INTERNATIONAL STANDARD

ISO 11413

Second edition 2008-12-15

Plastics pipes and fittings Preparation of test piece assemblies between a polyethylene (PE) pipe and an electrofusion fitting

Tubes et raccords en matières plastiques — Préparation d'éprouvettes par assemblage tube/raccord électrosoudable en polyéthylène (PE)

Lichard de le ctrosoudable en polyéthylène (PE)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft international Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11413 was prepared by Technical Committee ISO/TC 138. Plastics pipes, fittings and valves for the transport of fluids, Subcommittee SC 5, General properties of pipes, fittings and valves of plastic materials and their accessories — Test methods and basic specifications.

This second edition cancels and replaces the first edition (ISO 11413:1996), which has been technically revised.

© ISO 2008 – All rights reserved iii

STANDARDS 150 COM. Click to view the full PDF of 150 1/14/3:2008

Plastics pipes and fittings — Preparation of test piece assemblies between a polyethylene (PE) pipe and an electrofusion fitting

1 Scope

This International Standard specifies a method for the preparation of test pieces assembled from polyethylene (PE) pipes or spigot-ended fittings and electrofusion fittings (e.g. socket fittings such as couplers, or saddles).

The assembly criteria specified include parameters such as ambient temperature, fusion conditions, fitting and pipe dimensions, pipe configuration (coiled or straight pipe), taking into account the limiting service conditions specified by the relevant product standards.

This International Standard can apply to other shapes, e.g. re-rounded pipes, dependent on the manufacturer's instructions.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4427-2, Plastics piping systems — Polyethylene (PE) pipes and fittings for water supply — Part 2: Pipes

ISO 4427-3, Plastics piping systems Polyethylene (PE) pipes and fittings for water supply — Part 3: Fittings

ISO 4437, Buried polyethylene (PE) pipes for the supply of gaseous fuels — Metric series — Specifications

ISO 8085-2, Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 2: Spigot fittings for butt fusion, for socket fusion using heated tools and for use with electrofusion fittings

ISO 8085-3. Rolyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications — Part 3: Electrofusion fittings

ISO 14531-1, Plastics pipes and fittings — Crosslinked polyethylene (PE-X) pipe systems for the conveyance of gaseous fuels — Metric series — Specifications — Part 1: Pipes

ISO 15494, Plastics piping systems for industrial applications — Polybutene (PB), polyethylene (PE) and polypropylene (PP) — Specifications for components and the system — Metric series

© ISO 2008 – All rights reserved

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

reference time

 t_{R}

theoretical fusion time indicated by the fitting manufacturer for the reference ambient temperature

3.2

fusion energy

electrical energy supplied during the fusion-jointing cycle as measured at the terminals of the fitting at a given ambient temperature, $T_{\rm a}$, and for electrical parameters whose values lie within the tolerance ranges stated by the manufacturer

NOTE 1 The fitting manufacturer is generally required to state in the technical file any variations in fusion energy input required as a function of the ambient temperature in the range T_{\min} to T_{\max} .

NOTE 2 Where applicable, energy measurement should exclude the effect of terminal contact resistance.

3.3

reference energy

energy supplied to a fitting having a nominal electrical resistance and using the nominal fusion parameters defined by the manufacturer at the reference ambient temperature, $T_{\rm R}$

3.4

maximum energy

maximum value of the fusion energy supplied for jointing at a given ambient temperature, T_a

3.5

minimum energy

minimum value of the fusion energy supplied for jointing at a given ambient temperature, T_a

3.6

nominal energy

nominal energy supplied for jointing at given ambient temperature, T_a

4 Symbols

4.1 General symbols (see Figure A.1)

 D_{im} mean inside diameter of the fusion zone of a fitting in the radial plane located a distance L_3 + 0,5 L_2 from the face of the fitting socket

 $D_{\text{im,max}}$ maximum theoretical value of D_{im} , as stated by the fitting manufacturer

 $D_{i,max}$ maximum inside diameter of the fusion zone of the fitting

 $D_{i,min}$ minimum inside diameter of the fusion zone of the fitting

 $d_{\rm e}$ outside diameter of a pipe or fitting spigot

 $d_{\rm em}$ mean outside diameter of a pipe or fitting spigot in conformity with the relevant International Standard for the product concerned and calculated from the measured circumference

- $d_{\mathrm{em,p}}$ mean outside diameter of a pipe or fitting spigot after preparation for assembly with the outer layer removed by scraping or peeling and calculated from the circumference measured in a radial plane coincident with the centre of the fusion zone at a distance L_3 + 0,5 L_2 from the face of the fitting socket after assembly
- L_2 nominal length of the fusion zone as indicated by the fitting manufacturer
- L_3 nominal distance from the face of the fitting socket to the leading edge of the fusion zone
- $e_{\rm n}$ nominal wall thickness, in millimetres, of the pipe
- $e_{
 m s}$ depth of scraping or the thickness of material removed from the pipe surface by peeling

4.2 Clearances

4.2.1 Socket fittings

 C_1 clearance between fitting bore and outside diameter of unscraped pipe

$$C_1 = D_{\text{im}} - d_{\text{em}}$$

 C_2 clearance between fitting bore and outside diameter of scraped pipe

$$C_2 = C_1 + 2e_s$$

NOTE 1 C_2 may be obtained by machining the unscraped pipe to bring its mean outside diameter d_{em} to the value $d_{em,p}$ calculated from the equation (see also Note to 5.1):

$$d_{\text{em,p}} = D_{\text{im}} - C_2$$

C₃ maximum theoretical clearance between fitting bore and outside diameter of unscraped pipe

$$C_3 = D_{\text{im,max}} - d_{\text{e}}$$

 C_4 maximum theoretical clearance between fitting bore and outside diameter of scraped pipe

$$C_4 = C_3 + 2e_8$$

NOTE 2 C_4 can be obtained by machining the unscraped pipe to bring its mean outside diameter $d_{\rm em}$ to the value $d_{\rm em,p}$ calculated from the equation:

$$d_{\text{em,p}} = D_{\text{im}} - C_{\text{op}}$$

4.2.2 Saddles

The clearance between saddle fittings and pipes is assumed to be zero.

4.3 Ambient temperature

- $T_{\rm a}$ ambient temperature at which a joint is made
- NOTE The ambient temperature may vary from the minimum temperature, T_{\min} , to the maximum temperature, T_{\max} , as specified either in the product standard or by agreement between the manufacturer and the purchaser.
- $T_{\rm R}$ reference ambient temperature of (23 ± 2) °C
- T_{max} maximum permitted ambient temperature for joint assembly
- T_{\min} minimum permitted ambient temperature for joint assembly

5 Joint assembly

5.1 General

The joints shall be made using pipes and/or spigot-ended fittings conforming to ISO 4427-2, ISO 4427-3, ISO 4437, ISO 8085-2, ISO 8085-3, ISO 14531-1, ISO 15494 or other standards, as applicable, e.g. standards for pipe renovation, and electrofusion fittings for which the dimensions conform to ISO 8085-3 or ISO 4427-3, or other standards, as applicable. Unless otherwise specified, the pipes selected for the assembly shall be of the same pressure rating as the fitting. The preparation of the assembly for testing shall be carried out in accordance with the electrofusion fitting manufacturer's written procedures.

Unless a greater scraping depth is recommended by the manufacturer, the minimum scraping depth be 0,2 mm.

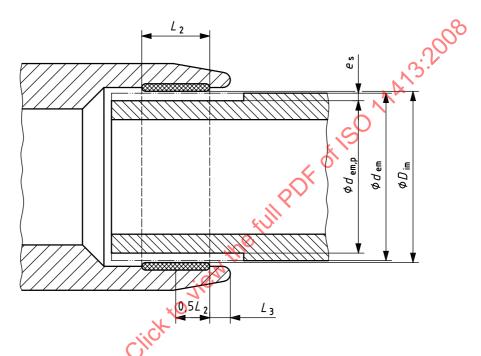
NOTE In cases where the pipes do not need to be scraped, the minimum scraping depth, e_s , may be zero

5.2 Procedure

Carry out the following procedure, where steps d) and f) shall be carried out in a temperature-controlled environment maintaining the temperature to within \pm 2 °C and large enough to contain the fitting, the pipes and the holding apparatus. Fittings shall not be used within 170 h of manufacture.

- a) Measure, at the reference temperature T_R , the parts to be joined to determine the dimensional characteristics defined in 4.1 and illustrated in Figure A.1.
- b) Prepare the pipes to achieve the necessary clearance conditions, at the reference temperature T_{R} , as given in 4.2.
- c) Mount the fitting on the pipes in accordance with the manufacturer's instructions.
- d) Condition the assembly and the associated apparatus for a period conforming to Table 1 at the applicable ambient temperature T_a specified in Annex C.

()			
Nominal wall thickness,	Minimum conditioning period		
mm Ç	h		
e _n < 3	1		
3 ~ 8	3		
$8 \le e_{\rm n} < 16$	6		
$8 \leqslant e_{n} < 16$ $16 \leqslant e_{n} < 32$ $32 \leqslant e_{n}$	10		
$32 \leqslant e_{n}$	16		


Table 1 — Conditioning periods

- e) After conditioning, if applicable according to Annex C, measure the resistance of the heating coil and determine the values of the electrical parameters in accordance with Annex D. The procedure for measuring the coil resistance implies the use of measuring equipment at the reference ambient temperature T_{R} with the fitting at the conditioning temperature.
- f) With the assembly conditioned at ambient temperature $T_{\rm a}$, carry out the fusion jointing in accordance with the fitting manufacturer's instructions at the energy levels indicated in Annex C.
- g) Leave the joint to cool until it reaches ambient temperature.
- Proceed to the tests as given in the relevant product standards.

Annex A

(normative)

Symbols for dimensions of an electrofusion socket

Key

 L_2 nominal length of the fusion zone

 L_3 length of the unheated section of the socket

 $D_{\text{im}} = (D_{\text{i,max}} + D_{\text{i,min}})/2$

 $d_{\text{em}} = C/\pi$ where C is the circumference of the unscraped pipe

 $d_{\text{em,p}}$ (by analogy) = C_p/π where C_p is the circumference of the pipe to be assembled with the fitting

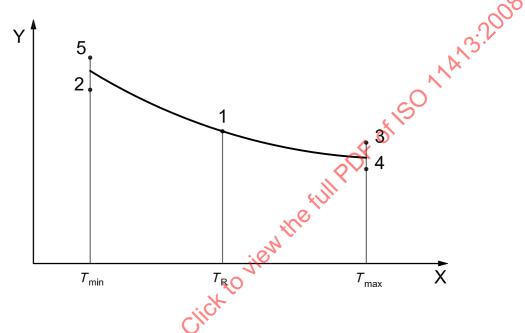
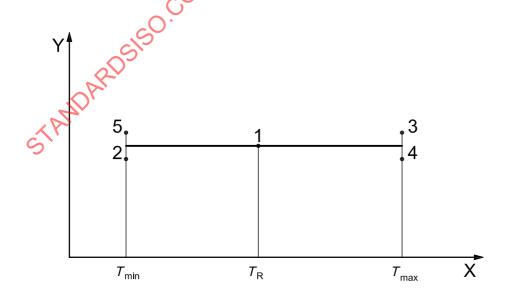

 $e_{\rm s}$ = $(d_{\rm em} - d_{\rm em,p})/2$

Figure A.1 — Dimensions of an electrofusion socket

Annex B (normative)

Diagrammatic representation of variation in fusion energy with ambient temperature


Figures B.1 and B.2 illustrate different forms of energy profile (see also Annex C).

Key

- X temperature
- Y fusion energy

Figure B.1 — Profile with continuous adjustment of energy

Key

- X temperature
- Y fusion energy

Figure B.2 — Constant-energy profile

Annex C

(normative)

Conditions for the preparation of pipes and fittings

Table C.1 — Conditions for pipe and fitting preparation

Set of conditions	Ambient temperature, $T_{\rm a}$	Pipe configuration ^a	Clearance b	Energy	Assembly load ^c
1	T_{R}	Coiled or straight pipe as supplied	C_2	reference	usual ^d
2.1	T_{min}	Straight pipe	C ₄	nominal	usual ^d
2.2	T_{min}	Straight pipe	C_4	minimum	minimum
3.1	$T_{\sf max}$	Straight pipe	(Z)	nominal	usual ^d
3.2	$T_{\sf max}$	Straight pipe	C_2	maximum	maximum
4	$T_{\sf max}$	Straight pipe	C_4	minimum	minimum
5	$T_{\sf min}$	Coiled or straight pipe as supplied	C_2	maximum	maximum

NOTE Sets of conditions 1 to 5 are applicable to the energy profiles illustrated in Figures B.1 and B.2.

7

^a Other shapes, e.g. re-rounded pipes, shall be treated as straight pipes.

In the case of saddles, the clearance shall be considered to be zero.

Applicable to joints with saddles, where the load can be controlled.

In accordance with the manufacturer's instructions.

Annex D

(informative)

Determination of fusion-jointing electrical parameters using energy, voltage and current tolerances from ISO 12176-2

D.1 Maximum energy input at ambient temperature, T_a

$$V_{\text{max}} \sqrt{R/R_{\text{min}}}$$

$$I_{\text{max}} \sqrt{R_{\text{max}}/R}$$

is the manufacturer's stated minimum fitting resistance, in ohms, at T_R ; R_{\min}

is the manufacturer's stated maximum fitting resistance, in ohms, at T_R ; R_{max}

is the resistance, measured using a four-arm resistance bridge with the performance R characteristics specified in Table D.1, of the fitting conditioned at the ambient temperature T_a specified for jointing.

The procedure for measuring the coil resistance implies the use of measuring equipment at the reference ambient temperature of (23 ± 2) °C, conditioning of the fitting at T_{max} or T_{min} and measurement of the resistance of the coil of the fitting within 30 s of removal from the conditioning enclosure.

D.2 Minimum energy input at ambient temperature, T_a

For control boxes using energy control, the energy is the nominal energy minus the tolerance

For control boxes using voltage control, the applied voltage is given by the formula

$$V_{\min} \sqrt{R/R_{\max}}$$

For control boxes using current control, the applied current is given by the formula

$$I_{\min} \sqrt{R_{\min}/R}$$

where

is the minimum control-box output voltage, in volts (nominal – tolerance); V_{min}

is the minimum control-box output current, in amperes (nominal – tolerance); I_{\min}