COMPONENTS OF
Type" notation shall be used to define the inclusion of all the
“ElementType" sequences appearing in the referenced type.

number 17.
NOTE — Settypes have the same tag (see 22.5). »

23.4 The notation for defining a value of a set-of type shall
be the "SetOfValue™:

SetOfValue ::= {ValueList}|{}
*ValuelList" is specified in 21.4.

The *{}" notation is used when there are no component
values in the set-of values.

15

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

NOTES

these values.

values.

23.5 Each "Value" sequence in the "ValueList® shall be the C ::=CHOICE
notation for a value of the "Type" specified in the "SetofType". {f [2] NULL,
g [3] NULL}
1 Semantic significance should not be placed on the order of 3 (INCORRECT)
A ::=CHOICE
, , {b B,
2 Encoding rules are not required to preserve the order of these c C}
B ::=CHOICE
24 Notation for choice types {d [0] NULL,
e [1] NULL}
24.1 The notation for defining a choice type (see 3.27) from
other types shall be the "ChoiceType": C ::= CHOICE
it [0] NULL,
ChoiceTlype ::=CHOICE{AlternativeTypeList} g [1] NULL}

AlternativeTypeList ::=

NOTES

NamedType |
AlternativeTypeList,NamedType

1 The encoiing rules encode the chosen alternative in a way

which is indi
"Type" contairf
2 Specifying

"AlternativeTy
value from dir|

inguishable from a "Type" consisting only of the
ed in that alternative.

a "ChoiceType" with a single "NamedType" in the
peList” cannot be distinguished in any encoding of a
pct use of the "Type" in the "NamedType".

242 The types defined in the "AlternativeTypeList* shall all

have distinct

243 Thet
variable. Wh
the tag of thg
Typelist® fro

24.4 Wher
tional Stand
(see 20.3, 22
"AlternativeT

tags (see clause 26.)

g of the choice type shall be considered to be
n avalue is selected, the tag becomes equal to
*Type" in the "NamedType" in the "Alternative-

M which the value is taken.

this type is used in a place where this Interna-
rd requires the use of types with distinct'tags
3, and 24.2), the tags of all types definedin the
ypeList” shall differ from those of the other types

24.5 The "identifier"s (if any) in all "NamedType" sqquen-
ces of the "AlternativeTypeList" shall be distinct.

24.6 Where this type is used in a place where this Irjterna-
tional Standard requires the use -of *NamedTypes" with dis-
tinct "identifiers®, the “identifier’s (ifany) of all "NamedTypes"
in the "AlternativeTypeList* shall differ from those (if gny) of
the other "NamedType"s.

24.7 The notation for defining the value of a choicp type
shall be the "ChoiceValue*:

ChoiceValue ::= NamedValue
24.8 Ifthe "NamedValue" contains an “identifier”, it shall be
a notation for a value of that type in the "AlternativeTypeList*
that.is named by the same “identifier". If the *“NamedYalue"
does not contain an “identifier®, it shall be a notatior] for a

value of one of those types in the "AlternativeTypeList* that
are not named by an "identifier".

NOTE — Failure to use an "identifier"in the "NamedType" car) make
the value notation ambiguous.

(see clause P6). The following examples illustrate this re- 25 Notation for selection types
quirement. Examples 1 and 2 are correct.uses of the nota-)
tion. Example 3 is incorrect, as the tags fortypes d and f, and 25.1 A "NamedType" appearing in the "AlternativeTlypel-
e and g are iflentical. ist" of a "ChoiceType" can be referenced by the notation "Se-
lectionType™:
EXAMBHLES . . .
SelectionType ::= identifier < Type
1 A := CHOICE
{bB where "Type" is a notation referencing the “ChoiceType', and
c NULi} “identifier” is the "identifier" in the *NamedType".
NOTE — "SelectionType" can be used either as a "NamedTyjpe", in
B.::= CHOICE which case the "identifier" is used in the value notation, dr as a
(4 10} NITLE NP el with : + is not
S [V TYOoxoLm, TyM will y
e [1] NULL} used.
- 25.2 The notation for a value of a selection type shall be
2 A = CHOICE *SelectionValue":
{b B,
¢ C} SelectionValue ::= NamedValue
B ::= CHOICE where the "NamedValue" contains the identifier that appears
{d [0] NULL, in the corresponding "SelectionType" if the "SelectionType"
e [1] NULL} is used as a "NamedType", but not otherwise.

16

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

A tagged type (see 3.26) is a new type which is isomorphic
with an old type, but which has a different tag. In all encod-

ing schemes a value of the new type can be distinguished

= o vVaile Ot LIR O - JR 8 -1

from a value of the old type. The tagged typeis mamly ofuse
where this International Standard requires the use of types
with distinct tags (see 20.3, 22.3, 24.2, 24.4, and 27.6).

NOTE — Where a protocol determines that values from several da-
tatypes may be transmitted at any moment in time, distinct tags
may be needed to enable the recipient to correctly decode the

ales
vaiue.

26.1 The notation for ataggedtype shall be *“TaggedType":

ISO/IEC 8824 : 1990 (E)

26.8 Ifthe "(‘Igce" is 'emp‘y , there are no restri

the use of "Tag", other than those implied by the requ:rement
for distinct tags in 20.3, 22.3, and 24.2.

26.9 Implicit tégging indicates, for those encoding rules
which provide the option, that explicit identification of the tag
ofthe "Type" inthe "TaggedType" is not needed during trans-
fer.

NOTE - It can be useful to retain the old tag where this was univer-
sal class, and hence unambiguously identifies the old type without
knowledge of the ASN.1 definition of the new type. Minimum trans-
fer octets is, however, normally achieved by the use of IMPLICIT.
An example of an encodmg using IMPLICIT is given in ISO 8825.

26.10 The “IMPLICIT" alternative shall not be used if the

TaggedType ::=

Tag Type |
Tag IMPLICIT Type |
Tag EXPLICIT Type

Tagl ::= [Class ClassNumber]

number |
DefinedValue

UNIVERSAL
APPLICATION |
PRIVATE |

empty

26.2 The "DefinedValue" shall be a reference to a non-ne-
lue of type integer, or of a type derived from type in-

e new type is isomorphic with the old type, buthas
a tag with "Class” class and number "ClassNumber", unless

types défined in this International Standard:

NOTE — |Use of universal class tags are agreed from time to time by
ISO and CCITT.

26.5 [fithe "Class"” is "APPLIGATION", the same "Tag" shall
not be Ysed again in the §ame module.

26.6 Ifithe "Class™.is"*PRIVATE" the "Tag" is available for
use on an enterprise-specific basis.

26.7 e tagging construction specifies explicit tagging if
any of the(following holds:

typedefi

VM Wy T ypMY IS & VHIVIVO Ly gl Ul art Gliy Ly U,

26.11 The notation for a value of a "“TaggedTy
*TaggedValue®:

TaggedValue ::= Value

where "Value® is the notation(for a value of the "Type* in the
" T armema AT o ¥

rayycuiype .

NOTE — The "Tag" does-natappear in this notation.

27 Notationfor the any type

27.1 The notation for an any type (see 3.29) is [AnyType":

AnyType ::= ANY |
ANY DEFINED BY identifier

NOTE — The use of "ANY" in an ISO Standard or CCITT Recommen-
dation produces an incomplete specification unless it is sup-
plemented by additional specification. The "ANY DEFINED BY"
construct provides the means of specifying in an instance of com-
munication the type which fills the ANY, and a pointer to its seman-
tics. If the following rules for its use are followed, it c3n provide a
complete specification. Use of ANY without the DEFINED BY con-
struct is deprecated.

27.2 The "DEFINED BY" alternative shall be [used only
when the any type, or a type derived from it by ftagging, is
one of the component types of a sequence type|or set type
(the containing type).

also appear in a "NamedType" that specifies anpther, non-
optional, component of the containing type. The "Named-
Type" shall be either an integer type or an objeft identifier
type.

27.3 The "identifier" in the "DEFINED BY" alterEative shall

27.4 When the "NamedType" is an integer type} the docu-
ment employung the "DEFINED BY" notatlon shall contain, or

a) the "Tag EXPLICIT Type" alternative is used;

b) the "Tag Type" alternative is used and the value of
*TagDefault" for the module is *"EXPLICIT TAGS";

c) the "Tag Type" alternative is used and the value of
*TagDefault” for the module is "IMPLICIT TAGS", but the
type defined by "Type" is a choice type or an any type.

The tagging construction specifies implicit tagging other-
wise.

he ASN 1
type to be carried by the ANY for each permitted value of the
integer type. There shall be precisely one such list covering
all instances of communication of the containing type.

27.5 When the *"NamedType" is an object identifier type,
there is a need for registers which, for each allocated object
identifier value, associate a single ASN.1 type (which may be
a CHOICE type) which is to be carried by the ANY.

NOTES

1 There may be an arbitrary number of registers associating an
object identifier value with an ASN.1 type for this purpose.

17

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990 (E)

2 Registration of values for open interconnection is expected to
occur within ISO Standards and CCITT Recommendations using
the notation. Where a separate International Registration Authority
is intended for any instance of "ANY DEFINED BY", this should be
identified in the document using the notation.

3 The main difference between the integer and object identifier
definers is that the use of integer references a single list, contained

in the using standard, whilst the use of object identifier allows an
nnan.nndnd cat of types determinad by any at itharihs ahla #a alla_

SNneeC Set Ot Iypes Leter el 2y QULIVTITY Qe W0 Qo=

cate object ndentmers

27.6 This type has an indeterminate tag, and shall not be

Aavsd 'TH ~
used where this International Standard requires distinct tags

(see 20.3, 22.3, 24.2 and 24.4).

27.7 The notation for the value of an any type shall be

0
- =
J
=
3
3

a imbhart in ¢
He Nuinnivci

e i [U orm" shall be th
numeric value assigned to the o ject identifier component.

=
Z
"3
CT
D
=
-|'|
:\
3
=
N
'S

a bl
©

28.8 The "identifier" in the *"NameAndNumberForm" shall
be specified when a numeric value is assigned to the object
identifier component. .

NOTE — The authorities allocating numeric values to object identi-
fier components are identified in the annexes to this International

Standard.

28.9 The semantics of an object identifier value are defined

by reference to an object identifier tree. An object identifier

tree is a tree whose root corresponds to this International
Standard and whose vertices correspond to administrative
authorities responsible for allocating arcs from that vertex.

defined using ASN.1, and is "AnyVaiue®:

AnyValpe ::= Type Value

where "Typd" is the notation for the chosen type, and *Vaiue*
is the notati¢n for a value of this type.

28 Notation for the object identifier type

28.1 The pbject identifier type (see 3.33) shall be ref-
erenced by the notation "ObjectldentifierType":

ObjectIflentifierType ::=
OBJECT IDENTIFIER

28.2 This fype has a tag which is universal class, number
6.

28.3 The value notation for an object identifier shall be *Ob-
jectldentifierValue™:

ObjectIflentifierValue ::=
{ObjldComponentList } |
{DefinedValue ObjIldComponentList}

ObjIdCpmponentList ::=
ObjIdComponent |
ObjIldComponent ObjIdComponentList

ObjIdCpmponent ::= NameForm
NumberForm |
NameAndNumberForm

NameF¢rm ::= identifier
NumbefForm_:*= number | DefinedValue

NameApdNumberForm ::=

Each arc of the tree is labeiled by an object identifier.jompo-
nent which is a numeric value. Each information objegt to be
identified is allocated precisely one vertex (normally p leaf),
and no other information object (of the same or a dffferent

tvne) is allocated to that same vertex. Thig an information

SV S QHVVAITWE IV AL SQHIY VEIOA. (Niue’ & aawifnaaOn

object is uniquely and unambiguouslyidentified by the se-
quence of numeric values (object identifier componepts) la-
belling the arcs in a path from the toot to the vertex allpcated
to the information object.

NOTE — Objectidentifier values.contain atleast two objectidentifier
components, as specified‘in.annexes B to D.

28.10 An objectidentifier value is semantically an ofdered
list of object identifier component values. Starting with the
root of the object identifier tree, each object identifier com-
ponent valug identifies an arc in the object identifier trge. The
last object identifier component value identifies an arg lead-
ing to.a vertex to which an information object has bgen as-
signed: It is this information object which is identified|by the
object identifier value. The significant part of the object ident-
ifier component is the "NameForm" or *“NumberForm] which
it reduces to, and which provides the numeric value ffor the
object identifier component.

NOTE — In general, an information object is a class of infomation
(for example, a file format), rather than an instance of such|a class
(for example, an individual file). It is thus the class of inforfnation,
(defined by some referencable specification), rather than thle piece
of information itself, that is assigned a place in the tree.

28.11 Where the "ObjectldentifierValue® includes g *De-
finedValue, the list of object identifier components td which
it refers is prefixed to the components explicitly presert in the
value.

EXAMPLES
With identifiers assigned as specified in annex B, the values

{iso standard 8571 pci (1)}

and

1dentilier(NumberForm)

28.4 The "DefinedValue® in "NumberForm" shall be a ref-
erence to a value of type integer, or of a type derived from
integer by tagging.

28.5 The "DefinedValue" in "ObjectidentifierValue® shall be
a reference to a value of type object identifier, or of a type
derived from object identifier by tagging.

28.6 The "NameForm" shall be used only for those object
identifier components whose numeric value and identifier are
specified in annexes B to D, and shall be one of the ident-
ifiers specified in annexes B to D.

18

{1 0 871 1}
would each identify an object, "pci®, defined in ISO 8571.
With the following additional definition:

ftam OBJECT IDENTIFIER ::=
{iso standard 8571}

the following value is also equivalent to those above

{ftam pci (1)}

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

NOTE — ltisrecommended that, whenevera CCITT Recommenda-
tion, International Standard or other document assigns values of
type OBJECT IDENTIFIER to information objects there should be
an appendix or annex which summarises the assignments made
therein. It is also recommended that an authority assigning values
of type OBJECT IDENTIFIER to an information object should also
assign values of type ObjectDescriptor to that information object.

29 Notation for character string types

29.1 The notation for referencing a character string type
(see 3.12 and clause 31) shall be

CharacterStringType ::= typereference

ISO/IEC 8824 : 1990 (E)

CharacterStringValue ::= cstring
The definition of the character string type determines the

characters appearing in the “cstring".

30 Notation for types defined in clauses 32-
35

30.1 The notation for referencing a type defined in clauses
32-35 three of this International Standard shall be

UsefulType ::= typereference

where “typereference” is one of the character string type
names listed in clause 31.

29.2 The tag of each character string type is specified in
clause 3|.

29.3 Tine notation for a character string value shall be

lauses 32-

wibeare.
wiicTe

35 using the ASN.1 notation.

30.2 The tag of each "UsefulType" is specified [in clauses
32-35.

30.3 The notation for a value ofa*UsefulType" is specified
in clauses 32-35.

19

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

31 Definition of character string types

This clause defines types whose distinguished values are se-
quences of zero, one or more characters from some charac-
ter set.
31.1 The type is defined by specifying:

a) the tag assigned to the type; and

b) a name by which the type definition can be ref-
erenced; and

c) the characters in the character set used in defining
the type, either by reference to a table listing the charac-

Table 4 - NumericString

Name Graphic
Digits 01...9
Space (space)

ter graghits or by reference 10 a registration number in
the Intefnational Register of Coded Character Sets to be
used with Escape Sequences.

The name in b) above may be used as a "typereference” in
the ASN.1 nptation (see clause 29).

31.2 Tablg6 lists the name by which each of these type de-
finitions can|be referenced, the number of the universal class
tag assigned to the type, the defining registration numbers
or following|table, and, where necessary, identification of a
NOTE relating to the entry in the table. Where a synonymous
name is defined in the notation, this is listed in parentheses.

NOTE — The jag assigned to character string types unambiguously
identifies the[type. Note, however, that if ASN.1 is used to define
new types frgm this type (particularly using IMPLICIT), it may be
impossible t¢ recognise these types without knowledge of the
ASN.1 type dpfinition.

31.3 Tablg 4 lists the characters which can appear in the
NumericString type.

31.4 Tablg 5 lists the characters which can appear in the
PrintableString type.

31.5 The njotation for these types shall be "cstring".

NOTE — This|notation can only be used on amedium capable of dis-

Table 5 - PrintableString |

Name

Capital letters
Small letters
Digits

Space
Apostrophe

Left Parenthesis
Right Parenthesis
Plus sign
Comma
Hyphen

Full stop
Solidus

Colon

Equal sign
Question mark

playing the ¢
for the value

31.6 Inall

restricted by

aracters which are present in the value:The notation
n other cases is not defined.

cases, the range of permitted characters may be
a comment, but shall hot be extended.

20

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table 6- List of character string types

Name for Universal Defining registration numbers Notes
referencing class (see ISO 2375) or table number
the type number
NumericString 18 Table 4 (1)
PrintableString 19 Table 5 (1)
TeletexString 20 87,102, 103, 106, 107 2
(T61String) + SPACE + DELETE
VideotexString 21 1, 72, 73, 102, 108, 128, 129 (3
+ SPACE + DELETE
VisibleString 26 2 + SPACE
(1SO646String)
IA5String 22 1, 2 + SPACE + DELETE
GraphicString 25 All G sets + SPACE
GeneralString 27 All G and all C sets

+ SPACE + DELETE

NOTES

1 The type-style, size, colour, intensity, or other display characteristics are not
significant.

2 The entries corresponding to these registration numbers reference CCITT

Recommendation T.61 for rules concerning their use.

3 The entries corresponding to these registration numbers provid the functionality

¢l

of CCITT Recommendations T.100 and T.101.

21

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

32 Generalized time

32.1 This type shall be referenced by the name

GeneralizedTime

32.2 The type consists of values representing

a) acalendar date, as defined in ISO 8601; and

b) atime of day, to any of the precisions defined in ISO
8601, except for the hours value 24 which shall not be
used; and

c) the local time differential factor as defined in ISO

32.4 The tag shall be as defined in 32.3

32.5 The value notation shall be the value notation

"VisibleString" defined in 32.3.

33 Universal time

33.1 This type shall be referenced by the name
UTCTime

33.2 The type consists of values representing:

a) acalendar date; and

for the

8601.

32.3 The fype can be defined, using ASN.1, as follows:

GenerdlizedTime ::=
[UNIVERSAL 24] IMPLICIT VisibleString

with the values of the "VisibleString" restricted to strings of
characters which are either

In case a),

a) asgtring representing the calendar date, as specified
in ISO B601, with a four-digit representation of the year,
a two-dligit representation of the month and a two-digit
representation of the day, without use of separators, fol-
lowed py a string representing the time of day, as spe-
cifiedin ISO 8601, without separators otherthan decimal
comma or decimal period (as provided for in ISO 8601),
and with no terminating Z (as provided for in ISO 8601);
or

b) the characters in a) above followed by an upper-
c) the characters in a) above followed by a string rep¢
resenting a local time differential, as specified in.ISO

8601, without separators.

e time shall represent the local time. InCase b),

the time shall represent UTC time. In case c), the part of the
string formed as in case a) represents the I6cal time (t;), and
the time differential (t2) enables UTC tinie to’be determined

as follows:
UTC time is tp -2
EXAMPLES
Case ")
19851106210627.3

22

local time 6 minutes, 27.3 seconds
after 9 pm on 6 November 1985.

Case b)

19851106210627.3Z
UTC time as above.

Case ¢)

19851106210627.3-0500

Local time as in example a), with
local time 5 hours retarded in
relation to UTC time.

b) atime to a precision of one minute or one Jecond;

and

c) (optionally) a local time differential from
nated universal time.

33.3 The type can be defined, Gsing ASN.1, as foll
UTCTime ::=

[UNIVERSAL (23IMPLICIT VisibleStri]1g
i

with the values of the,"VisibleString" restricted to st
characters which{are the juxtaposition of

a) the'six digits YYMMDD where YY is the t
order.digits of the Christian year, MM is the
(counting January as 01), and DD is the day of the
(01 to 31); and

b) either

1) the four digits hhmm where hh is hou
23) and mm is minutes (00 to 59); or

coordi-

DWS!

ngs of

VO low-
month
month

[(00 to

2) the six digits hhmmss where hh and mm are as

in 1) above, and ss is seconds (00 to 59); g
c) either
1) the character Z; or

2) oneofthe characters + or -, followed by
where hh is hour and mm is minutes.

The alternatives in b) above allow varying precision
specification of the time.

In alternative c)1), the time is UTC time. In alternati
the time (t;) specified by a) and b) above is the loc]
the time differential (t;) specified by c)2) above enal

nd

hhmm,

5 in the

e C)2),
Bl time;
bles the

UTC time to be determined as follows:

UTC time is t1 - t3

EXAMPLE - If local time is 7am on 2 January and coordinated
universal time is 12 noon on 2 January, the value is either of

UTCTime "8201021200Z"
UTCTime "8201020700-0500"

33.4 The tag shall be as defined in 33.3.

33.5 The value notation shall be the value notation
*VisibleString" defined in 33.3.

for the

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

34 The external type

34.1 The notation for an external type (see 3.30) is “Exter-
nalType™:

ExternalType:: = EXTERNAL
34.2 The type consists of values representing

a) an encoding of a single data value that may, but
need not, be the value of a single ASN.1 datatype; and

b) identification information which determines the se-
mantics and encoding rules; and

ISO/IEC 8824 : 1990(E)

been completed, the presentation context identifier also
identifies the encoding rules (transfer syntax) for the data
value and the "direct-reference OBJECT IDENTIFIER" shall
not be included. If presentation layer negotiation is not com-
plete, an object identifier value is also needed which ident-
ifies the encoding rules (transfer syntax) used for the
encoding. Where presentation layer negotiation is in use,
and where the "direct-reference OBJECT IDENTIFIER" ele-
ment is allowed or required to carry such a value, this shall
be identified by comment associated with the use of the *EX-
TERNAL" notation, otherwise the field shall be absent.

NOTES

1 The effect of 34.5 and 34.6 is to make the presence of at least
one of the "direct-reference" and the "indirect-reference" manda-

¢) [(optionattyy—an object descriptor which describes
the jobject.

The optipnal object descriptor shall not be present unless ex-
plicitly pprmitted by comment associated with the use of the
EXTERNAL notation.

34.3 Type EXTERNAL permits the inclusion of any data
value frgm an identified set of data values.

NOTES

1 The specification of this set of data values, their semantics, the
assignment of an object identifier and (optionally) an object de-
scriptor, and the dissemination of this information to all communi-
cating pprties is called isteri . This
operatior] can be performed by any authority entitled to allocate
an OBJELCT IDENTIFIER value, as specified in annexes B to D.

2 A set pf data values registered as an abstract syntax (with as-
sociated gncoding rules) is not well-formed unless the encoding of
each data value is self-identifying within the set of data value en-
codings. When ASN.1 is used to define an abstract syntax, tagging
is used t¢ provide self-identification. Where an abstract syntax is
not well-f(Frmed, use of the communications channel is either con-
text-sensitive or leads to ambiguity.

34.4 The EXTERNAL type can be defined, using- ASN.1, as
follows:

EXTERNAL ::=[UNIVERSAL 8] IMPLICIT_SEQUENCE
{dirdct-reference OBJECT IDENTIFIER OPTIONAL,
indifect-reference INTEGER OPTIONAL,
datagvalue-descriptor ObjectDes¢riptor OPTIONAL,
encqding CHOICE

{pingle-ASN1-type

qQctet-aligned

[0] ANY,
[1] IMPLICIT OCTET STRING,

drbitrary [2] IMPLICIT BIT STRING}}

34.5 When presentation layer negotiation of encoding
rules is rfot in,use-(prior agreement of transfer syntax) for the
value of thiss\EXTERNAL, the “direct-reference OBJECT
IDENTIFIER” shall be present. In this case the identifier of the

1oty

2 Both references are present when presentation layer negotia-
tion is in use but incomplete.

34.7 If the data value is the valug of a single ASN.1 data-
type, andifthe encoding rules forthis data value are the same
as those for the complete "EXTERNAL" datatype, then the
sending implementation shall-use any of the Encoding"
choices:

single-ASN1-type
octet-aligned
arbitrary

as an implementation option.

34.8 Ifthe encoding of the data value, using the agreed or
negotiated encoding, is an integral number of oftets, then
the’sending implementation shall use any of the Encoding”
choices:

octet-aligned
arbitrary

as an implementation option.

NOTE — Adatavalue which is a series of ASN.1 types, and for which
the transfer syntax specifies simple concatenation gf the octet
strings produced by applying the ASN.1 Basic Encoding Rules to
each ASN.1 type, falls into this category, not that of 34.7.

34.9 Ifthe encoding of the data value, using the agreed or
negotiated encoding, is not an integral number of[octets, the
"Encoding” choice shall be

arbitrary

34.10 Ifthe "Encoding" choice is chosen as "single-ASN1-
type", then the ASN.1 type shall replace the "ANY*, with a
value equal to the data value to be encoded.

set of data values is an object identifier which directly referen-
ces an abstract syntax and fills the “direct-reference OBJECT
IDENTIFIER" field of the "EXTERNAL". In this case, the ab-
stract syntax registration also defines the encoding rules
(transfer syntax) for the data value and the "indirect-reference
INTEGER"® shall not be included.

34.6 When presentation layer negotiation is in use for the
value of this EXTERNAL, the “indirect-reference INTEGER"
shall be present. In this case the identifier of the set of data
values is an integer which references an instance of use of
an abstract syntax. The integer is called a presentation con-
text identifier and fills the "indirect-reference INTEGER" field
of the "EXTERNAL". If presentation layer negotiation has

NOTE — The range of valueswhich mightoccurinthe "ANY"is deter-
mined by the registration of the object identifier value associated
with the "direct-reference", and/or the integer value associated with
the "indirect-reference".

34.11 Ifthe "Encoding” choice is chosen as "octet-aligned",
thenthe data value shall be encoded according to the agreed
or negotiated transfer syntax, and the resulting octets shall
form the value of the octetstring.

34.12 Ifthe "Encoding” choice is chosen as "arbitrary*, then
the data value shall be encoded according to the agreed or
negotiated transfer syntax, and the result shall form the value
of the bitstring.

23

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

34.13 The tag shall be as defined in 34.4.
34.14 The value notation shall be the value notation of the
type defined in 34.4.

35 The object descriptor type
35.1 This type shall be referenced by the name
ObjectDescriptor

35.2 The type consists of human-readable text which ser-
ves to descnbe an |nformat|on object The text is not an un-
ambiguous i e
identical text for different information objects is intended to
be uncommon.

NOTE — ltisrecommendedthatanauthorityassigning values oftype
"OBJECT IDENTIFIER" to an information object should also assign
values of type "ObjectDescriptor" to that information object.

35.3 Thetype can be defined, using the ASN.1 notation, as
follows:

ObjectDescriptor ::=
[UNIVERSAL 7] IMPLICIT GraphicString

The "GraphicString” contains the text describing the informa-
tion object.

35.4 The tag shall be as defined in 35.3.

for the

rphitrig“ deﬁned in 35.3.

24

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

36 Subtype notation

36.1 A subtype is defined by the notation for a parent type
followed by an appropriate subtype specification. The sub-
type specification notation is made up of subtype value sets.
The values in the subtype are determined as specified in 36.7
by taking the union of all the subtype value sets.

36.2 The subtype notation shall not be used so as to pro-
duce a subtype with no values.

36.3 The notation for a subtype shall be "Subtype":

Subtype ::=
ParentType SubtypeSpec |

ISO/IEC 8824 : 1990(E)

SubtypeSpec :: =
(SubtypeValueSet SubtypeValueSetList)

SubtypeValueSetList ::=
n | "
SubtypeValueSet SubtypeValueSetList |
empty

36.7 Each"SubtypeValueSet" specifies a number (possibly
zero) of values of the parent type, which are then included in
the subtype. A value of the parent type is a value of the sub-
type if and only if it is included by one or more of the subtype
value sets. The subtype is thus formed from the set union of
the values included by the subtype value sets.

SET SizeConstraint OF Type |
SEQUENCE SizeConstraint OF Type

ParentType :: = Type

hen the "SubtypeSpec" notation follows a set-of or
-of type notation, it applies to the "Type" in the set-

e subtype specification notation shall be "Subty-

36.8 A number of different forms of notation for *Subtype-
ValueSet" are provided. They are identified lbelow, and their
syntax and semantics is defined in clause 37)As dpecified in
clause 37, and summarized in table 7, some notiations can
only be applied to particular parent types.

SubtypeValueSet :: =
SingleValue |
ContaiiedSubtype |
ValueRange |
PermittedAlphabet |
SizeConstraint |
InnerTypeConstraints

37 Subtype Value Sets

371 Single Value

37.1.1 The "SingleValue" notation shall be:
SingleValue ::= Value

where "Value® is the value notation for the parent type.

37.1.2 A ‘SingleValue" value set is the single value of the

parenttype specified by “Value®". This notation can pe applied
to all parent types.

Table 7 - Applicability of subtype value sets

Type (or derived from Single [Contained | Value Size Alphabet Inner
such atype by tagging) Value | Subtype | Range | Range Limitation | Subtyping
Boolean Yes Yes No No No No
Integer Yes Yes Yes No No No
Enumerated Yes Yes No No No No
Real Yes Yes Yes No No No
Object Identifier Yes Yes No No No No
Bit String Yes Yes No Yes No No
Octet String Yes Yes No Yes No No
Character String Types Yes Yes No Yes Yes No
Sequence Yes Yes No No No Yes
Sequence-of Yes Yes No Yes No Yes
Set Yes Yes No No No Yes
Set-of Yes Yes No Yes No Yes
Any Yes Yes No No No No
Choice Yes Yes No No No Yes

25

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

37.2 Contained Subtype
37.2.1 The "ContainedSubtype" notation shall be:

ContainedSubtype ::= INCLUDES Type

37.2.2 A "ContainedSubtype" value set consists of all the
values of the "Type®, which is itself required to be a subtype
of the parent type. This notation can be applied to all parent

types.

37.3 Value Range

37.3.1 The "ValueRange" notation shall be:

37.4.4 The unit of measure depends on the parent type, as
follows:

Type Unit of measure
bit string bit

octet string " octet

character string character

set-of component value
sequence-of component value

37.5 Permitted Alphabet
37.5.1 The "PermittedAlphabet" notation shall be:

ValueRjange ::=
LowerEndpoint .. UpperEndpoint
37.3.2 A ‘ValueRange" value set consists of all the values
in a range gf values which are designated by specifying the
numerical values of the endpoints of the range. This notation
can only be applied to integer types, real types and types
derived from those types by tagging.

NOTE — Forthe purpose of subtyping, "PLUS-INFINITY" exceeds all
"NumericRedl" values and "MINUS-INFINITY" is less than all "Nu-
mericReal" values.

37.3.3 Eaghendpoint ofthe range is either closed (in which
case that endpoint is included in the value set) or open (in
which case(the endpoint is not included). When open, the
specification of the endpoint includes a less-than symbol

(<)

LowerEndpoint ::=
LowerEndValue | LowerEndValue <

UpperEndpoint ::=
UpperEndValue | < UpperEndValue

3734 An Et dpoint may also be unspecified, in which.case
the range extends in that direction as far as the parent type
allows:

LowerHndValue ::= Value | MIN

UpperEndValue ::= Value.| MAX

ize Constraint

@ "SizeConstraint” notation shall be:

or sequence-of types or types formed from any of those
types by tagging.

37.4.3 The "SubtypeSpec" specifies the permitted integer
values for the length of the members of the value set, and

takes the form of any subtype specification which can be ap-
plied to the following parent type:

INTEGER (0.MAX)

26

FermittedAlphabet ::= FROM SubtypeSpdc

37.5.2 A "PermittedAlphabet” value set consistg of all
values which can be constructed using a sub-alphabgt of the
parent string. This notation can only be@pplied to cHaracter
string types, or to types formed from them by tagginp.

37.5.3 The "SubtypeSpec” specifies the characters which
may appear in the character strifg, and is any subtype spe-
cification which can be applied to the subtype obtained by
applying the subtype specification *SIZE(1)" to the|parent
type.

37.6 Inner Subtyping

37.6.1 The*InnerTypeConstraints" notation shall be:

InnerTypeConstraints ::=
'WITH COMPONENT SinglcTypeConstnIlint |
WITH COMPONENTS MultipleTypeConstraints

37.6.2 An "InnerTypeConstraints” includes in the value set
only those values which satisfy a collection of constrgints on
the presence and/or values of the components of the parent
type. A value of the parent type is not included in the gubtype
unless it satisfies all of the constraints expressed or fmplied
(see 37.6.6). This notation can be applied to the settof, se-
quence-of, set, sequence and choice types, or types formed
from them by tagging.

37.6.3 For the types which are defined in terms of 4 single
other (inner) type (set-of, sequence-of and types dlerived
from them by tagging), a constraint taking the form of a sub-
type value specification is provided. The notation fof this is
"SingleTypeConstraint":

SingleTypeConstraint:: = SubtypeSpec
The "SubtypeSpec" defines a subtype of the single other
(inner) type A value of the parent type is a membef of the
ach inne e beldngs to
the subtype obtauned by applying the "SubtypeSpec to the
inner type.

37.6.4 For the types which are defined in terms of multiple
other (inner) types (choice, set, sequence, and types derived
from them by tagging), a number of constraints on these
inner types can be provided. The notation for this is "Multi-
pleTypeConstraints":

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

MultipleTypeConstraints ::=
FullSpecification | PartialSpecification

FullSpecification ::= {TypeConstraints }
PartialSpecification := {... , TypeConstraints }
TypeConstraints ::=
NamedConstraint |
NamedConstraint, TypeConstraints

NamedConstraint ::=
identifier Constraint | Constraint

ISO/IEC 8824 : 1990(E)

37.6.8 A constraint on the value of an inner type is ex-
pressed by the notation "ValueConstraint":

ValueConstraint ::= SubtypeSpec | empty

The constraint is satisfied by a value of the parent type if and
only if the inner value belongs to the subtype specified by the
*SubtypeSpec" applied to the inner type.

37.6.9 A constraint on the presence of an inner type shall
be expressed by the notation "PresenceConstraint”:

PresenceConstraint ::=
PRESENT | ABSENT | OPTIONAL |
empty

37.6.5 The "TypeConstraints” contains a list of constraints
on the cgmponent types of the parent type. For a sequence
type, the constraints must appear in order. The inner type to
which the constraint applies is identified by means of its ident-
ifier, if it has one, or by its position, in the case of sequence

types.

NOTE — Where the inner type has no identifier, the notation can be
ambiguods.

37.6.6 The "MultipleTypeConstraints" comprises either a
"FullSpedification" or a “PartialSpecification*. Where *Full-
Specification” is used, there is animplied presence constraint
of 'ABS%NT‘ on all inner types not explicitly listed (see
37.6.9), and each inner type which is not marked “"OP-
TIONAL"|or "DEFAULT" in the parent type shall be explicitly
listed. Where "PartialSpecification” is employed, there are no
implied cpnstraints, and any inner type can be omitted from
the list.

37.6.7 A particular inner type may be constrained in terms
ofits pregence (in values ofthe parent type), its value, or both.
The notafion is "Constraint":

Conslraint :: =
ValueConstraint PresenceConstraint

The meaning of these alternatives, and the)sitlations in
which they are permitted are defined in 37,6:9.1 tq 37.6.9.3.

37.6.9.1 Ifthe parent type is a sequence or set, an element
type marked "OPTIONAL" may be.¢onstrained to e “PRES-
ENT" (in which case the constraint is satisfied if gnd only if
the corresponding element value is present) or tp be "AB-
SENT" (in which case the constraint is satisfied if and only if
the corresponding element value is absent) or tp be "OP-
TIONAL" (in which caseno constraint is placed [upon the
presence of the corresponding element value).

37.6.9.2 If therparent type is a choice, a compgnent type
can be constrained to be "ABSENT", in which casg¢ the con-
straint is satisfied if and only if the corresponding c¢mponent
type is not used in the value.

37(6.9.3 The meaning of an empty "Presence(onstraint"
depends on whether a "FullSpecification” or a "PaftialSpeci-
fication" is being employed:

a) . in a "FullSpecification”, this is equivalent|to a con-
straint of “PRESENT";

b) ina"PartialSpecification®, no constraint isimposed.

27

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex A

(Normative))

The macro notation

A.1 Introduction

A mechanism is provided within ASN.1 for the user of ASN.1
to define a new notation with which he can then construct
and refere i

tent, the use of the new type notation is similar to a CHOICE
- the tag is indeterminate. Thus the new notation cannot in
this case be used in places where a known tag is required,
nor can it be implicitly tagged.

new notatipbn is defined using the notation "MacroDefinition".
A "MacroQefinition" simultaneously specifies a new notation
for constrycting and referencing a type and also a new nota-
tion for specifying a value. (See clause E.3 for an illustration
of the use [of the macro notation).

With a "MacroDefinition" the ASN.1 user specifies the new
notation by means of a set of productions in a manner simi-
lar to that|of this International Standard. The writer of the
nition:

b) specifies the complete syntax to be used for avalue
of ong of these types; (this syntax specification is in-
voked for syntax analysis whenever a value of the macro
type i$ expected); and

c) specifies, as the value of a standard ASN.1 type (of
arbitrary complexity), the resulting type and value for.all
instarices of the macro value notation.

Aninstance of the syntax defined by the macro definition can
contain instances of types or values (using the standard
ASN.1 notgation). These types or values (appearing in the use
of the magro notation) can be associated{forthe duration of

rd ASN.1 type assignmeénts. These assignments
ive when the associated syntactic category is
matched dgainst an item.or items in the instance of the new
notation being analysed:;Their lifetime is limited to that of the
analysis.

When analysing ‘a'value in the new notation, assignments
made during-analysis of the corresponding type notation are
available. is i i cede

A.2 Extensions to the ASN.1 character set|and
items

The characters | and > are used in the macro notIion.

The items specified in the followjng_ subclauses pre also

used.

A.2.1 Macroreference

Name of item - macroreference
A "macroreference™shall consist of the sequence of charac-
ters specified for‘a "typereference” in 8.2, except thaf all char-
acters shall’be‘in upper-case. Within a single modiule, the
same sequence of characters shall not be used for Qoth a ty-
pereference and a macroreference.
A2:2° Productionreference

Name of item - productionreference

A "productionreference” shall consist of the seqlence of
characters specified for a "typereference” in 8.2.

A.2.3 Localtypereference
Name of item - localtypereference
A "localtypereference" shall consist of the sequencd of char-
acters specified for a "typereference” in 8.2. A "localtypere-
ference” is used as an identifier for types which are
recognised during syntax analysis of an instance of|the new
type or value notation.

A.2.4 Localvaluereference

Name of item - localvaluereference

A*localvaluereference" shall consist of the sequencq of char-
acters specified for a “typereference” in 8.2. A "Iocalialueref—

analysis of every instance of the value notation.

The resulting type and value of an instance of use of the new
value notation is determined by the value (and the type ofthe
value) finally assigned to the distinguished local value ref-
erence identified by the keyword item VALUE, according to
the processing of the macrodefinition for the new type nota-
tion followed by that for the new value notation.

Each "MacroDefinition® defines a notation (a syntax) for type
definition and a notation (a syntax) for value definition. The
ASN.1 type which is defined by an instance of the new type
notation may, but need not, depend on the instance of the
value notation with which the type is associated. To this ex-

28

eérence” IS used as an identifier for values which are
recognised during syntax analysis of an instance of the new
type or value notation.

NOTE — A'localvaluereference" starts with an upper-case letter.
A.2.5 Alternation item

Name of item - *|*

This item shall consist of the single character |.

A.2.6 Definition terminator item

Name of item - >

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Table A.1 - Sequence specified by items

Item name Defining clause

"string" any sequence of characters
“identifier" 8.3 - Identifiers

"number" 8.8 - Numbers

"empty" 8.7 -Empty

This item shall consist of the single character >.

The keyword "MACRO" shall be used to introduce a macro
definition. The keyword "TYPE NOTATION" shall be used as

NOTE — The item < for the start of definitions is defined in clause
8.13.

A.2.7 Syntactic terminal item

Name of ifem - astring

An "astring” shall consist of an arbitrary number (possibly
zero) of clharacters from the ASN.1 character set (see clause
7), surrounded by ". The character * shall be represented in
an "astring" by a pair of *.

NOTE — Use of "astring" in the macronotation specifies the occur-
rence, at the corresponding point in the syntax being analysed, of
the characlers enclosed in quotation marks (").

A.2.8 Syntactic category keyword items

Namds of items -

"string"
"identifier"
"number"

llemptyl

ltems with the above names shall consist (in the macronota-
tion) of the sequences of characters in the name, excluding
the quotation symbols (). These items are used inthe macro
notation tp specify the occurrence, in an instance'of the new
notation, pf certain sequences of characters.The sequences
in the new notation specified by each itemare given in table
A.1 by reference to a clause in this International Standard
which defines the sequence of characters appearing in the
new notation.

NOTE — The macro notation do€s/not support the distinction be-
tween iderftifiers and references based on the case of the initial let-

the name of the production which defines the new type no-
tation. The keyword "VALUE NOTATION" shall:bg used as
the name of the production which defines theinew palue no-
tation. The keyword "VALUE" shall be used\as the| "localva-
luereference” to which the resulting value is assigned. The
keyword "value® shall be used to specify that each| instance
of the new notation contains at this point, using |standard
ASN.1 notation, some value of a type (specified in the macro
definition). The keyword "type” shall be used to specify that
each instance of the new potation contains at this pdint, using
standard ASN.1 notation;.some "Type".

A.3 Macro definition notation

A.3.1 A macro shall be defined using the notatipn *Mac-
roDefinition’:

MacroDefinition :: =
macroreference
MACRO

n.,__n

MacroSubstance

MacroSubstance ::=
BEGIN MacroBody END |
macroreference |
Externalmacroreference

MacroBody ::=
TypeProduction
ValueProduction
SupportingProductions

o o TypeProduction :=
ter. This is|for historical reasons. TYPE NOTATION
A29 Additionalkeyword items =" Lo
MacroAlternativeList
Namgs_of. items -
MACRO ValueProduction :=
TYPE VALUE NOTATION
NOTATION fu="
VALUE MacroAlternativeList
value
type SupportingProductions ::=
ProductionList |
Items with the above names shall consist of the sequence of empty
characters in the name.
) ProductionList ::=
The items specified in clauses A.2.2 to A.2.4 inclusive shall Production |

not be one ofthe A.2.9 sequences, exceptwhen used as spe-
cified below.

ProductionList Production

29

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

productlomefcrcnce
MacroAlternatlveLlst

Externalmacroreference :;=
modulereference . macroreference

A.3.2 If the "macroreference” alternative of "MacroSub-
stance” is chosen, then the module containing the macro de-
finition shall either:

a) contain another macro definition defining that "mac-
roreference”; or

astring |
productionreference |
"string" |
"identifier" |
"number" |
"empty" I
type |
type(localtypereference) |
value(MacroType) |
value(localvaluereference MacroType) |
value(VALUE MacroType)

MacroType ::= localtypereference |

b) ¢ ntaun the “macroreference” in its "Symboisim-

ie chosen thaen the module danoted hu *madula.

IS VIVUOTI I W LT THIVUAWID USHIUIOU Dy iVuwnaes

reference®| shall contain a macro definition defining the
“macrorefgrence”. The associated definition is then also as-
sociated with the "macroreference” being defined.

DRSS I

A.3.4 The chain of definitions which can arise from re-
peated applications of the rules of A.3.2 to A.3.3 shall termi-
nate with|a "MacroDefinition" which uses the "BEGIN
MacroBody END* alternative.

A.3.5 Earh "productionreference” which occurs in a "Sym-
bolDefn" (3ee A.3.9) shall occur exactly once as the firstitem
in a "Production®.

A.3.6 Eafh instance of the new type notation shall com-

"MacroAlternativeList” in a production specifies
the possibje sets of character sequences referenced by that
productior}. It is specified by:

MacrdAlternativeList :: =
M{croAlternative
Mj4croAlternativeList "|" MacroAlternative

The set of character. Sequences referenced by the "MacroAl-
ternativeList” consists of all the character sequences which
are refererjced by any of the "MacroAlternative” productions
in the "MagroAlternativeList".

1ypco

NOTE — When in a macro, any "MacroType" defiried in t!
can appear at any point in which ASN.1 specifies\a "Typg".

A "MacroAlternative” references all ¢character strings which
are formed by taking any of of the,character strjngs ref-
erenced by the first "SymbolDefn; in the “Symboll.ist*, fol-

inne rafaranaa, hyv tha
lowed by any one of the chagdetgT strings referenced by the

second "SymbolDefn" in the,"SymbolList*, and so gn, up to
and including the last "SymbolDefn" in the “Symboll.ist".

NOTE — The "EmbeddedDefinitions" (if any) play no dirdct part in
determining these strings.

A.3.10 Anastring" references the sequence of cHaracters
in the "astring" without the enclosing pair of *.

A.3.11"A "productionreference” references any s¢quence
of eharacters specified by the "Production” it identiffes.

A.3.12 Thesequences of characters referenced byjthe next
four alternatives for "SymbolDefn" are specified in thle A,

NOTE — The sequences of characters referenced by the "string"
should be terminated in an instance of the macro notatipn by the
appearance of a sequence referenced by the next "SynbolDefn"
in the "SymbolList."

A.3.13 A"type" references any sequence of symbqls which
forms a "Type" notation as specified in 12.1.

NOTE — The "DefinedType" of 12.1 may in this case contaifia"local-
typereference" referencing a type defined in the macro notation.

A.3.14 A “type(localtypereference)" references any se-
quence of symbols which forms a "Type" as specified in 12.1,
but in addition assigns that type to the "localtypereference®.
A later assignment may occur to the same “locéltypere-
ference”.

A.3.15 A "value(MacroType)" references any sequience of
symbols which forms a *Value” notation (as specified in 12.7)

A.3.9 The notation for a "MacroAlternative" shall be:

MacroAlternative ::= SymbolList
SymbolList ::=
SymbolElement |
SymbolList SymbolElement
SymbolElement ::=
SymbolDefn |
EmbeddedDefinitions

30

for the type specified by "Macrolype'.

A.3.16 A "value(localvaluereference MacroType)" referen-
ces any sequence of symbols which forms a *Value" notation
(as specified in 12.7) for the type specified by “MacroType",
but in addition assigns the value specified by the value nota-
tion to the “localvaluereference”. A later assignment may
occur to the “localvaluereference®.

A3.17 A “value(VALUE MacroType)" references any se-
quence of symbols which forms a "Value" notation (as spe-
cified in 12.7) for the type specified by "MacroType*, but in
addition returns the value as the value specified by the value

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

notation. The type of the value returned is the type referenced
by MacroType.

A.3.18 Precisely one assignment to VALUE (as specified in
A.3.17 or in A.3.19) occurs in the analysis of any correct in-
stance of the new notation.

A.3.19 The notation for an "EmbeddedDefinitions" shall be:

EmbeddedDefinitions ::=
< EmbeddedDefinitionList >

EmbeddedDefinitionList ::=
EmbeddedDefinition |
EmbeddedDefinitionList

ISO/IEC 8824 : 1990(E)

lysis of an instance of the new notation at the time when the
"EmbeddedDefinitions" is encountered, and persists until
redefinition of the "localtypereference” or “localvalueref-
erence" occurs..

NOTES

1 The use of the associated "localtypereference" or “localvalue-
reference" elsewhere in the "Alternative" implies assumptions on
the nature of the parsing algorithm. Such assumptions should be
indicated by comment. For example, use of the "localtypere-
ference" textually following the "EmbeddedDefinitions" implies a
left to right parse.

2 The "localvaluereference" "VALUE" may be assigned a value
either by the "value (VALUE MacroType)" construct or by an "Em-

beddedDefinition". In both cases, the value is returned, as speci-

EmbeddedDefinition

EmbeddedDefinition ::=
LocalTypeassignment |
LocalValueassignment

LocalTypeassignment ::
localtyperefcrence

"

MacroType

LocalValueassignment ::=
localvaluereference
MacroType

MacroValue

MacyoValue ::=
Value |

localvaluereference

The assignment of a "MacroType" to a “localtypereference”
(or of a[MacroValue" to a *localvaluereference”) within an
"EmbedgedDefinitions" takes effect during the syntax ana-

fied in A.3.17.

A.4 Use of the new notation

Whenever a "Type" (or "Value") notation is called|for by this
International Standard, an instance-of the type notation (or
value notation) defined by a macro may be used, provided
that the macro is either:

a) defined withinthe'same module; or

b) importediinto the module, by means of the appear-
ance of the "macroreference” in the "Symbolgimported"
of the module.

To allow the latter possibility, a “macroreference” ¢an appear
as a "Symbol" in 9.1.

NOTES

1 This extension to the standard ASN.1 notation is npt shown in
the body of this International Standard.

2 ltis possible to construct modules including sequences of type
assignment and macro definitions which make parsing|of the value
syntax in DEFAULT values arbitrarily complex.

31

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex B

(Normative)

ISO assignment of OBJECT IDENTIFIER component values

B.1 Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values, are as follows:

Authority for

progressed alongside the establishment of procedures for
the identification of specific OS| Registration Authorities.

B.6 Thearcsimmediately below *“member-body" shall have
values of a three digit numeric country code, as specified in

subsequent
assignments

CCITT
ISO
See annex D

NOTE — The remainder of this annex concerns itself only with ISO
assignment of values.

B.2 The|identifiers "ccitt", "iso" and “joint-iso-ccitt”, as-
signed abpve, may each be used as a "NameForm".

B.3 FouLarcs are specified from the node identified by
*iso". The pssignment of values and identifiers is

Authority for

Value| Identifier subsequent
assignments
0 stdndard See clause B.4
1 registration-authority See clause B.5
2 mgmber-body See clause B.6
3 id¢ntified-organization See clause B.7

These ideptifiers may be used as a "NameForm".

a single paft International Standard.

B.5 Thelares below “registration authority" are reserved for
an addendum to this Internationa 3 i i

identify an issuing érganization specifically registerdd by that
authority as allgcating object identifier compongnts (see
NOTES 1 and.2). The arcs immediately below the |CD shall
have values. of an "organization code" allocated ky the is-
suing organization in accordance with ISO 6523. Arts below
"organization code" are not defined by this Inteynational
Standard (see NOTE 3).

NOTES

1 The requirement thatissuing organizations are recorded by the
Registration Authority for ISO 6523 as allocating ordanization
codes for the purpose of object identifier components enpures that
only numerical values in accordance with this Internatignal Stan-
dard are allocated.

2 The declaration that an issuing organization allocate$ organiz-
ation codes for the purpose of object identifier compongnts does
not preclude the use of these codes for other purposes.

3 Itis assumed that the organizations identified by the|"organiz-
ation code" will define further arcs in such a way as to erfsure allo-
cation of unique values.

4 The effect of clause B.7 is that any organization can pbtain an
organization code from an appropriate issuing organization, and
can then assign OBJECT IDENTIFIER values for its own purposes,
with the assurance that those values will not conflict with yalues as-
signed by other organizations. By this means, a manufacturer
could, for example, assign an OBJECT IDENTIFIER to it§ own pro-
prietary information formats.

32

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex C

(Normative)

CCITT assignment of OBJECT IDENTIFIER component values

C.1 Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values are as follows:

Authority for

These identifiers may be used as a "NameForm".

C.4 The arcs below “recommendation” have the value 1 to
26 with assigned identifiers of a to z. Arcs below these have

the numbers of CCITT Recommendations in the

Value Idenfifier subsequent
assignments
0 ccitt CCITT
] iso 1ISO

A
4

joint-iso-ccitt See annex D

NOTE - Theremainderofthis annex concernsitself onlywith CCITT

C.2

assignIent of values.

he identifiers “ccitt’, "iso" and *joint-iso-ccitt", as-

signed|above, may each be used as a "NameForm".

C.3 Hour arcs are specified from the node identified by
“ccitt”. The assignment of values and identifiers is

Authority for

Value Identifier subsequent
assignments
0 |recommendation See clause C.4
1 |question See clause C.5
2 |administration See clause C.6
3 |network-operator See clause C.7

be used as a "NameForm".
C.5 The arcs below "question” have values co
to CCITT Study Groups, qualified)bythe Study
value is computed by the formdla;

study group numbet/+ (Period * 32)
where "Period" has-the/value O for 1984-1988,
1992, etc., and the'mdiltiplier is 32 decimal.

spondingfothe questions assigned to that stud

series ident-

nmmmmwmwmm@ as necess-
ary by the CCITT Recommendation. The identifigrs ato z may

responding
Period. The

1 for 1988-

group. Arcs

The arcs below each study group have the \;lalues corre-

below this are determined as necessary by the
working party or special rapporteur group) assig
the question.

group (e.g.
hed to study

€.6 The arcs below "administration" have trf values of

X.121 DCCs. Arcs below this are determined a
by the Administration of the country identified &
DCC.

C.7 The arcs below "network-operator* have

necessary
y the X.121

he value of

X.121 DNICs. Arcs below this are determined as necessary

by the Administration or RPOA identified by the

DNIC.

33

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex D

(Normative)

Joint assignment of OBJECT IDENTIFIER component values

D.1 Three arcs are specified from the root node. The as-
signment of values and identifiers, and the authority for as-
signment of subsequent component values are as follows:

Authority for

identify areas of joint ISO-CCITT standardisation activity, in
accordance with the "Procedures for assignment of object
identifier component values for joint ISO-CCITT use* 1

D.4 The arcs beneath each arc identified by the mechan-

Value Identifier————subsequent

assignments
0 ccitt CCITT
1 iso ISO
2 joint-iso-ccitt See below

NOTE — The remainder of this annex concerns itself only with joint
ISO-CCITT dssignment of values.

D.2 The {(dentifiers "ccitt, “iso" and "joint-iso-ccitt", as-
signed abgve, may each be used as a "NameForm".

D.3 The grcs below *joint-iso-ccitt" have values which are
assigned and agreed from time to time by ISO and CCITT to

- ce with
mechanisms established when the arc is allocated:

NOTE — Itis expected that this will involve delegation-of authority to
the joint agreement of CCITT and ISO Rapporteurs for the jpint area
of work.

D.5 Initial International Standards and CCITT Recgmmen-
dations in areas of joint ISO-CCITT Aactivity require to allocate
OBJECT IDENTIFIERS in advance of the establishment of
the procedures of D.3, andhence allocate in accordamce with
annexes B or C. Information’objects identified in thisway by
International Standards\or CCITT Recommendatiops shall
not have their OBJECTIDENTIFIERS changed whenthe pro-
cedures of clause'D.3 are established.

1 The Registration Authority for the assignment of object identifier component values for joint ISO-CCITT use is the American National
Standards Institute (ANSI), 1430 Broadway, New York, NY 10018, USA.

34

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

Annex E

(Informative)

Examples and hints

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. It also contains hints, or
guidelines, for the use of the various features of ASN.1.

E.1 Example-efapersonnelrecord

The use pf ASN.1 is illustrated by means of a simple, hypothetical personnel record.
E.1.1 Informal Description of Personnel Record

The structure of the personnel record and its value for a particular individual are shown below.

Name: John P Smith
Title: Director
Employee Number: 51

Date of Hire: 17 September 1971
Name of Spouse: Mary T Smith
Number of Children: 2

Child Information
Name: Ralph T Smith
Date of Birth 11 November 1957

Child Information
Name: Susan B Jones
Date of Birth 17 July 1959
E.1.2 ASN.1 description of the record structure
The strugture of every personnel record is formally.described below using the standard notation for data types.

PersohnelRecord ::= [APPLICATION 0] IMPLICIT SET

{ Namé;
title [0] VisibleString,
number EmployeeNumber,

dateOfHire [1} Date,
nameOfSpouse [2] Name,

children 3] IMPLICIT SEQUENCE OF ChildInformation DEFAULT {}
ChildInformation ::=<SET
{ Name,
dateQfBirth [0] Date
}
Name]| :£=) [APPLICATION 1] IMPLICIT SEQUENCE
{ —giveniName VisibteString;
initial VisibleString,
familyName VisibleString
}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString-- YYYY MMDD
This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct "DEFAULT" can only be applied

to an element of a "SEQUENCE" or a "SET", it cannot be applied to an element of a *SEQUENCE OF". Thus the *DEFAULT {
}" in "PersonnelRecord" applies to “children®, not to *Childinformation®.

35

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

The value of John Smith’s personnel record is formally described below using the standard notation for data values.

{ {givenName "John",initial "P",familyName "Smith"} .
title "Director” s
number 51 R
dateOfHire " 19710917" y
nameOfSpouse {givenName "Mary" initial "I"familyName "Smith"} ,
children

{ { {givenName "Ralph"jinitial "T",familyName "Smith"},

dateOfBirth "19571111"},

PRy

{ {givenName "Susan"initiai "B"famiiyName "Jones"},

dateOfBirth "19590717"}}}

E.2 Gujdeiines for use of the notation

The data ty pes and formal notation def ned by this International Standard are flexible, aIIowmg awide range of protocgls to be
designed ysing them. This flexibility, however, can sometimes lead to confusion, especially when the notatioris approathed for
the first tlnje This annex attempts to minimise confusion by giving guidelines for, and examples of, the-ise of the notaLon For
each of thq built-in data types, one or more usage guidelines are offered. The character string types (for.example, VisibleString)
and the tyges defined in clauses 32 to 35 are not dealt with here.
E.2.1 Boplean
E.2.1.1 Use a boolean type to model the values of a logical (that is, two-state) variable for éxample, the answer to a ygs-or-no
question.

EXAMRLE

Employed ::= BOOLEAN

E.2.1.2 When assigning a reference name to a boolean type, choose @ne that describes the true state.

EXAM]J

not

LE

Married ::= BOOLEAN

[MaritalStatus ::= BOOLEAN

See also £.2.3.2

E.2.2 Int

bger

E.2.21 Use an integer type to model'the values (for all practical purposes, unlimited in magnitude) of a cardinal or inte

able.

EXAMI

LE

CheckingAccountBalance ::= INTEGER
* in cents; negative means overdrawn

E2.2.2 qeﬁne the minimum and maximum allowed values of an integer type as distinguished values.

per vari-

EXAMPLE

DayOfTheMonth ::= INTEGER {first(1),last(31)}

E.2.3 Enumerated

E.2.3.1 Use an enumerated type to model the values of a variable with three or more states. Assign values starting with zero
if their only constraint is distinctness.

36

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 :

EXAMPLE

DayOfTheWeek ::= ENUMERATED ({sunday(0),monday(1),tuesday(2),
wednesday(3),thursday(4),friday(5),saturday(6)}

1990(E)

E.2.3.2 Use an enumerated type to model the values of a variable that has just two states now but that may have additional

states i

n a future version of the protocol.

EXAMPLE

E24

E.2.4.1| Use a real type to model an approximate number.

EXAMPLE
AngleInRadians ::= REAL
pi REAL = {3141592653589793238462643383279, 10, -30}
E.2.5 Bit string
E.2.5.1 | Use a bit string type to model binary data whose format and length are unspecified, or specified elsewhere,

E

E.2.5.2
EXAMPLE

E.2.5.3

cul
E)Q—]:VIPLE

parti

E.2.
EXAMPLE

E.2

length iI bits is not necessarily a multiple of eight.

ENUMERATED {single(0),married(1)}

MaritalStatus ::

ENUMERATED ({single(0),married(1),widowed(2)}

MaritalStatus ::

Real

PLE

G3FacsimilePage ::= BIT STRING
a [sequence of bits conforming to CCITT
R¢commendation T4.

Define the first and last meaningful bits of a fixed-length bit string as distinguished bits.

Nibble ::= BIT STRING {first(0),last(3)}

r condition holds for each of a correspondingly ordered collection of objects.

SunnyDaysOfTheMonth ::="BIT STRING {first(1),last(31)}
-- Day i was sunny-if._and only if bit i is one

5.4

PersonaiStatus ::= BIT STRING
{married(0),employed(1),veteran(2),collegeGraduate(3)}

Use a bit string type to model the valtues of a bit map, an ordered collection of logical variables indicating

Use a bit string typé with distinguished values to model the values of a collection of related logical variablgs.

land whose

whether a

6 Qctet string

E.2.6.1 Use an octet string type to model binary data whose format and length are unspecified, or specified elsewhere, and
whose length in bits is a multiple of eight.

EXAMPLE

G4FacsimileImage ::= OCTET STRING
-- a sequence of octets conforming to
-- CCITT Recommendations T.5 and T.6

E.2.6.2 Use a character string type in preference to an octet string type, where an appropriate one is available.

37

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

EXAMPLE

Surname := PrintableString

E.2.6.3 Use an octet string type to model any string of information which cannot be modelled using one of the character string
types. Be sure to specify the repertoire of characters and their coding into octets.

EXAMPLE

PackedBCDString ::= OCTET STRING

-- the

digits 0 through 9, two digits per octet,

-- each digit encoded as 0000 to 1001,
-- 11112 used for padding.

E.2.7 Null

Use a null fype to indicate the effective absence of an element of a sequence.
EXAMELE

PatientIdentifier ::= SEQUENCE

{name

roomNumber CHOICE
{INTEGER,

NOTE — The

E2.8 Se

E.2.8.1 Use asequence-of type to model a collection of variables whose types-are'the same, whose number is large o

dictable, a

EXAMELE

NamesQfMemberNations ::= SEQUENCE OF VisibleString
-- in [the order in which they joined

E.2.8.2 Use asequence type to model a collection of variables whose types are the same, whose number is known arf
est, and whose order is significant, provided that the makeup’of the collection is unlikely to change from one version of th
col to the njext. '

VisibleString,

NULL -- if an out-patient --}}
use of "OPTIONAL" provides an equivalentfacility.

uence and sequence-of

d whose order is significant.

r unpre-

d mod-

e proto-

EXAMELE
NamesOfOfficers ::= SEQUENCE
{president VisibleString,
vicePresident VisibleString,
secretary VisibleString}
E.2.8.3 e a sequence typetomodel a collection of variables whose types differ, whose number is known and modegst, and
whose order is significant, proyided that the makeup of the collection is unlikely to change from one version of the pratocol to
the next.
EXAMHLE

P

Credentfals :»=\"SEQUENCE
{userfkmc VisibleString,

rd VisibleStrin g

accountNumber INTEGER}

E.2.8.4 Ifthe elements of a sequence type are fixed in number but of several types, a reference name should be assigned to
every element whose purpose is not fully evident from its type.

EXAMPLE
File ::= SEQUENCE
{ ContentType,
other FileAttributes,
content ANY}
See also E.2.5.3, E.2.5.4, and E.2.7

38

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

E.2.9 Set

E.2.9.1 Use aset type to model a collection of variables whose number is known and modest and whose order is insignificant.
Identify each variable by context-specifically tagging it.

EXAMPLE

UserName := SET
{personalName [0] IMPLICIT VisibleString,
organisationName [1] IMPLICIT VisibleString,
countryName [2] IMPLICIT VisibleString}

E.2.9.2 Use a set type with "OPTIONAL" to model a collection of variables that is a (proper or improper) subset of another col-
lection of variables whose number is known and reasonably small and whose order is insignificant. Identify each variable by
context-specifically tagging it.

E PLE

UserName := SET
{personalName [0] IMPLICIT VisibleString,
orgdnisationName [1] IMPLICIT VisibleString OPTIONAL
-1 defaults to that of the local organisation -- ,
countryName [2] IMPLICIT VisibleString OPTIONAL
- defaults to that of the local country -- }

E.2.9.3 Use a set type to model a collection of variables whose makeup is likely to change from one version of the protocol to
the next. | Identify each variable by context-specifically tagging it.

EXAMPLE

{personalName [0] IMPLICIT VisibleString,
orgdnisationName [1] IMPLICIT VisibleString OPTIONAL ,
--| defaults to that of the local organisation

countryName [2] IMPLICIT VisibleString OPTIONAL ,
-| defaults to that of the local country

--| other optional attributes are for further study --}

Useerfme = SET

E.2.9.4 |fthe members of a set type are fixed in number, a'reference name should be assigned to every member whose pur-
pose is not fully evident from its type.

EXAMPLE

FileAt{ributes ::= SET
{owner [0] IMPLICIT UserName,
sizeQfContentInOctets [1] IMPLICIF-INTEGER,

[2] IMPLIEIT-/AccessControls,

}

E.2.9.5 |se aset type to model a collection of variables whose types are the same and whose order is insignificant.

EXAMPLE

Keywords :: =~SET OF VisibleString -- in arbitrary order

See also E.275.4 and E.2.13

E.2.10 Tagged

E.2.10.1 Use auniversal tagged type to define - in this International Standard only - a generally useful, application-independent
data type that must be distinguishable (by means of its representation) from all other data types.

EXAMPLE

EncryptionKey ::= [UNIVERSAL 30] IMPLICIT OCTET STR ING
-- seven octets

E.2.10.2 Use an application-wide tagged type to define a data type that finds wide, scattered use within a particular presenta-
tion context and that must be distinguishable (by means of its representation) from all other data types used in the presentation
context.

39

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

ISO/IEC 8824 : 1990(E)

EXAMPLE

FileName ::= [APPLICATION 8] IMPLICIT SEQUENCE
{directoryName VisibleString,
directoryRelativeFileName VisibleString}

E.2.10.3 Use context-specific tagged types to distinguish the members of a set. Assign numeric tags starting with zero if their
only constraint is distinctness.

EXAMPLE

CustomerRecord ::= SET

{name [0] IMPLICIT VisibleString,
mailingAddress [1] IMPLICIT VisibleString,
accountNumber [2] IMPLICIT INTEGER,
balanceDue [3] IMPLICIT INTEGER -- in cents --}

E.2.10.4 |Where a particular set member has been application-wide tagged, a further context-specific tag need Aot pe used,

i (or may be in the future) needed for distinctness. Where the set member has been universally tagged; a further con-
text-specific tag should be used.

ProducfRecord ::= SET

{ UniformCode,
descfiption [0] IMPLICIT VisibleString,
inverjtoryNo [1] IMPLICIT INTEGER,
invenjtoryLevel [2] IMPLICIT INTEGER}

UniformCode ::= [APPLICATION 13] IMPLICIT INTEGER

E.2.10.5 |Use context-specific tagged types to distinguish the alternatives of aCHOICE. Assign numeric tags starting With zero
if their only constraint is distinctness.

EXAMPLE

CustomjerAttribute ::= CHOICE

{nam¢ [0] IMPLICIT VisibleString,
mailingAddress [1] IMPLICIT VisibleString,
accoI‘ntNumber [2] IMPLICIT INTEGER,

balagceDue [3] IMPLICIT INTEGER -- in cents --}

E.2.10.6 |Where a particular CHOICE alternative has been defined using an application-wide tagged type, a further|context-
specm need not be used, unless it is (or maybe in the future) needed for distinctness.

E LE
ProducfDesignator ::= CHOICE
{ UniformCode;
iption [0] IMPLICIT” VisibleString,
inventoryNo [1] IMPLICIT INTEGER}

Code ::= [APPLICATION 13] IMPLICIT INTEGER

E.2.10.7 |Where aparticular CHOICE alternative has been universally tagged, a further context-specific tag should be ysed, un-
less the pfovision’of more than one universal type is the purpose cof the choice.

Customerldentifier ::= CHOICE
{name VisibleString,
number INTEGER }

E.2.10.8 Use a private-use tagged type to define a data type that finds use within a particular organisation or country and that
must be distinguishable (by means of its representation) from all other data types used by that organisation or country.

EXAMPLE

AcmeBadgeNumber ::= [PRIVATE 2] IMPLICIT INTEGER

E.2.10.9 These guidelines use implicit tagging in the examples whenever it is legal to do so. This may, depending on the en-
coding rules, result in a compact representation, which is highly desirable in some applications. In other applications, compact-

40

https://standardsiso.com/api/?name=e6d585885d4792335847dee6356e97d9

