

Reference number
ISO/IEC TR 24731-1:2007(E)

© ISO/IEC 2007

TECHNICAL
REPORT

ISO/IEC
TR

24731-1

First edition
2007-09-01

Information technology — Programming
languages, their environments and
system software interfaces — Extensions
to the C library
Part 1:
Bounds-checking interfaces

Technologies de l'information — Langages de programmation, leurs
environnements et leurs systèmes d'interface de logiciel — Extensions
à la bibliothèque C —

Partie 1: Interfaces des contrôles des bornes

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

© ISO/IEC 2007 – All rights reserved iii

 Contents
Foreword .. v

Introduction .. vi

1. Scope ... 1

2. Normative references .. 1

3. Terms, definitions, and symbols .. 2

4. Conformance ... 2

5. Predefined macro names ... 2

6. Library ... 3
6.1 Introduction .. 3

6.1.1 Standard headers .. 3
6.1.2 Reserved identifiers .. 4
6.1.3 Use of errno .. 4
6.1.4 Runtime-constraint violations .. 4

6.2 Errors <errno.h> ... 5
6.3 Common definitions <stddef.h> .. 6
6.4 Integer types <stdint.h> .. 7
6.5 Input/output <stdio.h> ... 8

6.5.1 Operations on files ... 8
6.5.2 File access functions .. 10
6.5.3 Formatted input/output functions ... 13
6.5.4 Character input/output functions .. 26

6.6 General utilities <stdlib.h> ... 28
6.6.1 Runtime-constraint handling .. 28
6.6.2 Communication with the environment ... 30
6.6.3 Searching and sorting utilities .. 31
6.6.4 Multibyte/wide character conversion functions 34
6.6.5 Multibyte/wide string conversion functions ... 35

6.7 String handling <string.h> .. 39
6.7.1 Copying functions .. 39
6.7.2 Concatenation functions ... 43
6.7.3 Search functions ... 45
6.7.4 Miscellaneous functions ... 47

6.8 Date and time <time.h> ... 49
6.8.1 Components of time ... 49
6.8.2 Time conversion functions ... 49

6.9 Extended multibyte and wide character utilities <wchar.h> 53
6.9.1 Formatted wide character input/output functions 53
6.9.2 General wide string utilities ... 64

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

iv © ISO/IEC 2007 – All rights reserved

6.9.3 Extended multibyte/wide character conversion utilities 73

Bibliography ... 78

Index ... 79

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

© ISO/IEC 2007 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is normally
published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24731-1, which is a Technical Report of type 2, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

ISO/IEC 24731 consists of the following part, under the general title Information technology —
Programming languages, their environments and system software interfaces — Extensions to the C library:

⎯ Part 1: Bounds-checking interfaces [Technical Report]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

vi © ISO/IEC 2007 – All rights reserved

 Introduction
Traditionally, the C library has contained many functions that trust the programmer to
provide output character arrays big enough to hold the result being produced. Not only
do these functions not check that the arrays are big enough, they frequently lack the
information needed to perform such checks. While it is possible to write safe, robust, and
error-free code using the existing library, the library tends to promote programming styles
that lead to mysterious failures if a result is too big for the provided array.

A common programming style is to declare character arrays large enough to handle most
practical cases. However, if these arrays are not large enough to handle the resulting
strings, data can be written past the end of the array overwriting other data and program
structures. The program never gets any indication that a problem exists, and so never has
a chance to recover or to fail gracefully.

Worse, this style of programming has compromised the security of computers and
networks. Buffer overflows can often be exploited to run arbitrary code with the
permissions of the vulnerable (defective) program.

If the programmer writes runtime checks to verify lengths before calling library
functions, then those runtime checks frequently duplicate work done inside the library
functions, which discover string lengths as a side effect of doing their job.

This Technical Report provides alternative functions for the C library that promote safer,
more secure programming. The functions verify that output buffers are large enough for
the intended result and return a failure indicator if they are not. Data is never written past
the end of an array. All string results are null terminated.

This Technical Report also addresses another problem that complicates writing robust
code: functions that are not re-entrant because they return pointers to static objects owned
by the function. Such functions can be troublesome since a previously returned result can
change if the function is called again, perhaps by another thread.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

1. Scope
This Technical Report specifies a series of extensions of the programming language C,
specified by International Standard ISO/IEC 9899:1999. These extensions can be useful
in the mitigation of security vulnerabilities in programs, and consist of a new predefined
macro, and new functions, macros, and types declared or defined in existing standard
headers.

International Standard ISO/IEC 9899:1999 provides important context and specification
for this Technical Report. Clauses 3 and 4 of this Technical Report are to be read as if
they were merged into Clauses 3 and 4 of ISO/IEC 9899:1999. Clause 5 of this Technical
Report is to be read as if it were merged into Subclause 6.10.8 of ISO/IEC 9899:1999.
Clause 6 of this Technical Report is to be read as if it were merged into the parallel
structure of named Subclauses of Clause 7 of ISO/IEC 9899:1999. Statements made in
ISO/IEC 9899:1999, whether about the language or library, apply to this Technical
Report unless a corresponding section of this Technical Report states otherwise. In
particular, Subclause 7.1.4 ("Use of library functions") of ISO/IEC 9899:1999 applies to
this Technical Report.

2. Normative references
The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9899:1999, Programming languages — C

ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C — Technical Corrigendum 1

ISO/IEC 9899:1999/Cor.2:2004, Programming languages — C — Technical Corrigendum 2

ISO 31−11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology

ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms

©ISO/IEC 2007 — All rights reserved 1

TECHNICAL REPORT ISO/IEC TR 24731-1:2007(E)

Information technology — Programming languages, their
environments and system software interfaces —
Extensions to the C library —

Part 1:
Bounds-checking interfaces

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

3. Terms, definitions, and symbols
For the purposes of this document, the terms and definitions given in ISO/IEC 9899:1999,
ISO/IEC 2382−1, and the following apply. Other terms are defined where they appear in
italic type. Mathematical symbols not defined in this Technical Report are to be
interpreted according to ISO 31−11.

3.1
runtime-constraint
requirement on a program when calling a library function

NOTE 1 Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by
ISO/IEC 9899:1999, Subclause 3.8, and need not be diagnosed at translation time.

NOTE 2 Implementations verify that the runtime-constraints for a library function are not violated by the
program. See Subclause 6.1.4.

4. Conformance
If a ‘‘shall’’ or ‘‘shall not’’ requirement that appears outside of a constraint or runtime-
constraint is violated, the behavior is undefined.

5. Predefined macro names
The following macro name is conditionally defined by the implementation:

__STDC_LIB_EXT1_ _ The integer constant 200509L, intended to indicate
conformance to this Technical Report.1)

1) The intention is that this will remain an integer constant of type long int that is increased with

each revision of this Technical Report.

2 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6. Library

6.1 Introduction

6.1.1 Standard headers

The functions, macros, and types declared or defined in Clause 6 and its subclauses are
not declared or defined by their respective headers if __STDC_WANT_LIB_EXT1_ _ is
defined as a macro which expands to the integer constant 0 at the point in the source file
where the appropriate header is included.

The functions, macros, and types declared or defined in Clause 6 and its subclauses are
declared and defined by their respective headers if __STDC_WANT_LIB_EXT1_ _ is
defined as a macro which expands to the integer constant 1 at the point in the source file
where the appropriate header is included.2)

It is implementation-defined whether the functions, macros, and types declared or defined
in Clause 6 and its subclauses are declared or defined by their respective headers if
__STDC_WANT_LIB_EXT1_ _ is not defined as a macro at the point in the source file
where the appropriate header is included.3)

Within a preprocessing translation unit, __STDC_WANT_LIB_EXT1_ _ shall be
defined identically for all inclusions of any headers from Clause 6. If
__STDC_WANT_LIB_EXT1_ _ is defined differently for any such inclusion, the
implementation shall issue a diagnostic as if a preprocessor error directive was used.

2) Future revisions of this Technical Report may define meanings for other values of

__STDC_WANT_LIB_EXT1_ _.

3) Subclause 7.1.3 of ISO/IEC 9899:1999 reserves certain names and patterns of names that an

implementation may use in headers. All other names are not reserved, and a conforming

implementation may not use them. While some of the names defined in Clause 6 and its subclauses

are reserved, others are not. If an unreserved name is defined in a header when

__STDC_WANT_LIB_EXT1_ _ is not defined, then the implementation is not conforming.

©ISO/IEC 2007 — All rights reserved 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.1.2 Reserved identifiers

Each macro name in any of the following subclauses is reserved for use as specified if it
is defined by any of its associated headers when included; unless explicitly stated
otherwise (see ISO/IEC 9899:1999 Subclause 7.1.4).

All identifiers with external linkage in any of the following subclauses are reserved for
use as identifiers with external linkage if any of them are used by the program. None of
them are reserved if none of them are used.

Each identifier with file scope listed in any of the following subclauses is reserved for use
as a macro name and as an identifier with file scope in the same name space if it is
defined by any of its associated headers when included.

6.1.3 Use of errno

An implementation may set errno for the functions defined in this Technical Report, but
is not required to.

6.1.4 Runtime-constraint violations

Most functions in this Technical Report include as part of their specification a list of
runtime-constraints. These runtime-constraints are requirements on the program using
the library.4)

Implementations shall verify that the runtime-constraints for a function are not violated
by the program. If a runtime-constraint is violated, the implementation shall call the
currently registered runtime-constraint handler (see set_constraint_handler_s
in <stdlib.h>). Multiple runtime-constraint violations in the same call to a library
function result in only one call to the runtime-constraint handler. It is unspecified which
one of the multiple runtime-constraint violations cause the handler to be called.

If the runtime-constraints section for a function states an action to be performed when a
runtime-constraint violation occurs, the function shall perform the action before calling
the runtime-constraint handler. If the runtime-constraints section lists actions that are
prohibited when a runtime-constraint violation occurs, then such actions are prohibited to
the function both before calling the handler and after the handler returns.

The runtime-constraint handler might not return. If the handler does return, the library
function whose runtime-constraint was violated shall return some indication of failure as
given by the returns section in the function’s specification.

4) Although runtime-constraints replace many cases of undefined behavior from International Standard
ISO/IEC 9899:1999, undefined behavior still exists in this Technical Report. Implementations are free
to detect any case of undefined behavior and treat it as a runtime-constraint violation by calling the
runtime-constraint handler. This license comes directly from the definition of undefined behavior.

4 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.2 Errors <errno.h>

The header <errno.h> defines a type.

The type is

errno_t

which is type int.5)

5) As a matter of programming style, errno_t may be used as the type of something that deals only

with the values that might be found in errno. For example, a function which returns the value of

errno might be declared as having the return type errno_t.

©ISO/IEC 2007 — All rights reserved 5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.3 Common definitions <stddef.h>

The header <stddef.h> defines a type.

The type is

rsize_t

which is the type size_t.6)

6) See the description of the RSIZE_MAX macro in <stdint.h>.

6 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.4 Integer types <stdint.h>

The header <stdint.h> defines a macro.

The macro is

RSIZE_MAX

which expands to a value7) of type size_t. Functions that have parameters of type
rsize_t consider it a runtime-constraint violation if the values of those parameters are
greater than RSIZE_MAX.

Recommended practice

Extremely large object sizes are frequently a sign that an object’s size was calculated
incorrectly. For example, negative numbers appear as very large positive numbers when
converted to an unsigned type like size_t. Also, some implementations do not support
objects as large as the maximum value that can be represented by type size_t.

For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect
programming errors. For implementations targeting machines with large address spaces,
it is recommended that RSIZE_MAX be defined as the smaller of the size of the largest
object supported or (SIZE_MAX >> 1), even if this limit is smaller than the size of
some legitimate, but very large, objects. Implementations targeting machines with small
address spaces may wish to define RSIZE_MAX as SIZE_MAX, which means that there
is no object size that is considered a runtime-constraint violation.

7) The macro RSIZE_MAX need not expand to a constant expression.

©ISO/IEC 2007 — All rights reserved 7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5 Input/output <stdio.h>

The header <stdio.h> defines several macros and two types.

The macros are

L_tmpnam_s

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the tmpnam_s
function;

TMP_MAX_S

which expands to an integer constant expression that is the maximum number of unique
file names that can be generated by the tmpnam_s function.

The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

6.5.1 Operations on files

6.5.1.1 The tmpfile_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
errno_t tmpfile_s(FILE * restrict * restrict streamptr);

Runtime-constraints

streamptr shall not be a null pointer.

If there is a runtime-constraint violation, tmpfile_s does not attempt to create a file.

Description

The tmpfile_s function creates a temporary binary file that is different from any other
existing file and that will automatically be removed when it is closed or at program
termination. If the program terminates abnormally, whether an open temporary file is
removed is implementation-defined. The file is opened for update with "wb+" mode
with the meaning that mode has in the fopen_s function (including the mode’s effect
on exclusive access and file permissions).

8 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

will be set to the pointer to the object controlling the opened file. Otherwise, the pointer
to FILE pointed to by streamptr will be set to a null pointer.

Recommended practice

It should be possible to open at least TMP_MAX_S temporary files during the lifetime of
the program (this limit may be shared with tmpnam_s) and there should be no limit on
the number simultaneously open other than this limit and any limit on the number of open
files (FOPEN_MAX).

Returns

The tmpfile_s function returns zero if it created the file. If it did not create the file or
there was a runtime-constraint violation, tmpfile_s returns a non-zero value.

6.5.1.2 The tmpnam_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
errno_t tmpnam_s(char *s, rsize_t maxsize);

Runtime-constraints

s shall not be a null pointer. maxsize shall be less than or equal to RSIZE_MAX.
maxsize shall be greater than the length of the generated file name string.

Description

The tmpnam_s function generates a string that is a valid file name and that is not the
same as the name of an existing file.8) The function is potentially capable of generating
TMP_MAX_S different strings, but any or all of them may already be in use by existing
files and thus not be suitable return values. The lengths of these strings shall be less than
the value of the L_tmpnam_s macro.

The tmpnam_s function generates a different string each time it is called.

8) Files created using strings generated by the tmpnam_s function are temporary only in the sense that
their names should not collide with those generated by conventional naming rules for the
implementation. It is still necessary to use the remove function to remove such files when their use
is ended, and before program termination. Implementations should take care in choosing the patterns
used for names returned by tmpnam_s. For example, making a thread id part of the names avoids the
race condition and possible conflict when multiple programs run simultaneously by the same user
generate the same temporary file names.

©ISO/IEC 2007 — All rights reserved 9

If the file was created successfully, then the pointer to FILE pointed to by streamptr

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

set to generated string, as specified below.

The implementation shall behave as if no library function except tmpnam calls the
tmpnam_s function.9)

Recommended practice

After a program obtains a file name using the tmpnam_s function and before the
program creates a file with that name, the possibility exists that someone else may create
a file with that same name. To avoid this race condition, the tmpfile_s function
should be used instead of tmpnam_s when possible. One situation that requires the use
of the tmpnam_s function is when the program needs to create a temporary directory
rather than a temporary file.

Returns

If no suitable string can be generated, or if there is a runtime-constraint violation, the
tmpnam_s function writes a null character to s[0] (only if s is not null and maxsize
is greater than zero) and returns a non-zero value.

Otherwise, the tmpnam_s function writes the string in the array pointed to by s and
returns zero.

Environmental limits

The value of the macro TMP_MAX_S shall be at least 25.

6.5.2 File access functions

6.5.2.1 The fopen_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
errno_t fopen_s(FILE * restrict * restrict streamptr,

const char * restrict filename,
const char * restrict mode);

Runtime-constraints

None of streamptr, filename, or mode shall be a null pointer.

9) An implementation may have tmpnam call tmpnam_s (perhaps so there is only one naming
convention for temporary files), but this is not required.

10 ©ISO/IEC 2007 — All rights reserved

It is assumed that s points to an array of at least maxsize characters. This array will be

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

null pointer.

Description

The fopen_s function opens the file whose name is the string pointed to by
filename, and associates a stream with it.

The mode string shall be as described for fopen, with the addition that modes starting
with the character ’w’ or ’a’ may be preceded by the character ’u’, see below:

uw truncate to zero length or create text file for writing, default permissions
ua append; open or create text file for writing at end-of-file, default permissions
uwb truncate to zero length or create binary file for writing, default permissions
uab append; open or create binary file for writing at end-of-file, default

permissions
uw+ truncate to zero length or create text file for update, default permissions
ua+ append; open or create text file for update, writing at end-of-file, default

permissions
uw+b or uwb+ truncate to zero length or create binary file for update, default

permissions
ua+b or uab+ append; open or create binary file for update, writing at end-of-file,

default permissions

To the extent that the underlying system supports the concepts, files opened for writing
shall be opened with exclusive (also known as non-shared) access. If the file is being
created, and the first character of the mode string is not ’u’, to the extent that the
underlying system supports it, the file shall have a file permission that prevents other
users on the system from accessing the file. If the file is being created and first character
of the mode string is ’u’, then by the time the file has been closed, it shall have the
system default file access permissions.10)

If the file was opened successfully, then the pointer to FILE pointed to by streamptr
will be set to the pointer to the object controlling the opened file. Otherwise, the pointer
to FILE pointed to by streamptr will be set to a null pointer.

Returns

The fopen_s function returns zero if it opened the file. If it did not open the file or if
there was a runtime-constraint violation, fopen_s returns a non-zero value.

10) These are the same permissions that the file would have been created with by fopen.

©ISO/IEC 2007 — All rights reserved 11

If there is a runtime-constraint violation, fopen_s does not attempt to open a file.
Furthermore, if streamptr is not a null pointer, fopen_s sets *streamptr to the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.2.2 The freopen_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
errno_t freopen_s(FILE * restrict * restrict newstreamptr,

const char * restrict filename,
const char * restrict mode,
FILE * restrict stream);

Runtime-constraints

None of newstreamptr, mode, and stream shall be a null pointer.

If there is a runtime-constraint violation, freopen_s neither attempts to close any file
associated with stream nor attempts to open a file. Furthermore, if newstreamptr is
not a null pointer, fopen_s sets *newstreamptr to the null pointer.

Description

The freopen_s function opens the file whose name is the string pointed to by
filename and associates the stream pointed to by stream with it. The mode
argument has the same meaning as in the fopen_s function (including the mode’s effect
on exclusive access and file permissions).

If filename is a null pointer, the freopen_s function attempts to change the mode of
the stream to that specified by mode, as if the name of the file currently associated with
the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances.

The freopen_s function first attempts to close any file that is associated with stream.
Failure to close the file is ignored. The error and end-of-file indicators for the stream are
cleared.

If the file was opened successfully, then the pointer to FILE pointed to by
newstreamptr will be set to the value of stream. Otherwise, the pointer to FILE
pointed to by newstreamptr will be set to a null pointer.

Returns

The freopen_s function returns zero if it opened the file. If it did not open the file or
there was a runtime-constraint violation, freopen_s returns a non-zero value.

12 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3 Formatted input/output functions

Unless explicitly stated otherwise, if the execution of a function described in this
subclause causes copying to take place between objects that overlap, the objects take on
unspecified values.

6.5.3.1 The fprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int fprintf_s(FILE * restrict stream,

const char * restrict format, ...);

Runtime-constraints

Neither stream nor format shall be a null pointer. The %n specifier11) (modified or
not by flags, field width, or precision) shall not appear in the string pointed to by
format. Any argument to fprintf_s corresponding to a %s specifier shall not be a
null pointer.

If there is a runtime-constraint violation,12) the fprintf_s function does not attempt to
produce further output, and it is unspecified to what extent fprintf_s produced output
before discovering the runtime-constraint violation.

Description

The fprintf_s function is equivalent to the fprintf function except for the explicit
runtime-constraints listed above.

Returns

The fprintf_s function returns the number of characters transmitted, or a negative
value if an output error, encoding error, or runtime-constraint violation occurred.

11) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed

at by format when those characters are not a interpreted as a %n specifier. For example, if the entire

format string was %%n.

12) Because an implementation may treat any undefined behavior as a runtime-constraint violation, an

implementation may treat any unsupported specifiers in the string pointed to by format as a runtime-

constraint violation.

©ISO/IEC 2007 — All rights reserved 13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.2 The fscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int fscanf_s(FILE * restrict stream,

const char * restrict format, ...);

Runtime-constraints

Neither stream nor format shall be a null pointer. Any argument indirected though in
order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation,13) the fscanf_s function does not attempt to
perform further input, and it is unspecified to what extent fscanf_s performed input
before discovering the runtime-constraint violation.

Description

The fscanf_s function is equivalent to fscanf except that the c, s, and [conversion
specifiers apply to a pair of arguments (unless assignment suppression is indicated by a
*). The first of these arguments is the same as for fscanf. That argument is
immediately followed in the argument list by the second argument, which has type
rsize_t and gives the number of elements in the array pointed to by the first argument
of the pair. If the first argument points to a scalar object, it is considered to be an array of
one element.14)

A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

13) Because an implementation may treat any undefined behavior as a runtime-constraint violation, an

implementation may treat any unsupported specifiers in the string pointed to by format as a runtime-

constraint violation.

14) If the format is known at translation time, an implementation may issue a diagnostic for any argument

used to store the result from a c, s, or [conversion specifier if that argument is not followed by an

argument of a type compatible with rsize_t. A limited amount of checking may be done if even if

the format is not known at translation time. For example, an implementation may issue a diagnostic

for each argument after format that has of type pointer to one of char, signed char,

unsigned char, or void that is not followed by an argument of a type compatible with

rsize_t. The diagnostic could warn that unless the pointer is being used with a conversion specifier

using the hh length modifier, a length argument must follow the pointer argument. Another useful

diagnostic could flag any non-pointer argument following format that did not have a type

compatible with rsize_t.

14 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The fscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
fscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

EXAMPLE 1 The call:

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf_s(stdin, "%d%f%s", &i, &x, name, (rsize_t) 50);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence
thompson\0.

EXAMPLE 2 The call:

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
/* ... */
int n; char s[5];
n = fscanf_s(stdin, "%s", s, sizeof s);

with the input line:

hello

will assign to n the value 0 since a matching failure occurred because the sequence hello\0 requires an
array of six characters to store it.

6.5.3.3 The printf_s function
Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int printf_s(const char * restrict format, ...);

15) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed
at by format when those characters are not a interpreted as a %n specifier. For example, if the entire
format string was %%n.

©ISO/IEC 2007 — All rights reserved 15

to printf_s corresponding to a %s specifier shall not be a null pointer.

Runtime-constraints

format shall not be a null pointer. The %n specifier15) (modified or not by flags, field
width, or precision) shall not appear in the string pointed to by format. Any argument

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

If there is a runtime-constraint violation, the printf_s function does not attempt to
produce further output, and it is unspecified to what extent printf_s produced output
before discovering the runtime-constraint violation.

Description

The printf_s function is equivalent to the printf function except for the explicit
runtime-constraints listed above.

Returns

The printf_s function returns the number of characters transmitted, or a negative
value if an output error, encoding error, or runtime-constraint violation occurred.

6.5.3.4 The scanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int scanf_s(const char * restrict format, ...);

Runtime-constraints

format shall not be a null pointer. Any argument indirected though in order to store
converted input shall not be a null pointer.

If there is a runtime-constraint violation, the scanf_s function does not attempt to
perform further input, and it is unspecified to what extent scanf_s performed input
before discovering the runtime-constraint violation.

Description

The scanf_s function is equivalent to fscanf_s with the argument stdin
interposed before the arguments to scanf_s.

Returns

The scanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
scanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

16 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.5 The snprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int snprintf_s(char * restrict s, rsize_t n,

const char * restrict format, ...);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The %n specifier16) (modified or not by flags, field width, or
precision) shall not appear in the string pointed to by format. Any argument to
snprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding
error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the snprintf_s function sets s[0] to the
null character.

Description

The snprintf_s function is equivalent to the snprintf function except for the
explicit runtime-constraints listed above.

The snprintf_s function, unlike sprintf_s, will truncate the result to fit within the
array pointed to by s.

Returns

The snprintf_s function returns the number of characters that would have been
written had n been sufficiently large, not counting the terminating null character, or a
negative value if a runtime-constraint violation occurred. Thus, the null-terminated
output has been completely written if and only if the returned value is nonnegative and
less than n.

16) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed

at by format when those characters are not a interpreted as a %n specifier. For example, if the entire

format string was %%n.

©ISO/IEC 2007 — All rights reserved 17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.6 The sprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int sprintf_s(char * restrict s, rsize_t n,

const char * restrict format, ...);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The number of characters (including the trailing null) required for the
result to be written to the array pointed to by s shall not be greater than n. The %n
specifier17) (modified or not by flags, field width, or precision) shall not appear in the
string pointed to by format. Any argument to sprintf_s corresponding to a %s
specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the sprintf_s function sets s[0] to the
null character.

Description

The sprintf_s function is equivalent to the sprintf function except for the
parameter n and the explicit runtime-constraints listed above.

The sprintf_s function, unlike snprintf_s, treats a result too big for the array
pointed to by s as a runtime-constraint violation.

Returns

If no runtime-constraint violation occurred, the sprintf_s function returns the number
of characters written in the array, not counting the terminating null character. If an
encoding error occurred, sprintf_s returns a negative value. If any other runtime-
constraint violation occurred, sprintf_s returns zero.

17) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed

at by format when those characters are not a interpreted as a %n specifier. For example, if the entire

format string was %%n.

18 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.7 The sscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
int sscanf_s(const char * restrict s,

const char * restrict format, ...);

Runtime-constraints

Neither s nor format shall be a null pointer. Any argument indirected though in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the sscanf_s function does not attempt to
perform further input, and it is unspecified to what extent sscanf_s performed input
before discovering the runtime-constraint violation.

Description

The sscanf_s function is equivalent to fscanf_s, except that input is obtained from
a string (specified by the argument s) rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for the fscanf_s function. If copying
takes place between objects that overlap, the objects take on unspecified values.

Returns

The sscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
sscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

6.5.3.8 The vfprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vfprintf_s(FILE * restrict stream,

const char * restrict format,
va_list arg);

©ISO/IEC 2007 — All rights reserved 19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

null pointer.

If there is a runtime-constraint violation, the vfprintf_s function does not attempt to
produce further output, and it is unspecified to what extent vfprintf_s produced
output before discovering the runtime-constraint violation.

Description

The vfprintf_s function is equivalent to the vfprintf function except for the
explicit runtime-constraints listed above.

Returns

The vfprintf_s function returns the number of characters transmitted, or a negative
value if an output error, encoding error, or runtime-constraint violation occurred.

6.5.3.9 The vfscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s(FILE * restrict stream,

const char * restrict format,
va_list arg);

Runtime-constraints

Neither stream nor format shall be a null pointer. Any argument indirected though in
order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vfscanf_s function does not attempt to
perform further input, and it is unspecified to what extent vfscanf_s performed input
before discovering the runtime-constraint violation.

18) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed
at by format when those characters are not a interpreted as a %n specifier. For example, if the entire
format string was %%n.

20 ©ISO/IEC 2007 — All rights reserved

format. Any argument to vfprintf_s corresponding to a %s specifier shall not be a

Runtime-constraints

Neither stream nor format shall be a null pointer. The %n specifier18) (modified or
not by flags, field width, or precision) shall not appear in the string pointed to by

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The vfscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
vfscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

6.5.3.10 The vprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vprintf_s(const char * restrict format,

va_list arg);

Runtime-constraints

format shall not be a null pointer. The %n specifier20) (modified or not by flags, field
width, or precision) shall not appear in the string pointed to by format. Any argument
to vprintf_s corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the vprintf_s function does not attempt to
produce further output, and it is unspecified to what extent vprintf_s produced output
before discovering the runtime-constraint violation.

Description

The vprintf_s function is equivalent to the vprintf function except for the explicit
runtime-constraints listed above.

19) As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s,

vsprintf_s, and vsscanf_s invoke the va_arg macro, the value of arg after the return is

indeterminate.

20) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed

at by format when those characters are not a interpreted as a %n specifier. For example, if the entire

format string was %%n.

©ISO/IEC 2007 — All rights reserved 21

Description

The vfscanf_s function is equivalent to fscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfscanf_s function does not invoke the
va_end macro.19)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.11 The vscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vscanf_s(const char * restrict format,

va_list arg);

Runtime-constraints

format shall not be a null pointer. Any argument indirected though in order to store
converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vscanf_s function does not attempt to
perform further input, and it is unspecified to what extent vscanf_s performed input
before discovering the runtime-constraint violation.

Description

The vscanf_s function is equivalent to scanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vscanf_s function does not invoke the
va_end macro.21)

Returns

The vscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
vscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

21) As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s,

vsprintf_s, and vsscanf_s invoke the va_arg macro, the value of arg after the return is

indeterminate.

22 ©ISO/IEC 2007 — All rights reserved

Returns

The vprintf_s function returns the number of characters transmitted, or a negative
value if an output error, encoding error, or runtime-constraint violation occurred.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.12 The vsnprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vsnprintf_s(char * restrict s, rsize_t n,

const char * restrict format,
va_list arg);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The %n specifier22) (modified or not by flags, field width, or
precision) shall not appear in the string pointed to by format. Any argument to
vsnprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding
error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the vsnprintf_s function sets s[0] to the
null character.

Description

The vsnprintf_s function is equivalent to the vsnprintf function except for the
explicit runtime-constraints listed above.

The vsnprintf_s function, unlike vsprintf_s, will truncate the result to fit within
the array pointed to by s.

Returns

The vsnprintf_s function returns the number of characters that would have been
written had n been sufficiently large, not counting the terminating null character, or a
negative value if a runtime-constraint violation occurred. Thus, the null-terminated
output has been completely written if and only if the returned value is nonnegative and
less than n.

22) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed

at by format when those characters are not a interpreted as a %n specifier. For example, if the entire

format string was %%n.

©ISO/IEC 2007 — All rights reserved 23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.13 The vsprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vsprintf_s(char * restrict s, rsize_t n,

const char * restrict format,
va_list arg);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The number of characters (including the trailing null) required for the
result to be written to the array pointed to by s shall not be greater than n. The %n
specifier23) (modified or not by flags, field width, or precision) shall not appear in the
string pointed to by format. Any argument to vsprintf_s corresponding to a %s
specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the vsprintf_s function sets s[0] to the
null character.

Description

The vsprintf_s function is equivalent to the vsprintf function except for the
parameter n and the explicit runtime-constraints listed above.

The vsprintf_s function, unlike vsnprintf_s, treats a result too big for the array
pointed to by s as a runtime-constraint violation.

Returns

If no runtime-constraint violation occurred, the vsprintf_s function returns the
number of characters written in the array, not counting the terminating null character. If
an encoding error occurred, vsprintf_s returns a negative value. If any other
runtime-constraint violation occurred, vsprintf_s returns zero.

23) It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed

at by format when those characters are not a interpreted as a %n specifier. For example, if the entire

format string was %%n.

24 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.3.14 The vsscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vsscanf_s(const char * restrict s,

const char * restrict format,
va_list arg);

Runtime-constraints

Neither s nor format shall be a null pointer. Any argument indirected though in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vsscanf_s function does not attempt to
perform further input, and it is unspecified to what extent vsscanf_s performed input
before discovering the runtime-constraint violation.

Description

The vsscanf_s function is equivalent to sscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vsscanf_s function does not invoke the
va_end macro.24)

Returns

The vsscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
vscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

24) As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s,

vsprintf_s, and vsscanf_s invoke the va_arg macro, the value of arg after the return is

indeterminate.

©ISO/IEC 2007 — All rights reserved 25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.5.4 Character input/output functions

6.5.4.1 The gets_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
char *gets_s(char *s, rsize_t n);

Runtime-constraints

s shall not be a null pointer. n shall neither be equal to zero nor be greater than
RSIZE_MAX. A new-line character, end-of-file, or read error shall occur within reading
n-1 characters from stdin.25)

If there is a runtime-constraint violation, s[0] is set to the null character, and characters
are read and discarded from stdin until a new-line character is read, or end-of-file or a
read error occurs.

Description

The gets_s function reads at most one less than the number of characters specified by n
from the stream pointed to by stdin, into the array pointed to by s. No additional
characters are read after a new-line character (which is discarded) or after end-of-file.
The discarded new-line character does not count towards number of characters read. A
null character is written immediately after the last character read into the array.

If end-of-file is encountered and no characters have been read into the array, or if a read
error occurs during the operation, then s[0] is set to the null character, and the other
elements of s take unspecified values.

Recommended practice

The fgets function allows properly-written programs to safely process input lines too
long to store in the result array. In general this requires that callers of fgets pay
attention to the presence or absence of a new-line character in the result array. Consider
using fgets (along with any needed processing based on new-line characters) instead of
gets_s.

25) The gets_s function, unlike gets, makes it a runtime-constraint violation for a line of input to

overflow the buffer to store it. Unlike fgets, gets_s maintains a one-to-one relationship between

input lines and successful calls to gets_s. Programs that use gets expect such a relationship.

26 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The gets_s function returns s if successful. If there was a runtime-constraint violation,
or if end-of-file is encountered and no characters have been read into the array, or if a
read error occurs during the operation, then a null pointer is returned.

©ISO/IEC 2007 — All rights reserved 27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.6 General utilities <stdlib.h>

The header <stdlib.h> defines three types.

The types are

errno_t

which is type int; and

rsize_t

which is the type size_t; and

constraint_handler_t

which has the following definition

typedef void (*constraint_handler_t)(
const char * restrict msg,
void * restrict ptr,
errno_t error);

6.6.1 Runtime-constraint handling

6.6.1.1 The set_constraint_handler_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
constraint_handler_t set_constraint_handler_s(

constraint_handler_t handler);

Description

The set_constraint_handler_s function sets the runtime-constraint handler to
be handler. The runtime-constraint handler is the function to be called when a library
function detects a runtime-constraint violation. Only the most recent handler registered
with set_constraint_handler_s is called when a runtime-constraint violation
occurs.

When the handler is called, it is passed the following arguments in the following order:

1. A pointer to a character string describing the runtime-constraint violation.

2. A null pointer or a pointer to an implementation defined object.

3. If the function calling the handler has a return type declared as errno_t, the
return value of the function is passed. Otherwise, a positive value of type
errno_t is passed.

28 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

The implementation has a default constraint handler that is used if no calls to the
set_constraint_handler_s function have been made. The behavior of the
default handler is implementation-defined, and it may cause the program to exit or abort.

If the handler argument to set_constraint_handler_s is a null pointer, the
implementation default handler becomes the current constraint handler.

Returns

The set_constraint_handler_s function returns a pointer to the previously
registered handler.26)

6.6.1.2 The abort_handler_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
void abort_handler_s(

const char * restrict msg,
void * restrict ptr,
errno_t error);

Description

A pointer to the abort_handler_s function shall be a suitable argument to the
set_constraint_handler_s function.

The abort_handler_s function writes a message on the standard error stream in an
implementation-defined format. The message shall include the string pointed to by msg.
The abort_handler_s function then calls the abort function.27)

Returns

The abort_handler_s function does not return to its caller.

26) If the previous handler was registered by calling set_constraint_handler_s with a null

pointer argument, a pointer to the implementation default handler is returned (not NULL).

27) Many implementations invoke a debugger when the abort function is called.

©ISO/IEC 2007 — All rights reserved 29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.6.1.3 The ignore_handler_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
void ignore_handler_s(

const char * restrict msg,
void * restrict ptr,
errno_t error);

Description

A pointer to the ignore_handler_s function shall be a suitable argument to the
set_constraint_handler_s function.

The ignore_handler_s function simply returns to its caller.28)

Returns

The ignore_handler_s function returns no value.

6.6.2 Communication with the environment

6.6.2.1 The getenv_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
errno_t getenv_s(size_t * restrict len,

char * restrict value, rsize_t maxsize,
const char * restrict name);

Runtime-constraints

name shall not be a null pointer. maxsize shall neither equal zero nor be greater than
RSIZE_MAX. If maxsize is not equal to zero, then value shall not be a null pointer.

If there is a runtime-constraint violation, the integer pointed to by len is set to 0 (if len
is not null), and the environment list is not searched.

28) If the runtime-constraint handler is set to the ignore_handler_s function, any library function in

which a runtime-constraint violation occurs will return to its caller. The caller can determine whether

a runtime-constraint violation occurred based on the library function’s specification (usually, the

library function returns a non-zero errno_t).

30 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Description

The getenv_s function searches an environment list, provided by the host environment,
for a string that matches the string pointed to by name.

If that name is found then getenv_s performs the following actions. If len is not a
null pointer, the length of the string associated with the matched list member is stored in
the integer pointed to by len. If the length of the associated string is less than maxsize,
then the associated string is copied to the array pointed to by value.

If that name is not found then getenv_s performs the following actions. If len is not
a null pointer, zero is stored in the integer pointed to by len. If maxsize is greater than
zero, then value[0] is set to the null character.

The set of environment names and the method for altering the environment list are
implementation-defined.

Returns

The getenv_s function returns zero if the specified name is found and the associated
string was successfully stored in value. Otherwise, a non-zero value is returned.

6.6.3 Searching and sorting utilities

These utilities make use of a comparison function to search or sort arrays of unspecified
type. Where an argument declared as size_t nmemb specifies the length of the array
for a function, if nmemb has the value zero on a call to that function, then the comparison
function is not called, a search finds no matching element, sorting performs no
rearrangement, and the pointer to the array may be null.

The implementation shall ensure that the second argument of the comparison function
(when called from bsearch_s), or both arguments (when called from qsort_s), are
pointers to elements of the array.29) The first argument when called from bsearch_s
shall equal key.

The comparison function shall not alter the contents of either the array or search key. The
implementation may reorder elements of the array between calls to the comparison
function, but shall not otherwise alter the contents of any individual element.

When the same objects (consisting of size bytes, irrespective of their current positions
in the array) are passed more than once to the comparison function, the results shall be

29) That is, if the value passed is p, then the following expressions are always valid and nonzero:
((char *)p - (char *)base) % size == 0

(char *)p >= (char *)base

(char *)p < (char *)base + nmemb * size

©ISO/IEC 2007 — All rights reserved 31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

consistent with one another. That is, for qsort_s they shall define a total ordering on
the array, and for bsearch_s the same object shall always compare the same way with
the key.

A sequence point occurs immediately before and immediately after each call to the
comparison function, and also between any call to the comparison function and any
movement of the objects passed as arguments to that call.

6.6.3.1 The bsearch_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
void *bsearch_s(const void *key, const void *base,

rsize_t nmemb, rsize_t size,
int (*compar)(const void *k, const void *y,

void *context),
void *context);

Runtime-constraints

Neither nmemb nor size shall be greater than RSIZE_MAX. If nmemb is not equal to
zero, then none of key, base, or compar shall be a null pointer.

If there is a runtime-constraint violation, the bsearch_s function does not search the
array.

Description

The bsearch_s function searches an array of nmemb objects, the initial element of
which is pointed to by base, for an element that matches the object pointed to by key.
The size of each element of the array is specified by size.

The comparison function pointed to by compar is called with three arguments. The first
two point to the key object and to an array element, in that order. The function shall
return an integer less than, equal to, or greater than zero if the key object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array
shall consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater than the key object, in that order.30)

30) In practice, this means that the entire array has been sorted according to the comparison function.

32 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The bsearch_s function returns a pointer to a matching element of the array, or a null
pointer if no match is found or there is a runtime-constraint violation. If two elements
compare as equal, which element is matched is unspecified.

6.6.3.2 The qsort_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
errno_t qsort_s(void *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *x, const void *y,
void *context),

void *context);

Runtime-constraints

Neither nmemb nor size shall be greater than RSIZE_MAX. If nmemb is not equal to
zero, then neither base nor compar shall be a null pointer.

If there is a runtime-constraint violation, the qsort_s function does not sort the array.

Description

The qsort_s function sorts an array of nmemb objects, the initial element of which is
pointed to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison
function pointed to by compar, which is called with three arguments. The first two
point to the objects being compared. The function shall return an integer less than, equal
to, or greater than zero if the first argument is considered to be respectively less than,
equal to, or greater than the second. The third argument to the comparison function is the
context argument passed to qsort_s. The sole use of context by qsort_s is to
pass it to the comparison function.32)

31) The context argument is for the use of the comparison function in performing its duties. For
example, it might specify a collating sequence used by the comparison function.

32) The context argument is for the use of the comparison function in performing its duties. For
example, it might specify a collating sequence used by the comparison function.

©ISO/IEC 2007 — All rights reserved 33

The third argument to the comparison function is the context argument passed to
bsearch_s. The sole use of context by bsearch_s is to pass it to the comparison
function.31)

If two elements compare as equal, their relative order in the resulting sorted array is
unspecified.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The qsort_s function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

6.6.4 Multibyte/wide character conversion functions

The behavior of the multibyte character functions is affected by the LC_CTYPE category
of the current locale. For a state-dependent encoding, each function is placed into its
initial conversion state by a call for which its character pointer argument, s, is a null
pointer. Subsequent calls with s as other than a null pointer cause the internal conversion
state of the function to be altered as necessary. A call with s as a null pointer causes
these functions to set the int pointed to by their status argument to a nonzero value if
encodings have state dependency, and zero otherwise.33) Changing the LC_CTYPE
category causes the conversion state of these functions to be indeterminate.

6.6.4.1 The wctomb_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdlib.h>
errno_t wctomb_s(int * restrict status,

char * restrict s,
rsize_t smax,
wchar_t wc);

Runtime-constraints

Let n denote the number of bytes needed to represent the multibyte character
corresponding to the wide character given by wc (including any shift sequences).

If s is not a null pointer, then smax shall not be less than n, and smax shall not be
greater than RSIZE_MAX. If s is a null pointer, then smax shall equal zero.

If there is a runtime-constraint violation, wctomb_s does not modify the int pointed to
by status, and if s is not a null pointer, no more than smax elements in the array
pointed to by s will be accessed.

Description

The wctomb_s function determines n and stores the multibyte character representation
of wc in the array whose first element is pointed to by s (if s is not a null pointer). The
number of characters stored never exceeds MB_CUR_MAX or smax. If wc is a null wide

33) If the locale employs special bytes to change the shift state, these bytes do not produce separate wide
character codes, but are grouped with an adjacent multibyte character.

34 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

character, a null byte is stored, preceded by any shift sequence needed to restore the
initial shift state, and the function is left in the initial conversion state.

The implementation shall behave as if no library function calls the wctomb_s function.

If s is a null pointer, the wctomb_s function stores into the int pointed to by status a
nonzero or zero value, if multibyte character encodings, respectively, do or do not have
state-dependent encodings.

If s is not a null pointer, the wctomb_s function stores into the int pointed to by
status either n or −1 if wc, respectively, does or does not correspond to a valid
multibyte character.

In no case will the int pointed to by status be set to a value greater than the
MB_CUR_MAX macro.

Returns

The wctomb_s function returns zero if successful, and a non-zero value if there was a
runtime-constraint violation or wc did not correspond to a valid multibyte character.

6.6.5 Multibyte/wide string conversion functions

The behavior of the multibyte string functions is affected by the LC_CTYPE category of
the current locale.

6.6.5.1 The mbstowcs_s function

Synopsis

#include <stdlib.h>
errno_t mbstowcs_s(size_t * restrict retval,

wchar_t * restrict dst, rsize_t dstmax,
const char * restrict src, rsize_t len);

Runtime-constraints

Neither retval nor src shall be a null pointer. If dst is not a null pointer, then
neither len nor dstmax shall be greater than RSIZE_MAX. If dst is a null pointer,
then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal
zero. If dst is not a null pointer and len is not less than dstmax, then a null character
shall occur within the first dstmax multibyte characters of the array pointed to by src.

If there is a runtime-constraint violation, then mbstowcs_s does the following. If
retval is not a null pointer, then mbstowcs_s sets *retval to (size_t)(-1). If
dst is not a null pointer and dstmax is greater than zero and less than RSIZE_MAX,
then mbstowcs_s sets dst[0] to the null wide character.

©ISO/IEC 2007 — All rights reserved 35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Description

The mbstowcs_s function converts a sequence of multibyte characters that begins in
the initial shift state from the array pointed to by src into a sequence of corresponding
wide characters. If dst is not a null pointer, the converted characters are stored into the
array pointed to by dst. Conversion continues up to and including a terminating null
character, which is also stored. Conversion stops earlier in two cases: when a sequence of
bytes is encountered that does not form a valid multibyte character, or (if dst is not a
null pointer) when len wide characters have been stored into the array pointed to by
dst.34) If dst is not a null pointer and no null wide character was stored into the array
pointed to by dst, then dst[len] is set to the null wide character. Each conversion
takes place as if by a call to the mbrtowc function.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a
sequence of bytes that do not form a valid multibyte character, an encoding error occurs:
the mbstowcs_s function stores the value (size_t)(-1) into *retval.
Otherwise, the mbstowcs_s function stores into *retval the number of multibyte
characters successfully converted, not including the terminating null character (if any).

All elements following the terminating null wide character (if any) written by
mbstowcs_s in the array of dstmax wide characters pointed to by dst take
unspecified values when mbstowcs_s returns.35)

If copying takes place between objects that overlap, the objects take on unspecified
values.

Returns

The mbstowcs_s function returns zero if no runtime-constraint violation and no
encoding error occurred. Otherwise, a non-zero value is returned.

6.6.5.2 The wcstombs_s function

Synopsis

#include <stdlib.h>
errno_t wcstombs_s(size_t * restrict retval,

char * restrict dst, rsize_t dstmax,
const wchar_t * restrict src, rsize_t len);

34) Thus, the value of len is ignored if dst is a null pointer.

35) This allows an implementation to attempt converting the multibyte string before discovering a

terminating null character did not occur where required.

36 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Runtime-constraints

Neither retval nor src shall be a null pointer. If dst is not a null pointer, then
neither len nor dstmax shall be greater than RSIZE_MAX. If dst is a null pointer,
then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal
zero. If dst is not a null pointer and len is not less than dstmax, then the conversion
shall have been stopped (see below) because a terminating null wide character was
reached or because an encoding error occurred.

If there is a runtime-constraint violation, then wcstombs_s does the following. If
retval is not a null pointer, then wcstombs_s sets *retval to (size_t)(-1). If
dst is not a null pointer and dstmax is greater than zero and less than RSIZE_MAX,
then wcstombs_s sets dst[0] to the null character.

Description

The wcstombs_s function converts a sequence of wide characters from the array
pointed to by src into a sequence of corresponding multibyte characters that begins in
the initial shift state. If dst is not a null pointer, the converted characters are then stored
into the array pointed to by dst. Conversion continues up to and including a terminating
null wide character, which is also stored. Conversion stops earlier in two cases:

— when a wide character is reached that does not correspond to a valid multibyte
character;

— (if dst is not a null pointer) when the next multibyte character would exceed the
limit of n total bytes to be stored into the array pointed to by dst. If the wide
character being converted is the null wide character, then n is the lesser of len or
dstmax. Otherwise, n is the lesser of len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null
pointer, then a null character is stored into the array pointed to by dst immediately
following any multibyte characters already stored. Each conversion takes place as if by a
call to the wcrtomb function.36)

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a
wide character that does not correspond to a valid multibyte character, an encoding error
occurs: the wcstombs_s function stores the value (size_t)(-1) into *retval.
Otherwise, the wcstombs_s function stores into *retval the number of bytes in the
resulting multibyte character sequence, not including the terminating null character (if
any).

36) If conversion stops because a terminating null wide character has been reached, the bytes stored

include those necessary to reach the initial shift state immediately before the null byte. However, if

the conversion stops before a terminating null wide character has been reached, the result will be null

terminated, but might not end in the initial shift state.

©ISO/IEC 2007 — All rights reserved 37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

All elements following the terminating null character (if any) written by wcstombs_s
in the array of dstmax elements pointed to by dst take unspecified values when
wcstombs_s returns.37)

If copying takes place between objects that overlap, the objects take on unspecified
values.

Returns

The wcstombs_s function returns zero if no runtime-constraint violation and no
encoding error occurred. Otherwise, a non-zero value is returned.

37) When len is not less than dstmax, the implementation might fill the array before discovering a

runtime-constraint violation.

38 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.7 String handling <string.h>

The header <string.h> defines two types.

The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

6.7.1 Copying functions

6.7.1.1 The memcpy_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t memcpy_s(void * restrict s1, rsize_t s1max,

const void * restrict s2, rsize_t n);

Runtime-constraints

Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than
RSIZE_MAX. n shall not be greater than s1max. Copying shall not take place between
objects that overlap.

If there is a runtime-constraint violation, the memcpy_s function stores zeros in the first
s1max characters of the object pointed to by s1 if s1 is not a null pointer and s1max is
not greater than RSIZE_MAX.

Description

The memcpy_s function copies n characters from the object pointed to by s2 into the
object pointed to by s1.

Returns

The memcpy_s function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

©ISO/IEC 2007 — All rights reserved 39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.7.1.2 The memmove_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t memmove_s(void *s1, rsize_t s1max,

const void *s2, rsize_t n);

Runtime-constraints

Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than
RSIZE_MAX. n shall not be greater than s1max.

If there is a runtime-constraint violation, the memmove_s function stores zeros in the
first s1max characters of the object pointed to by s1 if s1 is not a null pointer and
s1max is not greater than RSIZE_MAX.

Description

The memmove_s function copies n characters from the object pointed to by s2 into the
object pointed to by s1. This copying takes place as if the n characters from the object
pointed to by s2 are first copied into a temporary array of n characters that does not
overlap the objects pointed to by s1 or s2, and then the n characters from the temporary
array are copied into the object pointed to by s1.

Returns

The memmove_s function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

6.7.1.3 The strcpy_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t strcpy_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2);

Runtime-constraints

Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX.
s1max shall not equal zero. s1max shall be greater than strnlen_s(s2, s1max).
Copying shall not take place between objects that overlap.

40 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

null character.

Description

The strcpy_s function copies the string pointed to by s2 (including the terminating
null character) into the array pointed to by s1.

All elements following the terminating null character (if any) written by strcpy_s in
the array of s1max characters pointed to by s1 take unspecified values when
strcpy_s returns.38)

Returns

The strcpy_s function returns zero39) if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

6.7.1.4 The strncpy_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t strncpy_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2,
rsize_t n);

Runtime-constraints

Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than
RSIZE_MAX. s1max shall not equal zero. If n is not less than s1max, then s1max
shall be greater than strnlen_s(s2, s1max). Copying shall not take place between
objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is
greater than zero and not greater than RSIZE_MAX, then strncpy_s sets s1[0] to the
null character.

38) This allows an implementation to copy characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

39) A zero return value implies that all of the requested characters from the string pointed to by s2 fit

within the array pointed to by s1 and that the result in s1 is null terminated.

©ISO/IEC 2007 — All rights reserved 41

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is
greater than zero and not greater than RSIZE_MAX, then strcpy_s sets s1[0] to the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Description

The strncpy_s function copies not more than n successive characters (characters that
follow a null character are not copied) from the array pointed to by s2 to the array
pointed to by s1. If no null character was copied from s2, then s1[n] is set to a null
character.

All elements following the terminating null character (if any) written by strncpy_s in
the array of s1max characters pointed to by s1 take unspecified values when
strncpy_s returns.40)

Returns

The strncpy_s function returns zero41) if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

EXAMPLE 1 The strncpy_s function can be used to copy a string without the danger that the result
will not be null terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
/* ... */
char src1[100] = "hello";
char src2[7] = {’g’, ’o’, ’o’, ’d’, ’b’, ’y’, ’e’};
char dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = strncpy_s(dst1, 6, src1, 100);
r2 = strncpy_s(dst2, 5, src2, 7);
r3 = strncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence hello\0.
The second call will assign to r2 a non-zero value and to dst2 the sequence \0.
The third call will assign to r3 the value zero and to dst3 the sequence good\0.

40) This allows an implementation to copy characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

41) A zero return value implies that all of the requested characters from the string pointed to by s2 fit

within the array pointed to by s1 and that the result in s1 is null terminated.

42 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.7.2 Concatenation functions

6.7.2.1 The strcat_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t strcat_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2);

Runtime-constraints

Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to
strcat_s.

Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX.
s1max shall not equal zero. m shall not equal zero.42) m shall be greater than
strnlen_s(s2, m). Copying shall not take place between objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is
greater than zero and not greater than RSIZE_MAX, then strcat_s sets s1[0] to the
null character.

Description

The strcat_s function appends a copy of the string pointed to by s2 (including the
terminating null character) to the end of the string pointed to by s1. The initial character
from s2 overwrites the null character at the end of s1.

All elements following the terminating null character (if any) written by strcat_s in
the array of s1max characters pointed to by s1 take unspecified values when
strcat_s returns.43)

Returns

The strcat_s function returns zero44) if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

42) Zero means that s1 was not null terminated upon entry to strcat_s.

43) This allows an implementation to append characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

44) A zero return value implies that all of the requested characters from the string pointed to by s2 were

appended to the string pointed to by s1 and that the result in s1 is null terminated.

©ISO/IEC 2007 — All rights reserved 43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.7.2.2 The strncat_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t strncat_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2,
rsize_t n);

Runtime-constraints

Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to
strncat_s.

Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than
RSIZE_MAX. s1max shall not equal zero. m shall not equal zero.45) If n is not less than
m, then m shall be greater than strnlen_s(s2, m). Copying shall not take place
between objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is
greater than zero and not greater than RSIZE_MAX, then strncat_s sets s1[0] to the
null character.

Description

The strncat_s function appends not more than n successive characters (characters
that follow a null character are not copied) from the array pointed to by s2 to the end of
the string pointed to by s1. The initial character from s2 overwrites the null character at
the end of s1. If no null character was copied from s2, then s1[s1max-m+n] is set to
a null character.

All elements following the terminating null character (if any) written by strncat_s in
the array of s1max characters pointed to by s1 take unspecified values when
strncat_s returns.46)

45) Zero means that s1 was not null terminated upon entry to strncat_s.

46) This allows an implementation to append characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

44 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

EXAMPLE 1 The strncat_s function can be used to copy a string without the danger that the result
will not be null terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
/* ... */
char s1[100] = "good";
char s2[6] = "hello";
char s3[6] = "hello";
char s4[7] = "abc";
char s5[1000] = "bye";
int r1, r2, r3, r4;
r1 = strncat_s(s1, 100, s5, 1000);
r2 = strncat_s(s2, 6, "", 1);
r3 = strncat_s(s3, 6, "X", 2);
r4 = strncat_s(s4, 7, "defghijklmn", 3);

After the first call r1 will have the value zero and s1 will contain the sequence goodbye\0.
After the second call r2 will have the value zero and s2 will contain the sequence hello\0.
After the third call r3 will have a non-zero value and s3 will contain the sequence \0.
After the fourth call r4 will have the value zero and s4 will contain the sequence abcdef\0.

6.7.3 Search functions
6.7.3.1 The strtok_s function
Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
char *strtok_s(char * restrict s1,

rsize_t * restrict s1max,
const char * restrict s2,
char ** restrict ptr);

Runtime-constraints
None of s1max, s2, or ptr shall be a null pointer. If s1 is a null pointer, then *ptr
shall not be a null pointer. The value of *s1max shall not be greater than RSIZE_MAX.
The end of the token found shall occur within the first *s1max characters of s1 for the
first call, and shall occur within the first *s1max characters of where searching resumes
on subsequent calls.

If there is a runtime-constraint violation, the strtok_s function does not indirect
through the s1 or s2 pointers, and does not store a value in the object pointed to by ptr.

47) A zero return value implies that all of the requested characters from the string pointed to by s2 were
appended to the string pointed to by s1 and that the result in s1 is null terminated.

©ISO/IEC 2007 — All rights reserved 45

Returns

The strncat_s function returns zero47) if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Description

A sequence of calls to the strtok_s function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The fourth argument points to a caller-provided char pointer into which the
strtok_s function stores information necessary for it to continue scanning the same
string.

The first call in a sequence has a non-null first argument and s1max points to an object
whose value is the number of elements in the character array pointed to by the first
argument. The first call stores an initial value in the object pointed to by ptr and
updates the value pointed to by s1max to reflect the number of elements that remain in
relation to ptr. Subsequent calls in the sequence have a null first argument and the
objects pointed to by s1max and ptr are required to have the values stored by the
previous call in the sequence, which are then updated. The separator string pointed to by
s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character
that is not contained in the current separator string pointed to by s2. If no such character
is found, then there are no tokens in the string pointed to by s1 and the strtok_s
function returns a null pointer. If such a character is found, it is the start of the first token.

The strtok_s function then searches from there for the first character in s1 that is
contained in the current separator string. If no such character is found, the current token
extends to the end of the string pointed to by s1, and subsequent searches in the same
string for a token return a null pointer. If such a character is found, it is overwritten by a
null character, which terminates the current token.

In all cases, the strtok_s function stores sufficient information in the pointer pointed
to by ptr so that subsequent calls, with a null pointer for s1 and the unmodified pointer
value for ptr, shall start searching just past the element overwritten by a null character
(if any).

Returns

The strtok_s function returns a pointer to the first character of a token, or a null
pointer if there is no token or there is a runtime-constraint violation.

EXAMPLE

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
static char str1[] = "?a???b,,,#c";
static char str2[] = "\t \t";
char *t, *ptr1, *ptr2;
rsize_t max1 = sizeof(str1);
rsize_t max2 = sizeof(str2);

46 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

t = strtok_s(str1, &max1, "?", &ptr1); // t points to the token "a"
t = strtok_s(NULL, &max1, ",", &ptr1); // t points to the token "??b"
t = strtok_s(str2, &max2, " \t", &ptr2); // t is a null pointer
t = strtok_s(NULL, &max1, "#,", &ptr1); // t points to the token "c"
t = strtok_s(NULL, &max1, "?", &ptr1); // t is a null pointer

6.7.4 Miscellaneous functions

6.7.4.1 The strerror_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
errno_t strerror_s(char *s, rsize_t maxsize,

errno_t errnum);

Runtime-constraints

s shall not be a null pointer. maxsize shall not be greater than RSIZE_MAX.
maxsize shall not equal zero.

If there is a runtime-constraint violation, then the array (if any) pointed to by s is not
modified.

Description

The strerror_s function maps the number in errnum to a locale-specific message
string. Typically, the values for errnum come from errno, but strerror_s shall
map any value of type int to a message.

If the length of the desired string is less than maxsize, then the string is copied to the
array pointed to by s.

Otherwise, if maxsize is greater than zero, then maxsize-1 characters are copied
from the string to the array pointed to by s and then s[maxsize-1] is set to the null
character. Then, if maxsize is greater than 3, then s[maxsize-2],
s[maxsize-3], and s[maxsize-4] are set to the character period (.).

Returns

The strerror_s function returns zero if the length of the desired string was less than
maxsize and there was no runtime-constraint violation. Otherwise, the strerror_s
function returns a non-zero value.

©ISO/IEC 2007 — All rights reserved 47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.7.4.2 The strerrorlen_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
size_t strerrorlen_s(errno_t errnum);

Description

The strerrorlen_s function calculates the length of the (untruncated) locale-specific
message string that the strerror_s function maps to errnum.

Returns

The strerrorlen_s function returns the number of characters (not including the null
character) in the full message string.

6.7.4.3 The strnlen_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <string.h>
size_t strnlen_s(const char *s, size_t maxsize);

Description

The strnlen_s function computes the length of the string pointed to by s.

Returns

If s is a null pointer,48) then the strnlen_s function returns zero.

Otherwise, the strnlen_s function returns the number of characters that precede the
terminating null character. If there is no null character in the first maxsize characters of
s then strnlen_s returns maxsize. At most the first maxsize characters of s shall
be accessed by strnlen_s.

48) Note that the strnlen_s function has no runtime-constraints. This lack of runtime-constraints

along with the values returned for a null pointer or an unterminated string argument make

strnlen_s useful in algorithms that gracefully handle such exceptional data.

48 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.8 Date and time <time.h>

The header <time.h> defines two types.

The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

6.8.1 Components of time

A broken-down time is normalized if the values of the members of the tm structure are in
their normal rages.49)

6.8.2 Time conversion functions

Like the strftime function, the asctime_s and ctime_s functions do not return a
pointer to a static object, and other library functions are permitted to call them.

6.8.2.1 The asctime_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <time.h>
errno_t asctime_s(char *s, rsize_t maxsize,

const struct tm *timeptr);

Runtime-constraints

Neither s nor timeptr shall be a null pointer. maxsize shall not be less than 26 and
shall not be greater than RSIZE_MAX. The broken-down time pointed to by timeptr
shall be normalized. The calendar year represented by the broken-down time pointed to
by timeptr shall not be less than calendar year 0 and shall not be greater than calendar
year 9999.

If there is a runtime-constraint violation, there is no attempt to convert the time, and
s[0] is set to a null character if s is not a null pointer and maxsize is not zero and is
not greater than RSIZE_MAX.

49) The normal ranges are defined in Subclause 7.23.1 of ISO/IEC 9899:1999.

©ISO/IEC 2007 — All rights reserved 49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Description

The asctime_s function converts the normalized broken-down time in the structure
pointed to by timeptr into a 26 character (including the null character) string in the
form

Sun Sep 16 01:03:52 1973\n\0

The fields making up this string are (in order):

1. The name of the day of the week represented by timeptr->tm_wday using the
following three character weekday names: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

2. The character space.

3. The name of the month represented by timeptr->tm_mon using the following
three character month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, and Dec.

4. The character space.

5. The value of timeptr->tm_mday as if printed using the fprintf format
"%2d".

6. The character space.

7. The value of timeptr->tm_hour as if printed using the fprintf format
"%.2d".

8. The character colon.

9. The value of timeptr->tm_min as if printed using the fprintf format
"%.2d".

10. The character colon.

11. The value of timeptr->tm_sec as if printed using the fprintf format
"%.2d".

12. The character space.

13. The value of timeptr->tm_year + 1900 as if printed using the fprintf
format "%4d".

14. The character new line.

15. The null character.

Recommended practice

The strftime function allows more flexible formatting and supports locale-specific
behavior. If you do not require the exact form of the result string produced by the
asctime_s function, consider using the strftime function instead.

50 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The asctime_s function returns zero if the time was successfully converted and stored
into the array pointed to by s. Otherwise, it returns a non-zero value.

6.8.2.2 The ctime_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <time.h>
errno_t ctime_s(char *s, rsize_t maxsize,

const time_t *timer);

Runtime-constraints

Neither s nor timer shall be a null pointer. maxsize shall not be less than 26 and
shall not be greater than RSIZE_MAX.

If there is a runtime-constraint violation, s[0] is set to a null character if s is not a null
pointer and maxsize is not equal zero and is not greater than RSIZE_MAX.

Description

The ctime_s function converts the calendar time pointed to by timer to local time in
the form of a string. It is equivalent to

asctime_s(s, maxsize, localtime_s(timer))

Recommended practice

The strftime function allows more flexible formatting and supports locale-specific
behavior. If you do not require the exact form of the result string produced by the
ctime_s function, consider using the strftime function instead.

Returns

The ctime_s function returns zero if the time was successfully converted and stored
into the array pointed to by s. Otherwise, it returns a non-zero value.

6.8.2.3 The gmtime_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <time.h>
struct tm *gmtime_s(const time_t * restrict timer,

struct tm * restrict result);

©ISO/IEC 2007 — All rights reserved 51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Runtime-constraints

Neither timer nor result shall be a null pointer.

If there is a runtime-constraint violation, there is no attempt to convert the time.

Description

The gmtime_s function converts the calendar time pointed to by timer into a broken-
down time, expressed as UTC. The broken-down time is stored in the structure pointed
to by result.

Returns

The gmtime_s function returns result, or a null pointer if the specified time cannot
be converted to UTC or there is a runtime-constraint violation.

6.8.2.4 The localtime_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <time.h>
struct tm *localtime_s(const time_t * restrict timer,

struct tm * restrict result);

Runtime-constraints

Neither timer nor result shall be a null pointer.

If there is a runtime-constraint violation, there is no attempt to convert the time.

Description

The localtime_s function converts the calendar time pointed to by timer into a
broken-down time, expressed as local time. The broken-down time is stored in the
structure pointed to by result.

Returns

The localtime_s function returns result, or a null pointer if the specified time
cannot be converted to local time or there is a runtime-constraint violation.

52 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.9 Extended multibyte and wide character utilities <wchar.h>

The header <wchar.h> defines two types.

The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

Unless explicitly stated otherwise, if the execution of a function described in this
subclause causes copying to take place between objects that overlap, the objects take on
unspecified values.

6.9.1 Formatted wide character input/output functions

6.9.1.1 The fwprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
int fwprintf_s(FILE * restrict stream,

const wchar_t * restrict format, ...);

Runtime-constraints

Neither stream nor format shall be a null pointer. The %n specifier50) (modified or
not by flags, field width, or precision) shall not appear in the wide string pointed to by
format. Any argument to fwprintf_s corresponding to a %s specifier shall not be a
null pointer.

If there is a runtime-constraint violation, the fwprintf_s function does not attempt to
produce further output, and it is unspecified to what extent fwprintf_s produced
output before discovering the runtime-constraint violation.

Description

The fwprintf_s function is equivalent to the fwprintf function except for the
explicit runtime-constraints listed above.

50) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide

string pointed at by format when those wide characters are not a interpreted as a %n specifier. For

example, if the entire format string was L"%%n".

©ISO/IEC 2007 — All rights reserved 53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The fwprintf_s function returns the number of wide characters transmitted, or a
negative value if an output error, encoding error, or runtime-constraint violation occurred.

6.9.1.2 The fwscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdio.h>
#include <wchar.h>
int fwscanf_s(FILE * restrict stream,

const wchar_t * restrict format, ...);

Runtime-constraints

Neither stream nor format shall be a null pointer. Any argument indirected though in
order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the fwscanf_s function does not attempt to
perform further input, and it is unspecified to what extent fwscanf_s performed input
before discovering the runtime-constraint violation.

Description

The fwscanf_s function is equivalent to fwscanf except that the c, s, and [
conversion specifiers apply to a pair of arguments (unless assignment suppression is
indicated by a *). The first of these arguments is the same as for fwscanf. That
argument is immediately followed in the argument list by the second argument, which has
type size_t and gives the number of elements in the array pointed to by the first
argument of the pair. If the first argument points to a scalar object, it is considered to be
an array of one element.51)

A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

51) If the format is known at translation time, an implementation may issue a diagnostic for any argument

used to store the result from a c, s, or [conversion specifier if that argument is not followed by an

argument of a type compatible with rsize_t. A limited amount of checking may be done if even if

the format is not known at translation time. For example, an implementation may issue a diagnostic

for each argument after format that has of type pointer to one of char, signed char,

unsigned char, or void that is not followed by an argument of a type compatible with

rsize_t. The diagnostic could warn that unless the pointer is being used with a conversion specifier

using the hh length modifier, a length argument must follow the pointer argument. Another useful

diagnostic could flag any non-pointer argument following format that did not have a type

compatible with rsize_t.

54 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The fwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
fwscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

6.9.1.3 The snwprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
int snwprintf_s(wchar_t * restrict s,

rsize_t n,
const wchar_t * restrict format, ...);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The %n specifier52) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to
snwprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding
error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the snwprintf_s function sets s[0] to the
null wide character.

Description

The snwprintf_s function is equivalent to the swprintf function except for the
explicit runtime-constraints listed above.

The snwprintf_s function, unlike swprintf_s, will truncate the result to fit within
the array pointed to by s.

Returns

The snwprintf_s function returns the number of wide characters that would have
been written had n been sufficiently large, not counting the terminating wide null

52) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide

string pointed at by format when those wide characters are not a interpreted as a %n specifier. For

example, if the entire format string was L"%%n".

©ISO/IEC 2007 — All rights reserved 55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

nonnegative and less than n.

6.9.1.4 The swprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
int swprintf_s(wchar_t * restrict s, rsize_t n,

const wchar_t * restrict format, ...);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The number of wide characters (including the trailing null) required
for the result to be written to the array pointed to by s shall not be greater than n. The %n
specifier53) (modified or not by flags, field width, or precision) shall not appear in the
wide string pointed to by format. Any argument to swprintf_s corresponding to a
%s specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the swprintf_s function sets s[0] to the
null wide character.

Description

The swprintf_s function is equivalent to the swprintf function except for the
explicit runtime-constraints listed above.

The swprintf_s function, unlike snwprintf_s, treats a result too big for the array
pointed to by s as a runtime-constraint violation.

Returns

If no runtime-constraint violation occurred, the swprintf_s function returns the
number of wide characters written in the array, not counting the terminating null wide
character. If an encoding error occurred or if n or more wide characters are requested to
be written, swprintf_s returns a negative value. If any other runtime-constraint
violation occurred, swprintf_s returns zero.

53) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide

string pointed at by format when those wide characters are not a interpreted as a %n specifier. For

example, if the entire format string was L"%%n".

56 ©ISO/IEC 2007 — All rights reserved

character, or a neg ative value if a runtime-constraint violation occurred. Thus, the null-
terminated output has been completely written if and only if the returned value is

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.9.1.5 The swscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
int swscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format, ...);

Runtime-constraints

Neither s nor format shall be a null pointer. Any argument indirected though in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the swscanf_s function does not attempt to
perform further input, and it is unspecified to what extent swscanf_s performed input
before discovering the runtime-constraint violation.

Description

The swscanf_s function is equivalent to fwscanf_s, except that the argument s
specifies a wide string from which the input is to be obtained, rather than from a stream.
Reaching the end of the wide string is equivalent to encountering end-of-file for the
fwscanf_s function.

Returns

The swscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
swscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

6.9.1.6 The vfwprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf_s(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

©ISO/IEC 2007 — All rights reserved 57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

format. Any argument to vfwprintf_s corresponding to a %s specifier shall not be
a null pointer.

If there is a runtime-constraint violation, the vfwprintf_s function does not attempt
to produce further output, and it is unspecified to what extent vfwprintf_s produced
output before discovering the runtime-constraint violation.

Description

The vfwprintf_s function is equivalent to the vfwprintf function except for the
explicit runtime-constraints listed above.

Returns

The vfwprintf_s function returns the number of wide characters transmitted, or a
negative value if an output error, encoding error, or runtime-constraint violation occurred.

6.9.1.7 The vfwscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream,

const wchar_t * restrict format, va_list arg);

Runtime-constraints

Neither stream nor format shall be a null pointer. Any argument indirected though in
order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vfwscanf_s function does not attempt to
perform further input, and it is unspecified to what extent vfwscanf_s performed input
before discovering the runtime-constraint violation.

54) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide

string pointed at by format when those wide characters are not a interpreted as a %n specifier. For

example, if the entire format string was L"%%n".

58 ©ISO/IEC 2007 — All rights reserved

Runtime-constraints

Neither stream nor format shall be a null pointer. The %n specifier54) (modified or
not by flags, field width, or precision) shall not appear in the wide string pointed to by

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The vfwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
vfwscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

6.9.1.8 The vsnwprintf_s function
Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vsnwprintf_s(wchar_t * restrict s,

rsize_t n,
const wchar_t * restrict format,
va_list arg);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The %n specifier56) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to
vsnwprintf_s corresponding to a %s specifier shall not be a null pointer. No
encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the vsnwprintf_s function sets s[0] to
the null wide character.

Description

The vsnwprintf_s function is equivalent to the vswprintf function except for the
explicit runtime-constraints listed above.

55) As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the
value of arg after the return is indeterminate.

56) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide
string pointed at by format when those wide characters are not a interpreted as a %n specifier. For
example, if the entire format string was L"%%n".

©ISO/IEC 2007 — All rights reserved 59

Description

The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfwscanf_s function does not invoke the
va_end macro.55)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The vsnwprintf_s function returns the number of wide characters that would have
been written had n been sufficiently large, not counting the terminating null character, or
a neg ative value if a runtime-constraint violation occurred. Thus, the null-terminated
output has been completely written if and only if the returned value is nonnegative and
less than n.

6.9.1.9 The vswprintf_s function
Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vswprintf_s(wchar_t * restrict s,

rsize_t n,
const wchar_t * restrict format,
va_list arg);

Runtime-constraints

Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater
than RSIZE_MAX. The number of wide characters (including the trailing null) required
for the result to be written to the array pointed to by s shall not be greater than n. The %n
specifier57) (modified or not by flags, field width, or precision) shall not appear in the
wide string pointed to by format. Any argument to vswprintf_s corresponding to a
%s specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater
than zero and less than RSIZE_MAX, then the vswprintf_s function sets s[0] to the
null wide character.

Description

The vswprintf_s function is equivalent to the vswprintf function except for the
explicit runtime-constraints listed above.

The vswprintf_s function, unlike vsnwprintf_s, treats a result too big for the
array pointed to by s as a runtime-constraint violation.

57) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide
string pointed at by format when those wide characters are not a interpreted as a %n specifier. For
example, if the entire format string was L"%%n".

60 ©ISO/IEC 2007 — All rights reserved

The vsnwprintf_s function, unlike vswprintf_s, will truncate the result to fit
within the array pointed to by s.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

If no runtime-constraint violation occurred, the vswprintf_s function returns the
number of wide characters written in the array, not counting the terminating null wide
character. If an encoding error occurred or if n or more wide characters are requested to
be written, vswprintf_s returns a negative value. If any other runtime-constraint
violation occurred, vswprintf_s returns zero.

6.9.1.10 The vswscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format,
va_list arg);

Runtime-constraints

Neither s nor format shall be a null pointer. Any argument indirected though in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vswscanf_s function does not attempt to
perform further input, and it is unspecified to what extent vswscanf_s performed input
before discovering the runtime-constraint violation.

Description

The vswscanf_s function is equivalent to swscanf_s, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vswscanf_s function does not invoke the
va_end macro.58)

Returns

The vswscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
vswscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

58) As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the

value of arg after the return is indeterminate.

©ISO/IEC 2007 — All rights reserved 61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

6.9.1.11 The vwprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vwprintf_s(const wchar_t * restrict format,

va_list arg);

Runtime-constraints

format shall not be a null pointer. The %n specifier59) (modified or not by flags, field
width, or precision) shall not appear in the wide string pointed to by format. Any
argument to vwprintf_s corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the vwprintf_s function does not attempt to
produce further output, and it is unspecified to what extent vwprintf_s produced
output before discovering the runtime-constraint violation.

Description

The vwprintf_s function is equivalent to the vwprintf function except for the
explicit runtime-constraints listed above.

Returns

The vwprintf_s function returns the number of wide characters transmitted, or a
negative value if an output error, encoding error, or runtime-constraint violation occurred.

6.9.1.12 The vwscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vwscanf_s(const wchar_t * restrict format,

va_list arg);

Runtime-constraints

format shall not be a null pointer. Any argument indirected though in order to store
converted input shall not be a null pointer.

59) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide

string pointed at by format when those wide characters are not a interpreted as a %n specifier. For

example, if the entire format string was L"%%n".

62 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

If there is a runtime-constraint violation, the vwscanf_s function does not attempt to
perform further input, and it is unspecified to what extent vwscanf_s performed input
before discovering the runtime-constraint violation.

Description

The vwscanf_s function is equivalent to wscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vwscanf_s function does not invoke the
va_end macro.60)

Returns

The vwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
vwscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

6.9.1.13 The wprintf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
int wprintf_s(const wchar_t * restrict format, ...);

Runtime-constraints

format shall not be a null pointer. The %n specifier61) (modified or not by flags, field
width, or precision) shall not appear in the wide string pointed to by format. Any
argument to wprintf_s corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the wprintf_s function does not attempt to
produce further output, and it is unspecified to what extent wprintf_s produced output
before discovering the runtime-constraint violation.

Description

The wprintf_s function is equivalent to the wprintf function except for the explicit
runtime-constraints listed above.

60) As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the

value of arg after the return is indeterminate.

61) It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide

string pointed at by format when those wide characters are not a interpreted as a %n specifier. For

example, if the entire format string was L"%%n".

©ISO/IEC 2007 — All rights reserved 63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

ISO/IEC TR 24731-1:2007(E)

Returns

The wprintf_s function returns the number of wide characters transmitted, or a
negative value if an output error, encoding error, or runtime-constraint violation occurred.

6.9.1.14 The wscanf_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
int wscanf_s(const wchar_t * restrict format, ...);

Runtime-constraints

format shall not be a null pointer. Any argument indirected though in order to store
converted input shall not be a null pointer.

If there is a runtime-constraint violation, the wscanf_s function does not attempt to
perform further input, and it is unspecified to what extent wscanf_s performed input
before discovering the runtime-constraint violation.

Description

The wscanf_s function is equivalent to fwscanf_s with the argument stdin
interposed before the arguments to wscanf_s.

Returns

The wscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is a runtime-constraint violation. Otherwise, the
wscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

6.9.2 General wide string utilities

6.9.2.1 Wide string copying functions

6.9.2.1.1 The wcscpy_s function

Synopsis

#define __STDC_WANT_LIB_EXT1_ _ 1
#include <wchar.h>
errno_t wcscpy_s(wchar_t * restrict s1,

rsize_t s1max,
const wchar_t * restrict s2);

64 ©ISO/IEC 2007 — All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 24
73

1-1
:20

07

https://iecnorm.com/api/?name=d819e4dd9f47e1e366b2aeadcfe0a6ca

