

INTERNATIONAL  
STANDARD

ISO  
21501-2

Second edition  
2019-11

---

---

**Determination of particle size  
distribution — Single particle light  
interaction methods —**

**Part 2:  
Light scattering liquid-borne particle  
counter**

*Détermination de la distribution granulométrique — Méthodes  
d'interaction lumineuse de particules uniques —*

*Partie 2: Compteur de particules en suspension dans un liquide en  
lumière dispersée*

STANDARDSISO.COM : Click to view the full PDF of ISO 21501-2:2019



Reference number  
ISO 21501-2:2019(E)

© ISO 2019

STANDARDSISO.COM : Click to view the full PDF of ISO 21501-2:2019



**COPYRIGHT PROTECTED DOCUMENT**

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office  
CP 401 • Ch. de Blandonnet 8  
CH-1214 Vernier, Geneva  
Phone: +41 22 749 01 11  
Fax: +41 22 749 09 47  
Email: [copyright@iso.org](mailto:copyright@iso.org)  
Website: [www.iso.org](http://www.iso.org)

Published in Switzerland

## Contents

|                                                                                                                 | Page |
|-----------------------------------------------------------------------------------------------------------------|------|
| <b>Foreword</b>                                                                                                 | iv   |
| <b>Introduction</b>                                                                                             | v    |
| <b>1 Scope</b>                                                                                                  | 1    |
| <b>2 Normative references</b>                                                                                   | 1    |
| <b>3 Terms and definitions</b>                                                                                  | 1    |
| <b>4 Principle</b>                                                                                              | 2    |
| <b>5 Basic configuration</b>                                                                                    | 3    |
| <b>6 Requirements</b>                                                                                           | 3    |
| 6.1 Size setting error                                                                                          | 3    |
| 6.2 Counting efficiency                                                                                         | 3    |
| 6.3 Size resolution                                                                                             | 4    |
| 6.4 False count                                                                                                 | 4    |
| 6.5 Maximum particle number concentration                                                                       | 4    |
| 6.6 Sampling flow rate error                                                                                    | 4    |
| 6.7 Sampling time error                                                                                         | 4    |
| 6.8 Sampling volume error                                                                                       | 4    |
| 6.9 Calibration interval                                                                                        | 4    |
| 6.10 Reporting of test and calibration results                                                                  | 4    |
| <b>7 Test and calibration procedures</b>                                                                        | 5    |
| 7.1 Size setting                                                                                                | 5    |
| 7.1.1 Evaluation of size setting error                                                                          | 5    |
| 7.1.2 Procedure of size setting                                                                                 | 5    |
| 7.2 Evaluation of counting efficiency                                                                           | 9    |
| 7.3 Evaluation of size resolution                                                                               | 10   |
| 7.4 Evaluation of false count                                                                                   | 11   |
| 7.5 Estimation of coincidence loss at the maximum particle number concentration                                 | 11   |
| 7.6 Evaluation of sampling flow rate error                                                                      | 12   |
| 7.7 Evaluation of sampling time error                                                                           | 12   |
| 7.8 Evaluation of sampling volume error                                                                         | 12   |
| <b>Annex A (informative) Counting efficiency</b>                                                                | 13   |
| <b>Annex B (informative) Size resolution</b>                                                                    | 14   |
| <b>Annex C (informative) False count rate</b>                                                                   | 15   |
| <b>Annex D (informative) Procedure for evaluating the uncertainties of the results of the performance tests</b> | 16   |
| <b>Bibliography</b>                                                                                             | 21   |

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives](http://www.iso.org/directives)).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see [www.iso.org/patents](http://www.iso.org/patents)).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see [www.iso.org/iso/foreword.html](http://www.iso.org/iso/foreword.html).

This document was prepared by Technical Committee ISO/TC 24, *Particle characterization including sieving*, Subcommittee SC 4, *Particle characterization*.

This second edition cancels and replaces the first edition (ISO 21501-2:2007), which has been technically revised. The main changes from the previous edition are as follows:

- [Clause 4](#) for “Principle” and [Clause 5](#) for “Basic configuration” have been added;
- “size calibration” and “verification of size setting” have been combined as “size setting error” in the requirements ([Clause 6](#));
- “Test report” (3.11 in the previous edition) has been changed to [6.10](#) on “Reporting of test and calibration results”;
- information about uncertainties has been enriched and is now the subject of [Annex D](#).

A list of all parts in the ISO 21501 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at [www.iso.org/members.html](http://www.iso.org/members.html).

## Introduction

Monitoring particle contamination levels is required in various fields, e.g. in the electronic industry, in the pharmaceutical industry, in the manufacturing of precision machines and in medical operations. Particle counters are useful instruments for monitoring particle contamination in liquid. The purpose of this document is to provide a calibration procedure and verification method for particle counters, so as to minimize the inaccuracy in the measurement result by a counter, as well as the differences in the results measured by different instruments.

STANDARDSISO.COM : Click to view the full PDF of ISO 21501-2:2019

STANDARDSISO.COM : Click to view the full PDF of ISO 21501-2:2019

# Determination of particle size distribution — Single particle light interaction methods —

## Part 2: Light scattering liquid-borne particle counter

### 1 Scope

This document describes a calibration and verification method for a light scattering liquid-borne particle counter (LSLPC), which is used to measure the size and particle number concentration of particles suspended in liquid. The light scattering method described in this document is based on single particle measurements. The typical size range of particles measured by this method is between 0,1 µm and 10 µm in particle size.

The method is applicable to instruments used for the evaluation of the cleanliness of pure water and chemicals, as well as the measurement of number and size distribution of particles in various liquids. The measured particle size using the LSLPC depends on the refractive index of particles and medium; therefore, the measured particle size is equivalent to the calibration particles in pure water.

The following are within the scope of this document:

- size setting error;
- counting efficiency;
- size resolution;
- false count;
- maximum particle number concentration;
- sampling flow rate error;
- sampling time error;
- sampling volume error;
- calibration interval;
- reporting results from test and calibration.

### 2 Normative references

There are no normative references in this document.

### 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at <http://www.electropedia.org/>
- ISO Online browsing platform: available at <https://www.iso.org/obp>

### 3.1

#### **calibration particles**

monodisperse spherical particles with a known mean particle size, e.g. polystyrene latex (PSL) particles, where the certified size is traceable to the International System of Units (SI), a relative standard uncertainty equal to or less than 2,5 %, and a refractive index that is approximately 1,59 at the wavelength of 589 nm (sodium D line)

Note 1 to entry: For spherical particles, the particle size is equal to the diameter.

### 3.2

#### **counting efficiency**

ratio of the number concentration measured by a *light scattering liquid-borne particle counter* (3.4) to that measured by a reference instrument for the same sample

### 3.3

#### **false count**

apparent count per unit volume of sample liquid when a sample liquid containing no measurable particles is measured by the *light scattering liquid-borne particle counter* (3.4)

### 3.4

#### **LSLPC**

#### **light scattering liquid-borne particle counter**

instrument that measures liquid-borne particle numbers by counting the pulses as the particles pass through the sensing volume, as well as particle size by scattered light intensity

Note 1 to entry: The optical particle size measured by the LSLPC is the light scattering equivalent particle size and not the geometrical size.

### 3.5

#### **PHA**

#### **pulse height analyser**

instrument that analyses the distribution of pulse heights

### 3.6

#### **size resolution**

measure of the ability of an instrument to distinguish between particles of different sizes

### 3.7

#### **coincidence loss**

reduction of particle count caused by multiple particles passing simultaneously through the sensing volume and/or by the finite processing time of the electronic system

### 3.8

#### **MPE**

#### **maximum permissible error**

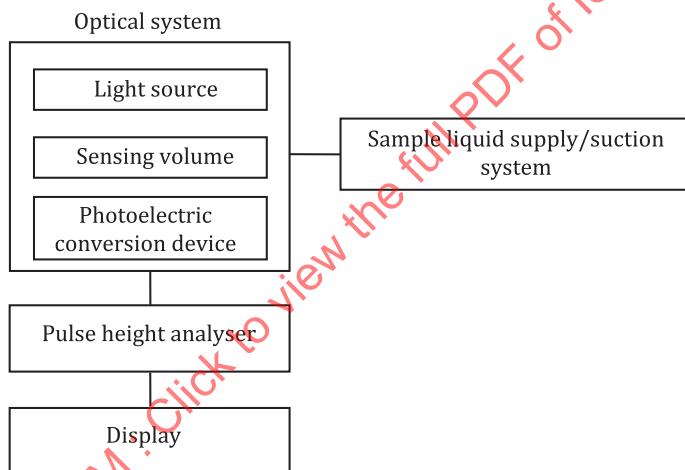
#### **limit of error**

extreme value of measurement error, with respect to a known reference quantity value, permitted by specifications for a given measurement, measuring instrument, or measuring system

Note 1 to entry: This document uses decimal numbers for the requirements to MPEs to avoid confusions that may arise when relative uncertainties of test results are reported in percent figures.

## 4 Principle

The measurement principle of the LSLPC is based on detection of light scattered by a particle when the particle passes through an incident light beam.


The particle size is determined from the intensity of the scattered light, and the number of particles from the number of light pulses scattered by individual particles.

More specifically, a sample liquid is drawn from the inlet of the LSLPC at a constant flow rate, and introduced to the sensing volume of the LSLPC where a light beam is irradiated. When a particle suspended in the sample liquid passes through the light beam, it scatters the light, emitting a light pulse. The light pulse is detected by a photo detector and converted to an electrical pulse. The electrical pulse height is proportional to the scattered light intensity, and depends on the optical system design, the electronic components used, and the light source. The intensity of the scattered light is dependent on the size, refractive index and shape of the particle. If the particle is spherical, the scattered light intensity is described by the Mie theory. In order to establish a relationship between the electrical pulse height and the particle size, calibration of each LSLPC with use of particles having a well-defined size, refractive index, and shape is required.

## 5 Basic configuration

An LSLPC is composed typically of a light source, a sample liquid supply/suction system, a sensing volume, a photoelectric conversion device, a pulse height analyser, and a display (see [Figure 1](#)). Some LSLPCs do not contain a sample liquid supply/suction system and/or a display.

To make the particle size calibration possible, the LSLPC should be constructed so that pulse height distributions for calibration particles can be measured.



**Figure 1 — Example of basic configuration of LSLPC**

## 6 Requirements

### 6.1 Size setting error

The MPE for size setting in the minimum detectable particle size and other sizes specified by the manufacturer of an LSLPC is 0,15 (corresponding to 15 % of the specified size).

Size setting shall be conducted before the LSLPC is shipped from the manufacturer, and when the size setting error is found not fulfilled in a periodic calibration.

A recommended procedure for size setting is described in [7.1.2](#). If other methods are used, their uncertainty shall be evaluated and described.

### 6.2 Counting efficiency

The counting efficiency shall be within 0,20 to 0,80 [corresponding to  $(50 \pm 30) \%$ ] for calibration particles with a size close to the minimum detectable size, and it shall be within 0,70 to 1,30 [ $(100 \pm 30) \%$ ] for calibration particles with the particle size 1,5 to 3 times larger than the minimum detectable particle size.

When calibration particles with exactly the same size as the minimum detectable particle size are not available, particles whose size is within  $\pm 5\%$  of the minimum detectable particle size may be used and the diameter of the calibration particles shall be reported.

### 6.3 Size resolution

The size resolution shall be less than or equal to 0,10 (corresponding to 10 % of the specified particle size), when it is evaluated using calibration particles of a certified average size specified by the manufacturer.

A recommended procedure is described in [7.3](#). If other methods are used, their uncertainty shall be evaluated and described.

### 6.4 False count

The false count per volume in litre and its 95 % upper confidence limit (UCL) shall be determined according to [7.4](#). The 95 % UCL shall be less than or equal to the value specified and reported by the manufacturer of the LSLPC.

### 6.5 Maximum particle number concentration

The maximum measurable particle number concentration shall be specified by the manufacturer. The coincidence loss at the maximum particle number concentration of an LSLPC shall be less than or equal to 0,1 (corresponding to 10 %).

NOTE The probability of occurrence of coincidence loss increases with increasing particle number concentration.

### 6.6 Sampling flow rate error

The MPE of the sampling flow rate shall be specified by the manufacturer. The user shall check that the sampling flow rate is within the range specified by the manufacturer.

### 6.7 Sampling time error

The MPE in the duration of sampling time shall be 0,01 (corresponding to 1 %) of the preset value.

If the LSLPC does not have a sampling time control system, this subclause does not apply.

### 6.8 Sampling volume error

The MPE of sampling volume shall be 0,05 (corresponding to 5 %) of the preset value.

This subclause does not apply when the LSLPC is not equipped with a sampling system.

### 6.9 Calibration interval

The calibration of the LSLPC should be conducted at an interval equal to or shorter than one year. The requirements should be met during the calibration interval.

### 6.10 Reporting of test and calibration results

The report shall contain at least the following information:

- a) date of test/calibration;
- b) test/calibration particles used;

- c) results for the parameters:
  - 1) size setting error;
  - 2) counting efficiency;
  - 3) sampling flow rate error;
  - 4) size resolution (with the particle size used);
- d) threshold voltage values or channel of the built-in PHA corresponding to the size settings;
- e) reference of the test/calibration method used (i.e. ISO 21501-2).
- f) report/certificate identification, test/calibration location, title and identification of test/calibration provider including signature and date;
- g) identification of customer and device under test, including how output was obtained for counting efficiency (e.g. analogue, display or digital output).

A calibration certificate shall furthermore include:

- h) identification and — if possible — statement of metrological traceability of all reference equipment and calibration particles used;
- i) relevant environmental conditions (e.g. temperature, air pressure and humidity) under which the calibration was performed;
- j) a stated uncertainty for each result for the parameters 1 to 2 with reference to the calculation method (e.g. ISO/IEC Guide 98-3) — [Annex D](#) gives a recommended procedure for evaluating the uncertainty of the results of the performance tests.
- k) a stated false count at a 95 % confidence limit (see [Annex C](#)).

NOTE Calibration certificates issued by ISO/IEC 17025 accredited laboratories and covering all results for the parameters 1 to 2 are considered to comply with the requirements above.

## 7 Test and calibration procedures

### 7.1 Size setting

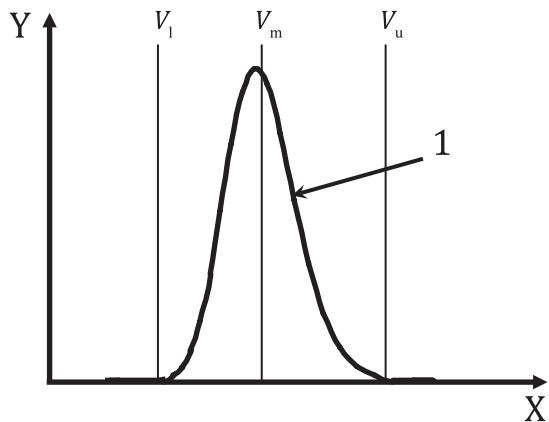
#### 7.1.1 Evaluation of size setting error

Calculate the size setting error,  $\varepsilon$ , according to [Formula \(1\)](#).

$$\varepsilon = \frac{x_i' - x_i}{x_i} \quad (1)$$

where

$x_i$  is the size setting specified for the LSLPC;

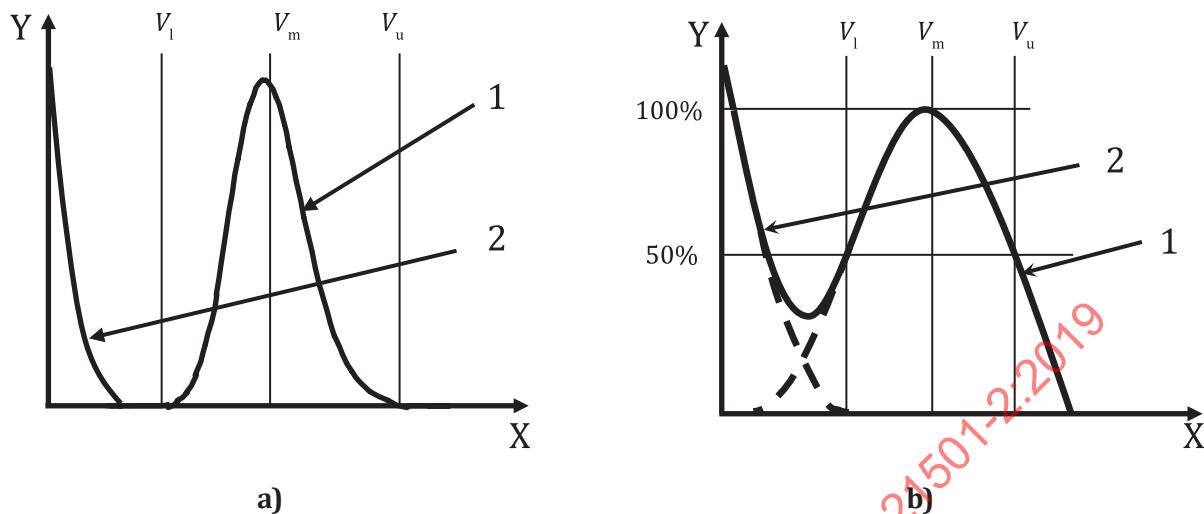

$x_i'$  is the actual size setting corresponding to  $V_{ti}$  (see [7.1.2](#) for the meaning of  $V_{ti}$ ).

#### 7.1.2 Procedure of size setting

By use of a PHA connected to the output terminal for signal pulses of the LSLPC, or by use of a built-in PHA if one is contained as a part of the LSLPC, obtain a pulse height distribution for a sample liquid in which calibration particles are suspended. Let  $V_l$  and  $V_u$  denote the lower and upper voltage limits, respectively, of the range of pulse heights for the calibration particles (see [Figure 2](#)). The median voltage

$V_m$  of the pulse height distribution in the range from  $V_l$  to  $V_u$ , shall be calculated, and is assigned to the certified size of the calibration particles,  $x_c$ .

When a built-in PHA is used, the abscissa of the pulse height distribution may be given in channel number instead of voltage. In this case, the term "voltage" above and in relevant descriptions below should be interpreted as channel number of the PHA.




**Key**

- X pulse height voltage
- Y frequency
- 1 pulse height distribution
- $V_l$  lower voltage limit
- $V_m$  median voltage
- $V_u$  upper voltage limit

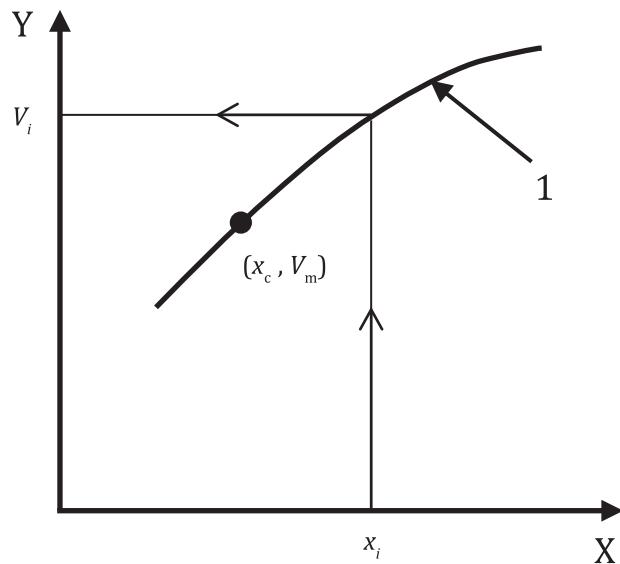
**Figure 2 — Pulse height distribution for the sample liquid**

If a noise distribution is observed in the pulse height distribution, and if it is separated distinctly from the main peak corresponding to the calibration particles, the voltages  $V_l$  and  $V_u$  shall be chosen so that the range ( $V_l$ ,  $V_u$ ) encompasses only the main peak [see [Figure 3 a](#)]. If the noise distribution overlaps with the main peak,  $V_l$  and  $V_u$  shall be chosen so that the range ( $V_l$ ,  $V_u$ ) corresponds to the full width at half maximum of the main peak [see [Figure 3 b](#)]. The latter way of determining  $V_l$  and  $V_u$  is allowed only when the height of the valley between the noise distribution and the main peak is at most half the main peak height.

**Key**

- X pulse height voltage
- Y frequency
- 1 pulse height distribution for calibration particles
- 2 noise distribution (false particles, small particles and/or optical or electrical noises)
- $V_l$  lower voltage limit
- $V_m$  median voltage
- $V_u$  upper voltage limit

**Figure 3 — Pulse height distribution for the sample liquid when noise exists**

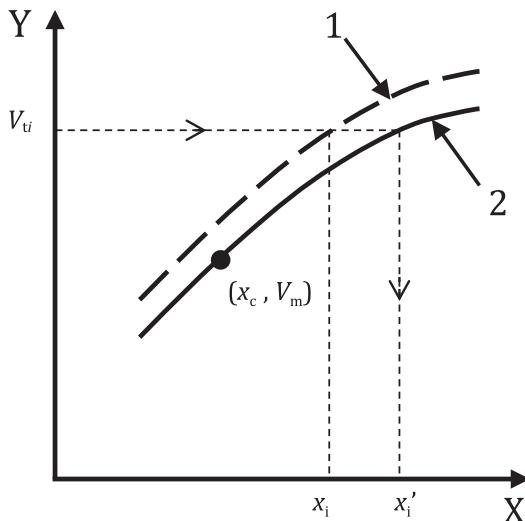

By use of the data pair  $(x_c, V_m)$  obtained in this way, or multiple data pairs  $(x_{cj}, V_{mj})$  ( $j = 1, 2, \dots$ ) obtained similarly for multiple calibration particles, determine the voltage values  $V_i$  ( $i = 1, 2, \dots$ ) that correspond to the size settings (or threshold sizes)  $x_i$  given as specifications of the LSLPC (see [Figure 4](#)). In this determination, a theoretical response curve based on Mie theory may be used to calculate  $V_i$  from experimentally observed  $V_m$ .

Let  $V_{ti}$  denote the adjustable threshold voltage corresponding to  $x_i$ . For all the size settings  $x_i$ , adjust the value of  $V_{ti}$  to  $V_i$ .

**NOTE 1** The response curve can be calculated according to the Mie theory when the parameter set defining the optical system of the LSLPC is available. If the parameter set of the optical system is not available, the response curve in the vicinity of  $x_i$  can still be empirically determined by fitting a simple function, e.g. a quadratic or cubic polynomial, to multiple data pairs  $(x_{cj}, V_{mj})$  obtained for  $x_{cj}$  on either side of  $x_i$ .

**NOTE 2** The detailed procedure for determining  $V_i$  can vary depending on the model of the LSLPC.

**NOTE 3**  $V_{ti}$  can be the set voltage of an electric comparator used in the LSLPC, or if a built-in PHA is used, it can be the threshold channel of the built-in PHA which is intended to be assigned to  $x_i$ . For the sake of simplicity in description, it is assumed that electric comparators are employed in the LSLPC, unless otherwise stated.


**Key**

- X particle size
- Y pulse height voltage
- 1 response curve
- $x_c$  certified size of the calibration particles
- $V_m$  median voltage corresponding to  $x_c$
- $x_i$  size setting specified for the LSLPC
- $V_i$  voltage corresponding to  $x_i$

**Figure 4 — Size calibration**

Read out the value of  $V_{ti}$  set for the electric comparator of the LSLPC. Ideally  $V_{ti}$  corresponds to  $x_i$ , but in reality,  $V_{ti}$  corresponds to a particle size  $x_i'$  which may be different from  $x_i$  owing, for example, to a change of the response curve over time. Determine the actual response curve according to the procedure as described above or to another method which is scientifically documented and determine  $x_i'$  using this curve (see [Figure 5](#)). Calculate the size setting error  $\varepsilon$  according to [Formula \(1\)](#).

NOTE 4 The expected response curve in [Figure 5](#) is a hypothetical curve on which the threshold voltages of the electric comparator,  $V_{ti}$ , would correspond exactly to the specified size thresholds  $x_i$ .

**Key**

- X particle size
- Y pulse height voltage
- 1 expected response curve
- 2 actual response curve
- $x_c$  certified size of the calibration particles
- $V_m$  median voltage corresponding to  $x_c$
- $x_i$  size setting specified for the LSLPC
- $x_i'$  actual size setting corresponding to  $V_{ti}$
- $V_{ti}$  voltage read out from the electric comparator

**Figure 5 — Evaluation of size setting error****7.2 Evaluation of counting efficiency**

To evaluate the counting efficiency of the LSLPC, use two populations of calibration particles; one that has a size close to the minimum detectable particle size, and another that has a size 1,5 to 3 times larger than the minimum detectable particle size.

Tests with other particle sizes may be added, if it is requested by a user of the LSLPC.

Use either a calibrated LSLPC as a reference instrument or a microscopic method. The counting efficiency of the reference instrument shall have a metrological traceability to a national or international standard, or the International System of Units (SI).

Measure the number concentrations of sample liquid suspending each of the two kinds of calibration particles with the LSLPC under test and with the reference instrument (see [Annex A](#)). Determine the counting efficiency according to [Formula \(2\)](#):

$$\eta = \frac{C_1}{C_0} \quad (2)$$

where

$\eta$  is the counting efficiency;

$C_0$  is the particle number concentration measured by reference particle counter or by microscopic method;

$C_1$  is the particle number concentration measured by particle counter under test.

For these measurements, the particle number concentration of the test sample should be equal to or less than 25 % of the maximum particle number concentration of both the LSLPC under test and the reference instrument.

**NOTE** When the particle concentration measured by an LSLPC is, as usually is the case, not corrected for the coincidence loss, the counting efficiency of the LSLPC depends on the particle number concentration stemming from the coincidence loss. If the maximum particle number concentration is so determined that the coincidence loss at this concentration is 0,1 (10 %) (see 6.5), and the counting efficiency  $\eta$  is evaluated at 0,25 (25 %) of this concentration, then the obtained value of  $\eta$  is smaller than the value that would be obtained in the limit of zero concentration by approximately 0,026 (2,6 %).

### 7.3 Evaluation of size resolution

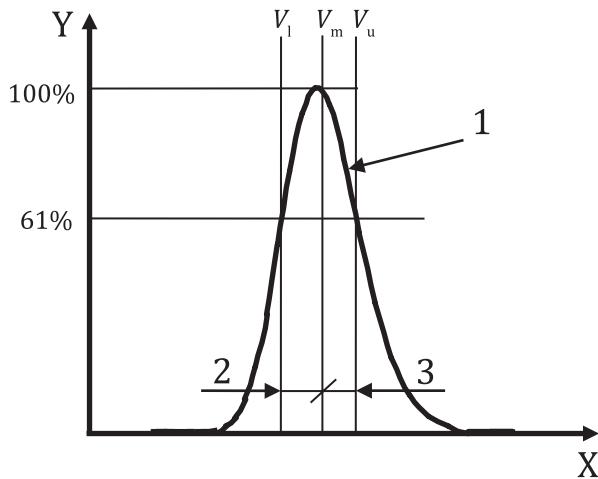
Calculate the size resolution of the LSLPC,  $R$ , by [Formula \(3\)](#) (see also [Annex B](#)).

$$R = \frac{\sqrt{\sigma^2 - \sigma_c^2}}{x_c} \quad (3)$$

where

$R$  is the size resolution;

$\sigma$  is the apparent standard deviation of the size distribution of the calibration particles observed by the LSLPC;


$\sigma_c$  is the standard deviation of the size distribution of the calibration particles provided by the manufacturer of the calibration particles;

$x_c$  is the certified average size of the calibration particles.

**NOTE** Due to the uncertainties in determining  $\sigma$  and  $\sigma_c$ ,  $\sigma^2$  can, in some cases, be smaller than  $\sigma_c^2$ . In such cases, the value of  $R$  is regarded as 0.

The particle size recommended by the manufacturer of the LSLPC should be used for this test. The standard deviation of the calibration particles,  $\sigma_c$ , should be known. It is recommended to determine the median voltage (or channel)  $V_m$  of the pulse height distribution for the calibration particles, as shown in [Figure 6](#), in accordance with the method given in [7.1.2](#).

Determine the lower and upper voltage limits,  $V_l$  and  $V_u$ , which correspond to 61 % of the peak height in the pulse height distribution. Using the calibration curve, determine the particle sizes  $x_l$  and  $x_u$  corresponding respectively to  $V_l$  and  $V_u$ . Calculate the absolute value of the differences,  $|x_l - x_c|$  and  $|x_u - x_c|$ , where  $x_c$  is the certified size of the calibration particles. Let the apparent standard deviation,  $\sigma$ , be equal to the larger one of  $|x_l - x_c|$  and  $|x_u - x_c|$ .

**Key**

- X pulse height voltage (or channel)
- Y frequency
- 1 pulse height distribution for the calibration particles
- 2 lower side resolution
- 3 upper side resolution
- $V_l$  lower voltage limit
- $V_m$  median voltage
- $V_u$  upper voltage limit

**Figure 6 — Verification of size resolution****7.4 Evaluation of false count**

Obtain the particle count at the size channel corresponding to the minimum detectable particle size for a certain volume of particle free liquid to the LSLPC under test. The 95 % UCL of the false count can be calculated according to the procedure given in [Annex C](#). Determine the false count and its 95 % UCL by dividing them by the volume of the sample liquid.

**7.5 Estimation of coincidence loss at the maximum particle number concentration**

The coincidence loss is determined by the flow rate, the time required for particles to pass through the sensing volume and the electrical signal processing time. These values are determined by the design of the LSLPC. Coincidence loss is calculated as in [Formula \(4\)](#).

$$L = 1 - \exp(-q \cdot t_{\text{total}} \cdot C_{\text{max}}) \quad (4)$$

where

$L$  is the coincidence loss at the maximum particle number concentration;

$q$  is the flow rate;

$t_{\text{total}}$  is the sum of the time for a particle to pass through the sensing volume and electrical processing time;

$C_{\text{max}}$  is the maximum particle number concentration.

## 7.6 Evaluation of sampling flow rate error

Obtain a flow rate by the sampling volume (see 7.8) and the sampling time (see 7.7), or use a calibrated flow meter. Calculate the error in the sampling flow rate,  $\varepsilon_q$ , by [Formula \(5\)](#).

$$\varepsilon_q = \frac{q_m - q_s}{q_s} \quad (5)$$

where

$\varepsilon_q$  is the sampling flow rate error;

$q_s$  is the sampling flow rate specified by the manufacturer;

$q_m$  is the measured sampling flow rate.

If the LSLPC does not have a sampling function, this subclause does not apply.

## 7.7 Evaluation of sampling time error

Sampling time is the time during which the LSLPC measures a sample (from the beginning of counting to the end of counting). Calculate the error in the sampling time,  $\varepsilon_t$ , by [Formula \(6\)](#).

$$\varepsilon_t = \frac{t_m - t_0}{t_0} \quad (6)$$

where

$\varepsilon_t$  is the sampling time error;

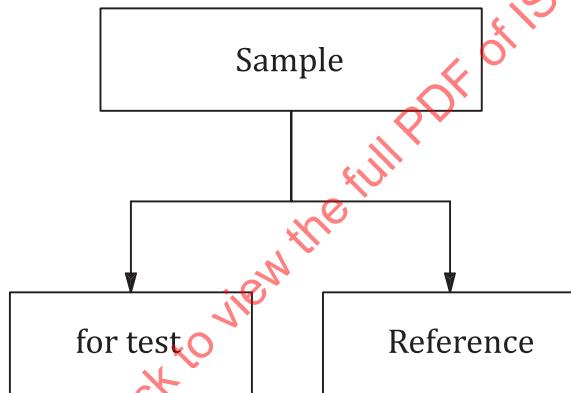
$t_0$  is the sampling time preset to the LSLPC;

$t_m$  is the measured sampling time.

Calibrated instruments should be used for sampling time measurement.

## 7.8 Evaluation of sampling volume error

Measure the sampling volume by weighing the pure water with the balance and converting to volume, or measure the volume by means of a calibrated graduated cylinder.


If the LSLPC does not have a sampling function, this subclause does not apply.

## Annex A (informative)

### Counting efficiency

**Figure A.1** shows the test system for counting efficiency. The sample contains calibration particles in pure water. The counting efficiency of the reference particle counter at the minimum detectable particle size of the particle counter under test shall be 100 %.

The counting efficiency is obtained by calculating the ratio of the particle number concentration measured by the particle counter under test and the particle number concentration measured by the reference particle counter. The particle number concentration of the sample should be less than 25 % of the maximum particle number concentration of both the reference particle counter and the particle counter under test. The counting efficiency of the reference particle counter shall be established by a method of known uncertainty, such as the microscopic method (see method described in JIS B 9925<sup>[2]</sup>).



**Figure A.1** — Example of a counting efficiency test system

## Annex B (informative)

### Size resolution

Size resolution denotes one standard deviation of the measured size distribution of monodisperse calibration particles expressed as the mean size of the monodisperse calibration particles.

If the distribution of calibration particles is assumed to be the Gaussian distribution,

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (\text{B.1})$$

where

$f(x)$  is the Gaussian function;

$x$  is the particle size;

$\mu$  is the mean value;

$\sigma$  is the standard deviation.

when  $(x-\mu)=\pm\sigma$ , the ratio of density to the maximum density is  $\exp\left(-\frac{1}{2}\right) \approx 0,61$ . This is the basis for the use of 61 % in the determination of size resolution.

## Annex C

### (informative)

#### False count rate

The probability of appearance of false counts is assumed to be defined by the Poisson distribution. The Poisson distribution is defined by [Formula \(C.1\)](#):

$$P(X;\lambda) = \frac{e^{-\lambda} \lambda^X}{X!} \quad (C.1)$$

where

$X$  is the number of false counts;

$\lambda$  is the mean value of the population;

$P(X;\lambda)$  is the probability of observing value  $X$  from a population having a mean value of  $\lambda$ .

The upper confidence limit,  $\lambda_u$ , is defined by [Formula \(C.2\)](#):

$$\sum_{x=0}^X P(x;\lambda_u) = \varepsilon \quad (C.2)$$

where  $\varepsilon$  is the significant level.

When the confidence limit is 95 %,  $\varepsilon$  is 0,05.

[Table C.1](#) shows the observed count and the calculated upper and lower 95 % confidence limits. When the observed count is zero, it is possible to have up to three counts with a probability of 5 %. For example, if zero counts are observed in one minute at a sampling flow rate of 100 l/min, the false count rate is three counts in the volume sampled in one minute with a 95 % confidence limit, i.e. the false count is 30 counts per litre.

**Table C.1 — Observed count and 95 % confidence limit**

| Observed count | Upper confidence limit<br>$\lambda_u$ |
|----------------|---------------------------------------|
| 0              | 3                                     |
| 1              | 4,7                                   |
| 2              | 6,3                                   |
| 3              | 7,8                                   |
| 4              | 9,2                                   |
| 5              | 10,5                                  |
| 6              | 11,8                                  |
| 7              | 13,1                                  |
| 8              | 14,4                                  |
| 9              | 15,7                                  |
| 10             | 17,0                                  |

## Annex D

### (informative)

## Procedure for evaluating the uncertainties of the results of the performance tests

### D.1 Basics on measurement uncertainty

In this annex, a recommended procedure is described for evaluating the uncertainties of the results of the tests specified in 7.1 and 7.2 (see Note 1). This procedure follows ISO/IEC Guide 98-3, which is briefly summarized as follows.

Step 1) Identify the relationship between the measurand,  $y$ , and the input quantities,  $x_i$  ( $i = 1, 2, \dots, N$ ):

$$y = f(x_1, x_2, \dots, x_N) \quad (\text{D.1})$$

This functional relationship is called the mathematical model of measurement (see Notes 2, 3).

Step 2) Evaluate the standard uncertainty  $u(x_i)$  of the input quantity  $x_i$  either by Type A or Type B evaluation of uncertainty (see Notes 4, 5).

Step 3) Combine the standard uncertainties of all  $x_i$  values to obtain the combined standard uncertainty of the measurement result,  $u_c(y)$ , according to the following 'law of propagation of uncertainty', (see Notes 6, 7).

$$u_c(y) = \sqrt{\sum_{i=1}^N \left( \frac{\partial f}{\partial x_i} u(x_i) \right)^2} \quad (\text{D.2})$$

Step 4) When necessary, the expanded uncertainty  $U$  is calculated according to [Formula \(D.3\)](#):

$$U = k \times u_c(y) \quad (\text{D.3})$$

where  $k$  is the coverage factor. In this standard,  $k = 2$  is consistently used for simplicity (see Note 8).

**NOTE 1** The uncertainty components considered in this annex are those relevant to the tests specified in the main body of this document. These components are considered to cover major factors that can affect measurements of particles in the real environment, but are not intended to cover all of them. Additional factors that are not considered in this annex include the difference in optical properties between test particles and particles in the real environment, and the uncertainty associated with the determination of theoretical response functions.

**NOTE 2** Input quantity is a quantity whose value is used to determine the result of measurement, or a quantity that can otherwise affect a measurement result.

**NOTE 3** Although the quantities,  $Y$  and  $X_i$ , and their estimates,  $y$  and  $x_i$ , are represented by different symbols in ISO/IEC Guide 98-3, the same symbols are used here, as far as there is no risk of confusion.

**NOTE 4** If the estimate of a quantity  $x_i$  is obtained from  $x_i = \bar{q}$ , where  $\bar{q}$  is the mean of a series of observations,  $q_k$  ( $k = 1, 2, \dots, n$ ), then the standard uncertainty of  $x_i$  is evaluated as

$$u(x_i) = \frac{s}{\sqrt{n}} \quad (\text{D.4})$$