

Reference number
ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007

INTERNATIONAL
STANDARD

ISO/IEC/
IEEE

21450

First edition
2010-05-15

Information technology — Smart
transducer interface for sensors and
actuators — Common functions,
communication protocols, and
Transducer Electronic Data Sheet (TEDS)
formats

Technologies de l'information — Interface de transducteurs intelligente
pour capteurs et actuateurs — Fonctions communes, protocoles de
communication et formats des feuilles de données électroniques du
transducteur (TEDS)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

ISO/IEC/IEEE 21450:2010(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat,
the IEC Central Office and IEEE do not accept any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies
and IEEE members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or IEEE at the
address given below.

 COPYRIGHT PROTECTED DOCUMENT

© IEEE 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO or IEEE at the respective
address below.

ISO copyright office Institute of Electrical and Electronics Engineers, Inc.
Case postale 56 • CH-1211 Geneva 20 3 Park Avenue, New York • NY 10016-5997, USA
Tel. + 41 22 749 01 11 E-mail stds.ipr@ieee.org
Fax + 41 22 749 09 47 Web www.ieee.org
E-mail copyright@iso.org
Web www.iso.org

ISO version published 2010
Published in Switzerland

ii © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

© IEEE 2007 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

The main task of ISO/IEC JTC 1 is to prepare International Standards. Draft International Standards adopted
by the joint technical committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is called to the possibility that implementation of this standard may require the use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. ISO/IEEE is not responsible for identifying essential
patents or patent claims for which a license may be required, for conducting inquiries into the legal validity or
scope of patents or patent claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance or a Patent Statement and Licensing Declaration Form, if
any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly
advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is
entirely their own responsibility. Further information may be obtained from ISO or the IEEE Standards
Association.

ISO/IEC/IEEE 21450 was prepared by the Technical Committee on Sensor Technology of the IEEE
Instrumentation and Measurement Society of the IEEE (as IEEE Std 1451.0™-2007). It was adopted by Joint
Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 31, Automatic identification
and data capture techniques, in parallel with its approval by the ISO/IEC national bodies, under the “fast-track
procedure” defined in the Partner Standards Development Organization cooperation agreement between ISO
and IEEE. IEEE is responsible for the maintenance of this document with participation and input from ISO/IEC
national bodies.

ISO/IEC/IEEE 21450:2010(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

iv © IEEE 2007 – All rights reserved

(blank page)

ISO/IEC/IEEE 21450:2010(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

© IEEE 2007 – All rights reserved v

IEEE Std 1451.0™-2007

IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators—
Common Functions, Communication
Protocols, and Transducer Electronic
Data Sheet (TEDS) Formats

IEEE
3 Park Avenue
New York, NY 10016-5997, USA

21 September 2007

IEEE Instrumentation and Measurement Society
Sponsored by the
Technical Committee on Sensor Technology (TC-9)

14
51

.0
TM

ISO/IEC/IEEE 21450:2010(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

vi © IEEE 2007 – All rights reserved

(blank page)

ISO/IEC/IEEE 21450:2010(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved vii

IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators—
Common Functions, Communication
Protocols, and Transducer Electronic
Data Sheet (TEDS) Formats

Sponsor

Technical Committee on Sensor Technology (TC-9)
of the
IEEE Instrumentation and Measurement Society

Approved 9 August 2007

American National Standards Institute

Approved 22 March 2007

IEEE-SA Standards Board

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

ISO/IEC/IEEE 21450:2010(E)

viii © IEEE 2007 – All rights reserved

Abstract: This standard provides a common basis for members of the IEEE 1451 family of
standards to be interoperable. It defines the functions that are to be performed by a transducer
interface module (TIM) and the common characteristics for all devices that implement the TIM. It
specifies the formats for Transducer Electronic Data Sheets (TEDS). It defines a set of
commands to facilitate the setup and control of the TIM as well as reading and writing the data
used by the system. Application programming interfaces (APIs) are defined to facilitate
communications with the TIM and with applications.

Keywords: actuator, application programming interface, communication protocol, network-
capable application processor, sensor, smart transducer, transducer electronic data sheet,
transducer interface module

•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2007 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 21 September 2007. Printed in the United States of America.
2nd Printing 2 November 2007. A printing error for Equation (15) has been corrected.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

Print: ISBN 0-7381-5597-7 SH95684
PDF: ISBN 0-7381-5598-5 SS95684

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved ix

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of
the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote
fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy
of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific
purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents
are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change brought about through developments in the
state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least
every five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present
state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the
advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal consideration.
At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the formal
position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center.
To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

ISO/IEC/IEEE 21450:2010(E)

x © IEEE 2007 – All rights reserved

Introduction

This introduction is not part of IEEE Std 1451.0-2007, IEEE Standard for a Smart Transducer Interface for Sensors and
Actuators—Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats.

This standard is intended to provide a basis for all future members of the IEEE 1451 family of standards
that use digital interfaces. It should also be adopted by the existing members of the IEEE 1451 family of
standards as they are revised in the future in order to provide the highest degree of compatibility among the
members of the family. This standard does not apply to IEEE Std 1451.4TM-2004, which only provides a
size-constrained TEDS and an analog interface.

The relationships between this standard and the other members of the family are shown in the following
diagram. Three of these standards were complete before this standard was started and do not comply with
this standard but will in the future as they are revised. They are IEEE Std 1451.1TM-1999,
IEEE Std 1451.2 -1997, and IEEE Std 1451.3TM TM-2003. IEEE Std 1451.1 is an application that, in the
future, will fit between the user’s network and this standard. IEEE Std 1451.2 and IEEE Std 1451.3 will
also be modified to interface with this standard. When these changes are made, the functions of an IEEE
1451 transducer will be as defined in this standard as will be the commands and TEDS. IEEE 1451.5TM-
2007, which uses any of several different wireless communications media, and IEEE P1451.6TM have been
written around the functions, commands, and TEDS as described in this standard. IEEE Std 1451.4 uses an
analog signal interface and a TEDS that is not the same as that used by other members of the family. It may
be used as the input to any of the other standards in the family but does not comply with the functions,
commands, and TEDS defined in this standard. Items shown with a gray background are items that are not
covered by any of the IEEE 1451 family of standards but that may be used.

The underlying purpose of this family of standards is to allow manufacturers to build elements of a system
that are interoperable. To accomplish this goal, the IEEE 1451 family of standards divides the parts of a
system into two general categories of devices. One is the network capable application processor (NCAP)
that functions as a gateway between the users’ network and the transducer interface modules (TIMs). The
NCAP is a processor-based device that has two interfaces. The physical interface to the users’ network is
not specified in any of this family of standards. IEEE Std 1451.1 provides a logical object model for this

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved xi

interface. Other applications may also be used at the manufacturer’s discretion. The communications
interface between the NCAP and the TIMs is defined in the remaining members of the family of standards.
Different manufacturers may build the NCAPs and TIMs, and if both comply with this standard, they
should be interoperable.

This standard provides a description of the functions that are to be performed by a transducer interface
module or TIM. Provisions are made for a high level of addressing that is independent of the physical
medium-level and low-level protocols that are used to implement the communications. It defines the
common characteristics for all devices that implement the transducer modules. The timing of the acquiring
or processing of the data samples is described. Methods of grouping the outputs from multiple transducers
within one TIM are defined. Common status words are also defined.

A standard set of commands are defined to facilitate the setup and control of the transducer modules as
well as to read and write the data used by the system. Commands are also provided for reading and writing
the TEDS that supply the system with the operating characteristics that are needed to use the transducer
modules. A method of adding manufacturer unique commands is included.

In addition, this standard provides formats for the TEDS. Several TEDS are defined in the standard. Four
of these TEDS are required, and the remaining TEDS are optional. Some TEDS are provided to allow the
user to define information and to store it in the TEDS.

This standard provides areas that are “open to manufacturers.” It should be noted that any use of these
areas may compromise the “plug-and-play” potential of controllers and TIMs.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity
or scope of Patents Claims or determining whether any licensing terms or conditions are reasonable or non-
discriminatory. Further information may be obtained from the IEEE Standards Association.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

Contents

 ...1 1 Overview

 ...3 1.1 Scope
 ..3 1.2 Purpose
 ...3 1.3 Conformance

 ...5 2 Normative references

 ...6 3 Definitions, acronyms, and abbreviations

 ...6 3.1 Definitions
 ...9 3.2 Acronyms and abbreviations

 ..10 4 Data types

 ...10 4.1 Unsigned octet integer
 ...10 4.2 Unsigned 16 bit integer
 ..10 4.3 Signed 32 bit integer
 ...10 4.4 Unsigned 32 bit integer
 ..11 4.5 Single-precision real
 ..11 4.6 Double-precision real
 ...11 4.7 String
 ..11 4.8 Boolean
 ..12 4.9 IEEE1451Dot0::Args::TimeRepresentation
 ...13 4.10 Data types for associated applications
 ..13 4.11 Physical Units
 ...15 4.12 Universal unique identification
 ..15 4.13 Arbitrary octet array
 ..16 4.14 String array
 ..16 4.15 Boolean array
 ..16 4.16 Array of 8 bit signed integers
 ..16 4.17 Array of 16 bit signed integers
 ..16 4.18 Array of 32 bit signed integers
 ..17 4.19 Array of 8 bit unsigned integers
 ..18 4.20 Array of 16 bit unsigned integers
 ..18 4.21 Array of 32 bit unsigned integers
 ...18 4.22 Array of single-precision real numbers
 ..18 4.23 Array of double-precision real numbers
 ...18 4.24 Array of TimeDuration data types
 ..19 4.25 Array of TimeInstance data types

 ...19 5 Smart transducer functional specification

 ...19 5.1 IEEE 1451 family reference model
 ..23 5.2 Plug-and-play capability
 ...23 5.3 Addresses
 ..25 5.4 Common characteristics
 ..27 5.5 Transducer Electronic Data Sheets
 ..31 5.6 TransducerChannel type descriptions
 ..34 5.7 Embedded TransducerChannels
 ..34 5.8 TransducerChannel groups

ISO/IEC/IEEE 21450:2010(E)

xii © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

 ...35 5.9 TransducerChannel proxy
 ...36 5.10 Attributes and operating modes
 ..41 5.11 Triggering
 ...48 5.12 Synchronization
 ...49 5.13 Status
 ..55 5.14 Service request logic
 ...56 5.15 Hot-swap capability

 ..56 6 Message structures

 ...56 6.1 Data transmission order and bit significance
 ...57 6.2 Command message structure
 ...58 6.3 Reply messages
 ..58 6.4 TIM initiated message structure

 ...59 7 Commands

 ...60 7.1 Standard commands
 ..81 7.2 Manufacturer-defined commands

 ..81 8 TEDS specification

 ..81 8.1 General format for TEDS
 ...83 8.2 Order of octets in numeric fields
 ...83 8.3 TEDS identification header
 ...84 8.4 Meta-TEDS
 ...94 8.5 TransducerChannel TEDS
 ..119 8.6 Calibration TEDS
 ...136 8.7 Frequency Response TEDS
 ...139 8.8 Transfer Function TEDS
 ..149 8.9 Text-based TEDS
 ...154 8.10 End User Application Specific TEDS
 ..155 8.11 User’s Transducer Name TEDS
 ...157 8.12 Manufacturer-defined TEDS
 ..158 8.13 PHY TEDS

 ..158 9 Introduction to the IEEE 1451.0 API

 ...159 9.1 API goals
 ...160 9.2 API design decisions
 ..162 9.3 IEEE1451Dot0

10 ..173 Transducer services API

 ..173 10.1 IEEE1451Dot0::TransducerServices::TimDiscovery
 ...175 10.2 IEEE1451Dot0::TransducerServices::TransducerAccess
 ..181 10.3 IEEE1451Dot0::TransducerServices::TransducerManager
 ...187 10.4 IEEE1451Dot0::TransducerServices::TedsManager
 ..190 10.5 IEEE1451Dot0::TransducerServices::CommManager
 ..191 10.6 IEEE1451Dot0::TransducerServices::AppCallback

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved xiii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

11 Module Communications API ... 193

11.1 IEEE1451Dot0::ModuleCommunication::Comm ... 193
11.2 IEEE1451Dot0::ModuleCommunication::P2PComm ... 197
11.3 IEEE1451Dot0::ModuleCommunication::NetComm .. 201
11.4 IEEE1451Dot0::ModuleCommunication::Registration ... 210
11.5 IEEE1451Dot0::ModuleCommunication::P2PRegistration .. 212
11.6 IEEE1451Dot0::ModuleCommunication::NetRegistration ... 214
11.7 IEEE1451Dot0::ModuleCommunication::Receive ... 217
11.8 IEEE1451Dot0::ModuleCommunication::P2PReceive ... 217
11.9 IEEE1451Dot0::ModuleCommunication::NetReceive ... 218

12 HTTP protocol ... 220

12.1 IEEE 1451.0 HTTP API .. 221
12.2 Discovery API ... 224
12.3 Transducer access API .. 226
12.4 TEDS Manager API .. 232
12.5 Transducer Manager API .. 238

Annex A (informative) Bibliography .. 244

Annex B (informative) Guidance to Transducer Services Interface ... 246

Annex C (informative) Guidance to Module Communication Interface ... 251

Annex D (informative) XML Schema for Text-based TEDS ... 261

Annex E (informative) Example Meta-Identification TEDS ... 278

Annex F (informative) Example TransducerChannel Identification TEDS .. 280

Annex G (informative) Example Calibration Identification TEDS ... 282

Annex H (informative) Example Commands TEDS ... 284

Annex I (informative) Example Location and Title TEDS ... 287

Annex J (infomative) Example Units Extension TEDS .. 289

Annex K (informative) Examples of Physical Units .. 290

Annex L (informative) TEDS read and write protocols .. 296

Annex M (informative) Trigger logic configurations.. 298

Annex N (informative) Notation summary for IDL .. 303

Annex O (informative) TEDS implementation of a simple sensor ... 307

 Annex P (informative) IEEE list of participants ... 324

ISO/IEC/IEEE 21450:2010(E)

xiv © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators—
Common Functions, Communication
Protocols, and Transducer Electronic
Data Sheet (TEDS) Formats

1. Overview

This standard introduces the concept of a transducer interface module (TIM) and a network capable
application processor (NCAP) connected by a media specified by another member of the IEEE 1451 family
of standards. A TIM is a module that contains the interface, signal conditioning, analog-to-digital and/or
digital-to-analog conversion and, in many cases, the transducer. A TIM may range in complexity from a
single sensor or actuator to units containing many transducers (sensors and actuators). An NCAP is the
hardware and software that provides the gateway function between the TIMs and the user network or host
processor. Another member of the standards family provides the communications interface between an
NCAP or host processor and one or more TIMs. Three types of transducers are recognized by this standard.
They are sensors, event sensors, and actuators.

A transducer is denoted “smart” in this context because of three features:

— It is described by a machine-readable Transducer Electronic Data Sheet (TEDS).

— The control and data associated with the transducer are digital.

— Triggering, status, and control are provided to support the proper functioning of the transducer.

An NCAP or a host processor controls a TIM by means of a digital interface medium. The NCAP mediates
between the TIM and a higher level digital network and may provide local intelligence.

This standard defines an application program interface (API) for applications that provide communications
between the users’ network and the IEEE 1451.0 layer. An API is also provided between the IEEE 1451.0
layer and the underlying physical communications layers usually referred to in this standard as
IEEE 1451.X. These API definitions are provided for systems that have visible interfaces. For TIMs and

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

NCAPs with a single set of hardware and software without regard to distinguishing separate interfaces
between IEEE 1451.0 functionality and IEEE 1451.X functionality, the API is optional as long as the
messages at visible interfaces conform to the rest of the standard. The definition of these APIs is to
facilitate modular design to the extent that multiple suppliers can provide different functionality and yet
have the various parts integrate seamlessly.

This standard defines TIMs that can be plugged into a system and can be used without having to add
special drivers, profiles, or make any other changes to the system. This process is referred to as a “plug-
and-play” operation. The primary features that enable a plug-and-play operation are the TEDS and the
command set. A TIM may be added to or removed from an active IEEE 1451 physical layer with no more
than a momentary impact on the data being transferred over the bus. “Hot swap” is the term used to refer to
this feature.

This standard is organized as follows:

1: “Overview” provides the scope of this standard. Clause

2Clause : “Normative references” lists references to other standards and documents that are useful in
applying this standard.

Clause 3: “Definitions, acronyms, and abbreviations” provides definitions that are either not found
in other standards or have been modified for use with this standard.

Clause 4: “Data types” defines the data types used in the standard.

5Clause : “Smart transducer functional specification” specifies the functions required of a TIM and
of each TransducerChannel it comprises.

6Clause : “Message structures” specifies the message structures that are used to encapsulate the
information being passed between an NCAP and TIMs.

Clause 7: “Commands” provides the command syntax and the expected replies.

Clause 8: “TEDS specification” specifies the transducer electronic data sheet structure and content.

9: “Introduction to the IEEE 1451.0 API” gives the common features of the two APIs. Clause

Clause 10: “Transducer services API” gives the API that an application would use to utilize this
standard.

Clause 11: “Module communications API” gives the API that this standard would use to
communicate to the TIMs using the communications features of a physical interface defined by
another member of the IEEE 1451 family of standards.

Clause 12: “HTTP protocol” is used to transfer or convey information on the World Wide Web. It is
intended to provide a simpler protocol than is currently supplied by IEEE Std 1451.1-1999.

Annex: A: “Bibliography” provides references for additional information about topics referred to in
this document.

Annex B: “Guidance to Transducer Services Interface” gives examples of the use of this interface
for measurement and control applications that interact with the IEEE 1451.0 layer using the
Transducer Services interface.

Annex C: “Guidance to Module Communication Interface” gives additional guidance for the logical
communication between the NCAP and TIMs or between TIMs using the Module Communication
API.

Annex D: “XML Schema for Text-based TEDS” gives the basic schemas for the Text-based TEDS
defined in this standard.

Annex E: “Example Meta-Identification TEDS” gives an example of a possible Meta-Identification
TEDS.

2
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

2 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

1.1

1.2

1.3

Annex F: “Example TransducerChannel Identification TEDS” gives an example of a possible
TransducerChannel Identification TEDS.

Annex G: “Example Calibration Identification TEDS” gives an example of a possible Calibration
Identification TEDS.

Annex H: “Example Commands TEDS” gives an example of a possible Commands TEDS.

Annex I: “Example Location and Title TEDS” gives an example of a possible Location and Title
TEDS.

Annex J: “Example Units Extension TEDS” gives an example of a possible Units Extension TEDS.

Annex K: “Examples of Physical Units” gives a series of examples of implementations of Physical
Units using the representation specified in this standard.

Annex L: “TEDS read and write protocols” describes processes that may be used to write or read the
TEDS.

Annex M: “Trigger logic configurations” shows some possible configurations of the trigger logic
allowed in this standard.

Annex N: “Notation summary for IDL” is intended to give guidance on the use of IDL notation in
this standard.

Annex O: “TEDS implementation of a simple sensor” is an example of a simple sensor implemented
using the structures defined in this standard.

 Scope

This project develops a set of common functionality for the family of IEEE 1451 smart transducer interface
standards. This functionality is independent of the physical communications media. It includes the basic
functions required to control and manage smart transducers, common communications protocols, and
media-independent TEDS formats. It defines a set of implementation-independent APIs. This project does
not specify signal conditioning and conversion, physical media, or how the TEDS data are used in
applications.

 Purpose

There are currently three approved and three proposed smart transducer interface standards in the
IEEE 1451 family of standards. They all share certain characteristics, but no common set of functions,
communications protocols, and TEDS formats provides interoperability among these standards. This
standard will provide that commonality and will simplify the creation of future standards for different
physical layers that are interoperable within the family.

 Conformance

The philosophy underlying the conformance requirements of this subclause is to provide the structure
necessary to raise the level of interoperability of transducers and systems built to this standard, while
leaving open opportunity for continued technical improvement and differentiation.

TIM implementation shall be deemed in conformance with this standard provided the following
requirements are met:

a) The TIM supports the required functional specifications identified in Clause 5.

3
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

1.3.1

1.3.1.1

1.3.1.2

1.3.1.3

b) The TIM supports the message structures specified in Clause 6.

c) The TIM supports the required commands specified in Clause 7.

d) The TIM supports required TEDS that have the format and content specified in Clause 8.

e) The TIM supports one of the communications protocols and physical media defined by another
member of the IEEE 1451 family of standards.

NOTE—Several features are highly desirable and are supported by this standard, but they are not practical to make
into hard requirements. It is desirable that the sense element for a sensor be an integral part of the TIM, but for sensing
elements like structural strain gages and thermocouples, this is not practical, so it has not been made into a hard
requirement. In addition, it is very desirable that the TEDS be located within the TIM, but there are systems where the
environment and/or the physical size make this impractical so the standard allows the TEDS to be located remote from
the TIM..1

An NCAP implementation shall be deemed in conformance with this standard provided the following
requirements are met:

— The NCAP supports the required functional specifications identified in Clause 5.

— The NCAP supports the message structures specified in Clause 6.

— The NCAP supports the required commands specified in Clause 7.

— The NCAP supports one of the communications protocols and physical media defined by
another member of the IEEE 1451 family of standards.

 Conformance keywords

Several keywords are used to differentiate among various levels of requirements and optionality, as
follows.

 Shall

The keyword “shall” indicates a mandatory requirement. Designers are required to implement all such
mandatory requirements to ensure interoperability with other products that conform to this standard.

 Shall not

The keyword “shall not” indicates a mandatory exclusion. Designers are required NOT to implement all
such exclusions to ensure interoperability with other products that conform to this standard.

 Recommended

“Recommended” is a keyword indicating flexibility of choice with a strong preference alternative. The
word “should” has the same meaning.

1 Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

4
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

4 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

1.3.1.4

1.3.1.5

1.3.1.6

2.

 Should

“Should” is a keyword indicating flexibility of choice with a strong preference alternative. The phrase it is
recommended has the same meaning.

 Should not

“Should not” is a keyword indicating flexibility of choice with a strong preference that a given alternative
not be implemented.

 May

“May” is a keyword that indicates flexibility of choice with no implied preference.

 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

ANSI X3.4-1986 (Reaff 1992), Coded Character Sets—7-bit American National Standard Code For
Information Interchange.2

3Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, 6 October 2000.

4HTTP URL syntax (RFC 2616), HyperText Transfer Protocol (W3C).

5, 6IEEE Std 754™-1985 (Reaff 1990), IEEE Standard for Binary Floating-Point Arithmetic.

IEEE Std 802.3™-2002, IEEE Standard for Information technology—Telecommunications and information
exchange between systems—Local and metropolitan area networks—Specific requirements Part 3: Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) access method and physical layer
specifications.

IEEE Std 1451.1™-1999, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—
Network Capable Application Processor (NCAP) Information Model.

IEEE Std 1451.2™-1997, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—
Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS)
Formats.

2 ANSI publications are available from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor,
New York, NY 10036, USA (http://www.ansi.org/).
3 Documents on the eXtensible Markup language can be downloaded from http://www.w3.org/TR/2000/REC-xml-20001006 or
ordered from the World Wide Web Consortium, c/o MIT, 32 Vassar Street, Room 32-G515, Cambridge, MA 02139 USA.
4 Documents describing the HTTP 1.1 Protocol can be downloaded from http://www.w3.org/Protocols/ or ordered from the World
Wide Web Consortium, c/o MIT, 32 Vassar Street, Room 32-G515, Cambridge, MA 02139 USA.
5 IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ
08854, USA (http://standards.ieee.org/).
6 The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

5
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/Protocols/
https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

6
Copyright © 2007 IEEE. All rights reserved.

IEEE Std 1451.3™-2003, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—
Digital Communication and Transducer Electronic Data Sheet (TEDS) Formats for Distributed Multidrop
Systems.

IEEE Std 1451.4™-2004, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—
Mixed-Mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats.

IEEE Std 1588™-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

ISO 639: 1988-04-01 (E/F), Codes for the Representation of Names of Languages.7

ISO 19136, Geographic information—Geography Markup Language (GML).

ISO/IEC 14750: 1999-03-15, Information technology—Open Distributed Processing—Interface Definition
Language.8

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B2]9 should be referenced for terms not defined in this clause.

3.1.1 actuator: A transducer that accepts a data sample or samples and converts them into an action. The
action may be completely contained within the TIM or may change something outside of the TIM.

3.1.2 address: A character or group of characters that identifies a register, a particular part of storage, or
some other data source or destination.

3.1.3 AddressGroup: A collection of TransducerChannels that respond to a single address.

3.1.4 buffer: An intermediate data storage location used to compensate for the difference in rate of flow of
data or time of occurrence of events when transmitting information from one device to another.

3.1.5 calibration: The process used to determine the information that resides in the Calibration TEDS to
support correction.

3.1.6 ControlGroup: Manufacturer specifications that define the inherent relationships between the
TransducerChannels of a multichannel TIM. This ControlGrouping information is not normally used by the
TIM itself. This information is used to identify TransducerChannels that are used to control some
characteristic of another TransducerChannel. For example, a ControlGroup could be used to identify an
actuator that is used to set the threshold of an analog event sensor.

7 ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/ Suisse (http://www.iso.ch/). ISO publications are also available in the United States from the Sales Department,
American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
8ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).
9 The numbers in brackets correspond to those in the bibliography in Annex A.

ISO/IEC/IEEE 21450:2010(E)

6 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7
Copyright © 2007 IEEE. All rights reserved.

3.1.7 correction: The evaluation of a multinomial function using information from the Calibration TEDS
together with data from one or more transducers.

3.1.8 data model: The numeric format in which the TIM shall output or accept data.

3.1.9 data set: The collection of samples acquired by a sensor (or applied by an actuator) in response to a
trigger command.

3.1.10 data sheet: A set of information on a device that defines the parameters of operation and conditions
of usage (usually produced by the device's manufacturer).

3.1.11 digital interface: A communications media and a protocol for transferring information by binary
means only.

3.1.12 electronic data sheet: A data sheet stored in some form of electrically readable memory (as
opposed to a piece of paper).

3.1.13 embedded transducer: A device that behaves as a transducer from the point of view of the NCAP
even though nothing outside of the TIM is sensed or changed. Embedded transducers are useful for setting
or reading operating parameters of other transducers.

3.1.14 enumeration: The assignment of a numeric value to a specific meaning within the context of a
specific data field. Binary numbers are usually expressed in decimal terms for human convenience. Not all
possible numeric values need to have a specific meaning. Values without meaning are declared to be
unused or reserved for future use. Enumeration is the process of declaring the encoding of human
interpretable information in a manner convenient for digital electronic machine storage and interchange.
Any subclause that defines a TEDS data field to be enumerated shall contain a table that defines the
meaning of the data field for each numeric value possible. The meanings encoded in each data field shall
be specific and unique to that data field and only to that data field. The value becomes meaningless if not
associated with the data field and its defining table.

3.1.15 event sensor: A sensor that detects a change of state in the physical world. The fact that a change of
state has occurred and/or instant in time of the change of state, not the state value, is the “measurement.”

3.1.16 hot swap: The act of connecting or disconnecting a TIM from a transducer interface medium
without first turning off the power that is supplied to the TIM over the medum.

3.1.17 least significant bit (lsb): The bit in the binary notation of a number that is the coefficient of the
lowest exponent possible.

3.1.18 message: Information that is to be passed between devices as a single logical entity. A message may
occupy one or more packets.

3.1.19 meta-: A Greek prefix meaning that which pertains to the whole or overall entity or that which is in
common or shared with all member entities comprising the whole.

3.1.20 meta-TEDS: The collection of those TEDS data fields that pertain to the whole or overall entity or
those that are in common or shared with all member entities (TransducerChannels) comprising the whole
product.

3.1.21 multinomial: A linear sum of terms involving powers of more than one variable.

()L L LA i i i m
i i

m
i

i

N

i

N

i

N

x x x m

m

m

1 2 1 2
000

1 2

2

2

1

1

, ,
===
∑∑∑

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

3.1.22 network-capable application processor (NCAP): A device between the transducer modules and
the network. The NCAP performs network communications, TIM communications, and data conversion or
other processing functions.

103.1.23 not-a-number (NaN): As defined in IEEE Std 754-1985, a bit pattern of a single-precision or
double-precision real number data type that is a result of an invalid floating point operation. For single-
precision real numbers, the bit pattern shall have an exponent of 255 (decimal) and a nonzero mantissa.
The sign is not considered in determining whether a value is not a number.

3.1.24 octet: A group of 8 bits. (In the United States, an octet is usually referred to as a byte.)

3.1.25 packet: A block of information that is to be passed by the physical layer between devices in a single
transmission.

3.1.26 sample latched: The term is used in a sensor to signal that the sample has been acquired. This may
be when a sample and hold circuit switches to the hold mode or other similar operation. For an actuator, it
signals that the sample has been moved to the output logic.

3.1.27 sensor: A transducer that converts a physical, biological, or chemical parameter into an electrical
signal.

3.12.28 setup time: The time between the initial request for a function to be performed and when the task
is actually initiated.

3.1.29 signal conditioning: The transducer signal processing that involves operations such as
amplification, compensation, filtering, and normalization.

3.1.30 smart transducer: A transducer that provides functions beyond those necessary for generating a
correct representation of a sensed or controlled quantity. This functionality typically simplifies the
integration of the transducer into applications in a networked environment.

3.1.31 synchronization signal: For the purposes of this standard, a signal transmitted by the NCAP to
provide clock or time synchronization signals to a TIM or group of TIMs. Synchronization signals are not
available with all physical layer standards. Low-cost and performance TIMs may not implement a receiver
for the synchronization signal.

3.1.32 transducer: A device that converts energy from one domain into another. The device may be either
a sensor or an actuator.

3.1.33 transducer interface module (TIM): A module that contains the TEDS, logic to implement the
transducer interface, the transducer(s) or connection to the transducer(s), and any signal conversion or
signal conditioning.

3.1.34 TransducerChannel: A transducer and all of the signal conditioning and conversion components
associated with that transducer.

3.1.35 TransducerChannel number: A 16 bit number assigned to an individual TransducerChannel
within a TIM by the manufacturer.

3.1.36 TransducerChannel proxy: A device that is created to allow a collection of TransducerChannels to
be treated as a single entity. A TransducerChannel proxy is similar to a normal TransducerChannel except

10 Information on references can be found in Clause 2.

8
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

8 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

3.2

that it does not require a TransducerChannel TEDS, it cannot have a Calibration TEDS, Transfer Function
TEDS, or Frequency Response TEDS. It may support other TEDS. A TransducerChannel proxy may
respond to commands.

3.1.37 Transducer Electronic Data Sheet (TEDS): An electronic data sheet describing a TIM or a
TransducerChannel. The structures of multiple TEDS are described in this standard.

3.1.38 transfer: The act or process of moving information from one digital device to another.

3.1.39 transfer function: The function that defines the response of a TransducerChannel in both amplitude
and frequency.

3.1.40 trigger: A signal or message that is used to start an action.

3.1.41 VectorGroup: Manufacturer specifications that define the inherent relationships between the
TransducerChannels of a multichannel TIM. This VectorGrouping information is not normally used by the
TIM itself. This information is normally used by NCAP applications to properly compose human readable
displays or in formulating other computations. For example, VectorGroupings may be used to indicate
which TransducerChannels represent each of the three vector axes of a three-axis vector measurement.

3.1.42 virtual TEDS: A TEDS that is stored permanently in a location other than the TIM.

 Acronyms and abbreviations

AD anno domini

CRS Coordinate Reference System

DTD document type declaration, ref. Extensible Markup Language (XML)

HTTP Hypertext Transfer Protocol

MJD modified Julian date

NaN not a number

NCAP network-capable application processor

OMG Object Management Group, a consortium committed to developing technically
excellent, commercially viable, and vendor-independent specifications for the
software industry

PHY physical layer

SI International System of Units, reference The International System of Units (SI) [B9]

TAI International Atomic Time

TIM transducer interface module

TEDS transducer electronic data sheet

TSI Transducer Service Interface

USASCII U.S. American standard code for information interchange (ANSI X3.4-1986)

UTC universal coordinated time

UUID universal unique identifier

Xdcr transducer

XML eXtensible Markup Language

9
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.

4.1

4.2

4.3

4.4

 Data types

All data types used throughout the remainder of this standard are defined in subordinate subclauses.

 Unsigned octet integer

Symbol: UInt8

Size: 1 octet

IDL: typedef octet UInt8;

This data type represents positive integers from 0 to 255.

 Unsigned 16 bit integer

Symbol: UInt16

Size: 2 octets

IDL: typedef unsigned short UInt16;

A UInt16 may take any value between 0 and 65 535.

 Signed 32 bit integer

Symbol: Int32

Size: 4 octets

IDL: typedef long Int32;

This data type is used to represent a signed integer from –2 147 483 648 to 2 147 483 647.

 Unsigned 32 bit integer

Symbol: UInt32

Size: 4 octets

IDL: typedef unsigned long UInt32;

This data type is used to represent positive integers from 0 to 4 294 967 295.

10
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

10 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.5

4.5.1

4.6

4.7

4.8

 Single-precision real

Symbol: Float32

Size: 4 octets

IDL: typedef float Float32;

A single-precision real number is a 32 bit binary sequence that encodes real numbers as specified in IEEE
Std 754-1985.

 Floating-point NaN in TEDS

According to IEEE Std 754-1985, a single precision number with an exponent of 255 and a fractional
portion (mantissa) that is nonzero is NaN regardless of the sign bit. The recommended value for use in a
TEDS field for NaN is 0x7FFFFFFF (hex).

 Double-precision real

Symbol: Float64

Size: 8 octets

IDL: typedef double Float64;

A double-precision real number is a 64 bit binary sequence that encodes real numbers as specified in IEEE
Std 754-1985.

 String

Symbol: _String

Size: variable

IDL: typedef string _String; // Leading '_' to escape reserved IDL
keyword

The use of text strings, as type string as a basic type that is defined in IEEE Std 1451.2-1997, has been
replaced with the use of OMG standards for IDL.

The XML used in 8.9 is the text-based TEDS. The controlling document for XML is the W3C
Recommendation Extensible Markup Language (XML) 1.0 (Second Edition). All text strings in the TEDS
shall conform to this recommendation or to a future update to it.

 Boolean

Symbol: _Boolean

Size: 1 octet

11
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.9

IDL: typedef boolean _Boolean; // Leading '_' to escape reserved IDL
keyword

The type Boolean is a basic type that is defined in the OMG standards for IDL.

For the purposes of this standard, a bit or octet with a nonzero value is considered True. A zero value
represents the False state of the variable.

 IEEE1451Dot0::Args::TimeRepresentation

This abstract class defines the time representation. It is subclassed into TimeInstance and TimeDuration.
The definition of the two arguments is given in Table 1.

IDL: struct TimeRepresentation {
 UInt32 secs;
 UInt32 nsecs;
};

NOTE—This format is corrected for the flaw in negative time representation discovered in IEEE Std 1588-2002.

Table 1—TimeRepresentation data structure
Parameter Type Description

UInt32 secs Seconds—This unsigned 32 bit number represents the number of seconds from the
beginning of the epoch (normally 0 hours on 1 January 1970).

UInt32 nsecs Sign, Nanoseconds—This unsigned 32 bit integer comprises two smaller fields. The
most significant bit will be interpreted as the sign bit of the entire time value. The least
significant 31 bits represent the number of nanoseconds to be added to the value
identified by the Seconds field before the sign is applied. The value specified in the
Nanoseconds field is constrained to the domain 0 to 999 999 999, inclusive.

This standard uses the time representation specified in IEEE Std 1588-2002. One consequence of this
choice is that time is measured in TAI seconds instead of UTC. TAI is the international standard for time
based on the SI second as realized on the rotating geoid. TAI is implemented by a suite of atomic clocks
and forms the timekeeping basis for other time scales in common use. Of these scales, UTC is the time
scale of most engineering and commercial interest. The UTC representation is specified by ISO 8601 [B5]
as YYYY-MM-DD for the date and hh:mm:ss for the time in each day.

The duration of a second in UTC time is identical to the duration of a second of TAI. UTC time differs
from the TAI time by a constant offset. This offset is modified on occasion by adding or subtracting leap
seconds.

Starting on 0 hours of 1 January 1972 (MJD 41 317.0), the world’s standard time systems began the
implementation of leap seconds to allow only integral second correction between UTC Seconds and TAI.
Time in both UTC and TAI is expressed in days, hours, minutes, and seconds. Leap second corrections,
which are applied to UTC but not to TAI, are made preferably following second 23:59:59 of the last day of
June or December. The first such correction, a single positive leap second correction, was made following
23:59:59 on 30 June 1972, and UTC was 11 seconds behind TAI following that instant.

4.9.1 IEEE1451Dot0::Args::TimeDuration

This subclass of time representation is used to specify a time interval rather than a time value. The
definition of the two arguments is the same as shown in 4.9.

IDL: struct TimeDuration {

12
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

12 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.9.2

4.10

4.10.1

4.10.2

4.11

 UInt32 secs;
 UInt32 nsecs;
};

 IEEE1451Dot0::Args::TimeInstance

Time values are represented by this struct in the IEEE 1451.0 layer. This struct is appropriate when trying
to represent a time value and not time duration. A time value that occurs before the epoch is specified by a
negative “nsecs” field.

IDL: struct TimeInstance {
UInt32 secs;
UInt32 nsecs;
};

The TimeInstance is based on an epoch that is defined as starting at midnight 1 January 1970. The
definition of the two arguments is the same as shown in 4.9.

 Data types for associated applications

The data types in this clause are not used in this standard but are provided to allow the applications using
this standard to pass data in these formats.

 Eight bit signed integer

Symbol: Int8

Size: 1 octet

IDL: typedef char Int8;

This datatype represents integers from –128 to 127.

 Sixteen bit signed integer

Symbol: Int16

Size: 2 octets

IDL: typedef short Int16;

This data type represents integers from –32 768 to 32 767.

 Physical Units

Symbol: UNITS

Size: 11 octets

IDL: struct Units {

13
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

 UInt8 interpretation;
 UInt8 radians;
 UInt8 steradians;
 UInt8 meters;
 UInt8 kilograms;
 UInt8 seconds;
 UInt8 amperes;
 UInt8 kelvins;
 UInt8 moles;
 UInt8 candelas
 UInt8 Units Extension TEDS Access Code
};

Physical Units are a binary sequence of 10 octets that encode Physical Units as described in Table 2 and
Table 3. Each field shall be interpreted as an unsigned integer. A unit shall be represented as a product of
the SI base units, plus radians and steradians, each raised to a rational power. This structure encodes only
the exponents; the product is implicit. For examples of Physical Units, see Annex J. For further
information, see Hamilton [B1].

Table 2—Physical Units data type structure
Field Description Data type Number of octets
1 Physical Units interpretation—see Table 3 UInt8 1
2 (2 * <exponent of radians>) + 128 UInt8 1
3 (2 * <exponent of steradians>) + 128 UInt8 1
4 (2 * <exponent of meters>) + 128 UInt8 1
5 (2 * <exponent of kilograms>) + 128 UInt8 1
6 (2 * <exponent of seconds>) + 128 UInt8 1
7 (2 * <exponent of amperes>) + 128 UInt8 1
8 (2 * <exponent of kelvins>) + 128 UInt8 1
9 (2 * <exponent of moles>) + 128 UInt8 1
10 (2 * <exponent of candelas>) + 128 UInt8 1

The U/U forms (enumerations one and three) are for expressing “dimensionless” units such as strain
(meters per meter) and concentration (moles per mole). The numerator and denominator units are identical,
each being specified by subfields 2 through 10.

Boolean data (values in {0, 1} or {False, True}) shall be represented as digital data (enumeration 4).

14
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

14 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 3—Physical Units interpretation
Value Manifest constant Definition
0 PUI_SI_UNITS Unit is described by the product of SI base units, plus radians

and steradians, raised to the powers recorded in fields 2
through 10. Units for some quantities, such as the number of
people through a turnstile, cannot be represented using these
units. Enumeration zero, with fields 2–10 set to 128, is the
appropriate enumeration for these cases when a quantity is
being defined.

1 PUI_RATIO_SI_UNITS Unit is U/U, where U is described by the product of SI base
units, plus radians and steradians, raised to the powers
recorded in fields 2 through 10.

2 PUI_LOG10_SI_UNITS Unit is log10(U), where U is described by the product of SI
base units, plus radians and steradians, raised to the powers
recorded in fields 2 through 10.

3 PUI_LOG10_RATIO_SI_UNITS Unit is log10(U/U), where U is described by the product of SI
base units, plus radians and steradians, raised to the powers
recorded in fields 2 through 10.

4 PUI_DIGITAL_DATA The associated quantity is digital data (for example, a bit
vector) and has no unit. Fields 2–10 shall be set to 128. The
“digital data” type applies to data that do not represent a
quantity, such as the current positions of a bank of switches.

5 PUI_ARBITRARY The associated physical quantity is represented by values on
an arbitrary scale (for example, hardness). Fields 2–10 are
reserved and shall be set to 128.

6–255 — Reserved.

4.12

4.13

 Universal unique identification

Symbol: UUID

Size: 10 octets

IDL: typedef UUID Short [5];

The UUID is an identification field associated with the TIM whose value is unique on the planet. The
UUID field shall be 10 octets long and consists of four subfields (from most to least significant order:
location, manufacturer’s, year, and time) defined in Table 4.

There shall be no requirement that the interpretation of the UUID reflect the actual place or time of
manufacture of the TIM. The use of time and location in the algorithm shall be used only to ensure
uniqueness. Thus, a manufacturer shall be allowed to use the fields defined by the algorithm as desired,
provided that when interpreted according to Table 4, there shall be no other possible manufacturer that
could claim use of the same UUID for a TIM.

 Arbitrary octet array

Symbol: OctetArray

Size: varies

This data type comprises an arbitrary number of octets, treated as an aggregate entity that may or may not
be interpreted as a number. An OctetArray can be a structure comrpising one or more primitive data types,
arrays of primitive data types, or smaller OctetArrays.

15
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.14

4.15

4.16

4.17

4.18

 String array

Symbol: StringArray

Size: varies

This data type comprises an arbitrary number of string data types (see 4.7), treated as an aggregate entity.

 Boolean array

Symbol: BooleanArray

Size: varies

This data type comprises an arbitrary number of _boolean data types (see 4.7), treated as an aggregate
entity.

 Array of 8 bit signed integers

Symbol: Int8Array;

Size: varies

This data type comprises an arbitrary number of octets, treated as an aggregate entity made up of 8 bit
signed integers (Int8).

 Array of 16 bit signed integers

Symbol: Int16Array;

Size: varies

This data type comprises an arbitrary number of 16 bit signed integers (Int16), treated as an aggregate
entity.

 Array of 32 bit signed integers

Symbol: Int32Array;

Size: varies

This data type comprises an arbitrary number of 32 bit signed integers (Int16), treated as an aggregate
entity.

16
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

16 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 4—Universal unique identification datatype structure
Field Description Number of

bits
42 1 Location field: The value of this field shall be chosen by the TIM manufacturer to identify

a particular location on the earth, the “location,’” over which the manufacturer has physical
control. This value may represent the actual location of a TIM manufacturer. A
manufacturer may use different values of this field in his operation as long as all values
meet the requirements of this subclause.

The representation of the location field shall be 42 bits. The msb shall indicate North
(asserted) or South (not asserted) latitude. The next 20 most significant bits of this field
represent the magnitude of the “location” latitude as an integer number of arc seconds. The
next most significant bit shall indicate East (asserted) or West (not asserted) longitude. The
remaining 20 bits shall represent the magnitude of the “location” longitude as an integer
number of arc seconds.

Latitude magnitude values greater than 90 degrees are reserved. Longitude magnitude
values of greater than 180 degrees are reserved.

NOTE—One arc second at the equator is about 30 m. Thus, the range represented by each
20-bit field is 0 to 1 048 575 arcseconds or 0 to 291 degrees, which is sufficient to
represent latitude and longitude on the earth’s surface.

4 2 Manufacturer’s field: The value of this field may be chosen by the TIM manufacturer for
any purpose provided there is no interference in the use of the location field. Location field
interference occurs when there is more than one manufacturer that could claim physical
control over the location defined by the location field. If such interference exists, all
manufacturers affected shall negotiate the use of the manufacturer’s field values to resolve
any interference. That is, the combination of the location field and the manufacturer’s
fields shall unambiguously define a specific TIM manufacturer. This negotiation shall be
reopened every time there is a change in the interference.

12 3 Year field: The value of this field shall be the value of the current year.
The representation of the year field shall be a 12 bit integer value. The range of this field
shall be the years 0 to 4095 A.D. The beginning of the year shall be deemed to start on
January 1, 00:00:00, TAI.

22 4 Time field: This value shall be chosen by the TIM manufacturer such that in combination
with the location, manufacturer’s, and year fields, the resulting UUID is unique for all
TIMs made under the manufacturer’s control. The choice of values for the time field shall
be further restricted such that the values when interpreted as the time since the beginning
of the year do not represent times prior to the manufacturer obtaining physical control over
the “location” nor values in the future.

The representation of the time field shall be a 22 bit integer. The range shall be 0 to
4 194 303. When it is necessary to interpret this field as time since the beginning of the
year, the representation shall be an integer number of 10 s intervals. In this case, time
values greater than one year are reserved. The beginning of the year shall be deemed to
start on January 1, 00:00:00, TAI.

NOTE—There are approximately 31 536 000 s per year.

4.19 Array of 8 bit unsigned integers

Symbol: UInt8Array;

Size: varies

This data type comprises an arbitrary number of octets, treated as an aggregate entity made up of 8 bit
unsigned integers (Int8).

17
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.20

4.21

4.22

4.23

4.24

 Array of 16 bit unsigned integers

Symbol: UInt16Array;

Size: varies

This data type comprises an arbitrary number of 16 bit unsigned integers (Int16), treated as an aggregate
entity.

 Array of 32 bit unsigned integers

Symbol: UInt32Array;

Size: varies

This data type comprises an arbitrary number of 32 bit signed integers (Int16), treated as an aggregate
entity.

 Array of single-precision real numbers

Symbol: Float32Array;

Size: varies

This data type comprises an arbitrary number of single-precision real numbers as specified in IEEE Std
754-1985, treated as an aggregate entity.

 Array of double-precision real numbers

Symbol: Float64Array;

Size: varies

This data type comprises an arbitrary number of double-precision real numbers as specified in IEEE Std
754-1985, treated as an aggregate entity.

 Array of TimeDuration data types

Symbol: TimeDurationArray;

Size: varies

This data type comprises an arbitrary number of TimeDuration data types as specified in 4.9.1, treated as
an aggregate entity.

18
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

18 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

4.25

5.

5.1

5.1.1

5.1.2

5.1.3

 Array of TimeInstance data types

Symbol: TimeInstanceArray;

Size: varies

This data type comprises an arbitrary number of TimeInstance data types as specified in 4.9.2, treated as an
aggregate entity.

 Smart transducer functional specification

This clause of the standard provides a description of the functions expected to be in an IEEE 1451 smart
transducer. The details of these functions are provided in Clause 6 through Clause 11.

 IEEE 1451 family reference model

The reference model shown in Figure 1 and Figure 2 shows the relationships among the various
IEEE 1451 standards family members. They are to be used to help define what is in each of the standards
in the family. It is not intended to imply a required implementation of devices that comply with the
standard. Subclauses 5.1.1 through 5.1.15 give a further description of the elements shown in Figure 1 and
Figure 2.

 User’s network

The user’s network is outside the scope of the IEEE 1451 family of standards. It may be anything that the
user desires. The only requirement that this places on the NCAP is that the NCAP have the appropriate
network interface hardware and software. Different NCAPs are required for networks using different
physical communications media or protocols.

 Network access module

The network access module is the part of the NCAP that provides the interface to the user’s
communications network. This communications network is not defined as part of any of the IEEE 1451
family of standards. Since the communications network is not defined, the functions of this module are not
fully defined by any IEEE 1451 standard. IEEE Std 1451.1-1999 provides a logical model for this module,
but the use of IEEE Std 1451.1-1999 is not required for an NCAP to be in compliance with this standard or
other members of the IEEE 1451 family based on this standard.

 Transducer Services Interface

This software interface is defined in this standard in terms of an application program interface or API. See
Clause 10 for the details of this interface.

19
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.1.4 NCAP IEEE 1451.0 services

The block defines the functions and services provided to the NCAP communications module and to the
NCAP applications. The functions provided by this module are defined in this standard. These functions
include the command set and the TEDS. Features are included in the standard to support capabilities such
as triggering and synchronous sampling of sensors, but the detailed implementation is left up to the other
standards in the family.

Figure 1—Reference model

20
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

20 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 2—Alternative view of the reference model

5.1.5

5.1.6

5.1.7

5.1.8

 Module Communications Interface

The Module Communications Interface is defined in this standard in terms of an API that is used to pass
information across the interface between the NCAP IEEE 1451.0 services and the NCAP IEEE 1451.X
Communication Module. The physical aspects of this interface are not described in the standard. That is
left up to the manufacturers. See Clause 11 for details of this interface.

 NCAP IEEE 1451.0/X Communication Module

Other members of the IEEE 1451 family of standards cover the NCAP communications module.
IEEE Std 1451.2-1997, IEEE Std 1451.3-2003, and IEEE 1451.5TM-2007 [B4] should all be examples of
these standards. This module provides the low levels of the communications protocol stack and any other
services that the NCAP requires to function in the system.

 Physical interface (PHY)

The physical interface between the NCAP and the TIM is left up to the other members of the standards
family to define. It is not described in this standard. Functions needed across this interface such as
synchronization, if applicable, are described but not their implementation.

 TIM IEEE 1451.X Communication Module

The TIM IEEE P1451.0/X Communication Module is logically the complement of the NCAP
IEEE 1451.0/X Communication Module but not identical since there are services required in the TIM that
are different than the services required in the NCAP. As with the NCAP IEEE 1451.0/X Communication

21
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.1.9

5.1.10

5.1.11

5.1.12

5.1.13

5.1.14

5.1.15

Module, this module is not defined in this standard but is defined by other members of the family of
standards.

 TIM IEEE 1451.0 services

This standard describes the services that are performed in this function. Most services performed by the
NCAP services have counterparts within this block.

 Transducer measurement API

This interface is left up to the manufacturer and is outside of the scope of this standard.

 Signal conditioner and data conversion functions

The details of the signal conditioning and data conversion functions are outside of the scope of this
standard.

 Transducer analog interface

This interface is the physical interface between the signal conditioning and data conversion functions and
is outside of the scope for all members of the IEEE 1451 family of standards except IEEE Std 1451.4-
2004.

 Transducer

The transducer is considered outside of the scope by all members of the IEEE 1451 family of standards.

 TEDS

The basic TEDS are defined in this standard along with the access methods for them. However, some
information that relates to the physical interface is defined in other standards in the IEEE 1451 family.
These TEDS are defined in the other standards. See Clause 8 for detailed descriptions of the TEDS.

 The use of IEEE Std 1451.4-2004 with this reference model

The IEEE 1451.0 layer is defined for the transfer of digital information between modules in a system. The
IEEE 1451.0 TEDS are used to describe the entire TIM, including the transducer, signal conditioner, and
data converters. The analog information that is being described as transported using these interfaces is not
covered by any of this family of standards. However, IEEE Std 1451.4-2004 adds a TEDS in parallel with
the analog output from a transducer. These TEDS give the characteristics of the analog information that
may be obtained using an IEEE 1451.4 sensor. The use of IEEE 1451.4 transducers is not required by any
other member of the IEEE 1451 family of standards. However, it is allowed as shown in this reference
model. To use an IEEE 1451.4 device with an IEEE 1451.0-compatible device requires the appropriate
signal conditioner for the transducer and an IEEE 1451.4 TEDS Translator. The TEDS Translator is
required to combine the contents of the IEEE 1451.4 TEDS with the characteristics of the signal
conditioner to allow the IEEE 1451.0 TEDS to describe the overall TIM. Both sets of TEDS are described
in the standards for the family members, but the details of how to combine the TEDS are not covered in
any of the standards.

22
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

22 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.2

5.3

IEEE 1451.4 transducers are commonly used with interfaces that do not comply with the other members of
the IEEE 1451 family of standards. In these cases this reference model does not apply.

 Plug-and-play capability

A TIM(s) and NCAP that are built to this standard shall be able to be connected using a compatible
physical communications media and shall be able to operate without any changes to the system software.
There shall be no need for different drivers, profiles, or other system software changes to provide basic
operation of the transducer. Applications that use, produce, or display the data associated with a transducer
are not included in this statement. Features that go beyond the requirements of this standard are allowed,
but they impact the plug-and-play capability of the TIM or NCAP.

 Addresses

Two levels of addressing are used in this standard. One level of addressing is associated with the physical
layer implementation. The details of this address are covered in the members of the IEEE 1451 family that
define the communications media. The Module Communications API links this address to the “destId”
with the discoverDestination call described in 11.3.13. This level of addressing allows messages (see
Clause 6) to be sent between a TIM and an NCAP or between TIMs. For more details about this address,
see the standard for the physical layer communications.

The second level of addressing is the TransducerChannel number for a given TransducerChannel within
the TIM. These 16 bit numbers are used in command messages as described in 6.1.2 as the Destination
TransducerChannel number or in reply messages (see 6.1.4) as a source TransducerChannel number. This
level is used to specify to the TIM how the message should be directed or to tell the NCAP where it came
from within the TIM. Rules are associated with the interpretation of a TransducerChannel number that are
given in Table 5. Each row in the table defines a name for a class of addresses and that name is used
throughout the standard.

Not all commands may be honored by all address classes. The address class that honors a particular
command is defined in Clause 7 along with the definition of the commands.

Table 5—Rules for TransducerChannel number usage
Address class Value Description
Global 0xFFFF Global addressing is a special GroupAddress that pertains to all

TransducerChannels on the TIM.
AddressGroup 0x8000<A≤0xFFFE There are two types of AddressGroups as defined in Table 6. The

Bit Mapped AddressGroups are used when a few AddressGroups
are needed and it is desirable to send a command to multiple
AddressGroups at the same time. Binary AddressGroup are used
when a large number of different AddressGroups are required.
Address 0x8000 is a nonfunctional address.

TransducerChannel 1≤A≤0x7FFF An address with the most significant bit set to zero. The
remaining 15 bits identify the TransducerChannel for which the
message is intended.

TIM 0 An address within the message of zero indicates that the message
is intended for the TIM and not an individual
TransducerChannel.

23
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 6—AddressGroups
Address class Value Description
Bit Mapped 0x8000<A≤0xBFFF The most significant bit is set to one, the next most significant bit

is zero, and at least one other bit is set to a one. The pattern in
the two most significant bit is set to indicate that this is a group
address. The other bit or bits identify the group(s).

Binary 0xC000≤A≤0xFFFE The two most significant bits are set to one, and the remaining 14
bits form a binary pattern identifying a single address group.

5.3.1

5.3.2

5.3.2.1

5.3.2.2

5.3.3

 Global addresses

Commands addressed to the Global address shall be received and honored by all TransducerChannels on
the addressed TIM(s). If the received command is not implemented by a TIM or TransducerChannel, the
command shall be ignored and no error shall be generated.

 AddressGroup addresses

Commands issued to an AddressGroup shall be honored by all TransducerChannels that have been
initialized as members of that AddressGroup. See the AddressGroup definition command in 7.1.2.3 for
how to assign or clear an AddressGroup assignment. If the received command is not implemented by a
TIM or TransducerChannel, the command shall be ignored and the command rejected bit shall be set in the
TIM or TransducerChannel.

The use of AddressGroups across multiple TIMs requires that a method of addressing multiple TIMs be
established before TransducerChannels can be assigned to AddressGroups. See 10.1.3 and 10.2.4 for the
details of the method required to make these assignments.

 Bit-mapped AddressGroup addresses

Each AddressGroup is represented by having the most significant bit in the AddressGroup assignment set
to one, the next most significant bit set to zero, and one other bit set in the TransducerChannel number
field of the address class. The one, zero pattern in the two most significant bits of the TransducerChannel
number field indicates that the address is a bit-mapped group address. Using bitwise OR logic, one
command may be issued to multiple AddressGroups simultaneously. This allows for 14 different
AddressGroups.

 Binary AddressGroup addresses

Each AddressGroup is represented by having the two most significant bits in the AddressGroup assignment
set to one. The remaining 14 bits in the TransducerChannel number field of the address class identify the
AddressGroup. This allows for 16 383 different AddressGroups.

 TransducerChannel number

Command and reply messages that have a number between one and 0x7FFF, inclusive, in the
TransducerChannel number field are addressed to a TransducerChannel. They shall be received and
honored by the TransducerChannel to which they are addressed. If the received command is not
implemented by the TransducerChannel, the command shall be ignored and an error shall be generated as
specified for the individual command.

24
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

24 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.3.4

5.4

5.4.1

 TIM addresses

Command and reply messages that have zero in the TransducerChannel number field are addressed to a
TIM. They shall be received and honored by the TIM to which it is addressed by the “destId.” They are
intended for the interface module and not for any particular TransducerChannel within the TIM. If the
received command is not implemented by a TIM, the command shall be ignored and an error shall be
generated as specified for the individual command.

 Common characteristics

Subclauses 5.4.1 through 5.4.4 define the operating characteristics that are common to all
TransducerChannel types.

 Operating states

A high-level state transition diagram for a TransducerChannel is provided as Figure 3. There are two basic
operating states for a TransducerChannel after it comes out of initialization. The TransducerChannel enters
the “Transducer Idle” state when it comes out of initialization. A TransducerChannel accepts most
commands when it is in the Transducer Idle state. A TransducerChannel enters the Transducer Operating
state upon receipt of a TransducerChannel Operate (see 7.1.4.1) command and remains in this state until
the TransducerChannel Idle (see 7.1.4.2) command is received.

As shown in Figure 4, a TIM has three states. A TIM is placed in the TIM Initialization state by a reset (see
7.1.7.1) command or by a power-up event. Once it completes the initialization process, it transitions to the
TIM Active state. A TIM may be placed in the TIM Sleep state by the TIM Sleep (see 7.1.6.2) command.
The only command that a TIM shall accept when in the TIM Sleep state is the Wake-up (see 7.1.5.1)
command that returns it to the TIM Active state.

For more details about what commands may be accepted by a TransducerChannel in each state, see the
detailed description of each command in Clause 7.

Figure 3—TransducerChannel operating states

25
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 4—TIM operating states

5.4.2

5.4.3

5.4.4

5.4.4.1

 Enabling and disabling triggers

A TransducerChannel may have its ability to be triggered enabled or disabled by means of commands.
Unless otherwise noted, all operations described in this document are for TransducerChannels with triggers
enabled.

 Diagnostics

One prime reason for using Smart Transducers is to be able to have devices that can perform self-check or
diagnostics. The standard provides a mechanism to engage diagnostics, but no requirements are imposed
on the scope of the diagnostic logic.

 Structures used to store and transmit data

Three structures are used to store and transmit data in this standard. They are the data set, the message, and
the packet. The following subclauses describe each of these structures. The applications above the protocol
stack deal with data sets. The upper layers of the protocol stack deal with messages. If a data set contains
more octets than can be sent with a single message, it shall be broken up by the application into multiple
messages.

 Data sets

All TransducerChannels operate with “data sets.” Three fields within the TransducerChannel TEDS define
a data set. The Maximum data repetitions field (see 8.5.2.28) defines the maximum number of individual
data samples in a data set. The actual number of samples may be made lower than the number in the
Maximum data repetitions field by the optional Set TransducerChannel data repetition count (see 7.1.2.1)
command. When reset or powered up, the unit uses the default value. If the data repetition count is
programmable, the default value shall be zero. If the data repetition count is not programmable, the default
value shall be the same as the number in the Maximum data repetitions field of the TEDS. The second field
is the Series increment field (see 8.5.2.30). This field is used to determine the interval between samples,
and it may be overridden by a manufacturer-defined command or an embedded actuator. The third field is
the Series units field (see 8.5.2.31). This field defines the units for the Series increment field. The
implication of the Series units field is that the units of the Series increment field do not need to be time and
that if this is the case, the time interval between samples may not be uniform.

26
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

26 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.4.4.2

5.5

5.5.1

Example: The Series units are Kelvins, and the Series increment is 0.5. This combination would cause a
sensor to acquire data every 0.5 degrees. The samples would be at uniform temperature intervals instead of
at uniform time intervals.

 Messages and packets

Messages may contain up to 65 535 octets plus the octets in headers. However, the data link and physical
layers of the protocol stack transmit packets. The maximum packet length is defined in the standard
defining the physical and data link layers. If a message is too long to fit within a single packet, it is the
responsibility of the data link layer in the protocol stack to break messages down into multiple packets for
transmission.

 Transducer Electronic Data Sheets

TEDS are blocks of information in one of the formats defined in one of the subclauses in Clause 8. They
are intended to be stored in nonvolatile memory within a TIM. However, there are applications where this
is not practical, so the standard allows them to be stored in other places in the users system. When stored in
some location other than the TIM, they are referred to as “virtual” TEDS. The manufacturer of the
TransducerChannel is expected to provide the virtual TEDS but not to store them in the TIM. It is the
responsibility of the user’s system to provide a link between the only information that is guaranteed to be
available from the TIM, that is the UUID, and the file that contains the virtual TEDS in the system. The
NCAP or host processor provides this service if it is used. A TIM may provide a mixture of TEDS stored
in the TIM and virtual TEDS. The response to the Query TEDS command (see 7.1.1.1) contains flags that
indicate whether the TEDS is supported and whether it is virtual. A virtual TEDS is considered
“supported” if the manufacturer provided a file on some suitable media containing the information,
regardless of whether the user loaded it into the system.

As a general rule a TEDS is not changed once the manufacturer or the user establishes the contents of a
TEDS. However, it is possible to design TransducerChannels that can change the contents of a TEDS
during operation. This change can be caused by the use of an embedded actuator to change what would
normally be a constant in the TEDS or by logic within the TIM or TransducerChannel that makes a change
within the device requiring a change to the contents of a TEDS. To be able to handle this case, the TEDS
attributes contain a bit, the “Adaptive” bit, that identifies whether the TEDS can be changed by logic
internal to the TIM or TransducerChannel. A status bit is set if the contents of a TEDS are changed without
writing the TEDS.

Four TEDS are required for all TIMs, and others are optional. The required TEDS are as follows:

Meta-TEDS

TransducerChannel TEDS

User’s Transducer Name TEDS

PHY TEDS

See Clause 8 for the detailed specifications for all TEDS defined by this standard.

 Required TEDS

A high-level description of the required TEDS along with the purpose of these TEDS is given in 5.5.1.1
through 5.5.1.4.

27
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.5.1.1

5.5.1.2

5.5.1.3

5.5.1.4

5.5.2

5.5.2.1

5.5.2.2

 Meta-TEDS

The meta-TEDS give some worst-case timing parameters that are available to be used by the NCAP to set
time-out values in the communications software to determine when the TIM is not responding. The
remainder of this TEDS describes the relationships between the TransducerChannels that exist within the
TIM. See 8.4 for the specifications for this TEDS.

 TransducerChannel TEDS

The TransducerChannel TEDS gives detailed information about a specific transducer. It gives what
physical parameter is being measured or controlled, the range over which the TransducerChannel operates,
the characteristics of the digital I/O, the operational mode(s) of the unit, and the timing information. See
8.5 for the specifications for this TEDS.

 User’s Transducer Name TEDS

The User’s Transducer Name TEDS is intended to be used to provide a place for the user of the transducer
to store the name by which the system will know the transducer. The structure of this TEDS is
recommended in the standard, but since the contents are user defined, it cannot be required. All the
manufacturer of the TIM needs to do is to provide the nonvolatile memory that the user may write using
the standard TEDS access methods. See 5.5.1.3 for further details of this TEDS.

NOTE—The User’s Transducer Name TEDS is intended to support “Object Tags,” as defined in IEEE Std 1451.1-
1999 or other similar uses.

 PHY TEDS

The PHY TEDS is dependent on the physical communications media used to connect the TIM to the
NCAP and is not defined in the standard although the method of accessing it is defined.

 Optional TEDS

A high-level description of the optional TEDS along with the purpose of these TEDS is given in 5.5.2.1
through 5.5.2.10.

 Calibration TEDS

The Calibration TEDS provides the calibration constants necessary to convert the output of a sensor into
engineering units or to convert an engineering units value into the form required by an actuator. Two
methods are supported. One is the common linear method that uses the general form of y = mx + b. The
other method is a completely general form that can do almost anything. See 8.5.2.55 for the specifications
for this TEDS.

 Frequency Response TEDS

The Frequency Response TEDS uses a table to provide the frequency response of the TransducerChannel.
See 8.7 for the specifications for this TEDS.

28
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

28 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.5.2.3

5.5.2.4

5.5.2.5

5.5.2.6

5.5.2.7

 Transfer Function TEDS

The Transfer Function TEDS describes a way to link a series of individual transfer functions together to
describe the frequency response of a TransducerChannel in an algorithmic form. See 8.8 for the
specifications for this TEDS.

 Text-based TEDS

Text-based TEDS are a family of TEDS that provide text-based information about a TIM or
TransducerChannel. These TEDS can be in one or more languages. They consist of a directory that
facilitates access to a particular language sub-block within the TEDS followed by the blocks of TEDS that
are defined using XML. See 8.9 for the specifications for this TEDS.

 Commands TEDS

The commands TEDS is a Text-based TEDS that provides a way for the manufacturer to specify additional
commands beyond those included in the standard. These commands are intended primarily to allow the
commands necessary to set up a specific transducer and signal conditioner. Annex D contains an example
schema for this TEDS, and Annex H gives an example of this TEDS.

 Identification TEDS

IEEE Std 1451.2-1997 identified a Meta-Identification TEDS, a Channel Identification TEDS, and a
Calibration Identification TEDS. These TEDS were intended to provide textual information about the
STIM, the TransducerChannel, and the calibration. In this standard, these TEDS have all been lumped into
the category of Text-based TEDS and are not individually defined. The Schema in Annex D and examples
in Annex E, Annex F, and Annex G may be used to duplicate the intent of these TEDS as defined in IEEE
Std 1451.2-1997. Provisions are made in this standard to access TEDS with these names.

 Geographic location TEDS

The Geographic location TEDS is a Text-based TEDS that contain static geographic location information.
It is expected to be written by the user to indicate the location at which the TIM is installed. The contents
of this TEDS shall conform to the definition of a Text-based TEDS as specified in 8.9. The data block shall
be in the Geography Markup Language (GML) developed by the Open Geospatial Consortium (OGC) and
specified in ISO/DIS 19136.

The Geographic Location TEDS specifies the location of the sensor. The sensor location shall be defined in
accordance with the Geography Markup Language (GML) schema for a point: “gml:point”.

Gml:point is an instance of gml:PointType that is included in the GML Schema: geometryBasic0d1d.xsd

The GML schema geometryBasic0d1d.xsd is identified by this URI:

urn:opengis:specification:gml:schema-xsd:geometryBasic0d1d:v3.1.0

Use of gml:point in this specification shall be restricted in the following ways:

gml:point shall use the DirectPositionType, i.e., gml:pos

gml:point shall not use gml:coordinates or gml:coord

29
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.5.2.8

5.5.2.9

5.5.2.10

gml:pos shall include the attribute gml:SRSReferenceGroup

Note that values of gml:pos are constrained by the Coordinate Reference System (CRS)
identified in SRSReferenceGroup

gml:SRSReferenceGroup shall include srsName

gml:SRSReferenceGroup may include srsDimension

gml:SRSReferenceGroup may include gml:SRSInformationGroup

In this specification, srsName shall be given a namespace Uniform Resource Name (URN). An example
for the World Geodetic System 1984 (WGS 84) CRS is as follows:

 urn:ogc:def:crs:OGC:1.3:CRS84

The WGS 84 CRS contains geographic latitude, and then longitude; that is, the X axis corresponds to
latitude, and the Y axis corresponds to longitude.

It is expected that the manufacturer will provide space for this TEDS and the user will provide the actual
information that goes into it. The amount of memory required is a function of the actual GML location
type. This standard does not specify the amount of memory to allot to this TEDS, but a typical single
language block for this TEDS is expected to occupy 60 to 80 octets of memory if using a single octet for
each character.

For the GeoLocTEDS, a simple approach is to specify use of “GML Point.” This point specifies the
location of the sensor once it has been installed. In the GML Point, a Coordinate Reference System (CRS)
needs to be identified. Without a CRS, the location of the point may be inaccurate with the possibility of a
100 m difference between two geographic CRS origins. It is recommended that the writer of this TEDS
restricts the specification to be an identifier of the CRS as specified on GML Point.

 Units extension TEDS

There are cases, especially in chemical sensors, where it is not possible to completly express the Physical
Units in SI units. For example, a sensor sensing the percentage of a certain chemical in a sample would use
a ratio of units, enumeration 1 in the units type field, and the units would Moles. However, this does not
identify Moles of what chemical. To solve this issue, this Text-based TEDS is provided to give a place to
include text that would extend the SI units.

 End User Application Specific TEDS

The End User Application Specific TEDS is much like the User’s Transducer Name TEDS in that it is a
block of memory that the users may use to store anything that they desire in any format that they want to
use. See 8.10 for the specifications for this TEDS.

 Manufacturer defined TEDS

Provisions are included in the standard to allow a manufacturer to define TEDS that are not included in the
standard. The use and structure of manufacturer defined TEDS are left entirely up to the manufacturer. The
manufacturer is not required to make these TEDS accessible by the user. See 8.11.2.3 for the specifications
for this TEDS.

30
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

30 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.6

5.6.1

5.6.2

5.6.2.1

5.6.2.2

 TransducerChannel type descriptions

This subclause specifies the general behavior of three TransducerChannel types. Attributes in the
TransducerChannel TEDS describe the capabilities of the various TransducerChannels to the system. The
detailed timing and control of these TransducerChannel types are specified in later subclauses of this
standard. The TransducerChannel types are as follows:

— Sensor

— Event sensor

— Actuator

The term “TransducerChannel” as used in this subclause refers to the physical transducer and all
electronics in the path that connects the transducer to the communications functions.

 Sensor

A sensor shall measure some physical parameter and return digital data representing that parameter. On the
receipt of a trigger, if triggering is enabled, the sensor shall start the collection and storing of a data set
within the TIM. The timing of the individual samples in the data set shall be controlled by the TIM and is a
function of the operating mode of the sensor. A sensor, in the transducer operating state, shall respond to a
Read TransducerChannel data-set segment command (see 7.1.3.1) by returning the appropriate data set. If a
new data set is not available, the TransducerChannel shall respond with the same data that were returned
on the previous Read TransducerChannel data-set segment command.

 Event sensor

An event sensor differs from a sensor in that it does not determine the magnitude of some physical
phenomena but determines when a change of state has occurred. This change of state may be an analog
signal crossing some threshold or it is a set of discrete bits that match or fail to match a given bit pattern.
Thus, the output of an event sensor indicates the state of its input. The two allowable states are one and
zero. Two pieces of information may be determined from the output of an event sensor. One piece is the
current state of the input, and the other is the time that a change in state occurred.

The TEDS definition for an event sensor is the same as for any other transducer.

 Event sensor output

The data model of an event sensor output is defined in the TransducerChannel TEDS in the same way that
the output of any other sensor is defined. However, the magnitude of the output shall be either zero or one.

 Event time

The event sensor only reports the fact that an event has occurred. Other elements in the system are needed
to determine when the event occurred. There are multiple ways that this process may be accomplished, and
just which method is chosen depends on the requirements of the application. If polling is used to determine
when the event occurred, the time of the event can only be known to within the polling interval. In the
streaming data transmission mode, the NCAP can determine when the event occurred by the time of arrival
of the message. The physical layer is a major factor in determining how much lag there is between the
event and the NCAP recognition of the event. On the other end of the spectrum, the time of occurrence of

31
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.6.2.3

the event may be determined to within a microsecond or less by the use of an embedded time interval
sensor or a TimeInstance sensor in the TIM with the event sensor. See M.2 and M.3 for a discussion of
time interval and TimeInstance sensors.

 Analog event sensors

Analog event sensors have an input signal that is in an analog form. An event is determined when the input
crosses a threshold. For an analog event sensor, upper and lower thresholds are defined. The lower
threshold differs from the upper by a quantity called hysteresis. The hysteresis value shall be zero or
greater. During steady-state operation, a rising transition (i.e., the condition of the input that causes the
output state to transition from zero to one) shall be when the output state is zero and the analog input value
passes through the upper threshold. A falling transition (i.e., the condition of the input that causes the
output state to transition from one to zero) shall be when the output state is one and the analog input value
passes through the lower threshold. Figure 5 shows this behavior graphically. Changes of the output state
shall only be reported after the device has been armed by receiving a trigger. The upper threshold and the
hysteresis may be fixed at the time of manufacturing the event sensor, or they may be made programmable.
The recommended method of making them programmable is to use embedded actuators to set the upper
threshold and hysteresis.

Initialization of an event sensor will depend on the design. However, the following process is
recommended. For Event Sensors that report only falling transitions, the output should be initialized to the
one state if the analog input value is greater than or equal to the upper threshold. If the input is less than the
upper threshold, the output should be initialized to the zero state. For Event Sensors that report only rising
transitions, the output state should be initialized to the zero state if the analog input is less than or equal to
the lower threshold. If the input is greater than the lower threshold, it should be initialized to the one state.
For Event Sensors that can report both transitions, pick one of these methods and recognize that if the input
is within the hysteresis band, the first transition may be missed. More elaborate schemes such as
controlling the analog input value during initialization are required to avoid this problem.

Figure 5—Analog event sensor behavior

32
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

32 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.6.2.4

5.6.2.5

5.6.2.6

 Digital event sensors

Digital event sensors have one or more discrete input signals. An event is determined when the input
matches a defined pattern for a manufacturer-defined fixed period of time. A rising transition shall be when
the inputs match a specific digital pattern without change for a fixed period of time. The period of time
should be determined by the manufacturer to match the characteristics of the event but may be controlled
by manufacturer unique commands or an embedded actuator. A falling transition shall be when the inputs
cease to match the pattern for some fixed time.

A digital event sensor may have several associated embedded TransducerChannels. It may include a
sensor(s) to return the digital input on command and actuators to set up a complex event sensor. Embedded
actuators may be used to define patterns, masks, time delays, and combinations of several discrete inputs
that are combined into one event. The TransducerChannel TEDS for these embedded TransducerChannels
shall be appropriate to their function. The function of each embedded TransducerChannel is defined by
ControlGroups in the Meta-TEDS that are defined in 8.4.2.8.

 Transitions reported

An event sensor may be designed to signal an event on falling transitions or rising transitions, or both. The
Edge-to-Report command (see 7.1.2.9) allows the system to select which transitions to report as events.
The edge-to-report capabilities of the event sensor along with the default condition are defined in the
TransducerChannel TEDS (see 8.5). If the event sensor is in the transducer operating state when an event
occurs, an event sensor shall set the data/event bit in the status register and shall issue a service request
message if the status-event protocol is enabled (see 7.1.1.11). If status-event protocol is disabled, the
data/event bit in the status register shall be set, but no message shall be transmitted.

Whether an event has occurred since the last status read may be determined by examining the data/event
status bit as described in 5.13.6.

 Event sensor status

An event sensor shall set the TransducerChannel data/event status bit whenever an event is detected in
either the transducer operating or the transducer idle states. If the event sensor is in the transducer
operating state but has not been triggered, it shall set the TransducerChannel missed data or event status bit
coincident with any event that occurs. The TransducerChannel missed data or event status bit shall not be
set if the event sensor is in the transducer idle state.

Consistency checks may be made by the TIM if the bit pattern is changeable for a digital event sensor, or
either the upper threshold or hysteresis is changeable for an analog event sensor. Inconsistent values are
signaled by setting the hardware error status bit (see 5.13.7). If inconsistent values are checked, the check
shall be made immediately following a change in any of these parameters. The check shall consist of
verifying the following relationships:

For analog values:

Maximum sensed input > upper threshold ≥ (upper threshold - hysteresis) > minimum sensed input value

For digital patterns: The pattern is a legal input.

NOTE—Consistency checking by the TIM shall only use data in the data model specified by the TransducerChannel
TEDS of the embedded TransducerChannels.

33
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.6.2.7

5.6.2.8

5.6.2.9

5.6.3

5.7

5.8

 Continuous sampling event sensors

Like sensors and actuators, event sensors may be operated in the continuous sampling mode (see 5.10.1.6).
In the continuous sampling mode, an event sensor in the transducer operating state shall detect and place in
a buffer the fact that an event occurred without subsequent triggers.

 Event sensors in the streaming data transmission mode

Like sensors and actuators, event sensors may be operated in the streaming data transmission mode. In the
Streaming when a buffer is full mode (see 5.10.2.2), an event sensor in the transducer operating state shall
transmit a message each time an event occurs. In the Streaming at a fixed interval data transmission mode
(see 5.10.2.3), the event sensor shall store in a buffer the fact that an event or events has occurred and shall
transmit the buffer at the appropriate time.

 Time between events

The minimum time between events that an event sensor can detect is limited by the design of the event
sensor. The minimum time between events that can be detected by the event sensor shall be specified in the
TransducerChannel TEDS field, TransducerChannel sampling period (8.5.2.36).

 Actuator

An actuator shall cause a physical or embedded output action to occur. The actuator output state changes to
match the appropriate data set when a triggering event occurs. If there is more than one data point in a data
set, the interval between issuing the individual data points shall be under the control of the TIM.

An actuator may be built that does not require a data set be written to it before it performs an action. This
type of device always uses a default data set or no data at all and performs a predefined action upon the
receipt of a trigger.

 Embedded TransducerChannels

Embedded TransducerChannels are TransducerChannels whose functionality is completely contained
within a TIM. An embedded TransducerChannel does not sense or control any function outside of the TIM.
For example, embedded actuators may be used to set the threshold and hysteresis of an event sensor. An
embedded digital event sensor may be set up to detect and report any change in the status within a TIM.
Embedded TransducerChannels appear to the system as normal TransducerChannels. They respond to
commands, have TEDS, and are counted when determining the number of TransducerChannels in a TIM.

NOTE—The advantage of using “embedded” TransducerChannels over control commands is that “embedded”
TransducerChannels are supported by TEDS, which gives the overall system a standard way to obtain the details of
operation of the TIM. They should be used when it is difficult to specify the resolution of a control command in a
standard way.

 TransducerChannel groups

Two types of TransducerChannel groups are defined in this standard. They are ControlGroups and
VectorGroups. They are similar in implementation but are used for two different functions.

34
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

34 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.8.1

5.8.2

5.9

 ControlGroups

ControlGroups are used to define collections of TransducerChannels when one TransducerChannel is the
primary channel, and the remaining TransducerChannels in the group provide either additional information
about the primary TransducerChannel or are used to control some aspect of the primary
TransducerChannel. For example, a ControlGroup may be used to define up to three additional
TransducerChannels associated with an analog event sensor. One is a sensor that is used to measure the
analog input to the event sensor. The second is an actuator that is used to set the threshold for the event
sensor. The third is an actuator that may be used to set the hysteresis for the event sensor.

 VectorGroups

VectorGroups are used to define relationships between TransducerChannels within a single multichannel
TIM that imply a display or mathematical relationship between the TransducerChannels. For example, they
may be used to identify the relationships between the components of a three-axis accelerometer.
VectorGroups are used by the software in the NCAP or host processor to group the outputs of the
individual TransducerChannels into vectors for display or computational purposes.

NOTE—VectorGroups are in some ways similar to TransducerChannel proxies. TransducerChannel proxies are used
to identify TransducerChannels that are grouped together for reasons such as efficient transmission of the data and/or
simultaneous triggering. Proxies may or may not represent a vector for display or computational purposes. However, it
is recommended that all vectors be implemented as proxies, especially in spatial vector applications (like velocity or
acceleration), where the measurements of the three components at different points in time could lead to
misinterpretation.

 TransducerChannel proxy

A TransducerChannel proxy is an artificial construct used to combine the outputs of multiple sensors or the
input to multiple actuators into a single structure. A TransducerChannel proxy has a TransducerChannel
number and may be read or written, but it does not have the other characteristics of a TransducerChannel.
This means that a proxy does not have a TransducerChannel TEDS, a Calibration TEDS, a Transfer
Function TEDS, or a Frequency Response TEDS. The TransducerChannel proxies that exist in a TIM are
defined in the Meta-TEDS (see 8.4.2.14).

Like any other transducer, a TransducerChannel proxy is permanently assigned a TransducerChannel
number by the manufacturer. Thus, a proxy may be addressed in a manner consistent with all other
TransducerChannels implemented on the TIM.

A proxy shall not represent a collection of incompatible transducer types. In other words, a proxy
represents a group of sensors or a group of actuators but shall not represent a group containing both
transducer types.

Reading or writing the data from the individual members of a proxy may be allowed or disallowed at the
manufacturer’s discretion. If the manufacturer chooses to disallow reading or writing the individual
members of a proxy, then the receipt of one of those commands shall set the appropriate
TransducerChannel command rejected bit (see 5.13.4) in the status word.

Two methods may be used to combine the data-sets for the proxy. They are the “block” and “interleave”
methods. These two methods are shown graphically in Figure 6. The block method allows the data sets to
be of different lengths. With the interleave method, all data sets shall have the same size.

35
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 6—Methods of combining data sets

5.10

5.10.1

 Attributes and operating modes

Subclauses 5.10.1 through 5.10.7.3 define the operating modes that are described by the attributes found in
the TransducerChannel TEDS. Each attribute indicates whether a TransducerChannel supports the
associated operating mode. Some of these modes of operation are mutually exclusive, and others may be
enabled at the same time.

 Sampling modes

A sensor or actuator may be operated in one of five sampling modes. The sampling modes have different
relationships between the trigger and the sampling of the data by a sensor or the application of a sample to
the output of an actuator. The mode or modes that a TransducerChannel is capable of operating in is
defined by the attributes given in the TransducerChannel TEDS. For the possible values of these attributes,
see 8.5.2.44.

The trigger-initiated and free-running sampling modes are mutually exclusive. The TransducerChannel
shall be operated in one of these two modes. The other three modes are variations on these two basic
operating modes.

36
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

36 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.10.1.1

5.10.1.2

5.10.1.3

5.10.1.4

5.10.1.5

 Trigger-initiated

In the trigger-initiated sampling mode, a sensor shall begin acquiring a data set immediately upon receipt
of a trigger. An actuator shall start outputting a data set immediately upon receipt of a trigger. Sample
processing continues until all samples in the data set are processed at a rate determined by the TIM and
then stops.

 Free-running without pre-trigger

In the free-running sampling mode, a sensor is measuring some physical parameter autonomously and
continuously when in the transducer operating state. The data being acquired and converted are discarded
until a trigger is received. Once a trigger has been received, the next sample converted is stored in the
TransducerChannel or TIM as the first word in the data set. Consecutive samples are stored until the entire
data set is completed. At this point, the TransducerChannel returns to discarding samples until the next
trigger is received. The sampling operation of a TransducerChannel when in the transducer idle state is at
the discretion of the manufacturer.

An actuator operating in the free-running sampling mode shall apply the data set received before the trigger
in accordance with its End-of-data-set Operating mode.

 Free-running with pre-trigger

In the free-running sampling mode, a sensor is measuring some physical parameter autonomously and
continuously when in the transducer operating state. The data being acquired and converted is stored until a
trigger is received or the pre-trigger count (see 7.1.2.2 and 8.5.2.32) is reached. After the number of
samples that have been stored reaches the pre-trigger count, the next sample acquired shall cause the oldest
sample to be discarded and the new sample shall be stored. Once a trigger has been received, the next
sample converted is stored in the TIM as the next word in the data set. Consecutive samples are stored in
the TIM until the entire data set is completed. The data set shall be complete when the number of samples
equal to the data set size minus the pre-trigger count has been acquired after the trigger is received. The
behavior after the data set is complete is described in 5.10.1.4 or 5.10.1.5. The response to additional
triggers before the operation started by the first trigger is complete is described in 5.11.5.

An actuator may not be operated in the free running with pre-trigger mode.

 Free-running with pre-trigger without buffers enabled

When the data set is complete the TransducerChannel returns to discarding samples until the next trigger is
received or the data set is read. After the data set is read, the TransducerChannel shall start storing samples
again while waiting for another trigger. In this mode, the data set may only be read once. Subsequent reads
before the next trigger will return 0 octets. The sampling operation of a TransducerChannel when in the
transducer idle state is at the discretion of the manufacturer.

 Free-running with pre-trigger and buffers enabled

When the data set is complete, the TransducerChannel shall switch to the next empty buffer and start
acquiring data samples for the next data set. If no empty buffers are available, it shall discard any samples
acquired until a buffer becomes available. A buffer shall be considered available after it has been read. The
sampling operation of a TransducerChannel when in the transducer idle state is at the discretion of the
manufacturer.

37
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.10.1.6

5.10.1.7

5.10.2

 Continuous sampling mode

In the continuous sampling mode, a sensor shall begin to acquire samples and store them in one of its
buffers when it receives an initial trigger. The operation shall be similar to the free-running without pre-
trigger mode described in 5.10.1.2 except that the TransducerChannel does not stop when a data set is
acquired but switches to the next available buffer and continues to acquire data. Operating in this mode
requires that the sensor have multiple buffers available for storing the data samples. Once all buffers are
full, the data in the oldest buffer shall be discarded regardless of whether it has been transmitted to the
NCAP and that buffer shall be used to store the data being acquired. If the streaming at a fixed interval
transmission mode described in 5.10.2.3 is being used, the sensor shall switch to an empty buffer at the
start of a new transmission interval, regardless of whether the current buffer is full. However, if the number
of samples acquired within a transmission interval is greater than the Max Data Repetitions from the
TransducerChannel TEDS (see 8.5.2.28), then the data set shall be truncated at the Max Data Repetitions
and the TransducerChannel Missed data or event (see 5.13.5) bit shall be set.

After an initial trigger, an event sensor operated in the continuous sampling mode shall detect a change in
state at its input, store that state change for transmission, and continue to look for additional changes in its
input state. This requires that the event sensor have multiple buffers and use them like a sensor uses
buffers. If the streaming at a fixed interval transmission mode is being used, the TransducerChannel shall
switch to an empty buffer at the start of a new transmission interval, regardless of whether the current
buffer is full.

In the continuous sampling mode, an actuator shall apply all data in its current buffer when the first trigger
is received at a rate controlled by the TransducerChannel. Once all data in that buffer has been applied, it
shall switch to the oldest filled buffer and continue applying the data. If another filled buffer is not
available, the actuator shall take the action described in 5.10.4 and controlled by the setting of the End-of-
data-set operations attribute as described in 8.5.2.48. If this action is to “recirculate,” the unit shall not look
for a new filled buffer until it completes reapplying the current buffer. If that action is to “hold,” the unit
shall switch to the new buffer as soon as it has been received and stored in memory. If an attempt is made
to write data to this TransducerChannel and no empty buffers are available, the incoming data shall be
ignored and the TransducerChannel Missed data or event bit shall be set.

 Immediate operation

A sensor in this sampling mode will immediately acquire a data set and transmit it as a response to a Read
TransducerChannel data-set segment command. The receipt of the Read TransducerChannel data-set
segment command will function as a trigger.

An actuator in this sampling mode will immediately apply the data-set received from a write
TransducerChannel data-set segment command. The receipt of the write TransducerChannel data-set
segment command will function as a trigger.

 Data transmission mode

Three data transmission modes are defined in this standard as shown in Table 7.

38
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

38 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 7—Data transmission mode
Enumeration Argument name Data transmission

mode
Description

0 XmitMode.reserved[0] Reserved
1 XmitMode.OnCommand Only when

commanded
A TIM shall transmit a data set only in
response to a Read TransducerChannel data-set
segment command (see 7.1.3.1).

2 XmitMode.BufferFull Streaming when a
buffer is full

Data are transmitted as soon as a buffer is full
without waiting for the NCAP to issue a Read
TransducerChannel data-set segment command
(see 7.1.3.1).

3 XmitMode.Interval Streaming at a fixed
interval

Data buffers are transmitted at a fixed interval.
The TransducerChannel shall stop using the
current buffer regardless of how much data are
in it, shall begin storing data in another buffer,
and shall transmit the buffer it was using
without waiting for a Read TransducerChannel
data-set segment command (see 7.1.3.1).

4–127 XmitMode.reserved[N] Reserved
4≤N≤127

128–255 XmitMode.open[N] Open to
manufacturers

128≤N≤255

5.10.2.1

5.10.2.2

5.10.2.3

5.10.3

 Only when commanded mode

When in the Only when commanded mode, a TransducerChannel shall only transmit a data set in response
to a Read TransducerChannel data-set segment command (see 7.1.3.1).

 Streaming when a buffer is full mode

When in the Streaming when a buffer is full mode, a sensor or event sensor shall transmit a data set as soon
as a complete data set has been acquired. An actuator does not stream data, so it may not be operated in this
mode. The equivalent operating mode for an actuator is the Continuous sampling mode described in
5.10.1.6.

 Streaming at a fixed interval mode

When in the Streaming at a fixed interval mode, a TransducerChannel shall transmit a data set or partial
data set at regular, fixed intervals. When operated in this mode, the TransducerChannel data repetitions
shall not be used to determine the number of samples in a data set. The number of samples in a data set
shall be determined from the sampling rate and the periodic transmission interval. However, if the number
of samples acquired within a transmission interval is greater than the Maximum data repetitions from the
TransducerChannel TEDS (see 8.5.2.28), then the data set shall be truncated at the Maximum data
repetitions and the TransducerChannel hardware error bit (see 5.13.7) shall be set.

The method of defining the sample interval is defined in the appropriate transmission media standard and is
not covered in this standard.

 Buffered operation mode

A sensor or actuator may be capable of being operated in buffered or non-buffered modes. In the buffered
mode, one buffer is available to be read from a sensor or applied to an actuator output, whereas other
buffers are available to be filled. A characteristic of a TransducerChannel operating in the buffered mode is

39
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.10.4

5.10.4.1

5.10.4.2

5.10.5

that the data available to be read or applied are always the data that were available in a buffer before the
previous trigger. In the non-buffered mode, only a single buffer is available to store a data set. The
buffering capabilities of a given TransducerChannel are described by the Buffered attribute in the
TransducerChannel TEDS. See 8.5.2.47 for the details of this attribute.

A sensor that is in the transducer idle state and before it is placed into the transducer operating state for the
first time after initialization shall return 0 data octets to any Read TransducerChannel data-set segment
command (see 7.1.3.1). If a buffered sensor has buffers that are full or partially full when it is returned to
the transducer idle state, it shall return the contents of the oldest buffer on receipt of a Read
TransducerChannel data-set segment command. Upon the receipt of subsequent Read TransducerChannel
data-set segment commands, the contents of the remaining buffers shall be returned. After the contents of
each buffer that had unread data in it when the TransducerChannel idle command (see 7.1.4.2) was
received have been read, the TransducerChannel or TransducerChannel proxy and shall return 0 data octets
to subsequent Read TransducerChannel data-set segment commands.

All buffers shall be cleared when the TransducerChannel transitions from the idle to the transducer
operating state.

 End-of-data-set operation mode

This mode only applies to actuators. The End-of-data-set operation attribute in the TransducerChannel
TEDS (8.5.2.48) defines the possible operations that an actuator may perform when it reaches the end of a
data set. Two possible operating modes are described in 5.10.4.1 and 5.10.4.2.

NOTE—These operation modes describe ways to allow actuators to smoothly transition from one data set to another.
Although this smooth transition is desirable in most cases, there are instances when a rapid transition to another
condition is required, i.e., emergency shutdown. For these cases, a second actuator TransducerChannel in the same
TIM may be used that executes the transition to the new condition. The mechanism for switching control of the output
from one actuator to the other is internal to the TIM and not covered in the standard.

 Hold

An actuator operating in the hold mode shall use all samples in a data set and then shall continue to use the
last sample in the data set until a new trigger is received.

NOTE—The hold mode is suited to an actuator containing a valve or other mechanical positioner. This type seems to
also fit bistable-output logic-type output devices but is also frequently associated with the trigger-initiated sampling
mode.

 Recirculate

An actuator operating in the recirculate mode shall apply all samples in a data set to the output, then shall
return to the beginning of the data set, and shall repeat the application of that data set until another trigger
is received or the TransducerChannel is disabled. When returning to the beginning of a data set or to a new
data set, the appropriate sample interval shall be maintained. When another trigger is received, the
TransducerChannel shall switch to the new data set when it reaches the end of the current data set.

 Streaming operation

Streaming operation is achieved by combining the continuous sampling mode (see 5.10.1.6) with either the
streaming when a buffer is full mode (see 5.10.2.2) or the streaming at a fixed interval mode (see 5.10.2.3).
A sensor or event sensor in streaming operation shall acquire data and transmit it without further

40
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

40 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.10.6

5.10.7

5.10.7.1

5.10.7.2

5.10.7.3

5.11

5.11.1

commands from the NCAP. A streaming actuator shall apply the data received without a trigger command
being received for each data set.

 Edge-to-report operating mode

This operating mode applies to event sensors only.

An event sensor may be capable of operating in one of three modes. In the falling transitions mode, they
report all falling transitions. In the rising transition mode, it reports all rising transitions. See 5.6.2.3 and
5.6.2.4 for the definition of falling and rising transitions. In the all-transitions mode, it reports both rising
and falling transitions. The Edge-to-report attribute field in the TransducerChannel TEDS defines the
capabilities of the event sensor with regard to this operating mode. When defaults are included, there are
six possible values to this attribute. See 8.5.2.50 for details.

 Actuator-halt mode

This attribute applies to actuators only. This mode defines what an actuator does when a
TransducerChannel idle command is received. The Actuator-halt attribute in the TransducerChannel TEDS
(see 8.5.2.51) defines the possible operations.

 Halt immediate

The actuator shall hold the current state of its output until it is returned to the transducer operating state or
put into the sleep state.

 Halt at the end of the data set

The actuator shall finish applying the current data set and then hold the last output value of its output until
it is returned to the transducer operating state or put into the sleep state.

 Ramp to a predefined state

The actuator shall use a manufacturer-defined process to ramp the output to a predefined state.

 Triggering

A trigger is a signal applied to a TransducerChannel or to a set of TransducerChannels to cause them to
take a particular action. The state diagram in Figure 7 shows the triggering states for a sensor, and Figure 8
shows the triggering states of an actuator.

 Sensor triggering

Movement from state to state is dependent on the commands received as defined in Clause 7, the state of
the TransducerChannel (see Figure 3), the state of the TIM (see Figure 4), events occurring, and data set
full/empty status.

41
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.11.2

If the TIM is taken out of the Active state, the sensor shall immediately return to the Sensor Trigger
Initialize State. If the TransducerChannel is taken out of the Operating State, then the sensor shall
immediately return to the Sensor Trigger Initialize State. If a Reset Command is received, then the sensor
shall immediately return to the Sensor Trigger Initialize State.

 Actuator triggering

Movement from state to state of the actuator triggering is dependent on the commands received as defined
in Clause 7, the state of the TransducerChannel (see Figure 3), the state of the TIM (see Figure 4), events
occurring, and the data set full/empty status.

If the TIM is taken out of the Active state and the actuator is in the Transverse Data-set state, then the
actuator shall return to the Actuator Trigger Initialize State by way of the Actuator Halt State. If the
Transducer is not in the Operating State and the actuator is in the Transverse Data-set state, then the
actuator shall return to the Actuator Trigger Initialize State by way of the Actuator Halt State. If a Reset
Command is received and the actuator is in the Transverse Data-set state, then the actuator shall return to
the Actuator Trigger Initialize State by way of the Actuator Halt State. The Actuator Halt State uses the
Actuator Halt Operating Mode (see 5.10.7) to process the data set.

If a Trigger is received while the actuator channel is in the Transverse Data-set state (see Figure 8) and the
End of Data-set Operation mode (see 5.10.4) is set to recirculate and a new data set has been received, then
the TransducerChannel shall switch to the new data set when it reaches the end of the current data set.

The Actuator Halt Mode state shall use the argument from the Actuator Halt Operating Mode command to
exit the data set cleanly.

Several methods are recognized by this standard to initiate a trigger. They are explicit triggers commanded
by the NCAP, an access of the TIM by the NCAP and events within a TIM that may be used as triggers,
and a trigger command that may be initiated by a NCAP-enabled TIM when an event occurs within the
TIM.

42
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

42 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

[Sampling M
ode] =

Wait for Trigger

[Sampling M
ode] =

Free Running

with Pre-trigger

Figure 7—Sensor trigger states

Figure 8—Actuator trigger states

43
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.11.2.1

5.11.2.2

5.11.3

 Trigger commands

Trigger commands are sent from the NCAP to one or more TransducerChannels on a transducer common
medium. A trigger command is defined in 7.1.3.3. A trigger command may be addressed to any of the
following:

— TransducerChannel

— TransducerChannel Proxy

— TIM

— AddressGroup

— Global address

A trigger command addressed to a specific TransducerChannel applies to one TransducerChannel on one
TIM.

A TransducerChannel proxy is an addressable resource within a single TIM (see 5.9) that is capable of
“representing” one or more TransducerChannels within that TIM. A trigger command addressed to a
TransducerChannel proxy triggers each TransducerChannel represented by that TransducerChannel proxy.

A trigger command addressed to a TIM triggers all trigger enabled TransducerChannels that are
implemented on that TIM.

The system user may define AddressGroups (see 5.3). When the system is set up, each TransducerChannel
to be included in an AddressGroup is programmed to respond to the AddressGroup identifier for that
AddressGroup. A trigger command issued to that AddressGroup triggers all members of that
AddressGroup. If the trigger is issued to multiple TIMs using the techniques described in 10.2.3 and
10.2.4, it will trigger all TransducerChannels on all TIMs to which the command is sent.

A global trigger applies to all trigger-enabled TransducerChannels in a TIM. The system issues a global
trigger by issuing a trigger command to the global address. If the trigger is issued to multiple TIMs using
the techniques described in 10.2.3 and 10.2.4, it will trigger all TransducerChannels on all TIMs to which
the command is sent. Regardless of the address mode, a TransducerChannel shall only honor the trigger
when triggering is enabled for that TransducerChannel.

 Events used as triggers

Events may be used as triggers for other TransducerChannels within the same TIM directly. Events of this
nature are not Trigger commands, but they serve the same function. An event used as a trigger may be
formally implemented as an Event Sensor. An event may cause an event sensor to transmit a trigger
message to other TIMs on the same communications media.

NOTE—For event sensors used as triggers in systems where it is important for the system to be able to determine the
time of the event, it is necessary to augment the event sensor with a time interval sensor or TimeInstance sensor to be
able to determine the time of the event accurately.

 Nominal trigger logic

A functional block diagram of the logic within a TIM that is related to triggering is shown in Figure 9.

44
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

44 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 9—Simple TransducerChannel functional blocks

The Data Transport Logic responds to trigger commands. Upon receipt of a trigger command, provided
that the TransducerChannel trigger is enabled, the Data Transport Logic issues a StartSamp signal.

The StartSamp signal shall cause a traditional sensor to acquire a new data set. For the simplest sensors,
this may mean a digital latch is updated or an analog-to-digital converter begins a conversion. More
complex sensors may take multiple samples per trigger, spaced apart incrementally in time or some other
dimension.

The StartSamp signal shall cause an event sensor to begin monitoring the event of interest. The occurrence
of the event shall cause the Sample Control logic to generate the Last Sample Latched signal.

The StartSamp signal shall cause an actuator TransducerChannel to apply a data set to its output. For the
simplest actuators, this may mean a digital latch is updated or a digital-to-analog converter begins a
conversion. More complex actuators may apply multiple samples per trigger, spaced apart incrementally in
time or some other dimension.

The Sample Control logic is responsible for orchestrating the sequence of operations needed to acquire or
apply a data set. The Transducer Logic block represents all signal conditioning, data conversion, and
buffering logic. The Initiate Operation signal is used to initiate the process of data conversion on a single
sample, and the Sample Latched signal indicates that a sample has been acquired or output.

For TransducerChannels implemented under the Nominal Triggering model, the determination of the time
at which the sample was latched becomes the sole responsibility of the NCAP or host processor based on
information provided by the TIM. There are two variations. The method used for determining TN shall be
specified in the Source for the time of sample field in the TransducerChannel TEDS (see 8.5.2.40).

This time calculation gives the time of the last sample in the data set. The following calculation describes
how to calculate the time of any other sample in the data set.

si N) - (- t i N T T i = for i = 1 to N (1)

where
 N is the number of samples in the data set
Ti is the time of sample i

45
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.11.4

T is the time of the last sample in the data set N
t is the sample interval si

When the enumerated value of Source for the time of sample indicates that the delay between application
of trigger and the subsequent latching of the sample is constant and the TIM lacks embedded hardware
resources to support time tagging, the time of sample shall be computed from the time at which the trigger
command was issued by adding an adjustment equal to the Incoming propagation delay through the data
transport logic field of the TransducerChannel TEDS. This method neglects the effects of propagation
delays over the transport media.

Calculation:

 (2) pditm1 t+= TT

where
Ttm is the time of day at which the trigger command was sent by the NCAP
t is the value of the Incoming propagation delay through the data transport logic field found in

the TransducerChannel TEDS
pdi

T1 is the time of day when the first sample in the data set was latched

This time calculation gives the time of the first sample in the data set. The following calculation describes
how to calculate the time of any other sample in the data set:

 for i = 1 to N (3) sim t*iTTi +=

where
N is the number of samples in the data set
Ti is the time of sample i
Tm is the time of the first sample in the data set
t is the sample interval si

For other possible configurations of the trigger logic, see Annex L.

 Trigger logic based on event recognition

The functional block diagram in Figure 10 depicts a TransducerChannel that is triggered by an event
sensor. An event sensor may have additional embedded actuators to implement features such as a
programmable analog threshold and hysteresis or a programmable digital pattern.

46
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

46 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 10—Event sensor output used as a trigger

The event sensor has a special hardware relationship to one or more TransducerChannels. This shall be
identified as a ChannelGroup in the Meta-TEDS. A trigger command issued to the event sensor causes the
event sensor to begin monitoring. The occurrence of the event may also be used to trigger the associated
TransducerChannel(s).

The TransducerChannel may not honor a trigger command addressed to the TransducerChannels so
configured.

5.11.5 Over-triggering a TransducerChannel

Irrespective of the time needed to read the TransducerChannel data, the NCAP is expected to wait for at
least the duration of the TransducerChannel sampling period between successive triggers. The
TransducerChannel sampling period is in the TransducerChannel TEDS (see 8.5.2.36).

The term “over-triggering” refers to issuing a second trigger before the TransducerChannel sampling
period has expired. If this happens, the TransducerChannel may not have completely processed the
previous trigger. Table 8 lists the response to over-triggering based on the operating mode of the
TransducerChannel as described in 5.10.

Table 8—Response to over-triggering
Operating mode Response to the trigger

Streaming Buffered
Yes Don’t care Ignore all except the first trigger
No Yes Treat as a pre-trigger
No No Ignore triggers until previous operation complete

47
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.12

5.12.1

5.12.1.1

5.12.1.2

5.12.1.3

When in the non-streaming buffered mode, the unit treats a trigger received before all samples in a data set
have been latched as a pre-trigger. In other words, it accepts the trigger as a command to start on another
buffer when it completes the current buffer in such a way that all samples are acquired or applied while
maintaining a uniform sample interval. If more than one extra trigger is received while processing a buffer,
they are ignored. If this occurs, the time of a sample cannot be derived from the time that a trigger was
sent. In all cases where a trigger command is ignored, the Command Rejected Bit (see 5.13.4) in the
appropriate status register shall be set.

 Synchronization

A fundamental requirement for the large-scale acquisition of data from distributed multipoint sensor arrays
is the inclusion of an intrinsic capability for the system to provide time-synchronous triggering of the
various data converters. The individual sampling of the spatially distributed sensors needs to be
coordinated within rather precise time intervals to assure that the array-wide data points are acquired at
essentially the same instant, and thus, they represent an accurate temporal “snapshot” of the measured
parameters. Several features are built into this standard that are intended to aid in accomplishing this end.
Subclauses 5.12.1 and 5.12.2 describe these features.

 Methods of obtaining synchronicity

The basic tool that is used to obtain synchronization is the trigger. Since triggers may be addressed to
groups of TransducerChannels, the members of the group are sampled synchronously within the limits of
the propagation time and the variation of the delay between the receipt of the trigger by the TIM and its
application in the TransducerChannel.

 Using triggers

The AddressGroup and global triggers, as described in 5.3, are the simplest way of achieving synchronous
sampling of the data. If the synchronous sampling is to be achieved across multiple TIMs, then a method of
addressing multiple TIMs as described in 10.2.3 and 10.2.4 is required. The timing accuracy that can be
achieved using this method is a function of the underlying communications media and protocol. This
method works well with TransducerChannels that acquire or process a single sample for each trigger but is
less effective with TransducerChannels that have data sets that contain more than one sample. It also has
limitations when used over long cables or with extremely tight synchronization requirements.

 Using a delayed trigger

The problem of different delays associated with different lengths of cable between the NCAP and the TIMs
and different delays within the TIM may be addressed by adding the delayed trigger capability within the
TIMs. This process is described in more detail in Annex L. To make this feature of the TIMs useful, this
requires that the NCAP have a method of determining the delay associated with each TIM. For this method
to be useful, the standard for the physical transmission media should provide a method for determining the
transmission delay.

 Using a synchronization signal

The synchronization signal provides a synchronous clock that is the same frequency for all TIMs on the
common medium. The use of the synchronization signal makes the use of AddressGroup or global triggers
with TransducerChannels that have a data set size greater than one more useful. However, it does not
directly address the different delays associated with long cables.

48
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

48 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.12.2

5.13

 Synchronization signal

In some standards in the family, the NCAP may generate a synchronization clock and transmit it on the
transducer interface media. The TIMs may receive this clock, buffer it, and use it to generate the
appropriate clocks within the TIM. The details of how this clock is transmitted by the NCAP to the TIMs
are given in the appropriate standard in the IEEE 1451 family of standards.

 Status

As shown in Figure 11 there are two types of status registers. Both are 32 bits wide. One register is called
the Condition register. It may be read using the Read Status-Condition Register command (see 7.1.1.9). It
contains the current state of the attributes being reported. The second register is the event register, and it is
true if the condition register has been true since the last time the status-event register was cleared. It may be
read using the Read Status-Event Register command (see 7.1.1.8). Some bits in the status-event register
represent actual events, such as command errors. In this case, the condition register should always be zero
for that bit, as the model would show that the condition occurred and was immediately cleared.

Bit
31

Bit
30

Bit
29

Bit
28 Bit 0

Bit
31

Bit
30

Bit
29

Bit
28 Bit 0

Bit
31

Bit
30

Bit
29

Bit
28

Condition Register

Event Register

Mask Register

Read Status-Event Register
or

Clear Status-Event Register

Service Request

Bit
1

Bit
1

Bit
1

Figure 11—Status message generation logic

Both Status registers shall be implemented for the TIM and for each implemented TransducerChannel in a
TIM. The returned status-event for the TIM represents the state of the TIM as a whole. In many cases, a bit
in the TIM status-event represents the logical OR of corresponding bits in all implemented
TransducerChannels.

Each bit in the status-event register represents the presence or absence of a particular event occurrence. A
one in the appropriate bit position shall represent the presence of a condition or that an event has occurred
since status was last read or cleared.

49
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Each status-event register is used in conjunction with an associated service request mask (see 5.14.1) to
control which status bits will be used to generate a service request.

Status bits defined by this standard are tabulated in Table 9. Some status bits are reserved for future
versions of this standard. Some bits are optional, and the TIM manufacturer may choose not to implement
them. Bits designated as “open to manufacturers” may be used to report conditions not represented by bits
that are already defined. New bit definitions in the TIM status-event registers shall reflect conditions within
the TIM as a whole. Status bits labeled “reserved,” and unimplemented “optional” and “open to
manufacturers” status bits, shall be reported as zero when read.

Table 9—Status bits
Bit TIM status bits TransducerChannel status bits Required/

optional
0 Service request Service request Required
1 TEDS changed TEDS changed Optional
2 Invalid command Reserved Required
3 Command rejected Command rejected Required
4 Missed data or event Missed data or event See 5.13.4
5 Data/event Data/event See 5.13.5
6 Hardware error Hardware error See 5.13.6
7 Not operational Not operational Required
8 Protocol error Reserved Required
9 Data available/data processed Data available/data processed Optional
10 Busy Busy Optional
11 Failed calibration Failed calibration Optional
12 Failed self-test Failed self-test Optional
13 Data over range or under range Data over range or under range Optional
14 Corrections disabled Corrections disabled Optional
15 Consumables exhausted Consumables exhausted Optional
16 Reserved Not-the-first-read-of-this-data-set Required
17–23 Reserved Reserved —
24–31 Open to manufacturers Open to manufacturers —

Bits in any status-event register may be cleared in one of several ways as shown in the following list:

Summary bits shall be cleared immediately when the underlying status-event register has been read.
Any bit in the TIM status-event register that is defined as the OR of the corresponding bit in the
TransducerChannel status-event registers shall be cleared in this manner.

Other bits shall be cleared when the condition they report goes away and a status-event register read
is performed or receipt of the clear status command. They shall not be cleared on receipt of a device
clear protocol.

Status bits may also be changed by a change in operating states. The operating states are described
in 5.4.1.

During power-on or reset initialization, data transport may be held off longer than the hold-off times
specified in the TEDS. The TIM shall assure that reads of status registers return an accurate representation
of the TIM’s state. The TIM shall hold off a read of any status register for which this is not the case.

The status registers shall be accessed by the read status-event register command and the read status-
condition register command defined in 7.1.1.8 and 7.1.1.9. The returned status shall be 4 octets wide. In
Table 9, the column “TIM Status-Event Bits” defines the information that is returned if the TIM is
addressed. If a TransducerChannel is addressed, then the bits are as defined under the column titled
“TransducerChannel Status-Event Bits.”

50
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

50 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.13.1

5.13.2

5.13.3

5.13.4

The status-event register may also be sent via a TIM initiated message (see 6.4) if the mask has been set for
the status-event register bit that has been asserted and the Status-event protocol has been enabled using the
write status-event protocol state command (see 7.1.1.11). When this protocol is enabled, a stream shall be
initiated that will send the 32 bit status register any time the service request bit is asserted. If a channel is
requesting service, the channel register shall be sent, and if the TIM itself is requesting service, the TIM
status register shall be sent. The status information sent via the Status-event Protocol shall be identical to
the information returned from a read status-event register command.

 Service request bit

The TransducerChannel service request bit of any TransducerChannel shall be set when that
TransducerChannel is requesting service and shall be cleared when read, when a status protocol message is
sent, or when a clear status-event register command (see 7.1.1.10) is sent to that channel. Service Request
masks are used to define conditions for which a TransducerChannel requests service.

 See 5.14.1 for a description of the service request mask.

The TIM service request bit shall be set whenever the TIM is requesting service, as defined by the TIM
masks. It shall be cleared when read, when a status protocol message is sent, or when a Clear Transducer
Status-Event Register command is sent. It shall not be cleared when a device clear protocol is received.

A TransducerChannel service request bit shall be implemented for each TransducerChannel in a TIM. A
TIM service request bit shall be implemented for each TIM.

The service request bit will be cleared by a change of operating state if the status bit that caused it to be set
is cleared.

The service request bit shall be evaluated at power on and shall be asserted if any enabled status bit is
asserted. It shall specifically be asserted if the power on status bit is enabled.

 TEDS changed bit

The TIM Teds changed bit shall be set whenever the TIM changes the contents of an adaptive TEDS. The
TransducerChannel Teds changed bit shall be set whenever the TransducerChannel changes the contents of
an adaptive TEDS. It shall be cleared when read.

This bit is not affected by a change of transducer operating state.

 Invalid command bit

The TIM invalid command bit shall be set whenever the TIM detects an unimplemented command or a
read or write to an unimplemented function. It shall be cleared when read.

This bit is not affected by a change of transducer operating state.

 Command rejected bit

The Command rejected bit shall be set whenever the TIM detects a valid command that cannot be executed
because of the current mode of operation of the TIM or TransducerChannel. It shall also be set if an
argument to the command is not acceptable for any reason. It shall be cleared when read.

51
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.13.5

5.13.6

5.13.7

The Command rejected status bit is mandatory and shall be implemented for the TIM and all
TransducerChannels.

This bit is not affected by a change of operating state.

 Missed data or event bit

The TransducerChannel missed data or event bit shall be set coincident with a data sample time of an event
sensor or sensor with the sampling mode set to free-running if the TransducerChannel is in the transducer
operating state but is not currently triggered. The exception to the above is that this bit shall not be set
before the first trigger on any such TransducerChannel after the bit has been cleared. This bit shall be
cleared when read.

The TIM missed data or event bit shall be set when any TransducerChannel missed data or event bit is set.

This status bit shall be implemented for any event sensor or any sensor capable of operating with the
sampling mode set to free-running. It shall also be implemented in any TIM that contains such a sensor or
event sensor.

The TransducerChannel missed data or event bit shall be cleared when the TransducerChannel transitions
from the halted to the transducer operating state. The operating states are described in 5.4.1.

NOTE—While the TransducerChannel is not acquiring or consuming data in the transducer idle state, the bit shall
remain set until it is read or otherwise cleared if it was set when the TransducerChannel transitioned from the
transducer operating state to the transducer idle state.

 Data/event bit

The TransducerChannel data/event bit shall be set at the data sample time for a sensor in the transducer
operating state when the sampling mode is set to free-running or when an event sensor detects an event. It
shall be cleared when read. The TIM data/event bit shall be set when any of the TransducerChannel
data/event bits are set.

This status bit shall be implemented for any event sensor or any sensor capable of operating with the
sampling mode set to the free-running state. It shall also be implemented in any TIM that contains such a
sensor or event sensor.

The TransducerChannel data or event bit shall be cleared when the TransducerChannel transitions from the
transducer idle to the transducer operating state. The operating states are described in 5.4.1.

NOTE—While the TransducerChannel is not acquiring or consuming data in the transducer idle state, the bit shall
remain set until it is read or otherwise cleared if it was set when the TransducerChannel transitioned from the
transducer operating state to the transducer idle state.

 Hardware error bit

The TransducerChannel hardware error bit shall be set when the condition it reports becomes valid. It shall
be cleared when read provided the condition it reports is no longer valid. An event sensor shall set this bit
if consistency checks are made and fail. The TIM hardware error bit shall be set when any of the
TransducerChannel hardware error bits are set. The TIM manufacturer may determine any additional
criteria for hardware errors.

52
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

52 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.13.8

5.13.9

5.13.10

5.13.11

The TIM hardware error bit in the returned TIM status and the TransducerChannel hardware error bit shall
be implemented for any TIM that contains an event sensor if consistency checks are made (see 5.6.1).

This bit is not affected by a change of operating state.

 Not operational bit

The TransducerChannel not operational bit shall be set when the TransducerChannel fails to comply with
the manufacturers specifications. This bit shall be set during warm-up or any other condition when the
TransducerChannel does not comply with specifications or is not operational.

The TIM not operational bit shall be the OR of all TransducerChannel not operational bits. It shall also be
set if the TIM is not operational due to any other condition. The TIM not operational bit shall be cleared
when the condition causing it to be set is removed.

This bit is not affected by a change of operating state.

 Protocol error bit

A message has been received from the transducer interface media with protocol errors.

This bit is not affected by a change of operating state.

 Data available/data processed bit

The TransducerChannel data available/data processed bit shall be set whenever the TransducerChannel has
data available to be read for a sensor or has completed processing the data in an actuator. The TIM data
available/data processed bit shall be set when any TransducerChannel in the TIM has data available to be
read for a sensor or has completed processing the data in an actuator. They shall remain set as long as the
condition persists. For a sensor, this means that it shall remain set until the data have been read. For an
actuator, it shall remain set until new data have been written to the device or the status is read.

The TransducerChannel data availabel/data processed bit shall be cleared when the TransducerChannel
transitions from the halted to the transducer operating state. The operating states are described in 5.4.1.

NOTE—While the TransducerChannel is not acquiring data in the transducer idle state, the bit shall remain set until it
is read or otherwise cleared if it was set when the TransducerChannel transitioned from the transducer operating state
to the transducer idle state.

 Busy bit

The TransducerChannel busy bit shall be set whenever a TransducerChannel cannot support read or write
access of TransducerChannel data over the data transport. Commands that may cause the
TransducerChannel to become busy include the Run self-test command (see 7.1.1.5), Calibrate
TransducerChannel command (see 7.1.2.10), Reset command (see 7.1.7.1), Zero TransducerChannel
command (see 7.1.2.11), or any other command that interferes with normal operations. This bit shall be set
only while the condition that it reports persists. The TIM busy bit shall be the OR of all TransducerChannel
busy bits in a TIM.

This bit is not affected by a change of operating state.

53
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.13.12

5.13.13

5.13.14

5.13.15

5.13.16

 Failed calibration bit

The TransducerChannel failed calibration bit shall be set when a “calibration” check (see 7.1.2.10) fails to
produce the expected results. It shall be cleared when it is read. The TIM failed calibration bit shall be the
OR of all TransducerChannel failed calibration bits in a TIM.

This bit is not affected by a change of operating state.

 Failed self-test bit

The TransducerChannel failed self-test bit and the TIM failed self-test bit shall be set when a run self-test
commands fails to provide the expected results (see 7.1.1.5). It shall be cleared when read. The TIM failed
self-test bit shall be the OR of all TransducerChannel self-test bits in a TIM.

This bit is not affected by a change of operating state.

 Data over-range or under-range bit

The TransducerChannel data over-range or under-range bit shall be set when the TransducerChannel
detects an over-range or under-range condition. The TIM data over-range or under-range bit shall be the
OR of all TransducerChannel data over-range or under-range bits in a TIM. This status bit shall be cleared
when read.

An overrange condition exists when the output of the TransducerChannel represents a value greater than or
more positive than the value given in the Design operational upper range limit field of the
TransducerChannel TEDS (see 8.5.2.19). An underrange condition exists when the output of the
TransducerChannel represents a value less than or more negative than the value given in the Design
operational lower range limit field of the TransducerChannel TEDS (see 8.5.2.7).

The TransducerChannel data over-range or under-range bit shall be cleared when the TransducerChannel
transitions from the halted to the transducer operating state. The operating states are described in 5.4.1.

NOTE—While the TransducerChannel is not acquiring or consuming data in the transducer idle state, the bit shall
remain set until it is read or otherwise cleared if it was set when the TransducerChannel transitioned from the
transducer operating state to the transducer idle state.

 Corrections disabled bit

The Corrections disabled bit shall be set in any TIM or TransducerChannel that is capable of correcting the
data when that capability is disabled. It shall be implemented for any TransducerChannel or TIM with this
capability. This bit shall be set to zero for any TransducerChannel or TIM not implementing this capability.

This bit is not affected by a change of operating state.

 Consumables exhausted bit

The TransducerChannel consumables exhausted bit shall be set when the TransducerChannel can no longer
obtain any consumables that it requires to continue operation. The TIM consumables exhausted bit shall be
the OR of all TransducerChannel consumables exhausted bits in a TIM. This status bit shall only be set
while the condition persists.

54
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

54 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

5.13.17

5.14

5.14.1

5.14.2

This bit is not affected by a change of operating state.

 Not-the-first-read-of-this-data-set bit

The Not-the-first-read-of-this-data-set bit of any TransducerChannel shall be set when a data set is read
more than once. This bit shall be cleared when read.

This bit is not affected by a change of operating state.

 Service request logic

Service requests are sent from a TIM to the NCAP when some condition exists within the TIM that
requires attention. They are roughly analogous to interrupts in computers. However, unlike computer
interrupts, service requests have no independent mechanism for communicating with the NCAP that the
condition exists unless the Status-event protocol is enabled (see 7.1.1.11). The TIM service request bit may
be read using the Read Status-Event Register command (see 7.1.1.8). This means that the NCAP is not able
to respond within some minimum time to a service request. It may also be sent back to the NCAP when the
service request bit is asserted via a status protocol message.

 Service request masks

The TIM shall contain a service request mask register for the TIM and for each implemented
TransducerChannel in a TIM. These registers are 4 octets wide. Writing a one to any bit position in the
service request mask register allows the service request bit to be set when the corresponding bit in the
status register is set. See Figure 11 for details.

The service request mask register bit positions correspond one-to-one with the bit positions in the status-
event register, as defined in Table 9. The value placed into the bit 0 position of the service request mask
register is not used as this corresponds to the service request bit. Since the service request bit directly
generates the service request, it cannot be masked. The default power up value for the service request mask
registers is all zeros (i.e., no status bits can generate a service request). The value of this register shall not
be affected by receipt of either a Device Clear protocol or a Reset command.

 Service requests

The service request signal is used in conjunction with the status registers and the service request mask
registers to indicate exceptional conditions in the TIM. The NCAP typically reads the status of all
TransducerChannels to determine which TransducerChannels are requesting service, and for what reason.
The NCAP is not required to respond to a service request immediately.

If automatic status reporting has been configured, the TIM or any channel requesting service shall cause
the status-event register to be returned via a status-event protocol message.

Figure 12 shows the logic used to generate the TIM service request.

55
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 12—TIM service request generation

5.15

6.

6.1

 Hot-swap capability

It shall be possible to disconnect a TIM from the interface media or to connect a TIM to the interface media
without powering down the system and without damage to either the TIM being inserted or anything else
connected to the media. Transient impact upon transmissions in progress when a TIM is added or removed
from the media is allowed, but no permanent damage is allowed.

The ability of the NCAP to detect an added or removed TIM is supported by this standard but is dependent
on the capabilities of the underlying physical layers ability to detect such changes and to call the
appropriate methods in the module communications API (see 11.5 and 11.6).

 Message structures

This clause defines the structure of the messages sent across the Module Communications Interface.

 Data transmission order and bit significance

The order of transmission of the header and data described in this document is resolved to the octet level.
Whenever a diagram shows a group of octets, the order of transmission of those octets is the normal order
in which they are read in English. For example, in Table 10, the octets are transmitted in the order they are
numbered.

NOTE—This transmission order applies to the Module Communications Interface and is conceptual only. The data
transmission order and bit significance may be different at the physical layer.

Table 10—Transmission order of octets
1-Octet 1-Octet 1-Octet 1-Octet
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
First octet transmitted 2 3 4
5 6 7 8
9 —

56
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

56 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Whenever an octet represents a numeric quantity, the left-most bit shown in Table 11 is the high-order or
most significant bit. That is, the bit labeled 7 is the most significant bit. For example, the numeric value in
Table 11 represents the value 170 (decimal) or 0xAA (Hexadecimal).

Table 11—Example of bit significance
Bits
7 6 5 4 3 2 1 0

Value = 170 (decimal) 1 0 1 0 1 0 1 0

6.2 Command message structure

The message format of a command message is provided in Table 12.

Table 12—Command message structure
1-Octet
7 6 5 4 3 2 1 0
Destination TransducerChannel Number (most significant octet)
Destination TransducerChannel Number (least significant octet)
Command class
Command function
Length (most significant octet)
Length (least significant octet)
Command-dependent octets
.
.
.

6.2.1

6.2.2

6.2.3

6.2.4

 Destination TransducerChannel number

This field gives the 16 bit TransducerChannel number for the destination of the message.

 Command class

The command class is defined in 7.1. Table 15 is the master index of command classes.

 Command function

The command function is defined in Clause 7. Command function shall be interpreted in the context of
command class, as described throughout Clause 7.

 Length

Length is the number of command-dependent octets in this message. If the length of a received message
does not match the length field of the received message, the message shall be discarded and the protocol
error bit in the status register (see 5.13.9) shall be set.

57
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

6.2.5

6.3

 Command-dependent octets

This field contains the information that is to be defined for the command. See the command definitions in
Clause 7 for the details of what should be in this field.

 Reply messages

Reply messages are used to reply to a received command. The message format of a reply message is
provided in Table 13.

Table 13—Reply message structure
1-Octet
7 6 5 4 3 2 1 0
Success/Fail Flag
Length (most significant octet)
Length (least significant octet)
Reply-dependent octets
.
.
.

6.3.1

6.3.2

6.3.3

6.4

 Success/Fail flag

If this octet is nonzero, it indicates that the command was successfully completed. If it is zero, the
command failed and the system should check the status to determine why.

 Length

Length is the number of reply-dependent octets in this message. If the length of a received message does
not match the length field of the received message, the message shall be discarded and the protocol error
bit in the status register (see 5.13.9) shall be set.

 Reply-dependent octets

This field contains the information that is to be defined for the command. See the command definitions in
Clause 7 for the details of what should be in this field.

 TIM initiated message structure

The message format of a message that is initiated by a TIM is provided in Table 14. Examples of these
messages are streaming data and status messages.

58
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

58 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 14—TIM initiated message structure
1-Octet
7 6 5 4 3 2 1 0
Source TransducerChannel Number (most significant octet)
Source TransducerChannel Number (least significant octet)
Command class
Command function
Length (most significant octet)
Length (least significant octet)
Command-dependent octets
.
.
.

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

7.

 Source TransducerChannel number

This field gives the 16 bit TransducerChannel number for the source of the message.

 Command class

This field is the same as 6.2.2.

 Command function

This field is the same as 6.2.3.

 Length

This field is the same as 6.2.4.

 Command-dependent octets

This field is the same as 6.2.5.

 Commands

Commands are divided into two categories, standard and manufacturer-defined. Regardless of the category,
the command is divided into 2 octets. The most significant octet shall be used to define the class of the
command. The least significant octet, called the function, shall identify the specific command within the
class. For example, if the most significant octet defines the Transducer idle state commands class, the least
significant octet then specifies the command within that class as listed in Table 25.

Table 15 lists the various command classes.

59
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 15—Standard command classes
cmdClassId Attribute name Category
0 Reserved Reserved
1 CommonCmd Commands common to the TIM and TransducerChannel
2 XdcrIdle Transducer idle state
3 XdcrOperate Transducer operating state
4 XdcrEither Transducer either idle or operating state
5 TIMsleep Sleep state
6 TIMActive Tim active state commands
7 AnyState Any state
8—127 ReservedClass Reserved
128—255 ClassN Open for manufacturers – N = class number

A TIM may generate a reply to a command under either of two circumstances. The first circumstance is
when the command itself requires a reply. An example of this situation is a Query TEDS command. The
second circumstance is when the Status-event protocol is enabled. In this case, the TransducerChannel or
TIM will transmit whenever there is a non-masked change in the status register.

The information described as being passed is passed using the Command message structure, as described in
6.2. The following paragraphs describe what should be in the command-dependent octets in Table 12. If a
reply to a command is being transmitted or received, the reply message structure (see 6.3) is used.

In the tables in this clause, some enumerations are “reserved” for future versions of this standard. Some
enumerations are optional, and the TIM manufacturer may choose not to implement them. Enumerations
designated as “open to manufacturers” may be used to designate conditions not described by the standard.

7.1

7.1.1

 Standard commands

The control function allows commands to be sent to the TIM as a whole, or to each TransducerChannel
thereof, that affect their state or operation. The list of standard command classes is given in Table 15.

The TIM shall respond to all unimplemented commands by setting the TIM invalid command bit in the
status register. See 5.13.2 for a complete description of this bit.

 Commands common to the TIM and TransducerChannel

This class of commands may be addressed to either the TIM or the TransducerChannel. The address, as
described in 5.3, is used to designate whether it is to be executed by the TIM or the TransducerChannel
logic. Table 16 lists the commands in this class. Commands in this class shall not be addressed to an
AddressGroup, a TransducerChannel proxy, or globally. If one of these commands is addressed to an
AddressGroup, a TransducerChannel proxy or globally the command shall be ignored and the command
rejected bit in the TIM status-condition register shall be set.

60
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

60 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 16—Common commands
State Reply

expected
Required/
optional

cmdFunctionId Command TransducerChannel TIM
0 Reserved — — — —
1 Query TEDS Any Active Yes Required
2 Read TEDS segment Any Active Yes Required
3 Write TEDS segment Any Active No Required
4 Update TEDS Any Active Yes Required
5 Run self-test Idle Active No Required
6 Write service request mask Any Active No Required
7 Read service request mask Any Active Yes Required
8 Read status-event register Any Active Yes Required
9 Read status-condition register Any Active Yes Required
10 Clear status-event register Any Active No Required
11 Write status-event protocol

state
Idle Active No Required

12 Read status-event protocol state Any Active Yes Required
13–127 Reserved — — — —
128–255 Open for manufacturers — — — —

7.1.1.1 Query TEDS command

Argument attribute name: TEDSAccessCode data type UInt8

This command is used by the NCAP to solicit information required to read or write the TEDS. There is a
single argument to this command and that is the TEDS Access Code that identifies the TEDS to be
accessed. Table 17 lists the TEDS Access Codes for the TEDS defined by this standard.

The reply to a Query TEDS Command shall contain the information listed in Table 18. The TIM is
required to provide a reply to all Query TEDS commands, regardless of whether the TEDS access code
selects an implemented TEDS. The attributes field in the reply (see Table 19) shall indicate whether the
TEDS is supported, whether it may be changed, whether the current contents are valid, and whether the
TEDS is embedded in the TIM or located remotely (virtual). The TEDS status field is described in
Table 20.

When the Unsupported TEDS attribute is set, the TIM shall return a zero for the “TEDSSize” and the
“MaxTEDSSize” attributes.

When the Virtual TEDS attribute is set, the Read-only attribute shall also be set and the TIM shall return a
zero for the “TEDSSize,” “TEDSCkSum,” and “MaxTEDSSize” attributes. It becomes the responsibility of
the NCAP or the host processor to determine the sizes and attributes that are returned to the calling
application. If the file cannot be located, the Unsupported attribute shall be set and the TIM shall return a
zero for the “TEDSSize,” “TEDSCkSum,” and “MaxTEDSSize” attributes. If the file is found, the Invalid
and Unsupported attributes shall be cleared and the Read-Only attribute, the “TEDSSize” attribute, the
“TEDSCkSum” attribute, and the “MaxTEDSSize” attribute shall be determined from the file attributes of
the remote file in which the TEDS resides.

61
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 17—TEDS access codes
TEDS access code TEDS name attribute TEDS Required/

optional
0 — Reserved —
1 MetaTEDS Meta-TEDS1 Required
2 MetaIdTEDS Meta-identification TEDS2 Optional
3 ChanTEDS TransducerChannel TEDS1 Required
4 ChanIdTEDS TransducerChannel Identification TEDS2 Optional
5 CalTEDS Calibration TEDS1 Optional
6 CalIdTEDS Calibration identification TEDS2 Optional
7 EUASTEDS End users’ application-specific TEDS3 Required
8 FreqRespTEDS Frequency response TEDS1 Optional
9 TransferTEDS Transfer function TEDS1 Optional
10 CommandTEDS Commands TEDS2 Optional
11 TitleTEDS Location and title TEDS2 Optional
12 XdcrName User’s transducer name TEDS3 Required
13 PHYTEDS PHY TEDS1 Required
14 GeoLocTEDS Geographic location TEDS2 Optional
15 UnitsExtention Units extention TEDS2 Optional
16–127 — Reserved —
128–255 — Manufacturer-defined TEDS Optional
NOTES
1—A binary TEDS.
2—A text-based TEDS.
3—User-defined information content.

Table 18—Query TEDS response in the data field
Field Data type Field attribute name Function
1 UInt8 TEDSAttrib TEDS attributes (see Table 19)
2 UInt8 TEDSStatus TEDS status
3 UInt32 TEDSSize Current size of the TEDS
4 UInt16 TEDSCkSum TEDS checksum
5 UInt32 MaxTEDSSize Maximum TEDS size

Table 19—TEDS attributes
Bit Data type Field attribute name Definition
0 (lsb) Boolean TEDSAttrib.ReadOnly Read-only—Set to true if TEDS may be read but not

written.
1 Boolean TEDSAttrib.NotAvail Unsupported—Set to true if TEDS is not supported by

this TransducerChannel.
2 Boolean TEDSAttrib.Invalid Invalid—Set to true if the current TEDS image is invalid.
3 Boolean TEDSAttrib.Virtual Virtual TEDS—This bit is set to true if this is a virtual

TEDS. (A virtual TEDS is any TEDS that is not stored in
the TIM. The responsibility for accessing a virtual TEDS
is vested in the NCAP or host processor.)

4 Boolean TEDSAttrib.TextTEDS Text TEDS—Set to true if the TEDS is text based.
5 Boolean TEDSAttrib.Adaptive Adaptive—Set to true if the contents of the TEDS can be

changed by the TIM or TransducerChannel without the
NCAP issuing a WriteTEDS segment command.

6 Boolean TEDSAttrib.MfgrDefine MfgrDefine—Set to True if the contents of this TEDS are
defined by the manufacturer and will only conform to the
structures defined in the standard if the TextTEDS
attribute is also set.

7 (msb) Boolean TEDSAttrib.Reserved[7] Reserved

62
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

62 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 20—TEDS status
Bit Data type Field attribute name Definition
0 (lsb) Boolean TEDSStatus.TooLarge Too Large—The last TEDS image received was too

large to fit in the memory allocated to this TEDS.
1 Boolean TEDSStatus Reserved[1] Reserved
2 Boolean TEDSStatus Reserved[2] Reserved
3 Boolean TEDSStatus Reserved[3] Reserved
4 Boolean TEDSStatus Open[4] Open to manufacturers
5 Boolean TEDSStatus Open[5] Open to manufacturers
6 Boolean TEDSStatus Open[6] Open to manufacturers
7 (msb) Boolean TEDSStatus Open[7] Open to manufacturers

7.1.1.2 Read TEDS segment command

This command is used to read a TEDS into the NCAP. The arguments for this command are as shown in
Table 21. Since the maximum size for an octet array is less than the maximum size for a TEDS, the TEDS
segment offset is used to identify where in the TEDS the read access should start.

NOTE—Most TEDS will be small enough to fit within a single segment. In these cases, the contents of the segment
offset field should be zero. However, TEDS are allowed to be larger than the maximum size of an octet array. The
transmission of these large TEDS requires the segmentation of the TEDS for transmission.

Table 21—Data field for a read TEDS segment command
Field Data type Field attribute name Function
1 Uint8 TEDSAccessCode TEDS access code, as defined in Table 17.
2 UInt32 TEDSOffset TEDS Segment offset (0 to [current size – 1])—This is the

address relative to the beginning of the TEDS at which the
block of data shall be read.

The reply to a Read TEDS Segment uses the Reply message (see 6.3). The reply-dependent octets returned
within the message shall be as shown in Table 22. The first field contains the offset into the TEDS at which
the block of data was taken and will in most cases match the TEDS Segment Offset in the Read TEDS
Segment command. The remaining octets contain the data read from the TEDS. The reply shall contain all
ones in the TEDS segment offset and 0 data octets if the TEDS is “virtual,” is not supported, or is invalid.
The number of octets returned is a function of the design and is determined from the message header (see
6.3). If the TEDSOffset is greater than the length of the TEDS, the TEDSOffset in the reply shall be equal
to the TEDS length and the reply will contain 0 octets.

Table 22—Data field for a TEDS segment command reply
Field Data type Field attribute name Function
1 UInt32 TEDSOffset TEDS Segment offset (0 to [current size – 1])
2 OctetArray RawTEDSBlock TEDS data octets

7.1.1.3 Write TEDS segment command

This command is used to write a part of the TEDS. The arguments for a Write TEDS segment command
are described in Table 23. Since the maximum size for an octet array is less than the maximum size for a
TEDS, the TEDS segment offset is used to identify where in the TEDS the data in field 3 should be
written. If the TEDSOffset is greater than the maximum length of the TEDS, the data shall be discarded
and the command rejected bit in the status word (see 5.13.4) shall be set.

NOTE—Most TEDS will be small enough to fit within a single segment. In these cases, the contents of the segment
offset field should be zero. However, TEDS are allowed to be larger than the maximum size of an octet array. The
transmission of these large TEDS requires the segmentation of the TEDS for transmission.

63
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 23—Data field for a write TEDS command
Field Data type Field attribute name Function
1 UInt8 TEDSAccessCode TEDS access code, as defined in Table 17.
2 UInt32 TEDSOffset TEDS Segment offset (0 to [current size – 1])
3 OctetArray RawTEDSBlock TEDS Contents

The Write TEDS Segment command uses the Command message structure (see 6.2). If the maximum
TEDS size is exceeded, the additional data shall not be written into memory and the current size of the
TEDS shall be set to zero.

A Write TEDS Segment command shall create a new TEDS if one does not already exist with that access
code. If the TIM is not designed to allow the TEDS to be created, the Write TEDS Segment command shall
not write any data into TEDS memory because the TEDS is unsupported.

When the TIM begins to overwrite an existing TEDS, the TEDS being overwritten shall be marked as
Invalid. It shall remain marked as Invalid until the Update TEDS command is received, as described in
7.1.1.4.

The Write TEDS Segment command does not generate a reply.

7.1.1.4

7.1.1.5

 Update TEDS command

Argument attribute name: TEDSAccessCode data type UInt8

This command is used to cause a TEDS that was previously written into a TransducerChannel to be
verified and copied into non-volatile memory (if this was not done as the TEDS was received). After the
TEDS is verified, the TEDS may then be marked as Valid. If the verification fails, the TEDS shall remain
marked as invalid.

There is one argument to this command, and it contains the TEDS access code, as defined in Table 17.

The reply to an Update TEDS command shall contain the information listed in the reply to a Query TEDS
command as described in 7.1.1.1.

 Run self-test command

Argument attribute name: Test2Run data type UInt8

This command is used to cause the addressed device to run a self-test. There is one argument to this
command and that is an 8 bit enumeration specifying the diagnostic to run as shown in Table 24. The
manufacturer may identify additional tests that are available for a particular device. If an enumeration is
requested that is not implemented, the invalid command status bit (see 5.13.2) shall be set in the
appropriate status register.

Table 24—Enumerations for the run diagnostic command
Enumeration Argument attribute name Diagnostic
0 Test2Run.ConfidenceTest Short confidence test
1 Test2Run.TestAll Test all
2–255 Test2Run.RunTest[N] 2≤N≤255 Manufacturer-defined

If a manufacturer implements additional tests, they shall be listed in the Commands TEDS for the
TransducerChannel or TIM.

64
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

64 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.1.6

7.1.1.7

7.1.1.8

7.1.1.9

7.1.1.10

This command shall only be executed when the TransducerChannel is in the idle state. If this command is
received when the TransducerChannel is in any other state, the command rejected bit (see 5.13.4) shall be
set.

If the manufacturer wishes to write a single diagnostic program that tests the TIM and the
TransducerChannels, then the command should be addressed to the TIM and all TransducerChannels shall
be in the idle state, else the command shall be rejected and the command rejected status bit set.

 Write service request mask

Argument attribute name: SRMask data type UInt32

This command is used to write the service request mask for the addressed TransducerChannel or TIM. The
mask is a 32 bit word that is used as described in 5.14.1.

 Read service request mask

Reply argument attribute name: SRMask data type UInt32

This command is used to read the service request mask from the addressed TransducerChannel or TIM.
The command has no arguments. However, it does generate a reply that has a single argument. This
argument gives the currently active service request mask as defined in 5.14.1 for the addressed
TransducerChannel.

 Read status-event register

Reply argument attribute name: SERegister data type UInt32

This command is used to read the status from the addressed TransducerChannel or TIM. The command has
no arguments. However, it does generate a reply that has a single argument. This argument gives the
current contents of the Status-Event register as defined in 5.13 for the addressed TransducerChannel.

 Read status-condition register

Reply argument attribute name: SCRegister data type UInt32

This command is used to read the status-condition register from the addressed TransducerChannel or TIM.

The command has no arguments. However, it does generate a reply that has a single argument. This
argument gives the current contents of the Status-Condition register as defined in 5.13 for the addressed
TransducerChannel.

 Clear status-event register

This command is used to clear the status-event register for the addressed TransducerChannel or TIM. If the
entire TIM is specified, the command shall clear all status-event registers for the TIM itself, including all
TransducerChannel event registers. It does not clear the corresponding mask or condition registers. This
command has no arguments.

65
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.1.11

7.1.1.12

7.1.2

 Write status-event protocol state

Argument attribute name: SEProtocol data type Boolean

This command is used to enable or disable the status-event protocol defined in 5.13. When this state is
enabled, a stream shall be initiated that will send the 32 bit status register any time the service request bit is
asserted. Note that if a channel is requesting service, the channel register shall be sent and if the TIM itself
is requesting service, the TIM status register shall be sent.

This command has a single argument. If the value is true, the status-event protocol is enabled. Otherwise
the status-event protocol is disabled.

 Read status-event protocol state

Reply argument attribute name: SEProtocol data type Boolean

This command is used to read the state of the status-event protocol defined in 5.13. The command has no
arguments. However, it does generate a reply that has a single argument. This argument gives the current
state of the status-event protocol. If the value is true, the status-event protocol is enabled. Otherwise the
status-event protocol is disabled.

 Transducer idle state commands

The idle state class of commands, as listed in Table 25, shall only be executed when the
TransducerChannel is in the idle state. If one of these commands is received when the TransducerChannel
is in any other state, the command rejected bit in the TransducerChannel Status-Condition Register (see
5.13) shall be set and the command shall be ignored.

All commands in this class require a destination TransducerChannel number greater than zero. If the
destination TransducerChannel number in the octet array (see 5.3) is zero, the command rejected bit in the
TransducerChannel Status-Condition Register (see 5.13) shall be set and the command shall be ignored.

If a Transducer Idle State command is sent to a TransducerChannel that does not support that feature or
does not support changing that feature, the command shall be ignored and the TransducerChannel invalid
command bit in the status word (see 5.13.2) shall be set.

The TIM shall be in the active state for any of these commands to be received by the transducer channel. If
one of these commands is received when the TIM is not in the active state, the command rejected bit in the
TIM Status-Condition Register (see 5.13) shall be set and the command shall be ignored.

Commands listed as “Optional” in Table 25 become required if the feature that they support is
programmable.

Some commands in this class that may be issued to a TransducerChannel proxy (i.e., there is a “Yes” under
the column labeled “Proxy” in Table 25). When one of these commands is issued to a proxy, it shall have
the same effect as issuing that same command to each member of the TransducerChannel proxy
individually.

66
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

66 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 25—Transducer Idle state commands
Address class Reply

expected
Required/
optional cmdFunctionId Command

TransducerChannel Proxy Group
0 Reserved — — — — —
1 Set TransducerChannel

data repetition count
Yes No No No Optional

2 Set TransducerChannel
pre-trigger count

Yes No No No Optional

3 AddressGroup definition Yes Yes No No Required
4 Sampling mode Yes Yes No No Optional
5 Data Transmission mode Yes Yes Yes No Optional
6 Buffered state Yes Yes No No Optional
7 End-of-data-set operation Yes Yes No No Optional
8 Actuator-halt mode Yes Yes No No Optional
9 Edge-to-report Yes Yes No No Optional
10 Calibrate

TransducerChannel
Yes Yes Yes Yes Optional

11 Zero TransducerChannel Yes Yes Yes Yes Optional
12 Write corrections state Yes Yes No No See

7.1.2.12
13 Read corrections state Yes Yes No No See

7.1.2.13
14 Write TransducerChannel

initiate trigger state
Yes No No No Optional

15 Write TransducerChannel
initiate trigger
configuration

Yes No No No Optional

16–127 Reserved — — — — —
128–255 Open for manufacturers — — — — —
NOTE—Optional commands become required if the features they support are programmable.

7.1.2.1

7.1.2.2

 Set TransducerChannel data repetition count

Argument attribute name: RepCount data type UInt16

This command is used to change the number of data samples in a data set to a number between zero and the
number found in the Maximum data repetitions field of the TransducerChannel TEDS (see 8.5.2.28).

The only argument to this command is a 16 bit integer giving the number of samples in a data set. If the
value of the argument exceeds the Maximum data repetitions, the data repetition count shall not be changed
and the TransducerChannel command rejected bit shall be set in the status register (see 5.13.4).

 Set TransducerChannel pre-trigger count

Argument attribute name: PreTrigCount data type UInt16

This command is used by TransducerChannels that are capable of being operated in the free-running with
pre-trigger mode (see 5.10.1.3), to change the number of data samples in a data set that can be acquired and
stored before the receipt of a trigger. This number may be any number between zero and the number found
in the Maximum pre-trigger samples field of the TransducerChannel TEDS (see 8.5.2.32).

67
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.2.3

7.1.2.4

The only argument to this command is a 16 bit integer giving the number of samples in a data set that are to
be acquired before the trigger. If the value of the argument exceeds the Maximum pre-trigger samples (see
8.5.2.28), the pre-trigger count shall not be changed and the TransducerChannel command rejected bit
shall be set in the status register (see 5.13.4).

 AddressGroup definition

Argument attribute name: GroupAdd data type UInt16

This command assigns a TransducerChannel to an AddressGroup. It has a single argument in the data field
and that is the group address. See Table 5 for more details of addresses. The addressed TransducerChannel,
whether normal or proxy, is assigned to the group. If the argument to this command is zero, the addressed
TransducerChannel is removed from all AddressGroups to which it has been assigned.

 Sampling mode

Argument attribute name: SampleMode data type UInt8

The NCAP uses this command when changing the sampling mode of a TransducerChannel. Not all
allowable modes of operation defined by this standard are accepted by a given TransducerChannel. The
allowable sampling modes for a given TransducerChannel are based on the sampling attributes for that
TransducerChannel found in the TransducerChannel TEDS (see 8.5.2.44).

This command has a single argument. The list of allowable values for this argument is shown in Table 26.
If a Sampling mode command is sent to a TransducerChannel that does not support that mode or does not
support changing that mode, the TransducerChannel invalid command bit in the status word (see 5.13.2)
shall be set.

Table 26—Allowable values for the sampling mode argument
Enumeration Argument attribute name Operating mode
0 SampleMode.Reserved[0] Reserved
1 SampleMode.TriggerInit Trigger-initiated
2 SampleMode.FreeNoPre Free-running without pre-trigger
3 SampleMode.FreePreTrig Free-running with pre-trigger
4 SampleMode.Continuous Continuous sampling
5 SampleMode.Immediate Immediate operation
6–127 SampleMode.Reserved[N] 6≤N≤127 Reserved
128–255 SampleMode.Open[N] 128≤N≤255 Open to manufacturers

7.1.2.5 Data transmission mode

Argument attribute name: XmitMode data type UInt8

The command is used to control the data transmission mode of operation as described in 5.10.2. Whether a
given TransducerChannel supports the allowable data transmission modes of operation is described in the
TransducerChannel TEDS in the data transmission attribute (see 8.5.2.49).

This command has a single argument. The list of allowable values for this argument is shown in Table 7. If
a Data transmission mode command is sent to a TransducerChannel that does not support that mode or
does not support changing that mode, the TransducerChannel invalid command bit in the status word (see
5.13.2) shall be set.

68
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

68 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.2.6

7.1.2.7

 Buffered state

Argument attribute name: BufferOnOff data type Boolean

The command is used to turn on or off buffered operation as described in 5.10.3. Whether a given
TransducerChannel supports buffered operation is described in the TransducerChannel TEDS in the
buffered attribute (see 8.5.2.47).

This command has a single argument. If the value is true, buffering is enabled. Otherwise buffering is
disabled.

 End-of-Data-Set operation mode

Argument attribute name: EndDataSetMode data type UInt8

The command is used for actuators to describe what action the actuator should take when it reaches the end
of a data set as described in 5.10.4. Whether a given actuator supports changing the End-of-Data-Set
operation and the allowable modes is described in the TransducerChannel TEDS in the End-of-Data-Set
operation attribute (see 8.5.2.48).

This command has a single argument. The list of allowable values for this argument is shown in Table 27.
If an End-of-Data-Set operation mode command is sent to a TransducerChannel that does not support that
mode or does not support changing that mode, the TransducerChannel invalid command bit in the status
word (see 5.13.2) shall be set.

Table 27—Allowable values for the End-of-Data-Set operation mode argument
Enumeration Argument attribute name Operating mode
0 EndDataSetMode.Reserved[0] Reserved
1 EndDataSetMode.Hold Hold
2 EndDataSetMode.Recirc Recirculate
3–127 EndDataSetMode.Reserved[N] 3≤N≤127 Reserved
128–256 EndDataSetMode.Open[N] 128≤N≤255 Open to manufacturers

7.1.2.8 Actuator halt operating mode

Argument attribute name: ActuatorHalt data type UInt8

The command is used to control what the output of an actuator will do when it receives a
TransducerChannel Idle command while it is processing a data set. The possibilities for a given actuator
are given in the TransducerChannel TEDS in the actuator halt attribute (see 8.5.2.51).

This command has a single argument. The list of allowable values for this argument is shown in Table 28.

Table 28—Allowable values for the actuator halt operating mode argument
Enumeration Argument attribute name Operating mode
0 ActuatorHalt.Reserved[0] Reserved
1 ActuatorHalt.Hold Hold
2 ActuatorHalt.Finish Finish data set
3 ActuatorHalt.Ramp Ramp
4–127 ActuatorHalt.Reserved[N] 4≤N≤127 Reserved
128–256 ActuatorHalt.Open[N] 128≤N≤255 Open to manufacturers

69
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.2.9 Edge-to-Report

Argument attribute name: EdgeReported data type UInt8

The command is used to describe which edge or edges an event sensor will report. The possibilities for a
given event sensor are given in the TransducerChannel TEDS in the Edge-to-Report attribute (see
8.5.2.50).

This command has a single argument. The list of allowable values for this argument is shown in Table 29.

Table 29—Allowable values for the Edge-to-Report operation mode argument
Enumeration Argument attribute name Operating mode
0 EdgeReported.Reserved[0] Reserved
1 EdgeReported.Rising Report Rising Edges
2 EdgeReported.Falling Report Falling Edges
3 EdgeReported.BothEdges Report both Edges
4–127 EdgeReported.Reserved[N] 4≤N≤127 Reserved
128–256 EdgeReported.Open[N] 128≤N≤255 Open to manufacturers

7.1.2.10

7.1.2.11

7.1.2.12

 Calibrate TransducerChannel

This command is used to cause the TransducerChannel to run a procedure to verify that its output is what
should be expected. The exact definition of what happens during a Calibrate TransducerChannel command
is a function of the TransducerChannel design and is not a subject of this standard.

A reply to this command shall always be generated upon completion of the operation. The reply shall be
the same as the reply to a Read Status-Event Register command (see 7.1.1.8).

NOTE—A “shunt Cal” where a resistor of known value is applied across one leg of a Wheatstone bridge is a common
form of what is expected when this command is executed.

 Zero TransducerChannel

This command is used to cause the TransducerChannel to run a procedure to zero its input or output. The
exact definition of what happens as a result of a Zero TransducerChannel command is a function of the
TransducerChannel design and is not a subject of this standard.

A reply to this command shall always be generated upon completion of the operation. The reply shall be
the same as the reply to a Read Status-Event Register command (see 7.1.1.8).

NOTE—A common result of executing this command is to have a sensor output go to zero and to use this value as a
zero reference.

 Write corrections state

Argument attribute name: CorrectState data type UInt8

This command is used with TransducerChannels that are capable of applying the corrections as described
in 8.6.1 within the TIM. This command causes the TransducerChannel to enable the correction process so
that the unit outputs data in the Physical Units specified in the Calibration TEDS. This command is
mandatory for TransducerChannels with a built-in correction capability.

70
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

70 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.2.13

7.1.2.14

7.1.2.15

This command has a single argument. If the value is true, the corrections capability is enabled. Otherwise
the corrections capability is disabled.

The Corrections disabled status bit (see 5.13.15) shall be cleared upon receipt of this command.

 Read corrections state

Reply argument attribute name: CorrectState data type UInt8

This command is used with TransducerChannels that are capable of correcting the data within the TIM.
This command is mandatory for TransducerChannels with a built-in correction capability.

A reply to this command has a single argument. If the value is true, the corrections capability is enabled.
Otherwise the corrections capability is disabled.

 Write TransducerChannel initiate trigger state

Argument attribute name: EventTrig data type Boolean

This command allows an event sensor TransducerChannel to initiate a trigger command when an event
occurs. If a sensor or actuator receives this command it shall set the command rejected bit in the status
word (see 5.13.4).

This command has a single argument. If the value is true, the event sensor is enabled to initiate a trigger
when an event occurs. Otherwise the trigger capability is disabled.

 Write TransducerChannel initiate trigger configuration

Argument attribute name: InitTrig data type Boolean

This command is used to provide the information needed by an event sensor to initiate a trigger command.
The arguments for this command are as shown in Table 30.

Table 30—Write TransducerChannel initiate trigger configuration
Field Data type Argument attribute

name
Function

1 UInt16 InitTrig.destId The “destId” specifies the desired destination.
2 UInt16 InitTrig.channelId The “channelId” specifies the desired TransducerChannel.
3 Struct InitTrig.qosParams The “qosParams” is the desired quality of service parameters. See

9.3.1.3 for details.

7.1.3 Transducer operating state commands

The Transducer operating state class of commands shall only be executed when the TransducerChannel is
in the operational state. If one of these commands is received when the TransducerChannel is in any other
state, the command rejected bit (see 5.13) in the TransducerChannel Status-Condition register shall be set
and the command shall be ignored.

The commands that are allowed in the transducer operating state are listed in Table 31.

71
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 71

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

The TIM shall be in the active state for any of these commands to be received by the TransducerChannel.
If one of these commands is received when the TIM is not in the active state, the command rejected bit in
the TIM Status-Condition Register (see 5.13) shall be set and the command shall be ignored.

All commands in this class require a destination TransducerChannel number greater than zero. If
destination TransducerChannel number in the message is zero, the command rejected bit (see 5.13) in the
TIM Status-Condition register shall be set and the command shall be ignored.

Table 31—Transducer operating state commands
Address class Reply

expected
Required/
optional

cmdFunctionId Command
TransducerChannel Proxy Group/

global
0 Reserved — — — — —
1 Read TransducerChannel

data-set segment
Yes Yes No Yes See

NOTE
2 Write TransducerChannel

data set segment
Yes Yes No No See

NOTE
3 Trigger command Yes Yes Yes No Required
4 Abort Trigger Yes Yes Yes No Optional
5–127 Reserved — — — — —
128 –255 Open for manufacturers — — — — —
NOTE—A Read TransducerChannel data set segment command is required for sensors. A Write
TransducerChannel data set segment command is required for an actuator.

7.1.3.1 Read TransducerChannel data-set segment

Argument attribute name: DataSetOffset data type UInt32

This command is used to read a segment of a data set. There is a single argument to this command. That
argument specifies the offset into the data set at which reading should start. Since the maximum size for an
octet array that may be handled by a given physical transport layer is less than the maximum size for a data
set, the data set offset is used to identify where in the data set the read access should start.

NOTE—Most data sets will be small enough to fit within a single segment. However, the standard allows the
maximum TransducerChannel data repetitions to be 65 356 and the data model, which defines the number of octets in a
data sample, to be 255, which gives the maximum data set size of 16 777 216 octets. In cases where the data set will fit
within a single message the contents of the segment offset field should be zero. However, larger data sets that will not
fit within one message require segmentation of the data set for transmission and the segment offset should be
appropriate for each segment.

The reply to a Read TransducerChannel data set segment command uses the Reply message structure (see
6.3). The reply-dependent octets returned within the datagram reply message shall be as shown in Table
13. As shown in Table 32, the first field contains the offset into the data set at which the block of data was
taken and will in most cases match the Data-set Segment Offset in the Read TransducerChannel data set
segment command. The remaining octets contain the data read from the data set. The reply shall contain all
ones in the data set segment offset and 0 data octets if the data set is empty. The number of octets returned
is a function of the design of the TransducerChannel, and the NCAP will determine the number from the
arguments to the API method used to return the message. (see 11.2 or 11.3). If the ReadSensor.Offset is
greater than the number of octets in the data set, the ReadSensor.Offset in the reply shall be equal to the
maximum number of octets in the data set and the reply will contain 0 octets.

72
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

72 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 32—Read TransducerChannel data set segment reply arguments
Field Data type Argument attribute name Function
1 UInt32 ReadSensorOffset Data set offset (0 to [current size – 1])—This is the address

relative to the beginning of the data set at which reading of
the data shall begin.

2 N*UInt8 ReadSensorData The block of data read from the sensor.

For a TransducerChannel being operated in one of the streaming data transmission modes (see 5.10.2), the
command rejected bit in the status register shall be set if this command is received and the command shall
be ignored.

If the destination TransducerChannel number in the octet array is zero, the command rejected bit in the
TIM Status-Condition Register (see 5.13.4) shall be set and the command shall be ignored.

7.1.3.2 Write TransducerChannel data-set segment

Argument attribute name: WriteActuator

This command is used to write a data set into a TransducerChannel overwriting any previous content. The
arguments to a write TransducerChannel data set segment command shall be as described in Table 33.

Since the maximum size for an octet array that may be handled by a given physical transport layer is less
than the maximum size for a data set, the data set offset is used to identify where in the data set the write
access should start. If the WriteActuator.Offset is greater than the maximum length of the data set, the data
shall be discarded and the command rejected bit in the status word (see 5.13.4) shall be set.

NOTE—Most data sets will be small enough to fit within a single segment. However, the standard allows the
maximum TransducerChannel data repetitions to be 65 356 and the data model, which defines the number of octets in a
data sample, to be 255, which gives the maximum data set size of 16 777 216. In cases where the data set will fit
within a single message, the contents of the segment offset field should be zero. However, data sets larger than will fit
within one message require the segmentation of the data set for transmission.

Table 33—Write TransducerChannel data set segment command data field
Field Data type Argument attribute name Function
1 UInt32 WriteActuator.Offset Data set offset (0 to [current size – 1])—This is the

address relative to the beginning of the data set at which
writing of the data shall begin.

2 N*UInt8 WriteActuator.DataBlock Data block

For a TransducerChannel being operated in the streaming mode, the command rejected bit (see 5.13) in the
status register shall be set if this command is received and the command shall be ignored.

If the destination TransducerChannel number in the octet array is zero, the command rejected bit (see 5.13)
in the TIM Status-Condition Register shall be set and the command shall be ignored.

7.1.3.3 Trigger command

This command causes an action as described in trigger commands in 5.11.2.1.

There are no arguments to this command.

It may be addressed to a TransducerChannel, a TransducerChannel proxy, an AddressGroup, or globally. If
it is addressed globally, it shall trigger each trigger-enabled TransducerChannel within the TIM. If the
TransducerChannel is a sensor, the TransducerChannel shall behave according to the Sensor Triggering

73
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 73

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.3.4

7.1.4

State Diagram (see Figure 7). If the TransducerChannel is an actuator, then the TransducerChannel shall
behave according to the Actuator Trigger State Diagram (see Figure 8).

 Abort trigger

This command is used to abort a trigger operation. If the TransducerChannel is a sensor, the
TransducerChannel shall behave according to the Sensor Triggering State Diagram (see Figure 7). If the
TransducerChannel is an actuator, then the TransducerChannel shall behave according to the Actuator
Trigger State Diagram (see Figure 8).

There are no arguments to this command.

It may be addressed to a TransducerChannel, a TransducerChannel proxy, an AddressGroup, or globally. If
it is addressed globally, it shall abort the trigger on each triggered TransducerChannel within the TIM.

 Transducer either idle or operating state commands

The commands in this class may be issued to a TransducerChannel at any time after it leaves the
Transducer Initialization state. The commands that are allowed in this class are listed in Table 34.

Table 34—TransducerChannel idle or operational state commands
Address class Reply

expected
Required/
optional cmdFunctionId Command Group/

global TransducerChannel Proxy

0 Reserved — — — — —
1 TransducerChannel Operate Yes Yes Yes No Required
2 TransducerChannel Idle Yes Yes Yes No Required
3 Write TransducerChannel

trigger state
Yes Yes Yes No Optional

4 Read TransducerChannel
trigger state

Yes Yes Yes No Required

5 Read TransducerChannel
data repetition count

Yes No No Yes See
NOTE 1

6 Read TransducerChannel
pre-trigger count

Yes No No Yes See
NOTE 2

7 Read AddressGroup
assignment

Yes Yes No Yes Required

8 Read Sampling mode Yes Yes No Yes Optional
9 Read data transmission mode Yes Yes No Yes
10 Read buffered state Yes Yes No Yes Optional
11 Read end-of-data-set

operation
Yes Yes No Yes Optional

12 Read actuator halt mode Yes Yes No Yes Optional
13 Read edge-to-report mode Yes Yes No Yes Optional
14 Read TransducerChannel

initiate trigger state
Yes No No Yes Optional

15 Read TransducerChannel
initiate trigger configuration

Yes No No Yes Optional

16 Device clear Yes Yes Yes No Optional
17–127 Reserved — — — — —
128–255 Open for manufacturers — — — — —
NOTE 1—This function is required if the Set TransducerChannel data repetition count is implemented.
NOTE 2—This function is required if the Set TransducerChannel pre-trigger count is implemented.

74
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

74 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.4.1

7.1.4.2

7.1.4.3

7.1.4.4

If any optional command in this class is sent to a TransducerChannel that does not support that command,
the command rejected bit (see 5.13.4) in the TransducerChannel Status-Condition register shall be set and
the command shall be ignored.

All commands in this class require a destination TransducerChannel number greater than zero. If
destination TransducerChannel number in the message is zero, the command rejected bit in the
TransducerChannel Status-Condition Register (see 5.13.4) shall be set and the command shall be ignored.

The TIM shall be in the active state for any of these commands to be received by the transducer channel.

 TransducerChannel operate

This command causes a TransducerChannel in the Transducer Idle state to transition into the Transducer
Operating state. If the TransducerChannel is already in the Transducer Operating state, the command is
ignored. See 5.4.1 for a description of the operating states of a TransducerChannel.

This command has no arguments.

 TransducerChannel idle

This command forces the addressed TransducerChannel to transition into the Transducer Idle state. If the
TransducerChannel is already in the Transducer Idle state, the command is ignored. See 5.4.1 for a
description of the operating states of a TransducerChannel.

This command has no arguments.

 Write TransducerChannel trigger state

Argument attribute name: TrigState data type Boolean

This command is used to enable or disable TransducerChannel triggering as described in 5.4.2 and 5.11.

This command has a single argument. If the value is true, triggering is enabled for the addressed
TransducerChannel. Otherwise triggering is disabled for the addressed TransducerChannel.

 If the TransducerChannel does not support triggering and this command is received, the command rejected
bit in the status-event register shall be set (see 5.13.4) and the command shall be ignored.

 Read TransducerChannel trigger state

Reply argument attribute name: TrigState data type Boolean

This command is used to read the triggering state of the TransducerChannel as described in 5.4.2.

The reply to this command has a single argument. If the value is true, triggering is enabled for the
addressed TransducerChannel. Otherwise triggering is disabled for the addressed TransducerChannel. If
the TransducerChannel does not support triggering, the reply to this command shall be False.

75
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 75

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.4.5

7.1.4.6

7.1.4.7

7.1.4.8

7.1.4.9

 Read TransducerChannel data repetition count

Reply argument attribute name: RepCount data type UInt16

This command is used to read the actual number of TransducerChannel data repetition counts (see 7.1.2.1)
that are assigned for the addressed TransducerChannel.

The command has no arguments. However, it does generate a reply that has a single UInt16 argument. This
argument gives the current assigned value for the TransducerChannel data repetition count.

 Read TransducerChannel pre-trigger count

Reply argument attribute name: PreTrigCount data type UInt16

This command is used to read the actual number of TransducerChannel pre-trigger counts that are assigned
for the addressed TransducerChannel (see 7.1.2.2).

The command has no arguments. However, it does generate a reply that has a single UInt16 argument. This
argument gives the current assigned value for the TransducerChannel pre-trigger count.

 Read AddressGroup assignment

Reply argument attribute name: GrpAssignment data type UInt16

This command is used to read the AddressGroup(s) to which the addressed TransducerChannel is assigned
(see 11.3.14).

The command has no arguments. However, it does generate a reply that has a single UInt16 argument that
gives the AddressGroup addresses to which the TransducerChannel is assigned. A value of zero means that
this TransducerChannel is not assigned to any AddressGroup.

 Read sampling mode

Reply argument attribute name: SampleMode data type UInt8

The Read Sampling Mode command allows the NCAP to determine the actual sampling mode in which the
TransducerChannel is operating (see 5.10.1 and 8.5.2.44).

The command has no arguments. However, it does generate a reply that has a single UInt8 argument that
gives the current sampling mode for the TransducerChannel. The list of allowable values for this argument
is shown in Table 26.

 Read data transmission mode

Reply argument attribute name: XmitMode data type UInt8

The Read data transmission mode command allows the NCAP to determine the data transmission mode of
the TransducerChannel (see 5.10.2 and 8.5.2.49).

76
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

76 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.4.10

7.1.4.11

7.1.4.12

7.1.4.13

7.1.4.14

The command has no arguments. However, it does generate a reply that has a single UInt8 argument that
gives the current data transmission mode for the TransducerChannel. Table 7 lists the allowable arguments
for the reply to this command.

 Read buffered state

Reply argument attribute name: BufferOnOff data type Boolean

The command has no arguments. However, it does generate a reply that has a single argument of type
Boolean. If that argument is true, buffering is enabled. Otherwise buffering is disabled.

 Read end-of-data-set operation mode

Reply argument attribute name: EndDataSetMode data type UInt8

The Read end-of-data-set operation mode command allows the NCAP to determine the action that an
actuator TransducerChannel will take upon reaching the end of the current data set if another data set has
not been written while it was applying the current data set.

The command has no arguments. However, it does generate a reply that has a single argument. Table 27
gives the allowable values for the argument.

 Read actuator halt mode

Reply argument attribute name: ActuatorHalt data type UInt8

The command has no arguments. However, it does generate a reply that has a single argument. Table 28
gives the allowable values for the argument.

 Read Edge-to-Report mode

Reply argument attribute name: EdgeReported data type UInt8

The command has no arguments. However, it does generate a reply that has a single argument. Table 29
gives the allowable values for the argument.

 Read TransducerChannel initiate trigger state

Reply argument attribute name: EventTrig data type Boolean

This command allows an NCAP to determine whether an event sensor TransducerChannel is set up to
initiate a trigger command when an event occurs. If a sensor or actuator receives this command, it shall set
the Command rejected bit in the status word (see 5.13.4).

This command has no arguments. However, the reply to this command has a single argument. If the value
is true, the event sensor is enabled to initiate a trigger when an event occurs. Otherwise the trigger
capability is disabled.

77
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 77

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.4.15

7.1.4.16

7.1.5

 Read TransducerChannel initiate trigger configuration

Reply argument attribute name: InitTrig data type Boolean

This command is used to read the information needed to allow a TransducerChannelto initiate a trigger
command.

This command has no arguments. However, the reply to this command has the arguments listed in
Table 30. See 11.3.2 for the meaning of these arguments.

 Device clear

This command is used to clear all input buffers and output buffers of the addressed TransducerChannels.
For more information on device clear, see Figure 7 for sensor trigger states and Figure 8 for actuator
trigger state diagrams.

This command has no arguments and does not generate a reply.

 TIM sleep state commands

The following commands may only be executed when the TIM is in the sleep state. See Table 35 for the
list of allowable commands for this class.

All commands in this class require a destination TransducerChannel number of zero. If destination
TransducerChannel number in the message is not zero, the command rejected bit in the TransducerChannel
Status-Condition Register (See 5.13.4) shall be set and the command shall be ignored.

Table 35—Sleep state commands
Address class

cmdFunctionId Command TIM Global
Reply
expected

Required/
optional

0 Reserved — — — —
1 Wake-up Yes No Yes Optional
2–127 Reserved — — — —
128–255 Open for manufacturers — — — —

7.1.5.1 Wake-up

This command forces the addressed TIM to transition into the active state.

This command has no arguments.

A reply to this command shall always be generated upon completion of the operation. The reply shall be
the same as the reply to a Read Status-Event Register command (see 7.1.1.8) addressed to the TIM.

NOTE—If this command is sent to multiple TIMs, the underlying IEEE 1451.X must be able to handle replies from
multiple TIMs without disrupting the operation of the system.

78
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

78 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.6 TIM active state commands

The following commands may only be executed when the TIM is in the active state (see Table 36). If one
of these commands is received when the TIM is not in the active state, the command rejected bit in the
TIM Status-Condition Register (see 5.13) shall be set and the command shall be ignored.

All commands in this class require a destination TransducerChannel number of zero. If destination
TransducerChannel number in the message is not zero, the command rejected bit in the TIM Status-
Condition Register (see 5.13.4) shall be set and the command shall be ignored.

Table 36—TIM active state commands
Address class

cmdFunctionId Command TIM Global
Reply
expected

Required
/optional

0 Reserved — — — —
1 Read TIM version Yes No Yes Required
2 TIM Sleep Yes No No Optional
3 Store operational setup Yes No No Required
4 Recall operational setup Yes No No Required
5 Read IEEE 1451.0 Version Yes No Yes Required
6–127 Reserved — — — —
128–255 Open for manufacturers — — — —

7.1.6.1

7.1.6.2

7.1.6.3

 Read TIM version

Reply argument attribute name: TIMVersion data type UInt16

This command is used to read the version number from a TIM.

The command has no arguments. However, it does generate a reply that has a single argument. The value
of this argument is the manufacturer-defined TIM version number. The contents of this number are left to
the manufacturer, but they shall be sufficient to allow the user to determine that something within the
device has been changed even though the model number has not changed.

 TIM sleep

This command puts the addressed TIM into a low-power state where it only responds to the wake-up
command.

This command has no arguments and does not generate a reply.

 Store state

Argument attribute name: StorState[N] 0≤N≤255 data type UInt8

This command is used to cause a TIM and all TransducerChannels in the TIM to store their state
information and enough additional information that it can be restored to the same setup it had when this
command was received. Two conditions will cause the state to be restored. They are as follows:

⎯ Receipt of the recall state command

79
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 79

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.6.4

7.1.6.5

⎯ Return from a power failure

NOTE—This should include the signal conditioning parameters, the operation modes, and so on.

There is a single argument to this command of type UInt8. This argument shall be used to identify the state
if multiple states are to be stored. The power-up state shall be state zero. There is no reply to this
command.

 Recall state

Argument attribute name: StorState[N] 0≤N≤255 data type UInt8

This command is used to return the setup of a TIM and all TransducerChannels in the TIM to the state they
were in when the Store State command that defined the state specified by the argument to this command
was received.

There is a single argument to this command of type UInt8. This argument shall be used to identify the state
to be recalled. There is no reply to this command.

 Read the IEEE 1451.0 version

Reply argument attribute name: StandardVersion data type UInt8

This command is used to read the version of this standard supported by this TIM.

This command has no arguments. The reply to this command shall have a single octet of the IEEE 1451.0
version number as shown in Table 37 in the data field.

Table 37—Enumeration of IEEE 1451.0 version numbers
Standard version IEEE 1451.0 standard version
0 Reserved for prototype or other nonstandard IEEE 1451.0 versions
1 This will correspond to the original release of this standard
2–127 Reserved for future releases of the standard
128–255 Open to manufacturers

7.1.7 TIM any state commands

The following commands may be executed when the TIM is in any state. Table 38 gives a list of the
commands in this class.

All commands in this class require a destination TransducerChannel number of zero. If destination
TransducerChannel number in the message is not zero, the command rejected bit in the TransducerChannel
Status-Condition Register (see 5.13.4) shall be set and the command shall be ignored.

Table 38—TIM any state commands
Address class

cmdFunctionId Command
TIM Global

Reply
expected

Required/
optional

0 Reserved — — — —
1 Reset Yes No No Optional
2–127 Reserved — — — —
128–255 Open for manufacturers — — — —

80
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

80 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

7.1.7.1

7.2

8.

8.1

 Reset

This command is used to reset the TIM and all TransducerChannels associated with that TIM.

After a Reset command is issued to a TIM, the TIM and all TransducerChannels associated with that TIM
shall go into the initialization/boot-up state immediately. If a state or states have been stored using the
Store State (see 7.1.6.3) command, then state 0 will be the state restored during initialization.

This command has no arguments and does not produce a reply.

 Manufacturer-defined commands

A manufacturer may include nonstandard commands that need to be exposed to the user by implementing a
Commands TEDS as described in 5.5.2.5. The user is responsible for the software necessary to use these
commands.

 TEDS specification

This clause specifies the contents of all TEDS defined in this standard.

 General format for TEDS

All TEDS have the general format shown in Table 39. The first field in any TEDS is the TEDS length. It is
a 4 octet unsigned integer. The next block is the information content for the TEDS. Depending on the
TEDS, the information may be binary information or it may be text-based. The last field in any TEDS is a
checksum that shall be used to verify the integrity of the TEDS.

Table 39—Generic format for any TEDS
Field Description Type # octets
— TEDS length UInt32 4
1 to N Data block Variable Variable
— Checksum UInt16 2

8.1.1

8.1.2

 TEDS length

Data type: unsigned integer used for field length (UInt32, 4 octets)

The TEDS length is the total number of octets in the TEDS data block plus the 2 octets in the checksum.

 Data block

Data type: a structure defined by the specific TEDS

This structure contains the information that is stored in a specific TEDS. The fields that comprise this
structure are different for each TEDS type. All TEDS prepared by a transducer manufacturer use a
Type/Length/Value (TLV) data structure. In the case of text-based TEDS, this Type/Length/Value (TLV)

81
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

data structure is used to provide a directory to give access into different sections of the text portion of the
TEDS that uses XML for the information content.

Using the TLV construct as shown in Table 40, each entry is stored as a TLV tuple. The “Type“ field is a
1 octet tag that identifies the TLV, similar in function to HTML or XML tags. The “Length” field specifies
the number of octets of the value field, and the “Value” field is the actual data. Each entry may be
composed of one or more TLVs. The structure, or data type, of the value field is defined in the
specification for the TEDS in this standard. See Table 43 for an example.

Table 40—Definition of the Type/Length/Value structure
Field Description
Type This code identifies the field in the TEDS that is contained within the value field. Except for types 2 and

3, the same number in the type field will have a different meaning in each different TEDS.
Length The number in this field gives the number of octets in the value field. The number of octets in the length

field is controlled by an entry in the TEDS Identification TLV.
Value This field contains the TEDS information.

8.1.3

8.1.3.1

8.1.3.2

8.1.4

8.1.5

 Unused type codes

Within the definition of each TEDS, some type codes are not used in that TEDS. These type codes are
listed within the definition of each TEDS as either “reserved” or “open to manufacturers.”

 Reserved types

Type codes listed as “reserved” are reserved by the Common Functionality and TEDS Working Group for
future revisions to the standard. They shall not be used by manufacturers or other groups.

 Open to manufacturers

Type codes listed as “open to manufacturers” may be used by manufacturers to implement features that are
not defined in the standard. If a manufacturer chooses to implement type codes in a transducer module that
are not described in the standard, and that device is operated in a system that does not recognize the
manufacturer specific type fields, then all of the features described in the standard shall function normally,
but the additional manufacturer’s features will not be supported.

 IEEE Std 1451.2-1997 compatibility

The TEDS for IEEE Std 1451.2-1997 do not use TLV tuples. However, the first octet following the length
field in the Meta-TEDS always contains the number two. Since the first octet following the length field in
any IEEE 1451.0 TEDS is always a type code, the type code 2 is reserved and shall not be used. Since the
Meta-TEDS is the only TEDS in IEEE Std 1451.2-1997 that contains TEDS version information, it is
necessary when using that standard to read the Meta-TEDS before attempting to read any other TEDS.

 IEEE Std 1451.3-2003 compatibility

The TEDS for IEEE Std 1451.3-2003 do not use TLV tuples. However, the first octet following the length
field in the Meta-TEDS always contains the number one. Since the first octet following the length field in
any IEEE 1451.0 TEDS is always a type code, the type code 1 is reserved and shall not be used. Since the
Meta-TEDS is the only TEDS in IEEE Std 1451.3-2003 that contains TEDS version information, it is
necessary when using that standard to read the Meta-TEDS before attempting to read any other TEDS.

82
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

82 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.1.6

8.2

8.3

 Checksum

Data type: unsigned 16-bit integer (UInt16, 2 octets)

The checksum shall be the one’s complement of the sum (modulo 216) of all preceding octets, including the
initial TEDS length field and the entire TEDS data block. The checksum calculation excludes the
checksum field.

∑
−

=

−=
2sTotalOctet

1

)(TEDSOctetxFFFF0checksum
i

i (4)

16The one’s complement of the sum N is (2 – 1) – N. The checksum may be calculated by taking the hex
value 0xFFFF minus the sum from the first octet to the octet before the checksum as shown in
Equation (4). Another way to calculate the ones complement value of a number is by inverting the
number’s digits.

NOTE—Computing the checksum starts with adding the individual octets while keeping the sum in a 16 bit number. If
the 16 bit number overflows, ignore the overflow and keep only the lower 16 bits. Take the logical (one’s) complement
of the resulting 16 bit number.

 Order of octets in numeric fields

For numeric values requiring more than 1 octet, the first octet following the tuple length field shall be the
most significant octet. The last field shall contain the least significant octet.

 TEDS identification header

Field Type: 3

Field Name: TEDSID

Default value: Not applicable. This field is required in all TEDS.

The TEDS Identifier consists of the four fields shown in Table 41 and is standard for all TEDS. This field
is always the first one in the TEDS. The Tuple Length for this field is assumed to be one.

The contents are as follows:

IEEE 1451 standards family number (0 for this standard)

TEDS class

Version number

Tuple length

83
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 83

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 41—TEDS identifier structure
Field Contents Function
Type 03 Type field for the TEDS Identifier.
Length 04 This field is always set to 04, indicating that the value field contains 4 octets.
Family 00 This field identifies the member of the IEEE 1451 family of standards that defines

this TEDS.
Class See

Table 17
This field identifies the TEDS being accessed. The value is the TEDS access code
found in Table 17.

Version See
Table 42

This field identifies the TEDS version. The value is the version number identified in
the standard. A value of zero in this field indicates that the TEDS do not conform to
any released standard. Table 42 lists the allowable values for this field.

Tuple
Length

Number
of octets

This field gives the number of octets in the length field of all tuples in the TEDS
except this tuple.

NOTE—For most TEDS, the number of octets in the length field of the tuples is one,
meaning that there are 255 or less octets in the value field. However, some cases may
require more than 8 bits for the number of octets in the value field, so this field
specifies the number of octets in the length field of a tuple. All tuples within a TEDS,
except the TEDS Identifier, shall have the same number of octets in the length field.

Table 42—Enumeration of TEDS version numbers
TEDS version IEEE 1451.0 standard version
0 Reserved for prototype or other nonstandard TEDS versions.
1 This will correspond to the original release of this standard.
2–255 Reserved for future releases of the standard.

8.4

8.4.1

8.4.2

 Meta-TEDS

The Meta-TEDS is a required TEDS. The function of the Meta-TEDS shall be to make available at the
interface all information needed to gain access to any TransducerChannel, plus information common to all
TransducerChannels.

 Access

The Meta-TEDS is accessed using a Query TEDS command, a Read TEDS segment command, a write
TEDS segment command, or an Update TEDS command. The argument of the command shall specify the
TEDS access code of the Meta-TEDS, as defined in Table 17.

This TEDS should be implemented as a read-only TEDS to prevent it from being changed in the field
because changes could cause unpredictable behavior. If it is implemented as a read-only TEDS, the write
TEDS segment command and Update TEDS command shall not apply.

 Data block

Table 43 summarizes the content of the data block. Subordinate subclauses explain each data field in this
data block. The length and checksum fields are not technically part of the TEDS data block but are shown
in Table 43 to more completely describe the TEDS (see 8.1).

84
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

84 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 43—Structure of the Meta-TEDS data block
Field Field Description Data type # octets
type name
— Length UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS Identification Header UInt8 4
4 UUID Globally Unique Identifier UUID 10
5–9 — Reserved — —

Timing-related information
10 OholdOff Operational time-out Float32 4
11 SHoldOff Slow-access time-out Float32 4
12 TestTime Self-Test Time Float32 4

Number of implemented TransducerChannels
13 MaxChan Number of implemented TransducerChannels UInt16 2
14 CGroup ControlGroup information sub-block — —

Types 20, and 21 define one ControlGroup.
20 GrpType ControlGroup type UInt8 1
21 MemList ControlGroup member list array of

UInt16
NTc

15 VGroup VectorGroup information sub-block — —
Types 20 and 21 define one VectorGroup.

20 GrpType VectorGroup type UInt8 1
21 MemList VectorGroup member list array of

UInt16
NTv

16 GeoLoc Specialized VectorGroup for geographic location — —
Types 24, 20, and 21 define one set of geographic location information.

24 LocEnum An enumeration defining how location information is
provided

UInt8 1

20 GrpType VectorGroup type UInt8 1
21 MemList VectorGroup member list array of

UInt16
NTv

17 Proxies TransducerChannel proxy definition sub-block — —
Types 22, 23, and 21 define one TransducerChannel proxy.

22 ChanNum TransducerChannel number of the TransducerChannel proxy UInt16 1
23 Organiz TransducerChannel proxy data-set organization UInt8 1
21 MemList TransducerChannel proxy member list array of

UInt16
NTp

18–19 — Reserved — —
25–127 — Reserved — —
128–255 — Open to manufacturers — —
— Checksum UInt16 2

8.4.2.1

8.4.2.2

 TEDS identification header

The TEDS Identification Header shall be as defined in 8.3.

This field is a required field. If this field is omitted or contains illegal values, the NCAP shall report a fatal
TEDS error.

 Globally unique identifier

Field Type: 4

Field Name: UUID

85
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 85

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.3

Data type: UUID, 10 octets

This field shall be present in the Meta-TEDS of each TIM and shall be unique (as shown in Figure 13). If
this field is omitted, the NCAP shall report a fatal TEDS error.

See 4.12 for a description of the contents of this field.

 Worst-case time-out values

Two time-out values are provided in this TEDS. Both values are intended for detecting nonresponsive
TIMs. Two time-out values are specified to allow for two classes of response times. The operational time-
out is used for most operations and is the shorter of the two periods. The second time-out value, slow
access time-out, is used for commands that are expected to take longer to execute such as commands that
write non-volatile memory.

Figure 13—Structure of the Meta-TEDS data block

86
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

86 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.4

8.4.2.5

8.4.2.6

 Operational time-out

Field Type: 10

Field Name: OHoldOff

Data type: single-precision real (Float32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

The Operational time-out field contains the time interval, in seconds, after an action for which the lack of
reply following the receipt of a command may be interpreted as a failed operation. This may be the longer
of the time required to begin a response to the slowest-to-execute command supported by the device (for
example, worst-case command response) OR the time by which the device should be ready to accept the
next command when no reply is required by the current command.

This field only gives the portion of the time that is used within the transducer module. Additional delays
will exist within the NCAP or host processor and in the transmission that are related to the implementation,
which shall be added to this value to produce a time-out value.

 Slow access time-out

Field Type: 11

Field Name: SHoldOff

Data type: single-precision real (Float32, 4 octets)

The slow access time-out field contains the time interval, in seconds, after which an action for which the
lack of a reply following the receipt of a command may be interpreted as a failed operation. This may be
the longer of the time required to begin a response to the slowest-to-execute of these commands supported
by the device (for example, worst-case command response) OR the time by which the device should be
ready to accept the next command when no reply is required by the current one. The commands that are
expected to require the longer time-out are identified in the description of the individual commands (see
Clause 7).

This field is optional. If a single time-out is sufficient to allow the NCAP to operate without being
excessively slow, then this field may be omitted.

This field only gives the portion of the time that is used within the transducer module. Additional delays
will exist within the NCAP or host processor and in the transmission that are related to the implementation,
which shall be added to this value to produce a time-out value.

 Transducer module self-test time requirement

Field Type: 12

Field Name: TestTime

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error

Data type: single-precision real (Float32, 4 octets)

87
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 87

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.7

8.4.2.8

This field contains the maximum time, in seconds, required to execute the self-test. If no self-test is
implemented, this field is zero.

 Number of implemented TransducerChannels

Field Type: 13

Field Name: MaxChan

Data type: unsigned 16 bit integer (UInt16, 2 octet)

This field is required for all TIMs. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field contains the number of TransducerChannels implemented in this TIM. TransducerChannels shall
be numbered starting at one and be contiguous up to this number. No TransducerChannel numbers may be
skipped.

 ControlGroups

Field Type: 14

Field Name: CGroup

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required for TIMs that implement ControlGroups. This field is omitted if no ControlGroups
exist in this transducer module.

ControlGroups identify transducers that are used to control the operation of other transducers as shown in
Table 44. The ControlGroup definition is a hierarchical structure with the following subfields (TLV
tuples):

Group type

Member list

In Table 44, the Enumeration column contains the value that will be placed in the group type field to
identify the particular ControlGroup that is being defined. The function column defines the function of
each TransducerChannel in the group. The member list is a list of the TransducerChannel numbers for the
Transducers that perform each function. The numbers in the member list order column define the order in
which the TransducerChannel numbers shall be listed. The member list is an ordered array, and no
elements may be omitted. If a TransducerChannel is not required, then the TransducerChannel number for
that function shall be zero.

Enumeration 2 may be used to identify the embedded actuator TransducerChannels used to set the high-
pass filter, low-pass filter, and scale factor associated with a sensor of any type.

Enumeration 3 is used to identify an embedded actuator TransducerChannel that may be used to set the
TransducerChannel sampling period.

Enumeration 8 is used when the requirements for simultaneous sampling require that a programmable
delay be introduced to make the delays equal for all TransducerChannels within the group.

88
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

88 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Enumerations 1 and 4 may be used to identify the embedded actuator TransducerChannels used to set up
an event sensor. They also identify a sensor TransducerChannel that may be used to read the level of the
signal in an analog event sensor or the current pattern input to a digital event sensor.

Table 44—Enumeration of ControlGroup types
Enumeration Member list

order
Function

0 Reserved
1 Analog event sensor TransducerChannel 1
2 Analog input sensor TransducerChannel that measures the input value for the

same input as the member 1 event sensor provides the state
3 Upper threshold embedded actuator TransducerChannel
4 Hysteresis embedded actuator TransducerChannel
1 Sensor TransducerChannel (any type) 2
2 High-pass filter embedded actuator TransducerChannel
3 Low-pass filter embedded actuator TransducerChannel
4 Scale factor embedded actuator TransducerChannel
1 TransducerChannel (any type) 3
2 Sample interval embedded actuator TransducerChannel
1 Digital event sensor TransducerChannel 4
2 Digital input sensor TransducerChannel that measures the input value for the

same input as the member 1 event sensor provides the state
3 Event pattern embedded actuator TransducerChannel
1 Time interval sensor TransducerChannel 5
2 TransducerChannel number of the transducer that causes the output of the time

interval sensor to be latched
1 TimeInstance sensor TransducerChannel 6
2 TransducerChannel number of the transducer that causes the output of the

TimeInstance sensor to be latched
1 TransducerChannel number of an event sensor used to trigger other transducers 7
2 - N The remaining N entries give a list of TransducerChannels triggered by the

event
1 TransducerChannel (any type) 8
2 Embedded time delay actuator TransducerChannel
1 Location sensor TransducerChannel 9
2 TransducerChannel number of the transducer that causes the output of the

location sensor to be latched
10–127 Reserved for future expansion
128–255 Open to manufacturers

8.4.2.9 Group type

Field Type: 20

Field Name: GrpType

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required for TIMs that implement ControlGroups. This field is omitted if no ControlGroups
exist in this transducer module.

The group type is defined in the enumeration column in Table 44 for ControlGroups or in Table 45 for
VectorGroups.

89
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 89

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.10

8.4.2.11

8.4.2.12

 Member list

Field Type: 21

Field Name: MemList

Data type: a one-dimensional array of unsigned 16 bit integers (UInt16, 2 to 510 octets)

This field is required for TIMs that implement ControlGroups and VectorGroups. This field is omitted if
no ControlGroups or VectorGroups exist in this transducer module.

The group type is defined in the value column in Table 44 for ControlGroups or in Table 45 for
VectorGroups.

This field is a list of transducer channel numbers that go to make up the ControlGroup. They are in the
order that is specified in Table 44 or Table 45.

 VectorGroups

Field Type: 15

Field Name: VGroup

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required for TIMs that implement VectorGroups. This field is omitted if no VectorGroups
exist in this transducer module.

VectorGroups identify the relationships between the data sets within a transducer module as shown in
Table 45. The VectorGroup definition is a hierarchical structure with the following subfields:

Group type

Member list

In Table 45, the Enumeration column contains the value that will be placed in the group type field to
identify the particular VectorGroup that is being defined. The function column defines the function of each
TransducerChannel in the group. The member list is a list of the TransducerChannel numbers for the
Transducers that perform each function. The numbers in the member list order column define the order in
which the TransducerChannel numbers shall be listed. The member list is an ordered array, and no
elements may be omitted. If a TransducerChannel is not required, then the TransducerChannel number for
that function shall be zero.

 Group type

This field is the same as defined in 8.4.2.9.

This field is required for TIMs that implement VectorGroups. This field is omitted if no VectorGroups
exist in this transducer module.

90
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

90 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.13 Member list

The structure of this field is the same as defined in 8.4.2.10.

This field is required for TIMs that implement VectorGroups. This field is omitted if no VectorGroups
exist in this transducer module.

This field is a list of transducer channel numbers that go to make up the VectorGroup. They are in the
order that is specified in Table 45.

Table 45—Enumeration of VectorGroup types
Enumeration Member list order Function
0 — An arbitrary relation
1 1 x component of a right-hand rectangular spatial vector

2 y component of a right-hand rectangular spatial vector
3 z component of a right-hand rectangular spatial vector

2 1 ρ component of a right-hand cylindrical spatial vector
2 φ component of a right-hand cylindrical spatial vector
3 z component of a right-hand cylindrical spatial vector

3 1 r component of a right-hand spherical spatial vector
2 θ component of a right-hand spherical spatial vector
3 φ component of a right-hand spherical spatial vector

4 1 Latitude component of a planetary coordinate system
2 Longitude component of a planetary coordinate system
3 Altitude component of a planetary coordinate system

5 1 In-phase component of a two-dimensional vector
2 Quadrature component of a two-dimensional vector

6 1 Red component in a color vector
2 Green component in a color vector
3 Blue component in a color vector

7 1 Real component of a complex number
2 Imaginary component of a complex number

8–127 Reserved for future expansion
128–255 Open to manufacturers

8.4.2.14 Geographic location group

Field Type: 16

Field Name: GeoLoc

This field is required for TIMs that implement dynamic location information as specified in Table 46. If
this field is omitted, the NCAP shall assume that this TIM does not provide location information.

The geographic location group is a hierarchical structure with the following subfields (TLV tuples):

LocEnum

Group type

Member list

This field implements a specialized VectorGroup type that is used to provide dynamic geographic location
information.

91
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 91

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.15 Location enumeration

Field Type: 24

Field Name: LocEnum

Data type: unsigned octet integer (UInt8, 1 octet)

This field is an optional field. If this field is omitted, the NCAP shall assume that this TIM does not
provide any geographic location information.

The values for TransducerChannel type key are defined in Table 46.

Table 46—Enumeration of geographic location types
Value Meaning
0 No geographic location information is provided by this TIM
1 Static geographic location information is provided via the geographic location TEDS
2 Dynamic geographic location information is provided
3 Dynamic geographic location information is provided that is relative to the location specified in the

geographic location TEDS
4–255 Reserved for future expansion

8.4.2.16

8.4.2.17

8.4.2.18

 Group type

This is the same as defined in 8.4.2.12 except that the group type shall be limited to types 1–4.

This field is required if the location enumeration is 2 or 3. This field is omitted if no geographic location is
provided by this TIM.

 Member list

The structure of this field is the same as defined in 8.4.2.10.

This field is required if the location enumeration is 2 or 3. This field is omitted if no geographic location is
provided by this TIM.

This list of transducer channel numbers makes up the VectorGroup. They are in the order that is specified
in Table 45 for enumerations 1 through 4.

 TransducerChannel proxies

Field Type: 17

Field Name: Proxies

This field is required for TIMs that implement TransducerChannel proxies. This field is omitted if no
TransducerChannel proxies exist in this transducer module.

NOTE—If this field is omitted and one or more TransducerChannel proxies exist within the TIM, TransducerChannels
will appear to exist without TransducerChannel TEDS, which is a fatal error.

92
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

92 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.4.2.19

8.4.2.20

A TransducerChannel proxy is an artificial construct used to combine the outputs of multiple sensors or the
input to multiple actuators into a single structure. A TransducerChannel proxy has a TransducerChannel
number and may be triggered, read, or written, but it does not have the other characteristics of a
TransducerChannel. TransducerChannel Proxies do not have TransducerChannel TEDS, calibration TEDS,
Frequency Response TEDS, or Transfer Function TEDS. However, there may be text-based TEDS, End-
user application-specific TEDS, or users transducer name TEDS associated with a proxy.

The TransducerChannel Proxy TLV is made up of three subfields as follows:

TransducerChannel number of the TransducerChannel proxy

TransducerChannel proxy data set organization

TransducerChannel proxy member list

 TransducerChannel number of the TransducerChannel proxy

Field Type: 22

Field Name: ChanNum

Data type: unsigned 16 bit integer (UInt16, 2 octets)

This field is required for TIMs that implement TransducerChannel proxies. This field is omitted if no
TransducerChannel proxies exist in this transducer module.

This field contains the transducer channel that will be used when addressing this proxy. It may be used to
read data from a sensor proxy, to write data to an actuator proxy, or to trigger all transducers represented
by the proxy.

 TransducerChannel proxy data-set organization

Field Type: 23

Field Name: Organiz

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required for TIMs that implement TransducerChannel proxies. This field is omitted if no
TransducerChannel proxies exist in this transducer module.

As shown in Table 47, there are two methods of combining the data sets to or from multiple transducers.
The block method of combining shall be used if the data sets from the different transducers contain
different numbers of words. The Block method of combining data sets is shown graphically on the left side
of Figure 6. The interleave method of combining data sets is shown on the right side of Figure 6. The first
entry in the combined data set, “Data sample from transducer X”, is only present in Interleave method 2
and is expected to be some type of a time-tag to allow the NCAP to figure out when the first sample in the
data set was taken for some sensor types. The time of the remaining samples can usually be determined
from the characteristics of the sensors if the time of the first sample is known. If interleave method 1 is
used, the “Data sample from Transducer X” is omitted. The need for this time tagging capability exists in
the block method also, but no special characteristics are required to implement it with the block method.

93
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 93

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 47—Enumerations for combined data sets
Enumeration Meaning
0 Block method.
1 Interleave method 1.
2 Interleave method 2: This is the same as Interleave method 1 except that the list of interleaved

TransducerChannels shall be preceded by a one-sample data set from another
TransducerChannel or proxy. This is typically used for a time stamp identifying the time of the
first sample in the combined data set.

3–255 Reserved.

8.4.2.21

8.5

8.5.1

8.5.2

8.5.2.1

 TransducerChannel proxy member list

The structure of this field is the same as defined in 8.4.2.10.

This list of transducer channel numbers is used to make a proxy. They are in the order that their data will
appear in the proxy. If the block method is being used, the channel number for the first block of data will
be listed first, the channel number for the second block of data is next, and so forth up to the data for block
N. If one of the interleave methods is used, the first entry in the list will be the channel number for
transducer channel X, if it is required, followed by the channel number for what in Figure 6 is transducer 1,
and so forth up to the channel number for channel N.

 TransducerChannel TEDS

This is a required TEDS. The function of the TransducerChannel TEDS shall be to make available at the
interface all of the information concerning the TransducerChannel being addressed to enable the proper
operation of the TransducerChannel.

 Access

The TransducerChannel TEDS is accessed using a Query TEDS command, a Read TEDS segment
command, a write TEDS segment command, or an Update TEDS command. The argument of the
command shall specify the TEDS access code of the TransducerChannel TEDS, as defined in Table 17.

This TEDS may be implemented as a read-only TEDS to prevent changes from being made in the field
because changes could cause unpredictable behavior. If it is implemented as a read-only TEDS, the
TransducerChannel write TEDS segment and TransducerChannel Update TEDS commands shall not
apply.

 Data block

Table 48 and Figure 14 show the information required to be in this TEDS. Subsequent subclauses explain
each field in the structure.

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is a required field. If this field is omitted or contains illegal values, the NCAP shall report a fatal
TEDS error.

94
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

94 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.2

8.5.2.3

8.5.2.4

8.5.2.5

 Calibration key

Field Type: 10

Field Name: CalKey

Data type: unsigned octet integer (UInt8, 1 octet)

This field is a required field. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field contains an enumeration that denotes the calibration capabilities of this TransducerChannel.
Table 49 provides the list of enumerated values and their meanings. The column labeled “Name” defines
manifest constants to symbolize the enumerated values, and these names are used throughout the remainder
of this standard.

 System corrections

Calibration key enumerations CAL_SUPPLIED or CAL_CUSTOM are to be used when the correction is
performed in the NCAP, a host processor, or elsewhere in the system.

 Transducer module corrections

Calibration key enumerations TIM_CAL_SUPPLIED and TIM_CAL_SELF are to be used when the
correction is performed in the TIM using one of the correction methods specified in 8.6.1.1 and
information stored in the Calibration TEDS (8.6.3). TIM_CAL_CUSTOM is used when the correction
method is not one of the methods specified in 8.6.1.1.

 TransducerChannel type key

Field Type: 11

Field Name: ChanType

Data type: unsigned octet integer (UInt8, 1 octet)

This field is a required field. If this field is omitted, the NCAP shall report a fatal TEDS error.

95
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 95

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

96
Copyright © 2007 IEEE. All rights reserved.

Table 48—Structure of the TransducerChannel TEDS data block
Field Field name Description Type # octets
— TEDS length UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS Identification UInt8 4
4-9 — Reserved — —
TransducerChannel related information
10 CalKey Calibration key UInt8 1
11 ChanType TransducerChannel type key UInt8 1
12 PhyUnits Physical Units UNITS 11
50 UnitType Physical Units interpretation enumeration UInt8 1
51 Radians The exponent for Radians UInt8 1
52 SterRad The exponent for Steradians UInt8 1
53 Meters The exponent for Meters UInt8 1
54 Kilogram The exponent for Kilograms UInt8 1
55 Seconds The exponent for Seconds UInt8 1
56 Amperes The exponent for Amperes UInt8 1
57 Kelvins The exponent for Kelvins UInt8 1
58 Moles The exponent for Moles UInt8 1
59 Candelas The exponent for Candelas UInt8 1
60 UnitsExt TEDS access code for units extension UInt8 1
13 LowLimit Design operational lower range limit Float32 4
14 HiLimit Design operational upper range limit Float32 4
15 OError Worst-case uncertainty Float32 4
16 SelfTest Self-test key UInt8 1
17 MRange Multi-range capability UInt8 1
— Data converter-related information — —
18 Sample — —
40 DatModel Data model UInt8 1
41 ModLenth Data model length UInt8 1
42 SigBits Model significant bits UInt16 2
19 DataSet
43 Repeats Maximum data repetitions UInt16 2
44 SOrigin Series origin Float32 4
45 StepSize Series increment Float32 4
46 SUnits Series units UNITS 11
47 PreTrigg Maximum pre-trigger samples UInt16 2
Timing-related information
20 UpdateT TransducerChannel update time (tu) Float32 4
21 WSetupT TransducerChannel write setup time (tws) Float32 4
22 RSetupT TransducerChannel read setup time (trs) Float32 4
23 SPeriod TransducerChannel sampling period (tsp) Float32 4
24 WarmUpT TransducerChannel warm-up time Float32 4
25 RDelayT TransducerChannel read delay time (tch) Float32 4
26 TestTime TransducerChannel self-test time requirement Float32 4
Time of the sample information
27 TimeSrc Source for the time of sample UInt8 1
28 InPropDl Incoming propagation delay through the data transport logic Float32 4
29 OutPropD Outgoing propagation delay through the data transport logic Float32 4
30 TSError Trigger-to-sample delay uncertainty Float32 4
Attributes
31 Sampling Sampling attribute — —
48 SampMode Sampling mode capability UInt8 1
49 SDefault Default sampling mode UInt8 1
32 DataXmit Data transmission attribute UInt8 1
33 Buffered Buffered attribute UInt8 1
34 EndOfSet End-of-data-set operation attribute UInt8 1
35 EdgeRpt Edge-to-report attribute UInt8 1
36 ActHalt Actuator-halt attribute UInt8 1

ISO/IEC/IEEE 21450:2010(E)

96 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 48—Structure of the TransducerChannel TEDS data block (continued)
Field Field name Description Type # octets
Sensitivity
37 Directon Sensitivity direction Float32 4
38 DAngles Direction angles Two

Float32
8

Options
39 ESOption Event sensor options UInt8 1
61–127 — Reserved — —
128–255 — Open to manufacturers — —
— Checksum UInt16 2

Table 49—Enumeration of calibration keys
Value Calibration capability Name
0 No calibration information needed or provided by the transducer

module. This implies that there is no Calibration TEDS associated with
this TransducerChannel. If an attempt is made to access the Calibration
TEDS, the Calibration TEDSLength shall be zero.

CAL_NONE

1 Calibration information is provided as a Calibration TEDS, as specified
in 8.5.2.55. Correction is performed outside of the TIM.

CAL_SUPPLIED

2 Reserved.
3 Calibration information is provided but in a form that is not described

in this standard. Correction is performed outside of the TIM.
CAL_CUSTOM

4 Calibration information is provided as a Calibration TEDS, as specified
in 8.5.2.55. Correction is applied in the TIM.

TIM_CAL_ SUPPLIED

5 Calibration information is provided as a Calibration TEDS, as specified
in 8.5.2.55, and is applied in the TIM. The calibration information is
adjusted by a self-calibration capability.

TIM_CAL_SELF

6 Calibration information is provided but in a form that is not described
in this standard. It may be a manufacturer-defined TEDS. Correction is
performed in the TIM. If an attempt is made to access the Calibration
TEDS, the Calibration TEDSLength shall be zero.

TIM_CAL_CUSTOM

7–255 Reserved. —

The values for TransducerChannel type key are defined in Table 50.

Table 50—Enumeration of TransducerChannel types
Value Meaning
0 Sensor
1 Actuator
2 Event sensor
3–255 Reserved for future expansion

97
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 97

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 14—TransducerChannel TEDS

8.5.2.6 Physical Units

Field Type: 12

Field Name: PhyUnits

98
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

98 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.7

8.5.2.8

8.5.2.9

8.5.2.10

This field is required for all TransducerChannel TEDS. If this field is omitted, the NCAP shall report a
fatal TEDS error.

The Physical Units field is used to define the SI units for the physical quantity that is being measured or
controlled.

If the exponent of any of the fields described in 8.5.2.8 through 8.5.2.16 is zero, the field may be omitted.
In these cases the default value shall be 128.

See 4.11or Annex J for details on how to construct the value placed in the Physical Units fields.

 Physical Units interpretation enumeration

Field Type: 50

Field Name: UnitType

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is required for all TransducerChannel TEDS. If this field is omitted, the NCAP shall report a
fatal TEDS error.

This field is described in 4.11.

 The exponent for Radians

Field Type: 51

Field Name: Radians

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 The exponent for Steradians

Field Type: 52

Field Name: Steradians

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 The exponent for Meters

Field Type: 53

Field Name: Meters

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

99
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 99

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.11

8.5.2.12

8.5.2.13

8.5.2.14

8.5.2.15

This field is described in 4.11.

 The exponent for Kilograms

Field Type: 54

Field Name: Kilograms

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 The exponent for Seconds

Field Type: 55

Field Name: Seconds

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 The exponent for Amperes

Field Type: 56

Field Name: Amperes

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 The exponent for Kelvins

Field Type: 57

Field Name: Kelvins

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 The exponent for Moles

Field Type: 58

Field Name: Moles

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

100
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

100 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.16

8.5.2.17

8.5.2.18

This field is described in 4.11.

 The exponent for Candelas

Field Type: 59

Field Name: Candelas

Data type: Unsigned 8 bit integer (UInt8, 1 octet).

This field is described in 4.11.

 TEDS access code for units extension

Field Type: 60

Field Name: UnitsExt

Data type: unsigned octet integer (UInt8, 1 octet)

This field is optional for TransducerChannel TEDS. If it is not implemented, the NCAP will assume that no
units extension TEDS exists within this TransducerChannel.

This field is provided to allow a text-based extension to the Physical Units. It shall not be used as a
subsutitute for the Physical Units. Since there can be more than one set of Physical Units in a
TransducerChannel TEDS, the contents of this field shall provide the TEDS access code for the text-based
TEDS that provides this extension. If a single units extension TEDS is required, it should use the TEDS
access code identified in Table 17.

 Design operational lower range limit

Field Type: 13

Field Name: LowLimit

Data type: single-precision real (Float32, 4 octets)

This field is required for all TransducerChannel TEDS. If this field is omitted, the NCAP shall report a
fatal TEDS error.

For sensors, this shall be the lowest valid value for TransducerChannel data that the TransducerChannel is
designed to provide after correction is applied. It shall be interpreted in the units specified by the Physical
Units field of the TransducerChannel TEDS. If the corrected TransducerChannel data lie below this limit, it
may not comply with TransducerChannel specifications set by the manufacturer.

NOTE—The design operational lower range limit is always expressed in SI units. If the Calibration TEDS is used, the
output of the correction process may be converted into SI units by applying the SI units conversion constants supplied
in the Calibration TEDS (see 8.6.1.6).

For actuators, this shall be the lowest valid value for TransducerChannel data that the TransducerChannel
is designed to accept before correction is applied. It shall be interpreted in the units specified by the

101
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 101

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.19

Physical Units field of the TransducerChannel TEDS. Writing corrected TransducerChannel data below
this limit may result in behavior outside the transducer module specifications set by the manufacturer.

NOTE—For TransducerChannels that use multiple inputs to produce a single output, this limit, which is expressed in
terms of the output, will normally be a nominal value rather than a precise value.

In cases where no correction is applied and the TransducerChannel data model is not single-precision real,
conversion of the TransducerChannel data to single-precision real (or conversion of the limit value to the
data model of the TransducerChannel) is necessary before making the comparison.

NOTE—For example, this conversion is required when the Calibration key is CAL_NONE and the data model is N-
octet integer. Note that this conversion may limit the practical range or precision of the converted TransducerChannel
data.

When this parameter is not applicable, it shall be NaN (see 4.5.1).

NOTE—As an example of an application in which range limits do not apply, consider a bank of switches modeled as
N-octet data. In this case, both range limit fields shall be set to NaN. This is not to say that range limits do not apply to
N-octet data. For example, a 12 bit integer with no expressed units, such as raw ADC output, would also be modeled as
N-octet data. In this case, range limits are applicable.

If the Maximum data repetitions field (see 8.5.2.28) of this TransducerChannel is non-zero, then the value
of this field shall be interpreted to apply to all of the repetition instances.

 Design operational upper range limit

Field Type: 14

Field Name: HiLimit

Data type: single-precision real (Float32, 4 octets)

This field is required for all TransducerChannel TEDS. If this field is omitted, the NCAP shall report a
fatal TEDS error.

For sensors, this shall be the highest valid value for TransducerChannel data that the TransducerChannel is
designed to provide after correction is applied. It shall be interpreted in the units specified by the Physical
Units field of the TransducerChannel TEDS. If the corrected TransducerChannel data lies above this limit,
it may not comply with transducer module specifications set by the manufacturer.

NOTE—The design operational upper range limit is always expressed in SI units. If the Calibration TEDS is used, the
output of the correction process may be converted into SI units by applying the SI units conversion constants supplied
in the Calibration TEDS (see 8.6.1.6).

For actuators, this shall be the highest valid value for TransducerChannel data that the TransducerChannel
is designed to accept before correction is applied. It shall be interpreted in the units specified by the
Physical Units field of the TransducerChannel TEDS. Writing corrected TransducerChannel data above
this limit may result in behavior outside the TransducerChannel specifications set by the manufacturer.

NOTE—For TransducerChannels that use multiple inputs to produce a single output, this limit, which is expressed in
terms of the output, will normally be a nominal value rather than a precise value.

In cases where no correction is applied and the TransducerChannel data model is not single-precision real,
conversion of the TransducerChannel data to single-precision real (or conversion of the limit value to the
data model of the TransducerChannel) is necessary before making the comparison.

102
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

102 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.20

8.5.2.21

When this parameter is not applicable, it shall be NaN (see 4.5.1).

If the Maximum data repetitions field (see 8.5.2.28) of this TransducerChannel is nonzero, then the value
of this field shall be interpreted to apply to all of the repetition instances.

 Uncertainty under worst-case conditions

Field Type: 15

Field Name: OError

Data type: single-precision real (Float32, 4 octets)

This field required for all TransducerChannel TEDS. If this field is omitted, the NCAP shall report a
nonfatal TEDS error.

The “Combined Standard Uncertainty” defined in [B10], Appendix C, Section 2.2. The value of this field
shall be expressed in the units specified in the Physical Units field of the TransducerChannel TEDS.

This field is used to describe the uncertainty that will exist in this TransducerChannel’s output over the
worst-case combination of variations in the environment and any other factors, such as power supply
voltage, that could change the TransducerChannel output.

 Self-test key

Field Type:16

Field Name: SelfTest

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required for all TransducerChannel TEDS. If this field is omitted, the NCAP shall report a
non-fatal TEDS error.

This field defines the self-test capabilities of the TransducerChannel as shown in Table 51.

Table 51—Enumeration of self-test keys
Value Meaning
0 No self-test function needed or provided
1 Self-test function provided
2–255 Reserved for future expansion

8.5.2.22 Multi-range capability

Field Type: 17

Field Name: MRange

Data type: unsigned octet integer (UInt8, 1 octet)

This field is optional for TransducerChannel TEDS. If it is not implemented, the NCAP will assume that no
multirange capability exists within this TransducerChannel.

103
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 103

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.23

8.5.2.24

The content of this field identifies whether any transducers in the TIM have the capability of being
operated over different ranges. If the value is true, this TransducerChannel is capable of being operated in
more than one range. Otherwise no multirange capability exists. If a multirange capability exists, a
Commands TEDS is required. The Commands TEDS is required to define the commands needed to select
the operating range.

 Sample definition

Field Type: 18

Field Name: Sample

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

The sample definition field consists of three fields and is required for all TransducerChannel TEDS.

The subfields that make up this type are as follows:

Data model

Data model length

Model significant bits

 Data model

Field Type: 40

Field Name: DatModel

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field describes the data model used when issuing Read TransducerChannel data-set segment (see
7.1.3.1) or Write TransducerChannel data-set segment (see 7.1.3.2) commands to this TransducerChannel.
Values are enumerated in Table 52.

There are two differences between the integer forms (enumeration 0 and 5) and fractional forms
(enumeration 3 and 6):

The radix point (that divides integer from fractional bits) is to the right of the least significant bit for an N-
octet integer or long integer. It is immediately to the right of the most significant bit for the N-octet fraction
or long fraction. Justification of the significant bits differs, as explained in the Model significant bits field
(8.5.2.26).

104
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

104 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 52—Enumeration of data models
Value Base data type Model Constraint on data model length
0 UInt8 N-octet integer (unsigned) 0≤N≤8
1 Float32 Single-precision real N=4
2 double Double-precision real N=8
3 UInt8 N-octet fraction (unsigned) 0≤N≤8
4 UInt8 Bit sequence 0≤N≤8
5 UInt8 Long integer (unsigned) 9≤N≤255
6 UInt8 Long fraction (unsigned) 9≤N≤255
7 TimeInstance Time of day N=8
8–255 — Reserved for future expansion —

The use of enumerations 5 and 6 is expected to be rare. An NCAP is not expected to process data with
these enumerations but may pass them on unprocessed to the entity requesting the data.

The N-octet fraction type may be used to keep the multinomial coefficients (see 8.6.3.22) within
representable bounds and to avoid overflows when converting the data to Physical Units.

The Bit sequence data model is for collections of bits that have no numeric value. An example of this type
is the position of each switch in a bank of switches. Bit significance is user defined.

Boolean data (such as {0,1} or {false, true}) shall be represented as a bit sequence type with a length of 1
octet. The representation of true and false is defined in 4.8.

The Time of day data model supports TimeInstance data types defined in 4.9.2.

8.5.2.25

8.5.2.26

 Data model length

Field Type: 41

Field Name: ModLenth

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required. This field may be omitted in the case of single-precision real, double-precision real,
and TimeInstance data types since those types have fixed lengths. For all other cases, if this field is
omitted, the NCAP shall report a fatal TEDS error.

This field contains the number of octets in the representation specified in the Data model field. Constraints
on the model length are summarized in Table 52. A value of zero in the data model length field indicates
the existence of a TransducerChannel that produces or uses no data.

 Model significant bits

Field Type: 42

Field Name: SigBits

Data type: unsigned 16 bit integer (UInt16, 2 octets)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

105
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 105

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.27

8.5.2.28

When the Data model is an N-octet integer (enumeration 0 or 5) or N-octet fraction (enumeration 3 or 6),
the value of this field is the number of bits that are significant.

For example, if data from a TransducerChannel come from a 12-bit ADC, then:

Data model = 0 (N-octet integer)

Data model length = 2 (the number of octets needed to hold 12 bits)

Model significant bits = 12

When the Data model is an N-octet integer, N-octet fraction, long integer, or long fraction, the field Model
significant bits shall not exceed eight times the Data model length.

When the Data model is an N-octet integer or long integer, the data bits shall be right justified within the
octet stream. The field Model significant bits specifies the number of bits that are significant. A value of
zero is illegal.

When the Data model is an N-octet fraction or long fraction, the data bits shall be left justified within the
octet stream. The field Model significant bits specifies the number of bits that are significant.

When the Data model is single-precision or double-precision real (enumerations 1 or 2), the value of this
field is the number of bits in the TransducerChannel’s signal converter.

When the Data model is single-precision real, double-precision real, bit sequence, or time of day, the field
Model significant bits is fixed and it may be ignored.

 Data set definition

Field Type: 19

Field Name: DataSet

The data set definition field is required for all TransducerChannel TEDS.

This field is optional. If this field is omitted, the Maximum data repetitions and the Maximum pre-trigger
samples shall be assumed to be zero..

The subfields that make up this type are as follows:

Maximum data repetitions

Series origin

Series increment

Series units

Maximum pre-trigger samples

 Maximum data repetitions

Field Type: 43

Field Name: Repeats

Data type: unsigned octet integer (UInt16, 2 octets)

106
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

106 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.29

8.5.2.30

This field is optional. If this field is omitted, the maximum data repetitions shall be zero.

This field contains the number (L) of repetitions of the TransducerChannel value that may be produced or
required by a single trigger above the initial sample. Each repetition represents an additional measurement
or actuation value produced or consumed by the TransducerChannel at each trigger event, which shall be
spaced apart from the initial value associated with the trigger along some axis (for example, time) by an
amount defined by the TransducerChannel TEDS fields Series increment (8.5.2.30) and Series units
(8.5.2.31), respectively. When L is zero, the values of Series origin, Series increment, and Series units may
be ignored. The purpose of this structure is to allow TransducerChannels to produce a time series or a mass
spectrum or to generate a waveform with the application of a single trigger.

In operation, the number of TransducerChannel values that may be produced or required by a single trigger
may be set to any value lower than the contents of this field by issuing the Set TransducerChannel data
repetition count command as defined in 7.1.2.1 if that command is implemented.

When reading or writing data with data repetition count greater than zero, the order of transmittal shall be
with the zeroth (oldest) data sample transmitted first, the first repetition (next oldest) transmitted second,
and so on.

 Series origin

Field Type: 44

Field Name: SOrigin

Data type: single-precision real (Float32, 4 octets)

This field may be omitted if the Maximum data repetitions field (See 8.5.2.28) is zero. If the Maximum
data repetitions field is nonzero and this field is omitted, the NCAP shall assume a value of zero for the
Series origin.

For the case where the data repetition count is greater than zero, the Series origin represents the value of
the independent variable associated with the first datum in a data set. The Series originis expressed in units
defined by the Series units field in the TransducerChannel TEDS (see 8.5.2.31). If the Series units are
seconds, the content of this field is the number of seconds to delay before beginning the acquisition or
application of the data set.

For example: If the Series units represent time, this value is the delay between the receipt of the trigger and
the acquisition or application of the first sample.

 Series increment

Field Type: 45

Field Name: StepSize

Data type: single-precision real (Float32, 4 octets)

This field may be omitted if the Maximum data repetitions field (See 8.5.2.28) is zero. If the Maximum
data repetitions field is nonzero and this field is omitted, the NCAP shall report a fatal TEDS error.

For the case where the data repetition count is greater than zero, the Series increment represents the
minimum spacing between values of the independent variable associated with successive members of the

107
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 107

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.31

8.5.2.32

data-set. The Series increment is expressed in units defined by the Series units field in the
TransducerChannel TEDS (8.5.2.31).

For TransducerChannels that implement the capability to program the Series increment, this field shall give
the minimum interval that the TransducerChannel supports.

NOTE—For TransducerChannels that implement the ability to program the spacing between samples, it is
recommended that an embedded actuator be used for this function. This allows the spacing to be specified in Physical
Units and a Calibration TEDS to specify how to convert this into the bit pattern required to program the hardware.

 Series units

Field Type: 46

Field Name: SUnits

Data type: physical units (UNITS, 10 octets)

This field may be omitted if the Maximum data repetitions field (see 8.5.2.28) is zero. If the Maximum data
repetitions field is nonzero and this field is omitted, the NCAP shall report a fatal TEDS error.

This field contains the Physical Units associated with the Series origin (8.5.2.29) and Series increment
(8.5.2.30) fields in the TransducerChannel TEDS.

 Maximum pre-trigger samples

Field Type: 47

Field Name: PreTrigg

Data type: unsigned octet integer (UInt16, 2 octets)

This field may be omitted if the Maximum data repetitions field (see 8.5.2.28) is zero or if the
TransducerChannel does not support the free-running with pre-trigger sampling modes (see 5.10.1.3). If
this field is omitted and the Sampling mode attribute indicates that this TransducerChannel may be
operated in the free-running with pre-trigger sampling modes, then a nonfatal TEDS error shall be reported
and zero maximum pre-trigger samples shall be assumed.

This field contains the number (L) of repetitions of the TransducerChannel value that may be sampled and
stored prior to a trigger when operating in the free-running with pre-trigger modes. Each repetition
represents an additional measurement value produced by the TransducerChannel, which shall be spaced
apart from the initial value along some axis (for example, time) by an amount defined by the
TransducerChannel TEDS fields Series increment (8.5.2.30) and Series units (8.5.2.31), respectively.
When L is zero, the sensor may not be operated in the free-running pre-trigger mode.

In operation, the number of TransducerChannel values that may be acquired and stored prior to a trigger
may be set to any value lower than the contents of this field by issuing the Set TransducerChannel pre-
trigger count command as defined in 7.1.2.2 if that command is implemented.

When reading or writing data with data repetition count greater than zero, the order of transmittal shall be
with the zeroth (oldest) data sample transmitted first, the first repetition (next oldest) transmitted second,
and so on.

108
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

108 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.33

8.5.2.34

8.5.2.35

 TransducerChannel update time

Field Type: 20

Field Name: UpdateT

Data type: single-precision real (Float32, 4 octets)

This field is required for all TransducerChannel TEDS. For TransducerChannels being operated in the free-
running without pre-trigger sampling mode (see 5.10.1.2) or the free-running with pre-trigger sampling
mode (see 5.10.1.3), this number should be equal to the sample interval. If the sample interval is
programmable and the TransducerChannel is being operated in either of the free-running sampling modes,
this value is not relevant and should be set to zero. If this field is omitted, a fatal TEDS error shall be
reported.

This field contains the maximum time (tu), expressed in seconds, between the trigger event and the latching
of the first sample in a data set for this TransducerChannel. This time interval shall be calculated assuming
that the data repetition count is set to the value specified in the Maximum data repetitions field (see
8.5.2.28). This parameter allows NCAPs to determine time-out values if appropriate.

For sensors in the free-running sampling mode, this parameter only applies when they are in the transducer
operating state.

 TransducerChannel write setup time

Field Type: 21

Field Name: WSetupT

Data type: single-precision real (Float32, 4 octets)

This field is required for all actuator TransducerChannels. If this field is omitted for an actuator, a fatal
TEDS error shall be reported. It may be omitted for sensors or event sensors.

This field contains the minimum time (tws), expressed in seconds, between the end of a write data frame
and the application of a trigger. (For most TransducerChannels, this is a setup time characteristic of the
electronics. For more complex TransducerChannels, particularly those with a microprocessor, there may be
additional time needed that is specified by this constant.)

 TransducerChannel read setup time

Field Type: 22

Field Name: RSetupT

Data type: single-precision real (Float32, 4 octets)

This field is required for all sensor TransducerChannels. If this field is omitted for a sensor, a fatal TEDS
error shall be reported. It may be omitted for actuators or event sensors.

This field contains the maximum time (trs), expressed in seconds, between the receipt of the trigger by the
transducer module and the time that the data is available to be read. (For most devices, this is a setup time

109
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 109

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.36

8.5.2.37

characteristic of the TransducerChannel electronics. For more complex TransducerChannels, particularly
those with a microprocessor, there may be additional time needed that is specified by this constant.)

If the value of TransducerChannel read setup time is zero, the TransducerChannel may be read at any time
after it is triggered.

 TransducerChannel sampling period

Field Type: 23

Field Name: SPeriod

Data type: single-precision real (Float32, 4 octets)

This field is required for all TransducerChannels. If this field is omitted, a fatal TEDS error shall be
reported. For many embedded TransducerChannels, the sampling period is not relevant and may be set to
zero to indicate that it is not relevant.

The TransducerChannel sampling period (tsp) shall be the minimum sampling period expressed in seconds
of the TransducerChannel unencumbered by read or write considerations (since there is no requirement to
read or write with each trigger).

For sensor and actuator TransducerChannels, this time will typically be limited by A/D or D/A conversion
times, transducer module processor speed, and so on, but in more complex TransducerChannels, it may
reflect TransducerChannel or sample handling times as well, for example, a pH sensor that on each trigger
extracts a new sample using a pump. If reads or writes are involved, the actual sampling rates are further
limited by setup and data transfer times depending on the TransducerChannel type.

In the case of TransducerChannels with the free-running attribute set, this parameter shall represent the
sampling time determined by the transducer module implementation.

NOTE—For TransducerChannels that implement the ability to program the spacing between samples, it is
recommended that an embedded actuator be used for this function. This allows the spacing to be specified in Physical
Units and a Calibration TEDS to specify how to convert this into the bit pattern required to program the hardware.

In the case of event sensors, this parameter shall represent the minimum event resolution time.

The TransducerChannel sampling period shall be expressed in seconds.

 TransducerChannel warm-up time

Field Type: 24

Field Name: WarmUpT

Data type: single-precision real (Float32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a nonfatal TEDS error.

This field contains the period of time, expressed in seconds, in which the TransducerChannel stabilizes its
performance to predefined tolerances, as specified in Uncertainty under worst-case conditions (see 8.5.2.7),
after the application of power to the TransducerChannel.

110
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

110 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.38

8.5.2.39

8.5.2.40

 TransducerChannel read delay time

Field Type: 25

Field Name: RDelayT

Data type: single-precision real (Float32, 4 octets)

This field is required for all sensor TransducerChannels. If this field is omitted for a sensor, a fatal TEDS
error shall be reported. It may be omitted for actuators or event sensors.

This field contains the maximum delay time (tch), expressed in seconds, between the receipt of a Read
TransducerChannel data-set segment command (see 7.1.3.1) and the beginning of the transmission of the
data frame.

 TransducerChannel self-test time requirement

Field Type: 26

Field Name: TestTime

Data type: single-precision real (Float32, 4 octets)

This field is required for all TransducerChannels that implement a self-test capability as indicated by the
Self-test key (see 8.5.2.21). If the self-test key indicates that no self-test is implemented, this field may be
omitted. If the self-test key indicates that a self-test capability exists and this field is omitted, the NCAP
shall report a nonfatal TEDS error. The NCAP may assume a self-test time requirement or not access the
self-test capability.

This field contains the maximum time, expressed in seconds, required to execute the self-test.

 Source for the time of sample

Field Type: 27

Field Name: TimeSrc

Data type: unsigned octet integer (UInt8, 1 octet)

This field is optional and may be omitted. If it is omitted, the NoHelp option shall be assumed.

The possible values for this field are shown in Table 53.

If “incoming” is indicated, then the TransducerChannel TEDS field incoming propagation delay through
the data transport logic (see 8.5.2.41) is required. If “outgoing” is indicated, then the TransducerChannel
TEDS field outgoing propagation delay through the data transport logic (see 8.5.2.42) is required.

The operation with MInterval and SInterval require an embedded sensor to provide the same information
as the TEDS field does for Incoming. For ToDSense, the transducer module provides the time of day that
the sample was taken. Operation with MInterval, OInterval, or ToDSense requires a ControlGroup to be
defined in the Meta-TEDS to identify the time interval sensor or TimeInstance sensor to be used with this
TransducerChannel.

111
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 53—Enumeration of sample time sources
Value Name Function
0 NoHelp No facilities in the transducer module are available to support determination of the time

that a sample was latched.
1 Incoming The time interval between the receipt of the trigger and the latching of the sample is not

measured. The default delay between the trigger and the latching of the sample is found
in the incoming propagation delay through the data transport logic field of the
TransducerChannel TEDS (see 8.5.2.41).

2 Outgoing The time interval between the latching of the sample and when the data are transmitted
is not measured. The default delay between the latching of the sample and the
transmission of the sample is found in the outgoing propagation delay through the data
transport logic field of the TransducerChannel TEDS (see 8.5.2.42). This is only useful
when operation occurs in the immediate operation sampling mode (see 5.10.1.7).

3 MInterval The time interval between the receipt of a trigger and the latching of the sample is
measured using a time interval sensor. The Calibration TEDS for the time interval
sensor provides the method of converting the output of the time interval sensor to time.

4 SInterval The time interval between the receipt of the trigger and the latching of the sample is
measured using a time interval sensor with a clock derived from a synchronization
signal. The Calibration TEDS for the time interval sensor provides the method of
converting the output of the embedded sensor to time.

NOTE—This capability does not exist in all members of the IEEE 1451 family.

5 ToDSense A TimeInstance Sensor supplies the time of day that the sample was processed. The
characteristics of this sensor are defined in the TEDS for this TimeInstance sensor.

6–127 Reserved.
128–255 Available for use by manufacturers.

NOTE—The use of these enumerations may compromise the interoperability of the
TransducerChannel. Special software is required in the system to use it.

8.5.2.41

8.5.2.42

 Incoming propagation delay through the data transport logic

Field Type: 28

Field Name: InPropDl

Data type: single-precision real (Float32, 4 octets)

This field is required if the Source for the time of sample field (see 8.5.2.40) contains the value
“Incoming”; otherwise it may be omitted. If the Source for the time of sample field contains the value
Incoming and this field is omitted, then a nonfatal TEDS error shall be reported and the Source for the time
of sample field shall be assumed to be NoHelp.

This field contains a single-precision real number defining the time delay, expressed in seconds, between
the receipt of a trigger by the physical layer of the communications protocol stack and the acquisition or
application of a sample. This number may be used to determine the time a sample was processed by the
TIM based on the time that the trigger was issued.

 Outgoing propagation delay through the data transport logic

Field Type: 29

Field Name: OutPropD

Data type: single-precision real (Float32, 4 octets)

112
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

112 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.43

8.5.2.44

8.5.2.45

This field is required if the Source for the time of sample field (see 8.5.2.40) contains the value “outgoing.”
It may be omitted otherwise. If the Source for the time of sample field contains the value Outgoing and this
field is omitted, then a nonfatal TEDS error shall be reported and the Source for the time of sample field
shall be assumed to be NoHelp.

This field contains a single-precision real number defining the time delay, expressed in seconds, between
the last sample latched signal (see 5.9.2) and a signal from the data transport logic that the data message
has been transmitted. This number may be used to determine the time a sample was processed by the
transducer module based on the time that the data message was received. This is only useful when in the
immediate operation sampling mode (see 5.10.1.7).

 Trigger-to-sample delay uncertainty

Field Type: 30

Field Name: TSError

Data type: single-precision real (Float32, 4 octets)

This field is optional for all TransducerChannels. If it is omitted, the NCAP shall assume a value of zero to
indicate that the information is not supplied.

This field contains a single-precision real number defining the uncertainty, expressed in seconds, of the
default delay between the trigger and the sample being taken or applied.

The expression of the uncertainty shall be in accordance with the “Combined Standard Uncertainty”
defined in NIST Technical Note 1297 [B10].

 Sampling attribute

Field Type: 31

Field Name: Sampling

The sampling attributes field is required for all TransducerChannels. If it is omitted, the NCAP shall report
a fatal TEDS error.

The subfields that make up this type are as follows:

Sampling mode capability

Default sampling mode

 Sampling mode capability attribute

Field Type: 48

Field Name: SampMode

Data type: unsigned 8 bit integer (UInt8, 1 octet)

The sampling mode capability attributes field is required for all TransducerChannel. If it is omitted, the
NCAP shall report a fatal TEDS error.

113
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 113

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

This attribute is used to describe which Sampling modes (see 5.10.1) are supported by this
TransducerChannel. As shown in Table 54, each allowable sampling mode is assigned a bit in this field. If
the bit assigned to a given sampling mode is set to a one, the TransducerChannel is capable of being
operated in that mode. If more than one bit is set, the sampling mode is programmable.

Table 54—Sampling mode capability attribute
Bit Definition
0 (lsb) Set to a one if the TransducerChannel may be operated in the Trigger initiated mode (see 5.10.1.1).
1 Set to a one if the TransducerChannel may be operated in the Free-running without pre-trigger

mode (see 5.10.1.2).
2 Set to a one if the TransducerChannel may be operated in the Free-running with pre-trigger mode

(see 5.10.1.3).
3 Set to a one if the TransducerChannel may be operated in the Continuous Sampling mode (see

5.10.1.6).
4 Set to a one if the TransducerChannel may be operated in the Immediate operation sampling mode

(see 5.10.1.7).
5 Reserved.
6 Reserved.
7 (msb) Reserved.

8.5.2.46 Default sampling mode

Field Type: 49

Field Name: SDefault

Data type: unsigned 8 bit integer (UInt8, 1 octet)

The default sampling mode attribute field is required for all TransducerChannels that are capable of being
operated in more than one sampling mode (see 8.5.2.45). If only one sampling mode is allowed, the default
sampling mode shall be the only available sampling mode. If multiple sampling modes are allowed and this
field is omitted or multiple bits are set, the NCAP shall report a fatal TEDS error.

This attribute is used to describe which Sampling modes (see 5.10.1) is the default for this
TransducerChannel. As shown in Table 55, each allowable sampling mode is assigned a bit in this field. If
the bit assigned to a given sampling mode is set to a one, then that bit identifies the default sampling mode
for this TransducerChannel. Only a single bit may be set in this field.

Table 55—Default sampling mode attribute
Bit Definition
0 (lsb) Set to a one if the Trigger initiated mode (see 5.10.1.1) is the default sampling mode for this

TransducerChannel.
1 Set to a one if the Free-running without pre-trigger mode (see 5.10.1.2) is the default sampling mode

for this TransducerChannel.
2 Set to a one if the Free-running with pre-trigger mode (see 5.10.1.3) is the default sampling mode

for this TransducerChannel.
3 Set to a one if the Continuous Sampling mode (see 5.10.1.6) is the default sampling mode for this

TransducerChannel.
4 Set to a one if the Immediate operation sampling mode (see 5.10.1.7) is the default sampling mode

for this TransducerChannel.
5 Reserved.
6 Reserved.
7 (msb) Reserved.

114
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

114 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.47 Buffered attribute

Field Type: 32

Field Name: Buffered

Data type: unsigned 8 bit integer (UInt8, 1 octet)

This field is optional. If it is omitted, the NCAP shall assume that the TransducerChannel has no more than
one buffer available.

This attribute describes the Buffered operation modes (see 5.10.3) available for this TransducerChannel.
Table 56 lists the allowable values for this attribute.

Table 56—Buffered attribute
Value Description
0 TransducerChannel has no more than one buffer available.
1 TransducerChannel has multiple buffers available and may only be operated in the buffered mode.
2 TransducerChannel has multiple buffers available and may be operated either buffered or

unbuffered. The unbuffered mode of operation is the default.
3 TransducerChannel has multiple buffers available and may be operated either buffered or

unbuffered. The buffered mode of operation is the default.
4–255 Reserved.

8.5.2.48 End-of-data-set operation attribute

Field Type: 33

Field Name: EndOfSet

Data type: unsigned 8 bit integer (UInt8, 1 octet)

This field is required for actuator TransducerChannels. It may be omitted for sensors and event sensors. If
it is omitted for an actuator with Maximum data repetitions field (see 8.5.2.28) greater than zero, a fatal
TEDS error shall be reported. If it is omitted for an actuator with Maximum data repetitions equal to zero, a
nonfatal TEDS error shall be reported and the Hold mode shall be assumed.

This attribute describes the End-of-data-set operation modes (see 5.10.4) that this actuator can support.
Table 57 lists the allowable values for this attribute.

Table 57—End-of-data-set operation attribute
Value Description
0 Not applicable.
1 This TransducerChannel holds the last value in the data set until another trigger is received as

described in 5.10.4.1.
2 This TransducerChannel recirculates through the last data set until another trigger is received as

described in 5.10.4.2.
3 This TransducerChannel may be operated with either the hold mode or the recirculate mode. These

two modes are mutually exclusive. The hold mode is the default.
4 This TransducerChannel may be operated with either the hold mode or the recirculate mode. These

two modes are mutually exclusive. The recirculate mode is the default.
5–255 Reserved.

115
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 115

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.5.2.49 Data transmission attribute

Field Type: 34

Field Name: DataXmit

Data type: unsigned 8 bit integer (UInt8, 1 octet)

This field is an optional attribute for sensor or event sensor TransducerChannels. It may be omitted for
actuators. If it is omitted for a sensor or event sensor, the NCAP shall assume that this TransducerChannel
is only capable of being operated in the only when commanded mode (see 5.10.2.1).

This attribute describes data transmission modes that this TransducerChannel supports (see 5.10.2).
Table 58 lists the allowable values for this attribute.

Table 58—Data transmission attribute
Value Description
0 Reserved.
1 This TransducerChannel is only capable of being operated in the only when commanded modes (see

5.10.2.1).
2 This TransducerChannel is capable of being operated in the Streaming when a buffer is full (see

5.10.2.2) or only when commanded modes.
3 This TransducerChannel is capable of being operated in the Streaming at a fixed interval (see

5.10.2.3) or only when commanded modes.
4 This TransducerChannel is capable of being operated in the only when commanded, Streaming when

a buffer is full or Streaming at a fixed interval modes.
5–255 Reserved.

8.5.2.50 Edge-to-report attribute

Field Type: 35

Field Name: EdgeRpt

Data type: unsigned 8 bit integer (UInt8, 1 octet)

This field is a required attribute for an event sensor TransducerChannel. It may be omitted for sensors or
actuators. If it is omitted or a reserved value is indicated for an event sensor, the NCAP shall report a fatal
TEDS error.

This attribute describes the Edge-to-report operating modes (see 5.10.6) supported by this event sensor.
Table 59 lists the allowable values for this attribute.

116
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

116 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 59—Edge-to-report options
Value Meaning
0 Not applicable.
1 This event sensor only reports rising edges.
2 This event sensor only reports falling edges.
3 This event sensor reports on both edges.
4 Reserved.
5 This event sensor is capable of reporting both edges, but the default is to report rising edges.
6 This event sensor is capable of reporting both edges, but the default is to report falling edges.
7 This event sensor is capable of reporting both edges, and the default is to report both edges.
8–255 Reserved.

8.5.2.51 Actuator-halt attribute

Field Type: 36

Field Name: ActHalt

Data type: unsigned 8 bit integer (UInt8, 1 octet)

This field is a required attribute for an actuator TransducerChannel. It may be omitted for sensors or event
sensors. If it is omitted or a reserved value is indicated for an actuator, the NCAP shall report a fatal TEDS
error.

This attribute describes the Actuator-halt modes (5.10.7) supported by this actuator. This mode determines
what the actuator does when it receives a TransducerChannel Idle command (see 7.1.4.2). Table 60 lists the
allowable values for this attribute.

Table 60—Actuator-halt operations
Value Meaning
0 Not applicable
1 Halt Immediate
2 Halt at the end of the data set
3 Ramp to a predefined state
4–255 Reserved

8.5.2.52 Sensitivity direction

Field Type: 37

Field Name: Directon

Data type: unsigned 8 bit integer (UInt8, 1 octet)

This field is optional.

For sensors that measure physical phenomena with three-dimensional spatial properties such as
acceleration, velocity, or displacement, this shall identify direction relative to a rectangular coordinate
system defined by the sensor manufacturer. The sensor shall produce a positive output when the physical
phenomenon is applied to the sensor in the specified direction.

117
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 117

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Direction is determined using the “right-hand rule” with a “right-handed” coordinate system: The fingers
of the right-hand point in the +X direction, the palm points in the +Y direction and the thumb points in the
+Z direction.

For single-axis sensors, the axis to be used shall be the Z-axis.

The sensor manufacturer shall identify at least two of the three axes by markings on the sensor enclosure.

The direction of the physical phenomena measured by the TransducerChannel shall be defined by the
enumeration in Table 61.

Table 61—Sensitivity direction enumeration
Value Meaning
0 Not applicable
1 +X
2 –X
3 +Y
4 –Y
5 +Z
6 –Z
7–255 Reserved for future expansion

8.5.2.53

8.5.2.54

 Direction angles

Field Type: 38

Field Name: DAngles

Data type: Two single-precision real (Float32, 4 octets) words.

This field is optional.

The two single-precision real words define two angles measured from the reference plane and reference
direction marked on the TransducerChannel by the manufacturer. The first number represents ρ in right-
hand cylindrical spatial coordinates expressed in radians. The second number represents φ in right-hand
cylindrical spatial coordinates expressed in radians.

 Event sensor options

Field Type: 39

Field Name: ESOption

Default value: 0

Data type: unsigned octet integer (UInt8, 1 octet)

This field only applies to event sensor TransducerChannels. It may be omitted for sensors and actuators. If
it is omitted for an event sensor, the NCAP shall report a fatal TEDS error.

118
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

118 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

An event sensor has the option of changeable pattern, upper threshold, and/or hysteresis. It also has the
option of detecting inconsistencies in settings of these parameters as described in 5.6.2.3. This enumeration
defines the ability of the transducer module to detect and report these inconsistencies. The options are
listed in Table 62.

Table 62—Event sensor options
Value Meaning
0 Not applicable
1 Pattern/threshold/hysteresis not changeable
2 Changeable and inconsistencies detected
3 Changeable and inconsistencies not detected
4–255 Reserved

8.5.2.55

8.6

8.6.1

 TEDS access code for units extension

Field Type: 60

Field Name: UnitsExt

Data type: unsigned octet integer (UInt8, 1 octet)

This field is optional.

This field is provided to allow a text-based extension to the Physical Units. It shall not be used as a
subsutitute for the Physical Units. Since there can be more than one set of Physical Units in a
TransducerChannel TEDS, the contents of this field shall provide the TEDS access code for the text-based
TEDS that provides this extension.

 Calibration TEDS

This field is an optional TEDS. The function of the Calibration TEDS is to make available all of the
information used by correction software in connection with the TransducerChannel being addressed.

 Correction process

Correction is the application of a specified mathematical function upon TransducerChannel data from one
or more TransducerChannels and/or data delivered from other software objects. This subclause gives an
overview of how the correction process is modeled, in order to aid understanding of how to develop and
use the entries in the Calibration TEDSfor correction.

Correction is intended to reconcile two different numbers associated with a TransducerChannel:

The NCAP-side number: This number represents the TransducerChannel’s value expressed in the
Physical Units field of the TransducerChannel TEDS (8.5.2.6) as modified by the SI units
conversion constants (8.6.3.4) in the Calibration TEDS. This number is used to represent the
TransducerChannel data in the user’s system.

The transducer-side number: This number is read from or written to the TransducerChannel
hardware (usually an A/D or D/A Converter).

119
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 119

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.1.1

8.6.1.2

8.6.1.3

The goal of correction depends on the TransducerChannel type of the addressed TransducerChannel. The
application of correction, however, is the same regardless of TransducerChannel type:

For sensors, correction takes as input the transducer-side data from the addressed
TransducerChannel and possibly data from other TransducerChannels. It produces as output the
NCAP-side number.

For actuators, correction takes as input the NCAP-side number for the addressed
TransducerChannel, which is the intended next state of the actuator, and possibly data from other
TransducerChannels. The output is the transducer-side number.

Either the NCAP-side or the transducer-side value may be used as an input to the correction function of
another TransducerChannel, as selected by the Correction input TransducerChannel number field
(8.6.3.15).

 Method

For a sensor, “Correction” is the process by which the constants determined by the calibration process are
applied to the output of a sensor to convert the existing number to the form desired by the system. For an
actuator, “Correction” is applied to the number provided by the system to convert it to the form required by
the actuator.

The calibration process is the process of defining an equation over a segment of the range of the transducer
that describes the transfer function of the transducer over that segment. One or more segments are defined
for any given calibration. By far the most common number of segments is one, which means that most
transducers can be described by a single equation. It is also true that the most commonly used equation is
as shown in Equation (5).

x x y m b b m + =+ = (5)

Two methods are defined in the Calibration TEDS. The first method is based on the fact that most
calibrations use a single segment linear conversion, so this special case is defined separately. The second
method is the general method that will work with almost any correction function. This general method can
be used with multiple segments and equations of degree other than one. It may also use multiple inputs that
may be used for such functions as compensating the output of one transducer for variations caused by
something other than the quantity being measured.

 Linear method

This method is the subset of the general method where the correction function takes the form shown in
Equation (5) and where only a single segment is required.

 General method

The method described in this standard is an attempt to develop a single method that can be used for any
correction function including the linear method. All commonly used correction functions consist of two
different steps. The first step is segmentation. In this step the calibration curve is divided into segments in
order to achieve the desired accuracy with a reasonable degree for the polynomial equation. Although the
most commonly used segmentation is a single segment, making the decision to use a single segment is still
segmentation. The extreme case is a table lookup where a segment is defined for each possible bit
combination within the desired range. The second step in correction functions is to define a polynomial
curve to fit the response of the transducer within each segment. Again it is recognized that a linear

120
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

120 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

121
Copyright © 2007 IEEE. All rights reserved.

equation, i.e., a polynomial of degree one, is the most commonly used polynomial. The case of a table
lookup uses a polynomial of degree zero.

A second point to be made is that most correction functions only involve a single input variable. However,
if a general solution for this function is to be defined, it is necessary to consider the case where multiple
inputs are required for a single output. Common uses for a function with multiple inputs is to temperature
compensate the output of a sensor or signal conditioner or to correct for cross-axis sensitivity in strain gage
installations.

When put into the correct mathematical form the equation is expressed as shown in Equation (6) and is
defined as a multinomial (multivariate polynomial). The “H” terms in the equation are offsets that are
subtracted from the input to minimize the number that is being raised to a power to minimize the chance of
multiplication resulting in a numerical overflow. This value of the offset may fall outside the segment for
which it is defined. For those people not familiar with this notation, the equation for the polynomial in a
given segment can be expressed as shown in Equation (7), where “x” replaces the term “X – H” in
Equation (6).

 (6)

Dk is the degree of the input Xk. That is, it is the highest power to which [Xk – Hk] is raised in any term of
the multinomial. Note that the degree of each input may be different.

)p
np...2

n2n10)(..)(j
2j...2

22210)(i
1i...2

12110(xNxNxNNxBxBxBBxAxAxAAy +++++++++=
(7)

If we consider the case where we have two inputs, the polynomials can be multiplied out to produce the
equation shown in Equation (8). Noting that the product of constants results in a different constant, we may
write the equation as shown in Equation (9):

 ji
ji

i
i xxBAxxBAxxBAxBAxBAxBAxBAxBABAy 212

2
112211121010

3
103

2
10210100 ++++++++= (8)

ji
mnnn

i
nx xxCxxCxxCxCxCxCxCxCC 212

2
13212211

3
13

2
1210 ++++++++ +++ (9)

If we added more inputs, it would not change the form of the equation and it would just create more terms.

Equation (7) through Equation (9) are examples of this function in two of its simplest and very familiar
forms. represents the form of this equation that is used for a table lookup correction. Equation (10) shows
the form that the equation would take if the correction function were a linear function. The second form of
Equation (11) is a more common form of writing this equation.

 (10)

 (11)

Segmentation of one or more TransducerChannels divides the input domain into cells with orthogonal
boundaries. For example, for a two-dimensional multinomial, the cells are rectangles. Each cell has its own
set of coefficients Ci,j,…p.

xx mb)C(Cy 10 +=+=

0Cy =

p
nn

j
n

p

i
pji

i j
XXXC]H[]H[

D
]H [

D D
2211

0
,,,

1

0

2

0

−−−∑∑ ∑
== =

LL L

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 121

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

For the two-input correction process shown in Figure 15, if each input has degree 1, then the multinomial
for each cell is as follows:

 (12))2()1(1,1)1(1,0)2(0,10,0 H2XH1XCH1XCH2XCC −⋅−⋅+−⋅+−⋅+

As observed in Equation (12), there is a different H1 for each partition of X1. That is, H1 is the same in
segments 1, 2, and 3 but different in segments 1 and 4. Likewise, H2 changes from segment 1 to 2 or from
segment 4 to 5. Coefficients C0,0 to C1,1 are different in each segment. The correction software must
determine from the values of X1 and X2 into which segment the measurement falls and must choose the
coefficients and offsets accordingly.

Figure 15—A two-dimensional function partitioned into 2 by 3 cells

8.6.1.4 Application

If the value of the Calibration key field (see 8.5.2.2) in the TransducerChannel TEDS is CAL_SUPPLIED,
the correction algorithm shall be performed in the NCAP, a host processor, or elsewhere in the system. It is
recommended that it be performed in the NCAP.

If the value of the Calibration key field is TIM_CAL_SUPPLIED or TIM_CAL_SELF, then the correction
algorithm shall be performed in the TIM.

It is expected, but not required, that correction software will use a floating-point numeric format for its
computations. Conversion to and from the numeric format used by the correction software and all possible
TransducerChannel data models is therefore required. (If the correction is done in the TIM, conversion to
and from only the data models used in the TIM is required.) Conversion of Calibration TEDSentries may
also be necessary in order for the correction software to use them. The method of conversion is beyond the
scope of this standard.

The application of the correction process on the NCAP, a host processor, or elsewhere in the system shall
be governed by the following rules:

Correction shall be invoked on a sensor after new transducer-side data are read from the TIM.

122
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

122 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Correction shall be invoked on an actuator after new NCAP-side data are provided, and before the
corrected transducer-side data are written to the TIM.

The correction engine shall use the values currently available for any other TransducerChannel data
required.

The application of the correction process shall not initiate triggering or reading on any
TransducerChannel.

The application of the correction process shall not initiate writing on any non-addressed
TransducerChannel.

The transducer-side number has a data type specified in the Data model field (8.5.2.24), the Data
model length field (8.5.2.25), and the Model significant bits field (8.5.2.26) in the
TransducerChannel TEDS.

The application of the correction process on the TIM shall be governed by the following rules:

Correction may be invoked on a sensor when a new sample is acquired or after the
TransducerChannel is triggered. If the correction is invoked by the trigger, the TransducerChannel
read setup time (8.5.2.35) shall include the time necessary for correction.

Correction shall be invoked on an actuator TransducerChannel after new data are written to the
TransducerChannel, before the TransducerChannel is triggered. The TransducerChannel write setup
time (8.5.2.34) shall include the time necessary for correction.

The correction engine may use the values currently available in the TIM for any other
TransducerChannel data required. Optionally, each input may be processed as it is acquired.

Correction shall not have the effect of triggering any TransducerChannel involved with the
correction.

The NCAP-side number has a data type specified in the Data model field (8.5.2.24), the Data model
length field (8.5.2.25), and the Model significant bits field (8.5.2.26) in the TransducerChannel
TEDS.

Irrespective of where the correction process is applied, it shall be governed by the following rules:

The application of the correction process to one TransducerChannel shall not change the NCAP-side
data or the transducer-side data of another TransducerChannel even if the other TransducerChannel
is an input to the correction process of the first.

If the data repetition count is greater than zero for the addressed TransducerChannel (that is, vector
data), the data repetition count of any other TransducerChannel used in the correction shall be either
zero (scalar) or equal to that of the addressed TransducerChannel. The correction shall be applied
using vector elements in sequence from each vector input to produce a vector output. Scalar data are
used unchanged for the correction of each vector element.

Correction may use or produce data with Physical Units type digital data if it makes sense to do so
(for instance if the data are simply “counts”).

The order and availability of the inputs to the correction process must be taken into consideration. The
process takes the data that are available when it is required and uses it. If one parameter has been updated
and another has not been updated, this can cause variation in the results. It is especially important when
using corrected data. The inputs to the process that are corrected values from other TransducerChannels
shall be converted before the processing is started on the TransducerChannel of interest.

123
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 123

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.1.5

8.6.1.6

8.6.1.7

 Conversion between SI units and units output by correction process

The constants provided in the SI units conversion constants (see 8.6.3.4) may be used to convert the
numbers in the TEDS fields between the different sets of units.

 Conversion from units output by correction process to SI units

The conversion to SI units from the units output by the correction process is accomplished by the use of
Equation (13).

Intercept)ValueSlope(SI += (13)

where
Slope is given in the SI units conversion slope field (see 8.6.3.5) in this TEDS
Intercept is given in the SI units conversion intercept field (see 8.6.3.6) in this TEDS
Value is a number in the units output by the corrections process
SI is a number expressed in SI units

 Conversion from SI units to units output by correction process

The conversion to the units output by the correction process from SI units is accomplished by the use of
Equation (14).

Slope
Intercept)SI(Value −= (14)

where

Slope is given in the SI units conversion slope field (see 8.6.3.5) in this TEDS
Intercept is given in the SI units conversion intercept field (see 8.6.3.6) in this TEDS
Value is a number in the units output by the corrections process
SI is a number expressed in SI units

8.6.2

8.6.3

 Access

The Calibration TEDS is accessed using a Query TEDS command, a Read TEDS segment command, a
write TEDS segment command, or an Update TEDS command. The argument of the command shall
specify the TEDS access code of the Calibration TEDS, as defined in Table 17.

This TEDS may be implemented as a read-only TEDS or a read/write TEDS, at the manufacturer’s option.
However if it is implemented as a read-only TEDS, the TransducerChannel write TEDS segment and
TransducerChannel Update TEDS commands shall not apply.

 Data block

Table 63 and Figure 16 show the data structure that shall be used for Calibration TEDS. Subsequent
subclauses explain each data field in the structure.

124
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

124 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.1

8.6.3.2

8.6.3.3

8.6.3.4

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Last calibration date-time

Field Type: 10

Field Name: LstCalDt

Data type: Time value (TimeInstance, 8 octets)

This field is optional.

This field gives the time and date when the TransducerChannel was last calibrated. It is expressed in the
TimeInstance format described in 4.9.2.

 Calibration interval

Field Type: 11

Field Name: CalInrvl

Data type: Time duration (TimeDuration, 8 octets)

This field is optional.

The calibration interval is the length of time, in seconds, that this TransducerChannel can operate without
needing another calibration and produce data that are within the Operational uncertainty specified in
8.6.3.9.

 SI units conversion constants

Field Type: 12

Field Name: SIConvrt

This field is required. If this field is omitted, the NCAP shall report a nonfatal TEDS error. If the unit is
calibrated in SI units, then the SI units conversion slope shall be set to one and the SI units conversion
intercept to zero.

This field consists of two subfields:

SI units conversion slope
SI units conversion intercept

NOTE—Not all tables of conversion constants give exactly the same floating-point number for the slope and intercept
for this conversion. Some carry more resolution than others, and still others round the numbers differently. When

125
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 125

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.5

8.6.3.6

comparing the values given in this TEDS with numbers from a table of conversion factors to determine the Physical
Units that would be output from the correction process using the constants in this TEDS, this variability must be taken
into account.

 SI units conversion slope

Field Type: 30

Field Name: SISlope

Data type: single-precision real (Float32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a nonfatal TEDS error.

This field contains the number, that, if multiplied by the output of the correction process and added to the
number in the SI units conversion intercept, will result in a number that represents the physical value in SI
units.

If the correction process outputs SI units, the value in this field shall be one.

 SI units conversion intercept

Field Type: 31

Field Name: Intrcpt

Data type: single-precision real (Float32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a nonfatal TEDS error.

This field contains the number that if added to the SI units conversion slope multiplied by the output of the
correction process will result in a number that represents the physical value in SI units.

If the correction process outputs SI units, the value in this field shall be zero.

126
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

126 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 63—Structure of the Calibration TEDS data block
Field Field name Description Type Required

/optional
Data length in
octets type

— TEDS length UInt32 4
0–2 — Reserved — — —
3 TEDSID TEDS identifier UInt8 R 4
4–9 — Reserved — — —
— Calibration date related information — —
10 LstCalDt Last calibration date-time TimeInstance O 8
11 CalInrvl Calibration interval TimeDuration O 8
Units information
12 SIConvrt SI units conversion constants — O —
30 SISlope SI units conversion slope Float32 O 4
31 Intrcpt SI units conversion intercept Float32 O 4
Operational limits and uncertainty
13 LowLimit Operational lower range limit Float32 O 4
14 HiLimit Operational upper range limit Float32 O 4
15 OError Operational uncertainty Float32 O 4
Mathematical conversion to be performed on the data before or after correction
16 OConvert Post-conversion operation UInt8 O 1
17 IConvert Pre-conversion operation UInt8 O 1
TLV tuple 20 is used when the linear method of conversion is used.
20 LinOnly This field is used when only a linear

single section conversion is required
— O —

TLV tuple 21 provides a description of one TransducerChannel that is involved in the correction specified in this TEDS
21 XdcrBlk TransducerChannel description — O —
40 Element Element number UInt16 O 1
41 ChanNum Correction input TransducerChannel UInt16 O 1
42 ChanKey Correction input TransducerChannel

key
UInt8 O 1

43 Degree TransducerChannel degree UInt8 O 1
44 STable Segment boundary values table — — —
45 OTable Segment offset values table Float32Array O Note 1
46 LoBndry Array of low boundary limits Float32Array O Note 1
47 HiBndry High boundary limit Float32 O 4
TLV tuple 22 provides a set of coefficients for one segment of the correction specified in this TEDS
22 CoefBlk Multinomial coefficient — O —
50 CellNum Cell number of the segment to which

this set of coefficients apply
UInt8 O 1

51 CoefSet The set of coefficients that applies to
this cell

Float32Array O Note 2

18–19 — Reserved — — —
23–29 — Reserved — — —
48–49 — Reserved — — —
52–127 — Reserved — — —
128–255 — Open to manufacturers — — —
— Checksum UInt16 — 2

NOTE 1—Number of segments multiplied by 4.

NOTE 2—((Degree of element 1) + 1) × ((Degree of element 2) + 1) × (…) × ((Degree of element n) + 1) × 4.

127
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 127

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 16—Calibration TEDSStructure

8.6.3.7 Operational lower range limit

Field Type: 13

Field Name: LowLimit

Data type: single-precision real (Float32, 4 octets)

This field is optional. If this field is not provided and the SI units conversion slope (see 8.6.3.5) and SI
units conversion intercept (see 8.6.3.6) are one and zero, respectively, the NCAP shall use the Design
operational lower range limit specified in the TransducerChannel TEDS (see 8.5.2.7). Otherwise the NCAP
shall report a fatal TEDS error.

128
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

128 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.8

8.6.3.9

For sensors, this shall be the lowest valid value for TransducerChannel data after correction is applied,
interpreted in the units appropriate for this Calibration TEDS. If the corrected TransducerChannel data lie
below this limit, it may not meet the operational uncertainty specified in 8.6.3.9.

For actuators, this shall be the lowest valid value for TransducerChannel data before correction is applied,
interpreted in the units appropriate for this Calibration TEDS. Writing corrected TransducerChannel data
below this limit may result in behavior outside the TIM specifications set by the manufacturer.

NOTE—For TransducerChannels that use multiple inputs to produce a single output, this limit, which is expressed in
terms of the output, will normally be a nominal value rather than a precise value.

When this parameter is not applicable, it shall be NaN (see 4.5.1).

NOTE—As an example of an application in which range limits do not apply, consider a bank of switches modeled as
N-octet data. In this case, both range limit fields shall be set to NaN. This is not to say that range limits do not apply to
N-octet data. For example, a 12 bit integer with no expressed units, such as raw ADC output, would also be modeled as
N-octet data. In this case, range limits are applicable.

 Operational upper range limit

Field Type: 14

Field Name: HiLimit

Data type: single-precision real (Float32, 4 octets)

This field is optional. If this field is not provided and the SI units conversion slope (see 8.6.3.5) and SI
units conversion intercept (see 8.6.3.6) are one and zero, respectively, the NCAP shall use the Design
operational upper range limit specified in the TransducerChannel TEDS (see 8.5.2.19). Otherwise the
NCAP shall report a fatal TEDS error.

For sensors, this shall be the highest valid value for TransducerChannel data after correction is applied,
interpreted in the units appropriate for this Calibration TEDS. If the corrected TransducerChannel data lie
above this limit, it may not meet the operational uncertainty specified in 8.6.3.9.

For actuators, this shall be the highest valid value for TransducerChannel data before correction is applied,
interpreted in the units appropriate for this Calibration TEDS. Writing corrected TransducerChannel data
above this limit may result in behavior outside the TIM specifications set by the manufacturer.

NOTE—For TransducerChannels that use multiple inputs to produce a single output, this limit, which is expressed in
terms of the output, will normally be a nominal value rather than a precise value.

When this parameter is not applicable, it shall be NaN (see 4.5.1).

 Operational uncertainty

Field Type: 15

Field Name: OError

Data type: single-precision real (Float32, 4 octets)

This field is optional. If this field is not provided, the NCAP shall use the uncertainty under worst-case
conditions specified in the TransducerChannel TEDS.

129
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 129

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.10

8.6.3.11

This field uses the “Combined Standard Uncertainty” defined in NIST Technical Note 1297 [B10]. The
value of this field shall be expressed in the units appropriate for this Calibration TEDS.

When this parameter is not applicable, it shall be NaN (see 4.5.1).

 Post-conversion operation

Field Type: 16

Field Name: OConvert

Data type: unsigned octet integer (UInt8, 1 octets)

This field is optional. If this field is omitted, the NCAP shall assume that no post-conversion operation is
required.

The post-conversion operation field contains an enumeration identifying a mathematical operation that
shall be performed on the output from the correction process to produce a value in the units specified in the
TransducerChannel TEDS. Table 64 lists the allowable values for this field.

 Pre-conversion operation

Field Type: 17

Field Name: IConvert

Data type: unsigned octet integer (UInt8, 1 octets)

This field is optional. If this field is omitted, the NCAP shall assume that no pre-conversion operation is
required.

The pre-conversion operation field contains an enumeration identifying a mathematical operation that shall
be performed on the input to the correction process to produce a value in the units specified in the
TransducerChannel TEDS. Table 64 lists the allowable values for this field.

Table 64—Pre- or post-correction operation
Value Meaning
0 No pre- or post-conversion operation is required
1 Inversion: Apply 1/x
2 Log base 10: Apply log10(x)
3 Exponent Base 10: Apply 10x
4 Natural Log : Apply ln (x)
5 Exponent Base e: Apply ex
6–255 Reserved

8.6.3.12 Linear conversion only

Field Type: 20

Field Name: LinOnly

130
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

130 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.13

8.6.3.14

This field is required if the linear conversion only method is used. This field or fields 21 and 22 shall be
provided. If field 20 or 21 and 22 are not provided, the NCAP shall report a fatal TEDS error.

This field describes all of the constants required for a single TransducerChannel when the conversion
contains a single section and the conversion is linear. If this field is used, fields 21 and 22 and all
associated subfields shall be omitted. It consists of the following subfields:

Correction input TransducerChannel number (8.6.3.15). This field may be omitted if the Correction
input TransducerChannel number is the same as the TransducerChannel number to which this
Calibration TEDS applies.

Correction input TransducerChannel key (8.6.3.16). If this field is omitted, it shall be assumed that
the data will be taken from the transducer side of the correction process for a sensor (see Figure 17).
For an actuator it shall be assumed that the input to the correction comes from the NCAP side of the
correction process.

Set of coefficients (8.6.3.24). The set of coefficients shall be limited to a slope and intercept.

If field type 21 and 22 are included, then field 20 shall be omitted.

 TransducerChannel description

Field Type: 21

Field Name: XdcrBlk

This field is required if the general conversion method is used. This field and field 22 or field 20 shall be
provided. If field 20 or 21 and 22 are not provided, the NCAP shall report a fatal TEDS error.

If field type 20 is included, fields 21 and 22 shall be omitted.

This field describes all of the constants except the calibration coefficients required for a single
TransducerChannel that is part of the correction process. It consists of the following subfields:

Element number
Correction input TransducerChannel
Correction input TransducerChannel key
TransducerChannel degree
Segment boundary values table
Segment offset values table

If multiple TransducerChannels provide inputs to the correction process for the TransducerChannel to
which this Calibration TEDSapplies, then each of these input TransducerChannels shall have a
TransducerChannel Description in this Calibration TEDS.

 Element number

Field Type: 40

Field Name: Element

Data type: unsigned 16 bit integer (UInt16, 2 octets)

131
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 131

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.15

8.6.3.16

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The element number is used to determine the cell number. The element numbers determine the order in
which the cells are numbered as described in 8.6.3.23.

 Correction input TransducerChannel number

Field Type: 41

Field Name: ChanNum

Data type: unsigned octet integer (UInt16, 2 octets)

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

This field contains the TransducerChannel number for this input to the correction process.

 Correction input TransducerChannel key

Field Type: 42

Field Name: ChanKey

Data type: unsigned octet integer (UInt8, 1 octet)

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The key for determining the source of the data value associated with this TransducerChannel. The possible
values for the key and their meaning are defined in Table 65.

Table 65—Correction input TransducerChannel key
Value Meaning
0 The correction input value shall be taken from the transducer-side of the correction process
1 The correction input value shall be taken from the NCAP-side of the correction process
2–255 Invalid

For a TransducerChannel, the following choices are available depending on whether both corrected and
uncorrected data are available:

If only uncorrected data are available, the value for the key shall be zero.
If only corrected data are available, the value for the key shall be one.
If both forms are available, the user may select either form for the input to the correction process.

This choice depends on factors related to the calibration curves and is beyond the scope of
this standard.

Figure 17 illustrates the meaning of the keys. The correction process for TransducerChannel 3 uses data
from TransducerChannel 1 as one of its inputs. For the TransducerChannel 3 correction process, the
TransducerChannel 1 data may come from either side of the TransducerChannel 1 correction process,
depending on the key listed in the TransducerChannel Description for TransducerChannel 1 in the
Calibration TEDSof TransducerChannel 3.

132
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

132 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 17—Meaning of correction input TransducerChannel key

8.6.3.17

8.6.3.18

 TransducerChannel degree

Field Type: 43

Field Name: Degree

Data type: unsigned octet integer (UInt8, 1 octet)

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The TransducerChannel degree shall be the degree of the corresponding correction input. The degree is the
highest power that the input for which this TransducerChannel Description applies is raised in any term of
the multinomial.

 Segment boundary values table

Field Type: 44

Field Name: STable

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

This field consists of two subgroups:

Array of low boundary limits
High boundary limit

133
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 133

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.19 Array of low boundary limits

Field Type: 46

Field Name: LoBndry

Data type: array of single-precision real (Float32Array)

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The array of low boundary limits is a one-dimensional array (table) containing the lower boundary for each
segment of the input being described by this TransducerChannel Description.

The elements shall define the domain segment boundaries in ascending numerical order. Note that
the domain may be based on either the transducer-side or the NCAP-side data, as indicated in the
corresponding Correction input TransducerChannel key (see 8.6.3.16). However, the boundary table
values are in a floating-point format, so that if the transducer-side data are used, a conversion
process is required.

The first element shall have a value that is less than or equal to the lowest possible value of the
input. The last element shall have a value that is equal to the lowest value of the input for the last
segment. For the input value (X) to be identified as being within a given segment, it shall satisfy the
following equation:

B ≤ X < BB(s+1)

where B is the low boundary limit for a segment and BB

8.6.3.20

8.6.3.21

(s+1) is the low boundary limit for the next
higher segment.

These values are stored in the TEDS as single-precision real numbers, notwithstanding that they may
represent data that are in a different numeric representation.

 High boundary limit

Field Type: 47

Field Name: HiBndry

Data type: single-precision real (Float32)

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The high boundary limits is a single-precision number that is greater than the highest value for the highest
segment in the range.

 Segment offset values table

Field Type: 45

Field Name: OTable

134
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

134 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.6.3.22

8.6.3.23

Type: array of single-precision real (Float32)

If field type 21 is included, this field is required. If field 21 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The Segment offset values table is a one-dimensional array (table) containing one offset value for each
segment of the input being described by this TransducerChannel Description.

Note that Os (thus, Hk) may be based on either the transducer-side or the NCAP-side data for the input, as
indicated in the corresponding Correction input TransducerChannel key (see 8.6.3.16).

These values are stored in the TEDS as single-precision real numbers, notwithstanding that they may
represent data that are in a different numeric representation.

 Multinomial coefficient block

Field Type: 22

Field Name: CoefBlk

This field is required if the general conversion method is used. This field and field 22 or field 20 shall be
provided. If field 20 or 21 and 22 are not provided, the NCAP shall report a fatal TEDS error.

If field type 20 is included, fields 21 and 22 shall be omitted.

This field consists of two sub-blocks:

Cell number
Set of coefficients

 Cell number

Field Type: 50

Field Name: CellNum

Data type: unsigned 16 bit integer (UInt16, 2 octets)

If field type 22 is included, this field is required. If field 22 is included and this field is omitted, the NCAP
shall report a fatal TEDS error.

The cells are numbered from 0 to m. Cell 0 is the cell with the lowest-valued segments of all input
TransducerChannels. Numbering continues, taking the next higher segment of domain Xn (the domain of
values from the highest numbered element). Upon reaching the last segment for domain Xk, the next cell
covers the lowest segment of domain Xk again, and the next higher segment of domain Xk-1. For example,
for a two TransducerChannel correction with two segments on the first correction input (A1, A2) and three
segments on the second correction input (B1, B2, B3). In the terms used in this TEDS, input A would be
identified as Element 0 and input B as Element 1. The cells shall be numbered in the following segment
order: (A1,B1)=0, (A1,B2)=1, (A1,B3)=2, (A2,B1)=3, (A2,B2)=4, and (A2,B3)=5.

135
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 135

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

136
Copyright © 2007 IEEE. All rights reserved.

8.6.3.24 Set of coefficients

Field Type: 51

Field Name: CoefSet

Data type: array of single-precision real (Float32)

This field is required. If field type 20 is used, it shall only contain two values, an intercept, b or C0,
followed by a slope, m or C1. This field is required. If this field is omitted, the NCAP shall report a fatal
TEDS error.

The set of coefficients is a one-dimensional array (table) containing the coefficient for each term in the
equation. The set of multinomial coefficients shall correspond to the cell identified by the cell number
within the coefficient block.

NOTE—Each element in the array is identified by a subscripted name. If we name the elements C and give them
subscripts, the first subscript represents the degree of the TransducerChannel with element number 0 and may vary
between 0 and the value given for that element in the TransducerChannel Degree field. The second subscript is for the
TransducerChannel with element number 1. This continues with the last subscript identifying the entry with the highest
element number.

Each entry in the table is a coefficient Ci,j,…p, used in the multinomial:

 (15)

The coefficients shall be stored in the table beginning with C0,0,…,0 and incrementing the rightmost
subscript. When any subscript reaches its limit, begin again at zero and increment the subscript to the next
input to the left.

C0,0,…0,0; C0,0,…0,0; … C0,0,…0,Dn

C0,0,…1,0; C0,0,…1,1; … C0,0,…D(n-1),Dn

…

CD1,D2,…D(n-1),0; CD1,D2,…D(n-1),1; … CD1,D2,…D(n-1),Dn

All coefficient blocks within a Calibration TEDS shall have the same length. Coefficients that are not
required for one segment but that are required for another shall be set to zero.

8.7 Frequency Response TEDS

This field is an optional TEDS. The function of the Frequency Response TEDS shall be to make available
the information regarding the frequency response of the TransducerChannel for the user.

The Frequency Response TEDS provides a characterization of the frequency and phase response of the
TransducerChannel. A partial list of the factors affecting frequency response is sensor, analog signal
conditioning, anti-aliasing filter, and digital signal processing. The TEDS gives the end-to-end response

ISO/IEC/IEEE 21450:2010(E)

136 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.7.1

8.7.2

from the analog sensor to the digital output. This characterization assumes that the TIM output is being
read at a rate that supports the frequency response described.

The Frequency Response TEDS is normalized at the reference frequency; that is, it is implicitly assumed
that the transducer data are referenced to this frequency.

 Access

The Frequency Response TEDS is accessed using a Query TEDS command, a Read TEDS segment
command, a write TEDS segment command, or a Update TEDS command. The argument of the command
shall specify the TEDS access code of the Frequency Response TEDS, as defined in Table 17.

This TEDS may be implemented as a read-only TEDS or a read/write TEDS, at the manufacturer’s option.
However, if it is implemented as a read-only TEDS, the TransducerChannel write TEDS segment and
TransducerChannel Update TEDS commands shall not apply.

 Data block

Table 66 and Figure 18 show the data structure for the Frequency Response TEDS. Subsequent subclauses
explain each data field in the structure.

Table 66—Structure of the Frequency Response TEDS data block
Field type Field name Description Type # octets
— TEDS length UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS identifier UInt8 4
4–9 — Reserved — —
10 RefFreq Reference frequency Float32 4
11 RefAmp Test amplitude Float32 4
12 RefPhase Phase at the reference frequency Float32 4
The following fields comprise a structure that defines one data point. The structure is repeated n times, once for
each data point
13 Points Points in the table — —
14–127 — Reserved — —
128–255 — Open to manufacturers — —
— — Checksum UInt16 2

Figure 18—Frequency Response TEDS structure

137
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 137

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.7.2.1

8.7.2.2

8.7.2.3

8.7.2.4

8.7.2.5

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Reference frequency

Field Type: 10

Field Name: RefFreq

Data type: single-precision real (Float32, 4 octets)

This field is required. If it is omitted, the NCAP shall report a fatal TEDS error.

This field identifies the reference frequency at which the amplitude is defined as being unity. The units on
this field shall be Hertz.

 Test amplitude

Field Type: 11

Field Name: RefAmp

Data type: single-precision real (Float32, 4 octets)

This field is required. If it is omitted, the NCAP shall report a fatal TEDS error.

This field identifies the input amplitude that was used to obtain the response information. The units on this
field shall be the same as defined in the Physical units field of the TransducerChannel TEDS (see 4.11 or
8.5.2.6).

 Phase at the reference frequency

Field Type: 12

Field Name: RefPhase

Data type: single-precision real (Float32, 4 octets)

This field is required. If it is omitted, the NCAP shall report a fatal TEDS error.

This field identifies the phase shift of the TransducerChannel output at the Reference frequency in field 2
(see 8.7.2.2). The units for this parameter shall be radians.

 Points in the table

Field Type: 13

138
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

138 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Field Name: Points

Data type: Three single-precision real (Float32, 4 octets) values (12 octets)

This field is required. If it is omitted, the NCAP shall report a fatal TEDS error.

This field defines a data point in the response table. Each data point is made up of three subfields:
Frequency
Amplitude response
Phase response

This field may be repeated for as many points as the manufacturer considers adequate to define the
frequency response of the TransducerChannel.

Table 67 shows the structure of the TLV tuple for this field.

Table 67—Structure of each point
Field Definition
Field type Always 13 for this field.
Length Always 12 because there are three floating-point numbers in the value field so 12 octets are

required.
Frequency This field identifies the frequency for which the amplitude and phase information in the

following two fields are applicable. The units on this field shall be Hertz.
Amplitude This field identifies the amplitude of the TransducerChannel output relative to the amplitude at

the Reference frequency specified in field 2. The amplitude response is defined as the amplitude
at the Frequency divided by the amplitude at the Reference frequency.

Phase This field identifies the phase shift of the TransducerChannel output at the Frequency. The units
for this parameter shall be radians.

8.8

8.8.1

 Transfer Function TEDS

This field is an optional TEDS. It provides a series of constants that can be used to describe the transfer
function of the transducer. Factors affecting the transfer function are sensor, analog signal conditioning,
anti-aliasing filter, and digital signal processing. The transfer function gives the end-to-end response from
the analog sensor to the digital output. It is intended to allow the NCAP or other element in the system to
compensate for the frequency response of the transducer.

The Transfer Function TEDS is normalized at the reference frequency; i.e., it is implicitly assumed that the
transducer data are referenced to this frequency.

 Compensation process

When the transfer function describing the relation between the input and the output of the
TransducerChannel is known, the inverse function may be used to linearize or compensate the frequency
response function of the total system.

Frequency response compensation is the application of a specified mathematical function upon
TransducerChannel data. This subclause gives an overview of how the compensation process is modeled,
in order to aid understanding of how to develop and use the entries in the Transfer Function TEDS for
compensation.

The goal of compensation depends on the TransducerChannel type. The application of compensation,
however, is the same regardless of TransducerChannel type:

139
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 139

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.1.1

For sensors, compensation takes as input the transducer-side or pre-compensation data. It produces as
output the NCAP-side or post-compensation number.

For actuators, compensation takes as input the NCAP-side number, that is, the intended next state of the
actuator. The output is the transducer-side number compensated for the phase and frequency response of
the circuit and actuator.

 Method

The compensation function is defined as an inverse transfer function. If the transfer function is given as
H(f) for the TransducerChannel, then the TransducerChannel output should be multiplied by 1/H (f) to give
the compensated output. (This requires that there are no zeros in the transfer function within the frequency
range of application.)

H(f) is represented as a factorized product of a number of elements normalized at the reference frequency
specified in the Reference frequency field of this TEDS (see 8.8.3.2). Equation (16) is the mathematical
representation of this function.

)(
)(

....
)(

)(
)(

)(
)(

2

2

1

1

refN

N

refref fH
fH

fH
fH

fH
fH

fH =

 (16)

forces │H (fref)│ = 1 but maintains the phase at the reference frequency. The form of each element Hi (f)
shall be as described in 8.8.3.1 through 8.8.3.23.

Alternatively, H(f) is described as a rational function, normally referred to as the z-transform, as shown in
Equation (17).

mm....2
2

1
101

nn....2
2

1
10)(−−+−++

−+−+−+
=

zBzBzBB

zAzAzAA
zH (17)

where
T1 e)(ωω jz −− =

fπ2=ω

1−=j

and T is a time constant that is the delay or time between samples.

8.8.1.2 Application

When the stream of data coming from the TransducerChannel is processed (for example, by a fast Fourier
transformation into the frequency domain), the resulting spectrum may be divided by H(f) to give the
corrected spectrum. An inverse transformation can bring this back to the time domain. From H(f), other
functions like the impulse response function can be derived. This may then be used directly on the time
data because a convolution makes the desired correction.

A digital filter may also be used to make the compensation. From the z-transform, this is straightforward.
The factorized form may also be used to calculate the needed coefficients.

140
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

140 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.2

8.8.3

8.8.3.1

8.8.3.2

 Access

The Transfer Function TEDS is accessed using a Query TEDS command, a Read TEDS segment
command, a write TEDS segment command, or a Update TEDS command.The argument of the command
shall specify the TEDS access code of the Transfer Function TEDS, as defined in Table 17.

This TEDS may be implemented as a read-only TEDS or a read/write TEDS, at the manufacturer’s option.
However, if it is implemented as a read-only TEDS, the TransducerChannel write TEDS segment and
TransducerChannel Update TEDS commands shall not apply.

 Data block

Table 68 and Figure 19 show the structure of the data block for this TEDS. Subclauses 8.8.3.1 through
8.8.3.23 explain each data field in the structure. The Reference frequency field is always required. The
remaining fields in this TEDS are required or not depending on the method chosen to define the transfer
function.

 TEDS identifier

See the description of the TEDS Header in 8.3

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Reference frequency

Field Type: 10

Field Name: RefFreq

Data type: single-precision real (Float32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field identifies the reference frequency at which the amplitude is defined as being 1. The units on this
field shall be Hertz.

141
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 141

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 68—Structure of the Transfer Function TEDS data block
Field Field name Description Type # octets
— TEDS length UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS identification header UInt8 4
4–9 — Reserved — —
Transfer function related information
10 RefFreq Reference frequency Float32 4
11 OneZero Single zero TF_SZ Float32 4
12 OnePole Single pole TF_SP Float32 4
13 ZeroPole Single zero with a dependant pole — —
14 PoleZero Single pole with a dependent zero — —
15 ComplexZ Complex zero — —
16 ComplexP Complex pole — —
17 OneZZPol Single zero at zero and a single pole — —
18 CRSlope Constant Relative Slope Float32 4
19 SampleT Sample/Delay Time Float32 4
20 DependP Single pole dependent on a zero TF_SPm (x) Float32 4
21 DependZ Single zero dependent on a pole TF_SZm (x) Float32 4
22 ComplexZF Complex zero frequency Float32 4
23 ComplexZQ Complex zero quality factor Float32 4
24 ComplexPF Complex pole frequency Float32 4
25 ComplexPQ Complex pole quality factor Float32 4
26–29 — Reserved — —
30 NCoeff Numerator coefficients (A0, A1, … An) Array of

Float32
n*4

31 DCoeff Denominator coefficients (B0, B1, … Bm) Array of
Float32

m*4

32–127 — Reserved — —
12–255 — Open for manufacturers use — —
 Checksum
NOTE—The number of coefficients, n or m, for fields 30 and 31 may be determined by dividing the tuple length by
4.

142
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

142 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 19—Transfer Function TEDS structure

143
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 143

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.3.3 Single zero

Field Type: 11

Field Name: OneZero

Data type: single-precision real (Float32, 4 octets)

This field is optional. If this field is omitted, the transfer function does not contain a single zero.

The value is used as Fsz in the transfer function shown in Equation (18), which directly describes a high-
pass filter of first order with the –3 dB point at F . sz

)
sz
.1()sz,(

F
fjFfH += (18)

8.8.3.4 Single pole

Field Type: 11

Field Name: OnePole

Data type: single-precision real (Float32, 4 octets)

This field is optional. If this field is omitted, the transfer function does not contain a single pole.

The value is used as Fsp in the transfer function shown in Equation (19) that directly describes a low-pass
filter of first order with the –3 dB point at F . sp

)
sp
.1(

1)sp,(

F
fjFfH

+
= (19)

8.8.3.5

8.8.3.6

 Single zero of a zero/pole pair

Field Type: 13

Field Name: ZeroPole

This field is optional. If this field is omitted, the transfer function does not contain a zero/pole pair.

This field is composed of two subfields. One is the same as the single zero described in 8.8.3.3, and the
other is the single pole dependent on a zero as described in 8.8.3.7.

 Single zero

This field is the same as the field single zero (see 8.8.3.3).

144
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

144 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.3.7

This field is required if field 13 is present. If this field is omitted and field 13 is present, the NCAP shall
report a fatal TEDS error.

 Single pole dependent on a zero

Field Type: 20

Field Name: DependP

Data type: single-precision real (Float32, 4 octets)

This field is required if field 13 is present. If this field is omitted and field 13 is present, the NCAP shall
report a fatal TEDS error.

Each value in this field is used as “x” in the transfer function given in Equation (20).

)1(

1),,(

vx
fjvxfH

⋅
⋅+

= (20)

where v is the value “Fsz” from the associated element in the single zero of a zero/pole pair field (see
8.8.3.5).

8.8.3.8

8.8.3.9

8.8.3.10

 Single pole with a dependent zero

Field Type: 14

Field Name: PoleZero

This field is optional. If this field is omitted, the transfer function does not contain a pole/zero pair.

This field is composed of two subfields. One is the same as the single pole described in 8.8.3.3, and the
other is the Single zero dependent on a pole as described in 8.8.3.10.

 Single pole

This field is the same as the single pole field described in 8.8.3.3.

This field is required if field 14 is present. If this field is omitted and field 14 is present, the NCAP shall
report a fatal TEDS error.

 Single zero dependent on a pole

Field Type: 21

Field Name: DependZ

Data type: single-precision real (Float32, 4 octets)

This field is required if field 14 is present. If this field is omitted and field 14 is present, the NCAP shall
report a fatal TEDS error.

145
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 145

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

The value in this field is used as “x” in the transfer function shown in Equation (21).

)1(),,(
vx
fjvxfH

⋅
⋅+= (21)

where v is the value “F ” from the associated element in the single pole with a dependent zero field. sp

8.8.3.11

8.8.3.12

 Complex zero

Field Type: 15

Field Name: ComplexZ

This field is optional. If this field is omitted, the transfer function does not contain a complex zero.

This field has two subfields, Complex zero frequency and Complex zero quality factor.

 Complex zero frequency

Field Type: 22

Field Name: ComplexZF

Data type: array of single-precision real (Float32, 4 octets each).

This field is required if field 15 is present. If this field is omitted and field 15 is present, the NCAP shall
report a fatal TEDS error.

This value may be used as Fzres in the transfer function given in Equation (22).

)2)
zres

(
zresz

1()z,zres,(
F

fj
FQ

fjQFfH ⋅+
⋅
⋅+= (22)

where parameter Qz has to be given in the associated element of the Complex zero quality factor field.

The units on this field shall be Hertz.

8.8.3.13 Complex zero quality factor

Field Type: 23

Field Name: ComplexZQ

Data type: single-precision real (Float32, 4 octets).

This field is required if field 15 is present. If this field is omitted and field 15 is present, the NCAP shall
report a fatal TEDS error.

This field provides the parameter Qz for the transfer function of a complex zero in the associated element
of the Complex zero field.

146
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

146 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.3.14

8.8.3.15

This quantity is “unitless.”

 Complex pole

Field Type: 16

Field Name: ComplexZ

This field is optional. If this field is omitted, the transfer function does not contain a complex pole.

This field has two subfields, Complex pole frequency and Complex pole quality factor.

 Complex pole frequency

Field Type: 24

Field Name: ComplexPF

Data type: single-precision real (Float32, 4 octets).

This field is required if field 16 is present. If this field is omitted and field 16 is present, the NCAP shall
report a fatal TEDS error.

This value may be used as Fzres in the transfer function.

)2)
zres

(
zresp

1()p,zres,(
F

fj
FQ

fjQFfH ⋅+
⋅
⋅+= (23)

where the parameter Qp has to be given in the associated element of the array found in the Complex pole
quality factor field (see 8.8.3.16).

The units on this field shall be Hertz.

8.8.3.16 Complex pole quality factor

Field Type: 25

Field Name: ComplexPQ

Data type: single-precision real (Float32, 4 octets).

This field is required if field 16 is present. If this field is omitted and field 16 is present, the NCAP shall
report a fatal TEDS error.

This field gives the parameter Qp for the transfer function of a complex pole. This is typically used to
describe the behavior of a single degree-of-freedom system like the spring mass system in an accelerometer
or the membrane with air damping in a microphone. The parameters are the resonance frequency and Q (or
quality factor) of the response curve.

This quantity is “unitless.”

147
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 147

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.3.17 Single zero at zero and a single pole

Field Type: 17

Field Name: OneZZPol

Data type: single-precision real (Float32, 4 octets).

This field is optional. If this field is omitted, the transfer function does not contain a Single zero at zero and
a single pole.

This value may be used as Fhp in the transfer function shown in Equation (24).

)
hp

1(

hp)hp,(

F
fj

F
fj

FfH ⋅+

⋅

= (24)

directly describes a high-pass filter of first order with the –3 dB point at Fhp. The units on this field shall be
Hertz.

8.8.3.18 Constant relative slope

Field Type: 18

Field Name: CRSlope

Data type: single-precision real (Float32, 4 octets).

This field is optional. If this field is omitted, the transfer function does not contain a constant relative slope.

The value in this field is used as a in the transfer function given in Equation (25).

)10ln(
a

)
ref

()ref,,(
F

fjFafH ⋅= (25)

where a is the relative change per frequency decade.

Fref is found in the Reference frequency field. (Typically most piezoelectric ceramics (lead titanate-
zirconate) have a value of a in the order of –0.02 or 2% drop in sensitivity per frequency decade. This is
linked to simultaneous frequency independent phase lag, which is found to be –0.78 degrees.)

8.8.3.19 Sample/delay time

Field Type: 19

Field Name: SampleT

Data type: single-precision real (Float32, 4 octets).

148
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

148 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.8.3.20

8.8.3.21

8.9

This field is optional. If this field is omitted, the transfer function does not contain a digital filter.

This is the time between samples or the delay time used in a digital filter. The units for this field shall be
seconds.

 Numerator coefficients

Field Type: 30

Field Name: NCoeff

Data type: array of single-precision real (Float32, 4 octets each).

This field is optional. If this field is omitted, the transfer function does not contain a “z” transform. If this
field is not present but field 31 is present, the NCAP shall report a fatal TEDS error.

When the alternative form of the transfer function (the “z” transform) is used, this field contains the list of
coefficients required in the numerator of the equation. See the z-transform discussion in 8.8.1.1 for more
details.

NOTE—The number of coefficients in this field may be obtained by dividing the “tuple length” by four.

 Denominator coefficients

Field Type: 31

Field Name: DCoeff

Data type: array of single-precision real (Float32, 4 octets each).

This field is optional. If this field is omitted, the transfer function does not contain a “z” transform. If this
field is not present but field 30 is present, the NCAP shall report a fatal TEDS error.

When the alternative form of the transfer function (the “z” transform) is used, this field contains the list of
coefficients required in the denominator of the equation. See the ztransform discussion in 8.8.1.1 for more
details.

NOTE—The number of coefficients in this field may be obtained by dividing the “tuple length” by four.

 Text-based TEDS

This field is a class of optional TEDS. The function of these TEDS is to provide information for display to
an operator. Six TEDS are listed in Table 17 that fall into this category. They are the Meta-Identification
TEDS, TransducerChannel Identification TEDS, Calibration-Identification TEDS, Commands TEDS and
the Location and Title TEDS, and the Geographic Location TEDS. For general descriptions of these
TEDS, see 5.5.2.6 through 5.5.2.9.

149
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 149

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.9.1

8.9.2

 Access

They are accessed using a Query TEDS command, a Read TEDS segment command, a write TEDS
segment command, or an Update TEDS command. The argument of the command shall specify the TEDS
access code of the TEDS as defined in Table 17.

These TEDS may be implemented as read-only TEDS or as read/write TEDS at the manufacturer’s option.
If it is implemented as a read-only TEDS, the TIM write TEDS segment or TransducerChannel write
segment and TIM Update TEDS or TransducerChannel Update TEDS commands shall not apply.

 Data block

Text-based TEDS are structures that encapsulate one or more blocks of textual information. Each block of
text is presented in a specific language. The first part of this TEDS is a directory to allow a processor to
locate and read a single language. The field XMLText contains the displayable information, encoded as
XML. The manufacturer determines the number of languages implemented. Table 69 and Figure 20 show
the contents of this TEDS.

Table 69—Structure of a Text-based TEDS data block
Field Field Description Type # octets
type name
— TEDS length UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS identification header UInt8 4
4–9 — Reserved — —
The following three fields comprise a language header. The header is repeated N times, once for each language
supported.
10 NumLang The number N of different language blocks in this TEDS UInt8 1
11 DirBlock Language block description This block is repeated N times — —
20 LangCode Language code from ISO 639 (two letters in USASCII) UInt8 2
21 Offset Language offset UInt32 4
22 Length Language length = LL UInt32 4
23 Compress Enumeration identifying the compression technique used UInt8 1
12 SubSum Nondisplayable data checksum UInt16 2
The following two fields comprise a structure containing text in one language. The structure is repeated N times,
once for each language defined.
— XMLText XML-based text block text LL - 2
— XMLSum Text block checksum UInt16 2
13–19 — Reserved — —
23–127 — Reserved — —
128–255 — Open to manufacturers — —
— Checksum UInt16 2

150
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

150 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 20—Text-based TEDS structure

8.9.2.1

8.9.2.2

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Number of languages

Field Type: 10

Field Name: NumLang

Data type: This field contains a single octet used for counting (UInt8, 1 octet).

If this field is omitted, the NCAP shall assume that only one language is present.

This field contains a number identifying the number of languages in the TEDS.

151
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 151

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.9.2.3

8.9.2.4

 Language directory block

Field Type: 11

Field Name: DirBlock

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field is made up of subfields as follows:

Language code

Language offset

Language sub-block length

Compression technique enumeration

 Language code

Field Type: 20

Field Name: LangCode

Data type: A two-octet character string encoded in USASCII.

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field indicates the language in which the text fields in the TEDS are written.

The value corresponds to the alphabetic list of two-letter language symbols in the ISO 639: 1988-04-01
(E/F) standard. Table 70 lists some of the possible languages. Languages and dialects not listed in ISO 639
shall not be used in the TEDS text fields.

Table 70—Examples of enumerations of language codes
ISO 639 language code Meaning (informative)
Reserved —
aa Afar
da Danish
de German
en English
es Spanish
eu Basque
fi Finnish
fr French
ga Irish
it Italian
nl Dutch
no Norwegian
pl Polish
pt Portuguese
ru Russian
sv Swedish
vi Vietnamese
zu Zulu

152
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

152 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.9.2.5

8.9.2.6

8.9.2.7

 Language offset

Field Type: 21

Field Name: Offset

Data type: Unsigned 32-bit integer for counting (UInt32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field is used to locate the displayable information and is not normally displayed.

This field indicates the offset from the beginning of the TEDS at which the XML-related information data
sub-block is located for the specified language.

 Language sub-block length

Field Type: 22

Field Name: Length

Data type: Unsigned 32-bit integer for counting (UInt32, 4 octets)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field is used to locate the displayable information and is not normally displayed.

This field indicates the number of octets in the language sub-block, including the check sum. (In the case
of character fields, the length shall be the number of octets and not the number of characters, since more
than 1 octet may be needed to encode a character. The interpretation of the character strings needs the
number of octets per character to determine the length in characters of a particular string.)

 Compression technique enumeration

Field Type: 23

Field Name: Compress

Data type: unsigned octet integer (UInt8, 1 octet)

This field is optional. If this field is omitted, the system shall assume that no compression is employed.

This field is used to identify the compression algorithm used with this language text block. Table 71 lists
the acceptable values for this field.

153
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 153

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 71—Enumeration identifying compression algorithms
Enumeration Description
0 This enumeration means that no compression is used in this language block of this TEDS
1 WinZip
2 GZip
3 Reserved
4–127 Reserved
128–255 Open to manufacturers

8.9.2.8

8.9.2.9

8.9.2.10

8.10

8.10.1

 Non-displayable data checksum

Field Type: 14

Field Name: SubSum

Data type: Unsigned 16 bit integer for counting (UInt16, 2 octets)

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field contains the checksum for all octets preceding it in the TEDS. The checksum shall be the one's
complement of the sum (modulo 216) of all the data structure's preceding octets, including the Length (see
8.1.1) field and excluding the Non-displayable data checksum field.

 XML-based text block

Data type: text

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

This field contains the information to be displayed by an XML-savvy application. A proposed schema for
all text-based TEDS used in IEEE Std 1451.2-1997 or described in this standard is presented in Annex D.

 Text block checksum

This field contains the checksum for all octets in the preceding XML-based text block field. The checksum
shall be the one's complement of the sum (modulo 216) of all the octets in the XML text block.

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

 End User Application Specific TEDS

This field is an optional TEDS that provides storage for application-dependent data that the user wants to
keep with the TIM or TransducerChannel. The user shall determine the content and function of the End
User Application Specific TEDS. This TEDS shall be able to be both read and written.

 Access

The End User Application Specific TEDS may be associated with the TIM or a TransducerChannel. It is
accessed using a Query TEDS command, a Read TEDS segment command, a write TEDS segment

154
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

154 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.10.2

command, or an Update TEDS command. The argument of the command shall specify the End User
Application Specific TEDS access code as defined in Table 17.

 Data block

Table 72 shows the structure of the data block for this TEDS. The content and structure of the Data block
field is user defined.

Table 72—Structure of the End User Application Specific TEDS data block
Field Description Type Type # octets
— TEDS length UInt32 UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS identification header UInt8 UInt8
4–9 — Reserved — —
10 EndUserData Variable Variable
— Checksum UInt16 2

The manufacturer shall determine the size of this TEDS. It is recommended that the size of this TEDS
accommodate a Data block field of at least 256 octets.

8.10.2.1

8.10.2.2

8.11

8.11.1

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Data block content

Field Type: 10

Field Name: EndUserData

The contents of the data block are up to the user and are not defined in this standard.

 User’s Transducer Name TEDS

This field is a required TEDS for the TIM and is recommended for all Transducers. The User’s Transducer
Name TEDS provides a place to store the name by which the system or the end user will know this
transducer.

NOTE—The User’s Transducer Name TEDS is intended to support “Object Tags,” as defined in IEEE Std 1451.1-
1999 or other similar uses.

 Access

The User’s Transducer Name TEDS may be associated with the TIM or a TransducerChannel. It is
accessed using a Query TEDS command, a Read TEDS segment command, a write TEDS segment
command, or an Update TEDS command. The argument of the command shall specify the TEDS access
code of the User’s Transducer Name TEDS, as defined in Table 17.

155
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 155

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.11.2

This TEDS shall be implemented as read/write TEDS.

 Data block

Table 73 shows the structure of the data block for this TEDS. The content and structure of the Data block
field is user defined.

Table 73—Structure of the user transducer name TEDS data block
Field Field Description Data type # octets
type name
— Length UInt32 4
0–2 — Reserved — —
3 TEDSID TEDS Identification Header UInt8 4
4 Format Format description of this TEDS UInt8 1
5 TCName TIM or TransducerChannel Name —
— Checksum UInt16 2

The manufacturer shall determine the size of this TEDS, but as a minimum, the TEDS shall be large
enough to accommodate a Data block field of at least 160 octets with a 32-character parameter name plus a
TEDS identification header and a possible text-based TEDS header. The user is not required to use the
text-based TEDS header.

8.11.2.1

8.11.2.2

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted, the NCAP shall report a fatal TEDS error.

 Format

Field Type: 10

Field Name: Format

Data type: unsigned octet integer (UInt8, 1 octet)

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

The values for format flag are defined in Table 74.

Table 74—Enumeration of format flag field
Value Meaning
0 User defined
1 Text-based TEDS using the format defined in 8.9
2–255 Reserved for future expansion

If the format field indicates that this data block is user defined, the content and structure of the Data block
field is user defined. If it is text based, then the content of this data block shall conform with the structure
defined in 8.9.

NOTE—The use of multiple languages in this TEDS may cause problems with a user’s application.

156
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

156 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.11.2.3

8.12

8.12.1

8.12.2

8.12.2.1

8.12.2.2

 Data block content

Field Type: 11

Field Name: EndUserData

The contents of the data block are up to the user and are not defined in this standard.

 Manufacturer-defined TEDS

Manufacturer-defined TEDS may be in any format required by the manufacturer’s application software. A
generic system shall not attempt to parse these TEDS or to interpret their content in any manner. Unless the
TEDS is text based as determined by the response to the Query TEDS command (see 7.1.1.1), the system
shall simply read these TEDS and shall pass the contents to the application that called it. If the TEDS is
text based, it shall conform to the structure defined in 8.9. For a manufacturer-defined TEDS that is being
sent to the TIM, the system shall take the information, apply the length field and checksum fields, and
transmit it to the TIM.

 Access

A manufacturer-defined TEDS may be associated with the TIM or a TransducerChannel. It is accessed
using a Query TEDS command, a Read TEDS segment command, a write TEDS segment command, or an
Update TEDS command. The argument of the command shall specify the TEDS access code of the TEDS,
as defined by the manufacturer.

This TEDS may be implemented as a read-only TEDS or as a read/write TEDS at the manufacturer’s
option. If it is implemented as a read-only TEDS, the TIM write TEDS segment or TransducerChannel
write segment and TIM Update TEDS or TransducerChannel Update TEDS commands shall not apply.

 Data block

The content and structure of this TEDS is defined by the manufacturer and is out of scope for this standard.

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Data block contents

The contents and structure of this field are controlled by the manufacturer.

157
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 157

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

8.13

8.13.1

8.13.2

8.13.2.1

8.13.2.2

9.

 PHY TEDS

The PHY TEDS is a required TEDS. The function of the PHY TEDS shall be to make available at the
interface all of the information needed to gain access to any channel, plus the information common to all
channels. PHY TEDS octets are constant and read-only.

This TEDS is not described further in this standard. See the particular IEEE 1451 standard you are
interested in to find the details for this TEDS.

 Access

The PHY TEDS is accessed using a Query TEDS command, a Read TEDS segment command, a Write
TEDS segment command, or an Update TEDS command. The argument of the command shall specify the
TEDS access code of the PHY TEDS, as defined in Table 17.

This TEDS should be implemented as a read-only TEDS to prevent it from being changed in the field
because changes could cause unpredictable behavior. If it is implemented as a read-only TEDS, the TIM
write TEDS segment and TIM Update TEDS commands shall not apply.

 Data block

The content and structure of this TEDS is defined in another member of the IEEE 1451 family of standards
and is out of scope for this standard.

 TEDS identifier

The TEDS identifier shall comply with the structures defined in 8.3.

This field is required. If this field is omitted or contains illegal values, the NCAP shall report a fatal TEDS
error.

 Data block contents

The contents and structure of this field are controlled by other standards in the IEEE 1451 family of
standards.

 Introduction to the IEEE 1451.0 API

Two APIs are defined in this standard. This clause defines the common aspects of the APIs. The
“Transducer Services Interface” defined in Clause 10 is an NCAP-only API used by measurement and
control applications to access the IEEE 1451.0 layer. This API contains methods to read and write
TransducerChannels, read and write TEDS, and send configuration, control, and operation commands to
the TIMs. Optionally, an interface is also defined that would be implemented by the application to support
non-blocking read and write operations and to receive data from measurement streams.

These API definitions are provided for systems that have visible interfaces and that the structure for
monolithic TIMs and NCAPs, i.e., those with a single set of hardware and software without regard to
distinguishing separate interfaces between IEEE 1451.0 functionality and IEEE 1451.X functionality, is

158
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

158 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.1

optional as long as the messages at visible interfaces conform to the rest of the standard. The definition of
these APIs is to facilitate modular design to the extent that multiple suppliers can provide different
functionality and yet have the various parts integrate seamlessly.

The “Module Communication Interface” is between the standard and another member of the IEEE 1451
family. It is a symmetric interface that would be implemented on both the NCAP and TIM sides. This API
contains methods that would be implemented by the IEEE 1451.X layer and called by this standard to
initiate communication operations. Similarly, this API contains methods that would be implemented by this
standard that are called by the IEEE 1451.X layer to deliver communication payloads.

The relationship between the interfaces and other entities in the IEEE 1451 family is illustrated in the
reference model in Figure 1 and Figure 2.

 API goals

The basic goals to be achieved by the use of these API are as follows:

Provide APIs that are well matched to the needs of IEEE 1451-based measurement systems
composed of NCAPs and TIMs.

Provide APIs to simplify the interaction between measurement and control applications on the
NCAP and TIMs. Key services are as follows:

⎯ TIM discovery
⎯ Transducer access
⎯ Transducer management
⎯ TEDS management

Provide a communication abstraction that is independent of the underlying IEEE 1451.X
technology.

Accommodate the wide range of known IEEE 1451.X native communication technologies, and
allow IEEE 1451.X groups to use the most appropriate mechanism.

Accommodate the wide range of known CPU and RAM memory resources available on NCAPs and
TIMs, which includes PCs functioning as NCAPS to very low-end “PIC-like” 8 bit microprocessors.

Provide escape mechanisms where the IEEE 1451.X layer can intercept a communication invocation
and thereby bypass network operations.

Provide a pass-through mechanism where knowledgeable applications can send custom commands
through IEEE 1451.0 layers to be handled by the local or remote IEEE 1451.X layers.

Provide an escape mechanism where applications can send proprietary commands “straight through”
to the application-specific side of the TIM without interpretation in the IEEE 1451.0 or
IEEE 1451.X subsystems.

The interface to services described in this clause is presented as operations. Operation signatures are
presented using a variant of the Interface Definition Language (IDL), defined in ISO/IEC 14750: 1999-03-
15. The variation is summarized as follows: The IDL signature of an operation described in this clause
shall only use data types defined within this standard. All IDL specifications within this clause are
prefaced with “IDL:” in bold type to facilitate automated extraction from an electronic copy of this
standard.

159
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 159

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.2

9.2.1

 API design decisions

 API described in IDL and text

To meet the language-neutral goal, IDL will be used to describe the API’s functions, parameters, and
results. An accompanying textual description will be provided to handle calling semantics.

Figure 21 illustrates the top-level structure of the IEEE 1451.0 APIs. A top-level IDL module named
“IEEE1451Dot0” is defined. The “nested modules” listed in Table 75 are defined.

Table 75—Modules in the API
Module Description
TransducerServices This is the public API that measurement and control applications use to interact with

the IEEE 1451.0 layer. It contains classes and interfaces for discovering registered
TIMs, accessing TransducerChannels to make measurements or write actuators,
managing TIM access, and reading and writing TEDS.

ModuleCommunications This is the API that IEEE 1451.X implementers use to provide NCAP to TIM
communications. Both “point-to-point” and “network” interfaces and callbacks are
specified.

Args This package contains all IEEE 1451.0 arguments. The ArgumentArray data structure
is defined here.

Util This package contains utility classes and interfaces for the conversion of
ArgumentArrays to/from OctetArrays. This is provided via the Codec interface. IEEE
1451.X implementers that need to change the encoding would register alternative
Codecs.

160
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

160 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure 21—Structure of the API

9.2.2 IEEE 1451.0 OctetArray Payloads

To minimize the knowledge that IEEE 1451.X needs to be concerned with, all transmitted information
from the perspective of this standard will be bundled together into a payload. The payload will be encoded
as an OctetArray.

Except in cases where IEEE 1451.X wishes to intercept an IEEE 1451.0 message, IEEE 1451.X should
consider the payload as “opaque.” See 6.2 and 6.3 for the location of the length information necessary for
decoding of the data. This is handled inside the encoder/decoder class.

From the perspective of this standard, the OctetArray and destination addressing represents the logical “on-
the-link” format. IEEE 1451.X is expected to package the OctetArray into appropriate network packets for

161
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 161

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.2.3

9.2.4

9.3

the given IEEE 1451.X technology. For example, appropriate network headers and CRCs may be added.
Also, IEEE 1451.X is responsible for segmenting the OctetArray into appropriately sized network packets
and for reassembling them back into the OctetArray on the remote node. Similarly, all issues with
encryption, authentication, compression, and flow control are IEEE 1451.X responsibilities.

 IEEE 1451.0 IDL data structures and ArgumentArray usage

To facilitate the use of payloads in the IEEE 1451.0 and upper measurement application layers, this
standard also specifies IDL data structures. Specific implementations will map the IDL data structures to
appropriate language-dependent data structures for the implementation language at hand (for example, a C
structure or C++ or Java class). These language-dependent data structures guarantee proper octet alignment
to allow straightforward access to all data attributes. For example, alignment of floating-point numbers on
4-octet memory boundaries will be needed on most platforms.

Following the example of IEEE Std 1451.1-1999, the most common data structure inside IEEE 1451.0 and
application layers is the generic ArgumentArray, which is an array of Arguments. Arguments are provided
for all the basic types (for example, UInt8, UInt16, or Float32) and primitive arrays of basic types (for
example, UInt8Array, Float32Array, or StringArray). In addition, some specific Arguments that are useful
in measurement applications are also defined (for example, Units, TimeInstance, and TimeDuration).

The ArgumentArray data structure is a very flexible mechanism to compose and pass arbitrary data types
through the system without requiring compile time knowledge. For example, a measurement from a
TransducerChannel will be encoded into an appropriate argument based on information provided in the
TEDS (for example, data model, data repetitions, and calibration information). This argument will be
contained within an ArgumentArray of length 1. A more complex example would be reading from a
TransducerChannel proxy that defines a group of TransducerChannels to be read together. Each
TransducerChannel in the proxy would be represented as a separate Argument of the correct type based on
the TEDS information. These Arguments would be grouped together into an ArgumentArray that
represents the data from the proxy.

To facilitate the communication of ArgumentArrays across the IEEE 1451.X layer, a generic
Encode/Decode mechanism is provided via a Codec interface. These methods convert ArgumentArrays
to/from OctetArrays. In most cases, this standard is responsible for calling these methods and the IEEE
1451.X layer will only deal with the OctetArray forms. IEEE 1451.X only needs to transfer the OctetArray
“payload” from the initiating to the receiving destinations. The encoding and decoding operations are
provided as a library, and an IEEE 1451.X is free to substitute a different implementation if it is needed.
See Clause 7 and Clause 8 for details.

In rare cases, IEEE 1451.X may need to deviate from the IEEE 1451.0 recommended OctetArray format.
In this case, IEEE 1451.X would provide a different Encode/Decode library.

 Parameter ownership assumptions

Unless otherwise specified, parameters and returned results are owned by the initiating object or caller. If
the “called” object needs to hold onto a parameter, it must make a local copy. The initiating object has the
responsibility to free any memory resources for parameters and returned result after the call returns.

 IEEE1451Dot0

IDL: module IEEE1451Dot0 { };

All IEEE 1451.0 interfaces are inside the IDL module “IEEE1451Dot0”.

162
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

162 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.1 IEEE1451Dot0::Args

IDL: module Args { };

Fundamental and special data types are contained within the Args module. The fundamental data types and
data types used in other parts of the standard are defined in Clause 4.

Figure 22 illustrates the relationships between the data types and the Argument and ArgumentArray
classes.

Figure 22—Arguments

163
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 163

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.1.1

9.3.1.2

 Arrays of basic types

Variable-length arrays of basic types are provided as IDL sequences. Array data types contain both the
length of the data and the data. The length is a UInt16 quanity.

IDL: typedef sequence<Int8> Int8Array;
typedef sequence<Int16> Int16Array;
typedef sequence<Int32> Int32Array;
typedef sequence<UInt8> UInt8Array;
typedef sequence<UInt16> UInt16Array;
typedef sequence<UInt32> UInt32Array;
typedef sequence<Float32> Float32Array;
typedef sequence<Float64> Float64Array;
typedef sequence<_String> StringArray;
typedef sequence<_Octet> OctetArray;
typedef sequence<_Boolean> BooleanArray;
typedef sequence<TimeInstance> TimeInstanceArray;
typedef sequence<TimeDuration> TimeDurationArray;

 Error codes

All error codes are represented as UInt16 quantities. Five entities are involved in a communication
transaction: the local IEEE 1451.0 layer, the local IEEE 1451.X layer, the remote IEEE 1451.X layer, the
remote IEEE 1451.0 layer, and the remote application layer. The error code source is encoded in the upper
3 bits. The error code enumeration is encoded in the lower bits. Bits are numbered from most significant to
least significant bit 15 to bit 0 as shown in Table 76.

Table 76—Bit assignments for error codes
Bits Used by
Bits 15 through 13 (The 3 most significant bits): The error code source information is encoded in this location

as described in Table 77
Bits 12 through 0 Error code enumeration; see Table 78

Error code source values are specified in Table 77. The value column contains the bits 15 through 13
evaluated as a 3 bit unsigned integer.

Table 77—Error code source enumeration
Value Source of the error
0 Error from the local IEEE 1451.0 layer
1 Error from the local IEEE 1451.X layer
2 Error from the remote IEEE 1451.X layer
3 Error from the remote IEEE 1451.0 layer
4 Error from the remote application layer
5 Reserved
6 Reserved
7 Open to manufacturers

Error code values are specified in Table 78. In this case bits 12 through 0 are evaluated as a 13 bit unsigned
integer.

164
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

164 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 78—Error code enumerations
Enumerations Error code name Description
0 NO_ERROR No error, operation successful
1 INVALID_COMMID Invalid “commId”
2 UNKNOWN_DESTID Unknown “destId”
3 TIMEOUT Operation time-out
4 NETWORK_FAILURE Destination unreachable network failure
5 NETWORK_CORRUPTION Corrupt communication network failure
6 MEMORY Local out-of-memory error
7 QOS_FAILURE Network quality-of-service violation
8 MCAST_NOT_SUPPORTED Multicast not supported or operation invalid for

multicast
9 UNKNOWN_GROUPID Unknown “groupId”
10 UNKNOWN_MODULEID Unknown “moduleId”
11 UNKNOWN_MSGID Unknown “msgId”
12 NOT_GROUP_MEMBER destId not in the group
13 ILLEGAL_MODE The mode parameter is not valid
14 LOCKED_RESOURCE The resource being accessed is locked
15 FATAL_TEDS_ERROR An error in the TEDS makes the device unusable
16 NON-FATAL_TEDS_ERROR The value in a field in the TEDS is unusable, but

the device will still function
17 CLOSE_ON_LOCKED_RESOURCE A warning error code returned to signal that a

close on a locked resource was performed
18 LOCK_BROKEN If a non-blocking read or write, or measurement

stream, is in progress, the callback will be
invoked with this error code

19 NETWORK_RESOURCE_EXCEEDED IEEE 1451.X has reached network resource limits
20 MEMORY_RESOURCE_EXCEEDED IEEE 1451.X has reached memory resource

limits
21–4095 Reserved
4096–8191 Open to manufacturers

9.3.1.3 IEEE1451Dot0::Args::QosParam

 “Quality of Service” attributes are organized into a data structure for efficiency. The QoSParams structure
contains the information listed in Table 79.

IDL: struct QoSParam {
 _Boolean service;
 TimeDuration period;
 UInt16 transmitSize;
 UInt16 replySize;
 TimeDuration accessLatency;
 TimeDuration transmitLatency;
}

165
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 165

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 79—QoSParams descriptions
Parameter Type Description
Service _Boolean A “true” indicates guaranteed QoS. A “false” indicates “best effort.”
Period TimeDuration Indicates the period of communication. A zero value should be used for

nonperiodic conditions.
transmitSize UInt32 This parameter specifies the number of octets transmitted for each periodic

communication.
replySize UInt32 For two-way communications, this parameter specifies the number of octets

sent as a reply in each periodic communication. A value of 0 indicates a one-
way communication.

accessLatency TimeDuration This parameter specifies the extra time latency that the IEEE 1451.0 layer can
tolerate for the IEEE 1451.X layer to start transmission of a communication
before IEEE 1451.X should report a communication exception. A zero value
shall be interpreted as access latency not specified.

transmitLatency TimeDuration This parameter specifies the extra time latency that the IEEE 1451.0 layer can
tolerate for the IEEE 1451.X layer to complete transmission of a
communication before IEEE 1451.X should report a communication exception.
A zero value shall be interpreted as transmit latency not specified.

9.3.1.4

9.3.1.5

 IEEE1451Dot0::Args::TypeCode

Each valid type in the IEEE 1451.0 ArgumentArray has a unique typecode.

IDL: enum TypeCode {
 UNKNOWN_TC,

 // Simple types
 UInt8_TC, UINT16_TC, UINT32_TC,
 FLOAT32_TC, FLOAT64TC, STRING_TC,
 OCTET_TC, BOOLEAN_TC,
 TIME_INSTANCE_TC, TIME_DURATION_TC,
 QOS_PARAMS_TC,

 // Arrays of simple types. Note no QOS array
 UInt8_ARRAY_TC, UINT16_ARRAY_TC, UINT32_ARRAY_TC,
 FLOAT32_ARRAY_TC, FLOAT64_ARRAY_TC, STRING_ARRAY_TC,
 OCTET_ARRAY_TC, BOOLEAN_ARRAY_TC,
TIME_INSTANCE_ARRAY_TC, TIME_DURATION_ARRAY_TC
};

 IEEE1451Dot0::Args::Argument

This is a generic data container. It is represented as an IDL discriminated union. However,
implementations in language with run-time type checking may choose a simpler representation.

IDL: union Argument switch (TypeCode) {
case UNKNOWN_TC: Boolean valueError;
case UInt8_TC: UInt8 valueInt8;
case UINT16_TC: UInt16 valueUInt16;
case UINT32_TC: UInt32 valueUInt32;
case FLOAT32_TC: Float32 valueFloat32;
case FLOAT64_TC: Float64 valueFloat64;
case STRING_TC: _String valueString;
case OCTET_TC: _Octet valueOctet;
case BOOLEAN_TC: _Boolean valueBoolean;
case TIME_INSTANCE_TC: TimeInstance valueTimeInstance;
case TIME_DURATION_TC: TimeDuration valueTimeDuration;
case QOS_PARAMS_TC: QosParams valueQosParams;
case UInt8_ARRAY_TC: UInt8Array valueInt8Array;

166
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

166 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.1.6

case UINT16_ARRAY_TC: UInt16Array valueUInt16Array;
case UINT32_ARRAY_TC: UInt32Array valueUInt32Array;
case FLOAT32_ARRAY_TC: Float32Array valueFloat32Array;
case FLOAT64_ARRAY_TC: Float64Array valueFloat64Array;
case STRING_ARRAY_TC: StringArray valueStringArray;
case OCTET_ARRAY_TC: OctetArray valueOctetArray;
case BOOLEAN_ARRAY_TC: BooleanArray valueBooleanArray;
case TIME_INSTANCE_ARRAY_TC: TimeInstanceArray
 valueTimeInstanceArray;
case TIME_DURATION_ARRAY_TC: TimeDurationArray
 valueTimeDurationArray;
};

 IEEE1451Dot0::Args::ArgumentArray

IDL: interface ArgumentArray { };

This is a generic array data container. All Arguments are owned by the ArgumentArray. When the
ArgumentArray is deleted, it will free all memory consumed by the Arguments. Table 80 provides a list of
methods associated with ArgumentArrays.

Table 80—ArgumentArray
 IEEE1451dot0::Args::ArgumentArray
UInt16 getByName(in _String name, out Argument reference);
UInt16 getByIndex(in UInt16 index, out Argument reference);
UInt16 putByName(in _String name, in Argument value);
UInt16 putByIndex(in UInt16 index, in Argument value);
UInt16 stringToIndex(in String name, out UInt16 index);
UInt16 getNames(out StringArray names);
UInt16 getIndexes(out UInt16Array indexes);
UInt16 size();

9.3.1.7

9.3.1.8

 IEEE1451Dot0::Args::ArgumentArray::get

IDL: UInt16 getByName (in _String name, out Argument reference);

This method provides a lookup-by-name feature. See Clause 7 and Clause 8 for appropriate attribute
names. A reference to the desired Argument is returned. Note that the caller should consider this a “read-
only” reference and must make a local copy if needed.

Parameters:
The “name” parameter is the name for the desired attribute.

The [out] “reference” parameter is a reference to the desired Argument.

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::get

IDL: UInt16 getByIndex(in UInt16 index, out Argument reference);

167
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 167

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.1.9

9.3.1.10

9.3.1.11

This method provides a lookup-by-index feature. See Clause 7 and Clause 8 for appropriate conversions
between names and indices. A reference to the desired Argument is returned. Note that the caller should
consider this a “read-only” reference and must make a local copy if needed.

Parameters:
The “index” parameter is the array index beginning with zero.

The [out] “reference” parameter is a reference to the desired Argument.

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::put

IDL: UInt16 putByName(in String name, in Argument value);

This method provides a set-by-name feature. See Clause 7 and Clause 8 for appropriate conversions
between names and indices. The ArgumentArray will assume ownership of the provided Argument. The
caller shall be careful not to free the memory associated with that Argument. If an Argument is already in
the ArgumentArray with the same name, it will be deleted.

Parameters:
The “name” parameter is the name for the desired attribute.

The “value” Argument parameter will be stored into the ArgumentArray.

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::put

IDL: UInt16 putByIndex(in UInt16 index, in Argument value);

This method provides a set-by-index feature. See Clause 7 and Clause 8 for appropriate conversions
between names and indices. The ArgumentArray will assume ownership of the provided Argument. The
caller shall be careful not to free the memory associated with that Argument. If an Argument is already in
the ArgumentArray at the same index, it will be deleted.

Parameters:
The “index” parameter is the array index beginning with 0.

The “value” Argument parameter will be stored into the ArgumentArray.

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::stringToIndex

IDL: UInt16 stringToIndex(in _String name, out UInt16 index);

This method provides a conversion mechanism from names to array index. It is usually more efficient to
perform a lookup-by-index rather than a lookup-by-name. This method allows the application to perform
the string search and compare operation once and then use the index for future array access.

Parameters:
The “name” parameter is the desired name.

The [out] “index” parameter is the array index beginning with zero.

168
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

168 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.1.12

9.3.1.13

9.3.1.14

9.3.2

9.3.2.1

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::getNames

IDL: UInt16 getNames(out StringArray names);

This method returns a StringArray of “names” for each element in the ArgumentArray. Each could be used
in the get() method.

Parameters:
The [out] “names” parameter is the StringArray.

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::getIndexes

IDL: UInt16 getIndexes(out UInt16Array indexes);

This method returns a UInt16Array of “indexes” for each element in the ArgumentArray. Each could be
used in the get() method.

Parameters:
The [out] “indexes” parameter is the UInt16Array.

Return result: Error code

 IEEE1451Dot0::Args::ArgumentArray::size

IDL: UInt16 size();

This method returns the number of elements in the ArgumentArray.

Return result: Number of elements.

 IEEE1451Dot0::Util

IDL: module Util { };

Utility classes and interfaces are organized into this module.

 IEEE1451Dot0::Util::Codec

IDL: interface Codec { };

This interface is optionally provided by the IEEE 1451.X layer to provide custom Encoding and Decoding
of ArgumentArrays to/from OctetArrays. If registered, it will be invoked by the IEEE 1451.0 layer
automatically. Table 81 lists the interfaces in this grouping.

169
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 169

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 81—Codec
IEEE1451dot0::Util::Codec
Args::UInt16 encodeCommand(in Args::UInt16 channelId, in Args::UInt8 cmdClassId, in Args::UInt8
cmdFunctionId, in Args::ArgumentArray inArgs, out Args::OctetArray payload);
Args::UInt16 decodeCommand(in Args::OctetArray payload, out Args::UInt16 channelId, out Args::UInt8
cmdClassId, out Args::UInt8 cmdFunctionId, out Args::ArgumentArray inArgs);
Args::UInt16 encodeResponse(in Args::_Boolean successFlag, in Args::ArgumentArray outArgs, out
Args::OctetArray payload);
Args::UInt16 decodeResponse(in Args::OctetArray payload, out Args::_Boolean successFlag, out
Args::ArgumentArray outArgs);
Args::UInt16 argumentArray2OctetArray(in Args::ArgumentArray inArgs, out Args::OctetArray payload);
Args::UInt16 octetArray2ArgumentArray(in Args::OctetArray payload, out Args::ArgumentArray outArgs);

9.3.2.2

9.3.2.3

 IEEE1451Dot0::Util::Codec::encodeCommand

IDL: Args::UInt16 encodeCommand(
in Args::UInt16 destId,
in Args::UInt16 channelId,
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,
in Args::ArgumentArray inArgs,
out Args::OctetArray payload);

This method is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to encode a
command into an OctetArray. See Clause 6 for details on the encoding conventions. This is called on the
initiating node before invocation of the ModuleCommunication::P2PComm::write() or
ModuleCommunication::NetComm::writeMsg() calls.

Propose that dot 0 read & use the Commands TEDS to encode & decode unknown commands.

Parameters:
The “channelId” parameter is the desired channel identifier.

The “cmdClassId” is the desired command class.

The “cmdFunctionId” is the desired command function code.

The “inArgs” parameter contains the command specific input arguments.

The [out] “payload” is the encoded OctetArray.

Return result: Error code

 IEEE1451Dot0::Util::Codec::decodeCommand

IDL: Args::UInt16 decodeCommand(
in Args::OctetArray payload,
out Args::UInt16 channelId,
out Args::UInt8 cmdClassId,
out Args::UInt8 cmdFunctionId,
out Args::ArgumentArray inArgs);

This method is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to decode an
OctetArray into command arguments. See Clause 6 for details on the encoding conventions. This is called
on the receiving node after invocation of the ModuleCommunication::P2PComm::read() or
ModuleCommunication::NetComm::readMsg() calls.

Parameters:

170
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

170 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.2.4

9.3.2.5

9.3.2.6

The “payload” is the OctetArray.

The [out] “channelId” parameter is the desired channel identifier.

The [out] “cmdClassId” is the desired command class.

The [out] “cmdFunctionId” is the desired command function code.

The [out] “inArgs” parameter contains the command specific input arguments.

Return result: Error code

 IEEE1451Dot0::Util::Codec::encodeResponse

IDL: Args::UInt16 encodeResponse(
in Args::_Boolean successFlag,
in Args::ArgumentArray outArgs,
out Args::OctetArray payload);

This method is provided by the IEEE 1451.X layer and called by the IEEE 1451.0 layer to encode a
response into an OctetArray. See Clause 7 and Clause 8 for details on the encoding conventions. This is
called on the receiving node before invocation of the ModuleCommunication::P2PComm::write() or
ModuleCommunication::NetComm::writeRsp() calls.

Parameters:
The “successFlag” parameter is the desired success code.

The “outArgs” parameters are the command response specific output arguments.

The [out] “payload” is the encoded OctetArray.

Return result: Error code

 IEEE1451Dot0::Util::Codec::decodeResponse

IDL: Args::UInt16 decodeResponse(
in Args::OctetArray payload,
out Args::_Boolean successFlag,
out Args::ArgumentArray outArgs);

This method is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to decode an
OctetArray into response arguments. See Clause 7 and Clause 8 for details on the encoding conventions.
This is called on the initiating node after invocation of the ModuleCommunication::P2PComm::read() or
ModuleCommunication::NetComm::readMsg() calls.

Parameters:
The “payload” is the OctetArray.

The [out] “successFlag” parameter is the command success flag.

The [out] “outArgs” parameter are the command specific output arguments.

Return result: Error code

 IEEE1451Dot0::Util::Codec::encodeArgumentArray

IDL: Args::UInt16 encodeArgumentArray(

171
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 171

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.2.7

9.3.2.8

in Args::ArgumentArray inArgs,
out Args::OctetArray payload);

This method is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to encode an
ArgumentArray into an OctetArray. See Clause 7 and Clause 8 for details on the encoding conventions.
Make sure that this works!!

Parameters:
The “inArgs” parameter is the input ArgumentArray.

The [out] “payload” is the encoded OctetArray.

Return result: Error code

 IEEE1451Dot0::Util::Codec::decodeOctetArray

IDL: Args::UInt16 decodeOctetArray(
in Args::OctetArray payload,
out Args::ArgumentArray outArgs);

This method is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to decode an
OctetArray into an ArgumentArray. See Clause 7 and Clause 8 for details on the encoding conventions.

Parameters:
The “payload” is the OctetArray.

The [out] “outArgs” parameter contains the output ArgumentArray.

Return result: Error code

 IEEE1451Dot0::Util::CodecManagement

IDL: Interface CodecManagement { };

This class is provided by the IEEE 1451.0 layer and is optionally called by the IEEE 1451.X layer to
register alternate Encode/Decode implementations with the IEEE 1451.0 layer. Table 82 lists the methods
available in this class.

Table 82—CodecManagement
IEEE1451dot0::Util::CodecManagement
Args::UInt16 register(in Args::UInt8 moduleId, in Codec customCodec);
Args::UInt16 unregister(in Args::UInt8 moduleId);

9.3.2.9 IEEE1451Dot0::Util::CodecManagement::register

IDL: Args::UInt16 register(
in Args::UInt8 moduleId,
in Codec customCodec);

This method is provided by the IEEE 1451.0 layer and is optionally called by the IEEE 1451.X layer to
register a custom Encoder/Decoder instance. Only a single instance may be registered for each module.

Parameters:
The “moduleIds” parameter is the desired IEEE 1451.X ID.

172
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

172 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

9.3.2.10

10.

The “customCodec” parameter is the Codec instance to register. This instance should not be destructed
until after the unregister() call is made.

Return result: Error code

 IEEE1451Dot0::Util::CodecManagement::unregister

IDL: Args::UInt16 unregister(in Args::UInt8 moduleId);

This method is provided by the IEEE 1451.0 layer and is optionally called by the IEEE 1451.X layer to
unregister a custom Encoder/Decoder instance. After this call, the default Encoder/Decoder will be used.

Parameters:
The “moduleIds” parameter is the desired IEEE 1451.X ID.

Return result: Error code

Transducer services API

IDL: module TransducerServices { };

The Transducer services API provides the interface between the applications running on the NCAP and the
functions defined by this standard.

All interfaces primarily used by “measurement and control” applications are inside this IDL module.

The “TransducerServices” module is subdivided into five interfaces as listed in Table 83. The first four
interfaces are implemented by this standard and are called by the measurement application. If the
application desires advanced optional features, it will need to implement the “AppCallback” interface,
which this standard will invoke.

Table 83—Transducer Services API classes and interfaces
Interface Description
TimDiscovery Methods for applications to discover available IEEE 1451.X communications modules,

TIMs, and TransducerChannels are organized in this interface.
TransducerAccess When an application desires to access sensor and actuator TransducerChannels, it will use

methods on this interface.
TransducerManager Applications that need more control over TIM access will use methods on this interface.

For example, to lock the TIM for exclusive use and to send arbitrary commands to the
TIM.

TedsManager Applications use methods on this interface to read and write TEDS. This class also
manages the NCAP-side TEDS cache information.

CommManager Handles access to the communication module on the local device.
AppCallback Applications that need advanced features need to implement this interface. For example,

this allows the application to configure measurement streams and the IEEE 1451.0 layer
will invoke appropriate callbacks in the application.

10.1 IEEE1451Dot0::TransducerServices::TimDiscovery

IDL: interface TimDiscovery { };

173
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 173

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

The TimDiscovery interface is provided by the IEEE 1451.0 layer and is called by the application to
provide a common mechanism to discover available TIMs and TransducerChannels. The methods are listed
in Table 84 and discussed in 10.1.1 through 10.1.3.

Table 84—TimDiscovery
IEEE1451dot0::TransducerServices::TimDiscovery
Args::UInt16 reportCommModule(out Args::UInt8Array moduleIds);
Args::UInt16 reportTims(in Args::UInt8 moduleId, out Args::UInt16Array timIds);
Args::UInt16 reportChannels(in Args::UInt16 timId, out Args::UInt16Array channelIds, out Args::StringArray
names);

10.1.1

10.1.2

 IEEE1451Dot0::TransducerServices::TimDiscovery::reportCommModule

IDL: Args::UInt16 reportCommModule(out Args::UInt8Array moduleIds);

This method reports the available communication module interfaces that have been registered with this
standard. See the IEEE1451Dot0::ModuleCommunication::NetRegistration::registerModule() method,
which the IEEE 1451.X layer will invoke when it is ready for operation. In that method, the IEEE 1451.0
layer will assign a unique moduleId to each IEEE 1451.X interface. Note that the NCAP may have:

A single IEEE 1451.X interface of a given technology (for example, Clause 7 of IEEE Std 1451.5-
2007 [B4]) .

Multiple interfaces of the same technology (for example, IEEE 1451.2-RS232 on COM1 and
COM2).

Multiple IEEE 1451.X interfaces of different technologies (for example, Clause 7 of
IEEE Std 1451.5-2007 [B4] and IEEE 1451.3 multidrop).

Parameters:
The [out] “moduleIds” parameter is returned by the IEEE 1451.0 layer to the application. This array
contains all the known communication modules on this NCAP.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TimDiscovery::reportTims

IDL: Args::UInt16 reportTims(
in Args::UInt8 moduleId,
out Args::UInt16Array timIds);

This returns the known TIM devices on this interface. See 11.6.2, the
IEEE1451Dot0::ModuleCommunication::Registration::registerDestination method, which the
IEEE 1451.X layer will invoke when registering new TIMs to the NCAP.

Parameters:
The “moduleId” parameter is the desired IEEE 1451.X communication module ID.

The [out] “timIds” parameter is returned to the application and contains all known TIMs on this
IEEE 1451.X module.

Return result: Error code

174
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

174 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.1.3

10.2

 IEEE1451Dot0::TransducerServices::TimDiscovery::reportChannels

IDL: Args::UInt16 reportChannels(
in Args::UInt16 timId,
out Args::UInt16Array channelIds,
out Args::StringArray names);

This returns the TransducerChannel list and names for this TIM. This information is retrieved from the
cached TEDS.

Parameters:
The “timId” parameter is the desired TIM.

The [out] “channelIds” parameter is returned to the application and contains all known
TransducerChannels on this TIM.

The [out] “names” parameter is returned to the application and contains the TransducerChannel names.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess

IDL: interface TransducerAccess { };

The TransducerAccess interface is provided by the IEEE 1451.0 layer and is called by the application to
provide access to TransducerChannels. For most applications, they will primarily be interacting with this
interface to perform TIM read and write operations. To keep this interface small, more advanced methods
are placed in the TransducerManager interface. Each method is listed in Table 85.

Table 85—TransducerAccess methods
IEEE1451dot0::TransducerServices::TransducerAccess
Args::UInt16 open(in Args::UInt16 timId, in Args::UInt16 channelId, out Args::UInt16 transCommId);
Args::UInt16 openQoS(in Args::UInt16 timId, in Args::UInt16 channelId, inout Args::QoSParams qosParams, out
Args::UInt16 transCommId);
Args::UInt16 openGroup(in Args::UInt16Array timIds, in Args::UInt16Array channelIds, out Args::UInt16
transCommId);
Args::UInt16 openGroupQoS(in Args::UInt16Array timIds, in Args::UInt16Array channelIds, inout
Args::QoSParams qosParams, out Args::UInt16 transCommId);
Args::UInt16 close(in Args::UInt16 transCommId);
Args::UInt16 readData (in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8
SamplingMode, out Args::ArgumentArray result);
Args::UInt16 writeData (in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8
SamplingMode, in Args::ArgumentArray value);
Args::UInt16 startReadData(in Args::UInt16 transCommId, in Args::TimeInstance triggerTime, in
Args::TimeDuration time-out, in Args::UInt8 SamplingMode, in AppCallback callback, out Args::UInt16
operationId);
Args::UInt16 startWriteData(in Args::UInt16 transCommId, in Args::TimeInstance triggerTime, in
Args::TimeDuration time-out, in Args::UInt8 SamplingMode, in Args::ArgumentArray value, in AppCallback
callback, out Args::UInt16 operationId);
Args::UInt16 startStream(in Args::UInt16 transCommId, in AppCallback callback, out Args::UInt16 operationId);
Args::UInt16 cancel(in Args::UInt16 operationId);

10.2.1 IEEE1451Dot0::TransducerServices::TransducerAccess::open

IDL: Args::UInt16 open(

175
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 175

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.2.2

10.2.3

in Args::UInt16 timId,
in Args::UInt16 channelId,
out Args::UInt16 transCommId);

This method opens a communication channel to the desired TIM/TransducerChannel and returns a
“transCommId” that will be used in subsequent calls. The default Quality of Service is used.

Parameters:
The “timId” specifies the desired TIM

The “channelId” specifies the desired TransducerChannel. This field allows addressing a single
TransducerChannel, a TransducerChannel proxy, a group of TransducerChannels, or all
TransducerChannels connected to an NCAP. To address the TIM, use a TransducerChannel of zero. See
5.3 for details.

The [out] “transCommId” parameter is returned by the IEEE 1451.0 layer to the application. This identifier
will be used on subsequent calls.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::openQoS

IDL: Args::UInt16 openQoS(
in Args::UInt16 timId,
in Args::UInt16 channelId,
inout Args::QoSParams qosParams,
out Args::UInt16 transCommId);

This method opens a communication channel to the desired TIM/TransducerChannel and returns a
“transCommId” that will be used in subsequent calls. Special Quality of Service communications are used.
If the call fails, the “qosParams” will be modified and returned to the application in order to provide a
“hint” on what QoS may be acceptable.

Parameters:
The “timId” specifies the desired TIM.

The “channelId” specifies the desired TransducerChannel. This field allows addressing a single
TransducerChannel, a TransducerChannel proxy, a group of TransducerChannels or all
TransducerChannels connected to an NCAP. To address the TIM use a TransducerChannel of zero. See
5.3 for details.

The inout “qosParams” is the desired quality of service parameters. See 9.3.1.3 for details.

The [out] “transCommId” parameter is returned by the IEEE 1451.0 layer to the application. This identifier
will be used on subsequent calls.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::openGroup

The purpose of this method is to assign a number of TIMs to multicast addresses that will later be used to
assign TransducerChannels to AddressGroups. See 5.3.2 for a description of AddressGroups.

IDL: Args::UInt16 openGroup(
in Args::UInt16Array timIds,
in Args::UInt16Array channelIds,
out Args::UInt16 transCommId);

176
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

176 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.2.4

10.2.5

This method opens a group communication channel to the desired set of TIMs/TransducerChannels and
returns a “transCommId” that will be used in subsequent calls. The default Quality of Service is used.

There is a one-to-one correspondence between the positions for the timIds and channelIds arrays. The
TransducerChannels may be on the same or different TIMs. All TIMs shall be attached to the same
communication module. If there are multiple channelIds for a given timId, the timId shall be repeated for
each channelId within that TIM so that the two lists are of equal length.

Parameters:
The “timIds” specifies the desired TIMs.

The “channelIds” specifies the desired TransducerChannels. This field allows addressing a single
TransducerChannel, a TransducerChannel proxy, a group of TransducerChannels, or all
TransducerChannels connected to an NCAP. See 5.3 for details.

The [out] “transCommId” parameter is returned by the IEEE 1451.0 layer to the application. This identifier
will be used on subsequent calls.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::openGroupQoS

The purpose of this method is to assign a number of TIMs to multicast addresses that will later be used to
assign TransducerChannels to AddressGroups. See 5.3.2 for a description of AddressGroups.

IDL: Args::UInt16 openGroupQoS(
in Args::UInt16Array timIds,
in Args::UInt16Array channelIds,
inout Args::QoSParams qosParams,
out Args::UInt16 transCommId);

This method opens a group communication channel to the desired TIMs/TransducerChannels and returns a
“transCommId” that will be used in subsequent calls. Special Quality of Service communications are used.
If the call fails, the “qosParams” will be modified and returned to the application in order to provide a
“hint” on what QoS may be acceptable.

There is a one-to-one correspondence between the positions for the timIds and channelIds arrays. The
TransducerChannels may be on the same or different TIMs. All TIMs must be attached to the same
communication module.

Parameters:
The “timIds” specifies the desired TIMs

The “channelIds” specifies the desired TransducerChannels. This field allows addressing a single
TransducerChannel, a TransducerChannel proxy, a group of TransducerChannels, or all
TransducerChannels connected to an NCAP. See 5.3 for details.

The inout “qosParams” is the desired quality of service parameters. See 9.3.1.3 for details.

The [out] “transCommId” parameter is returned by the IEEE 1451.0 layer to the application. This identifier
will be used on subsequent calls.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::close

IDL: Args::UInt16 close(in Args::UInt16 transCommId);

177
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 177

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.2.6

10.2.7

This method closes a transducer communication session. The application shall consider the transCommId
as invalid. Note that a subsequent “open” call may return the old value.

See TransducerManager::unlock() for information on calling close() on a locked transCommId.

Parameters:
The “transCommId” parameter indicates which communication to close.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::readData

IDL: Args::UInt16 readData(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 SamplingMode,
out Args::ArgumentArray result);

This method performs a blocking read of the specified TransducerChannel(s). The ArgumentArray can
have many attributes as discussed in Clause 7 and Clause 8; each attribute is represented by a separate
“Argument” in the ArgumentArray. The application can control which attributes are returned through the
use of the TransducerManager::configureAttributes() call.

In cases where this is a read of a single TransducerChannel, there will always be a “result” Argument that
contains the TransducerChannel reading. The type of this Argument is determined by the
TransducerChannel’s data model and if the TransducerChannel has a Calibration TEDS. For example, a
read of a simple TransducerChannel that does not specify Calibration TEDS will always be in the
TransducerChannel’s native format (for example, UInt8 or Float32Array). If the TransducerChannel does
specify NCAP-side correction via the Calibration TEDS, the data type will always be Float32 or
Float32Array.

In cases where this is a read of a group of TransducerChannels, there will always be a nested “result”
ArgumentArray that contains an Argument for each TransducerChannel in the group. These will be
accessed in numerical order beginning with array position “0”. This organization corresponds to the order
of TIM/TransducerChannel pairs in the openGroup() or openGroupQoS() call. The data type for each
returned Argument will be like the single TransducerChannel read discussed in the previous paragraph. .

Parameters:
The “transCommId” parameter indicates which transducer communication session to use.

The “timeout” parameter specifies how long to wait to perform the reading without generating a time-out
error. Note a time-out can occur due to communication or trigger failures.

The “SamplingMode” specifies the triggering mechanism. See 5.11 and 7.1.2.4 for details.

The [out] “result” ArgumentArray is the returned values.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::writeData

IDL: Args::UInt16 writeData(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 SamplingMode,
in Args::ArgumentArray value);

178
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

178 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.2.8

This method performs a blocking write of the specified TransducerChannels. The ArgumentArray will
have many attributes as discussed in Clause 7; each attribute will be represented by a separate “Argument”
in the ArguemntArray.

In cases where this is a write of a single TransducerChannel, the caller shall provide a “value” Argument
that contains the TransducerChannel’s value. The caller should provide the result in a compatible data type
to what the TransducerChannel requires as specified in the TransducerChannel TEDS. The IEEE 1451.0
layer on the NCAP will perform simple conversions among all numeric data types. Note that this may lose
precision if the resulting data type is smaller. For example, if the actuator required a UInt8, a provided
Float32 would be downconverted to a UInt8 with appropriate loss of precision before being passed to the
TransducerChannel. In cases where the NCAP will be performing correction (as specified in the
Calibration TEDSfor this TransducerChannel), the value’s data type shall be numeric. It will be converted
to a Float32 or Float32Array type before passing through the correction engine. The output of the
correction engine will be converted to the form required by the actuators Data Model as defined in the
TransducerChannel TEDS.

In cases where this is a write to a group of TransducerChannels, there is always a nested “value”
ArgumentArray that contains an Argument for each TransducerChannel in the group. These will be
accessed in numerical order beginning with array position “0.” This organization corresponds to the order
of TIM/TransducerChannel pairs in the openGroup() or openGroupQoS() call. The data type for each
Argument shall follow the rules for the single TransducerChannel write case discussed in the previous
paragraph

Parameters:
The “transCommId” parameter indicates which transducer communication session to use.

The “timeout” parameter specifies how long to wait to perform the reading without generating a time-out
error. Note a time-out can occur due to communication or trigger failures.

The “SamplingMode” specifies the triggering mechanism. See 5.11 and 7.1.2.4 for details.

The “value” ArgumentArray is the provided actuator input values.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::startReadData

IDL: Args::UInt16 startReadData(
in Args::UInt16 transCommId,
in Args::TimeInstance triggerTime,
in Args::TimeDuration timeout,
in Args::UInt8 SamplingMode,
in AppCallback callback,
out Args::UInt16 operationId);

This method begins a non-blocking read of the specified TransducerChannels. When the read completes,
the AppCallback::measurementUpdate() callback will be invoked on the callback object.

Parameters:
The “transCommId” parameter indicates which transducer communication session to use.

The “triggerTime” parameter specifies when to begin the read operation. A value specified in the past will
result in an immediate time-out failure. A value of secs == 0, nsecs == 0 is a special case that implies read
immediately.

The “timeout” parameter specifies how long to wait after initiating the read operation without generating a
time-out error. Note a time-out can occur due to communication or trigger failures.

179
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 179

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.2.9

10.2.10

The “SamplingMode” specifies the triggering mechanism. See 5.11 and 7.1.2.4 for details.

The “callback” parameter is the interface to invoke when the read has completed. It will also be invoked
upon failures.

The [out] “operationId” parameter is an identifier that can be used to cancel the read request.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::startWriteData

IDL: Args::UInt16 startWriteData(
in Args::UInt16 transCommId,
in Args::TimeInstance triggerTime,
in Args::TimeDuration timeout,
in Args::UInt8 SamplingMode,
in Args::ArgumentArray value,
in AppCallback callback,
out Args::UInt16 operationId);

This method begins a non-blocking write of the specified TransducerChannels. When the write completes,
the AppCallback::actuationComplete() callback will be invoked on the callback object.

Parameters:
The “transCommId” parameter indicates which transducer communication session to use.

The “triggerTime” parameter specifies when to begin the write operation. A value specified in the past will
result in an immediate time-out failure. A value of secs == 0, nsecs == 0 is a special case that implies write
immediately.

The “timeout” parameter specifies how long to wait after initiating the write operation without generating a
time-out error. Note a time-out can occur due to communication or trigger failures.

The “SamplingMode” specifies the triggering mechanism. See 5.11 and 7.1.2.4 for details.

The “value” ArgumentArray is the provided actuator input values. See 10.2.7 write() for details.

The “callback” parameter is the interface to invoke when the write has completed. It will also be invoked
upon failures.

The [out] “operationId” parameter is an identifier that may be used to cancel the write request.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::startStream

IDL: Args::UInt16 startStream(
in Args::UInt16 transCommId,
in AppCallback callback,
out Args::UInt16 operationId);

This method begins operation of a measurement stream. The transCommId shall be created with either the
openQoS() or the openGroupQoS() call. In the later case, all TransducerChannels shall be from the same
TIM. Each time new measurements are available from the stream, the AppCallback::measurementUpdate()
callback will be invoked on the callback object.

Parameters:
The “transCommId” parameter indicates which transducer communication session to use.

180
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

180 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.2.11

10.3

The “callback” parameter is the interface to invoke when a data set has been written to an actuator or
received from a sensor. It will also be invoked upon failures.

The [out] “operationId” parameter is an identifier that may be used to cancel the measurement stream.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerAccess::cancel

IDL: Args::UInt16 cancel(in Args::UInt16 operationId);

This method will cancel a blocking read, blocking write, or measurement stream. The callback will be
invoked with a CANCEL status error code.

Parameters:
The “operationId” parameter specifies the operation to cancel.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager

IDL: Interface TransducerManager { };

The TransducerManager interface (see Table 86) is provided by this system and is called by the application
to provide access to more advanced features. For most applications, they will not interact with this
interface but will primarily be interacting with the TransducerAccess interface to perform
TransducerChannel read and write operations. Advanced methods are placed in the TransducerManager
interface to keep the TransducerAccess class small.

Table 86—TransducerManager interface methods
IEEE1451dot0::TransducerServices::TransducerManager
Args::UInt16 lock(in Args::UInt16 transCommId, in Args::TimeDuration time-out);
Args::UInt16 unlock(in Args::UInt16 transCommId);
Args::UInt16 reportLocks(out Args::UInt16Array transCommIds);
Args::UInt16 breakLock(in Args::UInt16 transCommId);
Args::UInt16 sendCommand(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8
cmdClassId, in Args::UInt8 cmdFunctionId, in Args::ArgumentArray inArgs, out Args::ArgumentArray outArgs);
Args::UInt16 startCommand(in Args::UInt16 transCommId, in Args::TimeInstance triggerTime, in
Args::TimeDuration time-out, in Args::UInt8 cmdClassId, in Args::UInt8 cmdFunctionId, in Args::ArgumentArray
inArgs, in AppCallback callback, out Args::UInt16 operationId);
Args::UInt16 configureAttributes(in Args::UInt16 transCommId, in Args::StringArray attributeNames);
Args::UInt16 trigger(in Args::UInt16 transCommId, in Args::TimeInstance triggerTime, in Args::TimeDuration
time-out, in Args::UInt16 SamplingMode);
Args::UInt16 startTrigger(in Args::UInt16 transCommId, in Args::TimeInstance triggerTime, in
Args::TimeDuration time-out, in Args::UInt16 SamplingMode, in AppCallback callback, out Args::UInt16
operationId);
Args::UInt16 clear(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8 clearMode);
Args::UInt16 registerStatusChange(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in
AppCallback callback, out Args::UInt16 operationId);
Args::UInt16 unregisterStatusChange(in Args::UInt16 transCommId);

181
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 181

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.3.1

10.3.2

10.3.3

 IEEE1451Dot0::TransducerServices::TransducerManager::lock

IDL: Args::UInt16 lock(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout);

This method will lock the TIM/TransducerChannels represented by the transCommId. This will prevent
other applications from accessing those resources. To prevent deadlocks in multi-threaded environments, it
is the application’s responsibility to lock resources in agreed upon order.

The implementation shall allow multiple locks by the same calling thread without blocking.

In cases where the transCommId specifies a group, all TIM/TransducerChannels in that group will be
locked sequentially in the order specified in the openGroup() or openGroupQoS() call.

Parameters:
The “transCommId” specifies the desired transducer communication session.

The “timeout” specifies the duration to wait when acquiring the lock. A value of secs == 0, nsecs == 0
implies no wait and can be used to test for an existing lock. A value of secs == 0, nsecs == –1 implies wait
forever. Using a value of “wait forever” is extremely dangerous as it can create deadlocks.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::unlock

IDL: Args::UInt16 unlock(in Args::UInt16 transCommId);

This method will unlock the TIM/TransducerChannels represented by the transCommId. This will allow
other applications to access those resources.

In cases where the application has called lock() multiple times with the same calling thread, the application
shall ensure that unlock() is called the same number of times. When the last unlock() is invoked, the
resources are now available.

The implementation shall allow an alternative calling thread to invoke unlock(). This alternative only is
valid when lock() has been called a single time. An example would be a non-blocking operation. The
initiating thread calls open(), lock(), and the non-blocking read(). When the read completes, the
AppCallback::measurementUpdate() callback will be invoked. That thread may then call unlock().

A call to close() will result in unlock() being called the correct number of times. A warning error code
will be returned to signal that a close on a locked resource was performed.

Parameters:
The “transCommId” specifies the desired transducer communication session.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::reportLocks

.
IDL: Args::UInt16 unlock(out Args::UInt16Array transCommIds);

This method will report all transCommIds that are currently locked.

182
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

182 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.3.4

10.3.5

10.3.6

Parameters:
The [out] “transCommIds” returns an array of locked IDs.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::breakLock

IDL: Args::UInt16 breakLock(in Args::UInt16 transCommId);

This method will break a lock. If a non-blocking read or write or measurement stream is in progress, the
callback will be invoked with an appropriate error code. See Table 78 for the list of error codes.

Parameters:
The “transCommId” parameter specifies the transducer communication session to unlock.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::sendCommand

IDL: Args::UInt16 sendCommand(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,
in Args::ArgumentArray inArgs,
out Args::ArgumentArray outArgs);

This method will perform a blocking operation. The format of input and output arguments are command
dependent. The caller shall make sure to use the correct data types for each input argument.

If this is a custom command, the application must use Command TEDS and this argument array must
contain the octetArray containing the command.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “cmdClassId” specifies the desired command class code. See Table 15 for details.

The “cmdFunctionId” specifies the desired command function code. See Clause 7 for details.

The “inArgs” are the input arguments in ArgumentArray form.

The [out] “outArgs” are returned output arguments.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::sendCommandRaw

IDL: Args::UInt16 sendCommandRaw(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,

183
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 183

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.3.7

in Args::OctetArray inArgs,
out Args::OctetArray outArgs);

This method will perform a blocking operation. The format of input and output arguments are command
dependent. The caller shall make sure to use the correct data types for each input argument.

If this is a custom command, the application must use Command TEDS and this argument array must
contain the octetArray containing the command.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “cmdClassId” specifies the desired command class code. See Table 15 for details.

The “cmdFunctionId” specifies the desired command function code. See Clause 7 for details.

The “inArgs” are the input arguments in ArgumentArray form.

The [out] “outArgs” are returned output arguments.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::startCommand

IDL: Args::UInt16 startCommand(
in Args::UInt16 transCommId,
in Args::TimeInstance triggerTime,
in Args::TimeDuration timeout,
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,
in Args::ArgumentArray inArgs,
in AppCallback callback,
out Args::UInt16 operationId);

This method starts a non-blocking operation. The format of input arguments are command dependent. The
caller shall make sure to use the correct data types for each input argument.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

The “triggerTime” parameter specifies when to begin the operation. A value specified in the past will result
in an immediate time-out failure. A value of secs == 0, nsecs == 0 is a special case that implies immediate
action.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “cmdClassId” specifies the desired command class code. See Table 15 for details.

The “cmdFunctionId” specifies the desired command function code. See Clause 7 for details.

The “inArgs” are the input arguments in ArgumentArray form. These are command dependent.

The “callback” specifies the callback interface. The AppCallback::commandComplete() method will be
invoked.

The [out] “operationId” is the returned operation ID.

Return result: Error code

184
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

184 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.3.8

10.3.9

10.3.10

 IEEE1451Dot0::TransducerServices::TransducerManager::configureAttributes

IDL: Args::UInt16 configureAttributes(
in Args::UInt16 transCommId,
in Args::StringArray attributeNames);

This method configures a transCommId for read or measurement stream operations. It specifies which
attributes to include in the returned ArgumentArray. See Clause 7 and Clause 8 for details on appropriate
names.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

The “attributeNames” specifies the names of desired attributes.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::trigger

IDL: Args::UInt16 trigger(
in Args::UInt16 transCommId,
in Args::TimeInstance triggerTime,
in Args::TimeDuration timeout,
in Args::UInt16 SamplingMode);

This method performs a blocking trigger on the specified transCommId.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

The “triggerTime” parameter specifies when to begin the operation. A value specified in the past will result
in an immediate time-out failure. A value of secs == 0, nsecs == 0 is a special case that implies immediate
action.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “SamplingMode” specifies the trigger mode. See 5.11 and 7.1.2.4 for details.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::startTrigger

IDL: Args::UInt16 startTrigger(
in Args::UInt16 transCommId,
in Args::TimeInstance triggerTime,
in Args::TimeDuration timeout,
in Args::UInt16 SamplingMode,
in AppCallback callback,
out Args::UInt16 operationId);

This method begins a non-blocking trigger on the specified transCommId.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

185
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 185

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.3.11

The “triggerTime” parameter specifies when to begin the operation. A value specified in the past will result
in an immediate time-out failure. A value of secs == 0, nsecs == 0 is a special case that implies immediate
action.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “SamplingMode” specifies the trigger mode. See 5.11 and 7.1.2.4 for details.

The “callback” specifies the callback interface. The AppCallback::triggerComplete() method will be
invoked.

The [out] “operationId” is the returned operation ID.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager::clear

IDL: Args::UInt16 clear(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 clearMode);

This method performs a clear on the specified transCommId.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “clearMode” specifies the clear mode as shown in Table 87.

Table 87—Clear mode options
Enumeration Description
0 Reserved
1 Clear all
2 Clear communications channel
3 Clear buffers
4 Reset TIM state machine
5 Clear TEDS cache
6–127 Reserved
128–255 Open to manufacturers

Return result: Error code

10.3.12 IEEE1451Dot0::TransducerServices::TransducerManager::registerStatusChange

IDL: Args::UInt16 registerStatusChange(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in AppCallback callback,
out Args::UInt16 operationId);

This method registers an application callback for TIM status change events on the specified transCommId.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

186
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

186 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.3.13

10.4

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “callback” specifies the callback interface. The AppCallback::statusChange() method will be invoked.

The [out] “operationId” is the returned operation ID.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TransducerManager:
:unregisterStatusChange

IDL: Args::UInt16 unregisterStatusChange(in Args::UInt16 transCommId);

This method unregisters an application callback for TIM status change events on the specified
transCommId.

Parameters:
The “transCommId” parameter specifies the transducer communication session.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TedsManager

IDL: interface TedsManager { };

The TedsManager interface is provided by the IEEE 1451.0 layer and is called by the application to
provide access to the TEDS. The methods in this interface are listed in Table 88.

Table 88—TedsAccess methods
IEEE1451Dot0::TransducerServices::TedsManager
Args::UInt16 readTeds(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8 tedsType,
out Args::ArgumentArray teds);
Args::UInt16 writeTeds(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8 tedsType,
in Args::ArgumentArray teds);
Args::UInt16 readRawTeds(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8
tedsType, out Args::OctetArray rawTeds);
Args::UInt16 writeRawTeds(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8
tedsType, in Args::OctetArray rawTeds);
Args::UInt16 updateTedsCache(in Args::UInt16 transCommId, in Args::TimeDuration time-out, in Args::UInt8
tedsType);

10.4.1 IEEE1451Dot0::TransducerServices::TedsManager::readTeds

IDL: Args::UInt16 readTeds(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 tedsType,
out Args::ArgumentArray teds);

This method will read the desired TEDS block from the TEDS cache. If the TEDS is not available from the
cache, it will read the TEDS from the TIM. The TEDS information is returned in an ArgumentArray.

187
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 187

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.4.2

10.4.3

Parameters:
The “transCommId” specifies the desired transducer communication session.

The “timeout” specifies the duration to wait before returning a time-out error if no response is received. A
value of secs == 0, nsecs == 0 implies no wait and may be used to only read from the cache. A value of
secs == 0, nsecs == –1 implies wait forever.

The “tedsType” parameter specifies what TEDS to return. See Table 17 for TEDS access codes.

The [out] “teds” ArgumentArray contains the TEDS information. The values may be retrieved by attribute
name. See Clause 8 for TEDS field names.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TedsManager::writeTeds

IDL: Args::UInt16 writeTeds(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 tedsType,
in Args::ArgumentArray teds);

This method will write the desired TEDS block to the TIM. The TEDS cache is also updated if the write
succeeds. The provided TEDS information is encoded in an ArgumentArray. It will be converted internally
to the correct “tuple” form and will be transferred to the TIM in an OctetArray.

The ArgumentArray shall include all the required TEDS fields for the type of TEDS being written. An
error will be returned if a required TEDS field is missing.

Parameters:
The “transCommId” specifies the desired transducer communication session.

The “timeout” specifies the duration to wait before returning a time-out error if no response is received. A
value of secs == 0, nsecs == 0 implies no wait and may be used to only read from the cache. A value of
secs == 0, nsecs == –1 implies wait forever.

The “tedsType” parameter specifies what TEDS to return. See Table 17 for TEDS access codes.

The [out] “teds” ArgumentArray contains the TEDS information. The values may be retrieved by attribute
name. See Clause 8 for TEDS field names.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TedsManager::readRawTeds

IDL: Args::UInt16 readRawTeds(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 tedsType,
out Args::OctetArray rawTeds);

This method will read the desired TEDS block from the TEDS bypassing the TEDS cache. The TEDS
information is returned in its raw OctetArray form. The TEDS cache will not be updated.

188
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

188 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Parameters:
The “transCommId” specifies the desired transducer communication session.

The “timeout” specifies the duration to wait before returning a time-out error if no response is received. A
value of secs == 0, nsecs == 0 implies no wait and may be used to only read from the cache. A value of
secs == 0, nsecs == –1 implies wait forever.

The “tedsType” parameter specifies what TEDS to return. See Table 17 for TEDS access codes.

The [out] “rawTeds” OctetArray contains the raw TEDS information in “tuple” form.

Return result: Error code

10.4.4

10.4.5

 IEEE1451Dot0::TransducerServices::TedsManager::writeRawTeds

IDL: Args::UInt16 writeRawTeds(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 tedsType,
in Args::OctetArray rawTeds);

This method will write the desired TEDS block to the TIM bypassing the TEDS cache. The provided
TEDS information is encoded in “tuple” form in an OctetArray. No verification of the OctetArray will be
performed.

CAUTION
Be sure to include all required TEDS fields in the OctetArray because what is written by this method will

replace the entire TEDS.

Parameters:
The “transCommId” specifies the desired transducer communication session.

The “timeout” specifies the duration to wait before returning a time-out error if no response is received. A
value of secs == 0, nsecs == –1 implies wait forever.

The “tedsType” parameter specifies what TEDS to write. See Table 17 for TEDS access codes.

The “rawTeds” OctetArray contains the raw TEDS information in “tuple” form.

Return result: Error code

 IEEE1451Dot0::TransducerServices::TedsManager::updateTedsCache

IDL: Args::UInt16 updateTedsCache(
in Args::UInt16 transCommId,
in Args::TimeDuration timeout,
in Args::UInt8 tedsType);

This method will update the TEDS cache. The TEDS checksum will be read from the TIM and compared
with the cached TEDS checksum. If the checksums differ, the TEDS will be read from the TIM and stored
in the cache.

Parameters:
The “transCommId” specifies the desired transducer communication session.

189
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 189

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.5

The “timeout” specifies the duration to wait before returning a time-out error if no response is received. A
value of secs == 0, nsecs == –1 implies wait forever.

The “tedsType” parameter specifies what TEDS to read. See Table 17 for TEDS access codes.

Return result: Error code

 IEEE1451Dot0::TransducerServices::CommManager

IDL: interface CommManager { };

The CommManager interface is provided by the IEEE 1451.0 layer and is called by the application to
provide a common mechanism to manage available communications on an NCAP. The methods are listed
in Table 89 and discussed in 10.5.1.

Table 89—CommManager
IEEE1451dot0::TransducerServices::CommManager
Args::UInt16 getCommModule(in Args::UInt8 moduleId, out ModuleCommunication::Comm commObject, out
Args::UInt8 type, out Args::UInt8 technologyId);

10.5.1 IEEE1451Dot0::TransducerServices::CommManager::getCommModule

IDL: Args::UInt16 getCommModule(
in Args::UInt8 moduleId,
out ModuleCommunication::Comm commObject,
out Args::UInt8 type,
out Args::UInt8 technologyId);

This returns the abstract “Comm” object for applications that need to bypass IEEE 1451.0 processing and
interact directly with the underlying communications object. By consulting the “type” parameter, the
application can safely downcast to either the “P2PComm” or the “NetComm” object.

Applications must use extreme caution when accessing the underlying “Comm” objects as incorrect usage
may compromise the IEEE 1451.0 layer. This method is provided to allow expansion beyond the
IEEE 1451.0 architecture.

Parameters:
The “moduleId” parameter is the desired communications module ID.

The [out] “commObject” parameter is returned to the application and is a reference to the underlying
object.

The [out] “type” parameter is returned to the application in order to allow a safe downcast. Valid values are
represented in the [out] “technologyId”, which specifies the underlying IEEE 1451.X technology. See
Table 90.

The [out] “technologyId” specifies the underlying IEEE 1451.X technology. See Table 99.

Table 90—Comm type enumerations
Enumerations Type code name Description
0 P2P_TYPE Specifies a P2PComm object
1 NET_COMM_TYPE Specifies a NetComm object
2–255 Reserved

 Return result: Error code

190
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

190 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.6 IEEE1451Dot0::TransducerServices::AppCallback

IDL: interface AppCallback { };

The AppCallback interface is provided by applications and is called by the IEEE 1451.0 layer to provide
access to non-blocking I/O and measurement streams. The interface methods are listed in Table 91.

Table 91—Application callback interface methods
IEEE1451Dot0::TransducerServices::AppCallback
Args::UInt16 measurementUpdate(in Args::UInt16 operationId, in Args::ArgumentArray measValues, in
Args::UInt16 status);
Args::UInt16 actuationComplete (in Args::UInt16 operationId, in Args::UInt16 status);
Args::UInt16 statusChange(in Args::UInt16 operationId, in Args::UInt16 status);
Args::UInt16 commandComplete(in Args::UInt16 operationId, in Args::ArgumentArray outArgs, in Args::UInt16
status);
Args::UInt16 triggerComplete(in Args::UInt16 operationId, in Args::UInt16 status);

10.6.1

10.6.2

 IEEE1451Dot0::TransducerServices::AppCallback::measurementUpdate

IDL: Args::UInt16 measurementUpdate(
in Args::UInt16 operationId,
in Args::ArgumentArray measValues,
in Args::UInt16 status);

This method will be invoked following a startRead() or startStream() call. For non-blocking operations, it
provides measurements back to the application. For the stream case, this callback will be invoked every
time new measurement data are available.

Parameters:
The “operationId” specifies the desired operation ID that was returned in the startRead() or startStream()
call.

The “measValues” contains the measurement information. The values may be retrieved by attribute name.
See Clause 7 for attribute names. See 10.2.6 read() for more details.

The “status” specifies the error code from the non-blocking read or stream operation.

Return result: The application shall return a status code back to the IEEE 1451.0 layer. See 9.3.1.2 for error
codes.

 IEEE1451Dot0::TransducerServices::AppCallback::actuationComplete

IDL: Args::UInt16 actuationComplete (
in Args::UInt16 operationId,
in Args::UInt16 status);

This method will be invoked following a startWrite() call. For non-blocking operations, it provides status
information back to the application.

191
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 191

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

10.6.3

10.6.4

10.6.5

Parameters:
The “operationId” specifies the desired operation ID that was returned in the startWrite() call.

The “status” specifies the error code from the non-blocking write operation.

Return result: The application shall return a status code back to the IEEE 1451.0 layer. See 9.3.1.2 for error
codes.

 IEEE1451Dot0::TransducerServices::AppCallback::statusChange

IDL: Args::UInt16 statusChange(
in Args::UInt16 operationId,
in Args::UInt16 status);

This method will be invoked following a registerStatusChange() call.

Parameters:
The “operationId” specifies the desired operation ID that was returned in the registerStatusChange() call.

The “status” specifies the TIM or TransducerChannel status information.

Return result: The application shall return a status code back to the IEEE 1451.0 layer. See 9.3.1.2 for error
codes.

 IEEE1451Dot0::TransducerServices::AppCallback::commandComplete

IDL: Args::UInt16 commandComplete(
in Args::UInt16 operationId,
in Args::ArgumentArray outArgs,
in Args::UInt16 status);

This method will be invoked following a startCommand(). It provides the output ArgumentArray back to
the application.

Parameters:
The “operationId” specifies the desired operation ID that was returned in the startRead() or startStream()
call.

The “outArgs” contains the returned ArgumentArray. This information is specific to each command.

The “status” specifies the error code from the non-blocking send command operation.

Return result: The application shall return a status code back to the IEEE 1451.0 layer. See 9.3.1.2 for error
codes.

 IEEE1451Dot0::TransducerServices::AppCallback::triggerComplete

IDL: Args::UInt16 triggerComplete(
in Args::UInt16 operationId,
in Args::UInt16 status);

This method will be invoked following a startTrigger(). It provides status information to inform the
application when the trigger has completed.

192
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

192 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.

Parameters:
The “operationId” specifies the desired operation ID that was returned in the startTrigger() call.

The “status” specifies the error code from the non-blocking trigger command operation.

Return result: The application shall return a status code back to the IEEE 1451.0 layer. See 9.3.1.2 for error
codes.

Module Communications API

IDL: module ModuleCommunication { };

The Module Communications API provides the interface between the functions defined by the
IEEE 1451.0 layer and the communications functions defined by another member of the IEEE 1451 family
of standards.

These IEEE 1451.0 interfaces are inside the IDL module “IEEE1451Dot0”.

NOTE—Throughout this clause, the nomenclature “IEEE 1451.0” or “1451.0” refers to a device or part of a device
that is in compliance with this standard. The term “IEEE 1451.X” or “1451.X” refers to a device or part of a device
that is in compliance with IEEE Std 1451.2-1997, IEEE Std 1451.3-2003, IEEE Std 1451.5-2007 [B4], IEEE P1451.6TM
[B3], or other similar standard. IEEE Std 1451.1-1999 and IEEE Std 1451.4-2004 are excluded from this list.

Table 92—Transducer Services API classes and interfaces
Interface Description
Comm The Comm abstract interface provides the mechanisms to control the “life cycle” of an IEEE

1451.X instance.
P2PComm The P2PComm interface is provided to perform point-to-point communication operations.
NetComm The NetComm interface is provided to perform network communication operations.
Registration The Registration interface provides methods to register an IEEE 1451.X module with the IEEE

1451.0 layer.
P2PRegistration The P2PRegistration interface provides methods to register specific TIMs with the IEEE

1451.0 layer.
NetRegistration The NetRegistration interface provides methods to register specific TIMs and groups of TIMs

with the IEEE 1451.0 layer.
Recieve The abstract Receive interface does not define any generic methods. It is provided for future

expansion.
P2PRecieve The P2PReceive interface provides methods for a IEEE 1451.X point-to-point communications

module to notify the IEEE 1451.0 layer that a message has been received. It also provides the
method for aborting an operation.

NetRecieve The NetReceive interface provides methods for IEEE 1451.X network communications module
to notify the IEEE 1451.0 layer that a message has been received. It also provides the method
for aborting an operation.

11.1 IEEE1451Dot0::ModuleCommunication::Comm

IDL: interface Comm { };

The Comm abstract interface is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer
to provide a common mechanism to control the “life cycle” of an IEEE 1451.X instance. The Comm
methods are listed in Table 93.

193
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 193

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 93—Comm methods
IEEE1451Dot0::ModuleCommunication::Comm
Args::UInt16 init()
Args::UInt16 shutdown()
Args::UInt16 sleep(in Args::TimeDuration duration)
Args::UInt16 wakeup()
Args::UInt16 setLocalConfiguration(in Args::ArgumentArray params)
Args::UInt16 getLocalConfiguration(out Args::ArgumentArray params);
Args::UInt16 sendLocalCommand(in Args::UInt8 cmdClassId, in Args::UInt8 cmdFunctionId, in
Args::ArgumentArray inArgs, out Args::ArgumentArray outArgs);
Args::UInt16 describe(out Args::UInt8 logicalType, out Args::UInt8 physicalType, out Args::_String name);

11.1.1

11.1.2

11.1.3

 IEEE1451Dot0::ModuleCommunication::Comm::init

IDL: Args::UInt16 init();

This method will be called at startup and when the IEEE 1451.0 layer needs to reset this IEEE 1451.X
instance to the power-on state. In dynamic cases, each IEEE 1451.X instance shall call the appropriate
Registration::Register1451.X() method to register this instance with the IEEE 1451.0 layer.

Parameters:
None.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Comm::shutdown

IDL: Args::UInt16 shutdown();

This method will be called to coordinate an orderly shutdown of this IEEE 1451.X instance. In dynamic
cases, each IEEE 1451.X instance shall call the Registration::unRegister1451.X() method to un-register
this instance from the IEEE 1451.0 syste,.

Parameters:
None.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Comm::sleep

IDL: Args::UInt16 sleep(in Args::TimeDuration duration);

This method is called by the IEEE 1451.0 layer to put this IEEE 1451.X instance into the sleep (i.e., low-
power) state. This will be when the IEEE 1451.0 layer does not intend to communicate through this
IEEE 1451.X interface for a significant period of time.

Parameters:
The “duration” parameter is the amount of time to sleep. A negative duration indicates the IEEE 1451.X
device should sleep until the wakeup method is invoked.

Return result: Error code

194
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

194 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.1.4

11.1.5

11.1.6

 IEEE1451Dot0::ModuleCommunication::Comm::wakeup

IDL: Args::UInt16 wakeup();

This method is called by the IEEE 1451.0 layer to wakeup this IEEE 1451.X instance from the sleep (i.e.,
low-power) state. This will be when the IEEE 1451.0 layer has previously put this IEEE 1451.X interface
to sleep and now needs to resume communication.

Parameters:
None.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Comm::performOperation

IDL: Args::UInt16 performOperation(
in Args::UInt16 operationId,
in Args::TimeDuration timeout,
in Args::ArgumentArray inArgs,
out Args::ArgumentArray outArgs);

This low-level mechanism sends an arbitrary command to the local IEEE 1451.X layer. This method will
perform a blocking operation. The format of input and output arguments is command dependent. The caller
shall make sure to use the correct data types for each input argument.

Parameters:
The “operationId” specifies the desired command class code. The IEEE 1451.X layer will define legal
operations.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “inArgs” are the input arguments in ArgumentArray form.

The [out] “outArgs” are returned output arguments.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Comm::setLocalConfiguration(delete)

IDL: Args::UInt16 setLocalConfiguration (in Args::ArgumentArray params
);

This method is called by the IEEE 1451.0 layer to configure this local instance of the IEEE 1451.X
interface. The contents of the “params” ArgumentArray are IEEE 1451.X specific.

Parameters:
The “params” parameter is an ArgumentArray of configuration state variables. Each state variable of
interest to the IEEE 1451.X layer should be retrieved from this array to set up the IEEE 1451.X instance.

Return result: Error code

195
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 195

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.1.7

11.1.8

11.1.9

 IEEE1451Dot0::ModuleCommunication::Comm::getLocalConfiguration(delete)

IDL: Args::UInt16 getLocalConfiguration (outout Args::ArgumentArray
params);

This method is called by the IEEE 1451.0 layer to retrieve the configuration for local instance of the IEEE
1451.X interface. The contents of the “params” ArgumentArray are IEEE 1451.X specific.

Parameters:
The [out] “params” parameter is an ArgumentArray of configuration state variables. Each state variable of
interest to the IEEE 1451.X layer should be returned in this array to allow setup of the IEEE 1451.X
instance in the future.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Comm::sendLocalCommand(Delete)

IDL: Args::UInt16 sendLocalCommand(
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,
in Args::ArgumentArray inArgs,
out Args::ArgumentArray outArgs);

This low-level mechanism sends an arbitrary command to the local IEEE 1451.X layer. This method will
perform a blocking operation. The format of input and output arguments is command dependent. The caller
shall make sure to use the correct data types for each input argument.

Parameters:
The “cmdClassId” specifies the desired command class code. See Table 15 for details.

The “cmdFunctionId” specifies the desired command function code. See Clause 7 for details.

The “inArgs” are the input arguments in ArgumentArray form.

The [out] “outArgs” are returned output arguments.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Comm::describe

IDL: UInt16 describe (
out UInt8 logicalType,
out UInt8 physicalType,
out _String name);

This generic mechanism describes the type of the underlying IEEE 1451.X object.

Parameters:
The [out] “logicalType” specifies the type of interface. See Table 94 for the details.

The [out] “physicalType” specifies the type of the physical layer. See Table 99 for details.

The [out] “name” is a human readable name that was provided during the registration process.

Return result: Error code

196
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

196 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 94—Logical interface type
Enumeration Logical type
0 Reserved
1 Point to point (P2P)
2 Network (Net)
3–127 Reserved
128–255 Open to manufacturers

11.2 IEEE1451Dot0::ModuleCommunication::P2PComm

IDL: interface P2PComm { };

The P2PComm interface is appropriate in cases where the node only receives and optionally replies to
incoming messages (i.e., it never initiates communications). Also, the P2PComm interface may be used in
the case where the node is only initiating communication to a single destination.

The P2PComm interface is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to
perform communication operations. The point-to-point Comm methods are listed in Table 95.

Table 95—Point-to-point Comm methods
IEEE1451Dot0::ModuleCommunication::P2PComm
Args::UInt16 read(in Args::TimeDuration time-out, inout Args::UInt32 len, out Args::OctetArray payload, out
Args::_Boolean last);
Args::UInt16 write(in Args::TimeDuration time-out, in Args::OctetArray payload, in Args::_Boolean last);
Args::UInt16 flush();
Args::UInt16 readSize(out Args::UInt32 cacheSize);
Args::UInt16 setPayloadSize(in Args::UInt32 size);
Args::UInt16 abort();
Args::UInt16 commStatus(out Args::UInt16 statusCode);
Args::UInt16 setRemoteConfiguration(in Args::TimeDuration time-out, in Args::ArgumentArray params);
Args::UInt16 getRemoteConfiguration(in Args::TimeDuration time-out, out Args::ArgumentArray params);
Args::UInt16 sendRemoteCommand(in Args::TimeDuration time-out, in Args::UInt8 cmdClassId, in Args::UInt8
cmdFunctionId, in Args::ArgumentArray inArgs, out Args::ArgumentArray outArgs);

11.2.1 IEEE1451Dot0::ModuleCommunication::P2PComm::read

IDL: Args::UInt16 read(
in Args::TimeDuration timeout,
in Args::UInt32 maxLen,
out Args::OctetArray payload,
out Args::_Boolean last);

This method is called by the IEEE 1451.0 layer to retrieve information on the current communication
operation. This method is always called by the IEEE 1451.0 layer on the receiving node for both one-way
and two-way communication sequences. For two-way, this method is also called on the initiating node to
retrieve the response.

In cases where the IEEE 1451.0 layer makes multiple read() calls for large payloads, the “len” value
returns the length of each transfer, not the total length. See 11.2.4 readSize() method to manage the cached
length.

Parameters:

197
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 197

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.2.2

11.2.3

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “maxLen” parameter indicates the maximum number of octets to be transferred by the IEEE 1451.X
layer.

The [out] “payload” parameter is the OctetArray provided by the IEEE 1451.0 layer to the IEEE 1451.X
layer.The IEEE 1451.X layer will transfer available data into this array.

The [out] “last” parameter indicates if additional calls to read() should be performed by the IEEE 1451.0
layer. A false value indicates that the IEEE 1451.X layer has more octets to communicate to the
IEEE 1451.0 layer and that the IEEE 1451.0 layer must make additional read() calls. A true value indicates
that the complete payload has been transferred from the IEEE 1451.X layer to the
IEEE 1451.0 layer.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::write

IDL: Args::UInt16 write(
in Args::TimeDuration timeout,
in Args::OctetArray payload,
in Args::_Boolean last);

This method is called by the IEEE 1451.0 layer to begin or continue a communication operation. It is
always called on the initiating node to begin communication. In two-way communications, it is also called
on the receiving node to provide the response.

Parameters:
The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “payload” parameter is the OctetArray to be communicated.

The “last” parameter indicates if additional calls to write() will be made by the IEEE 1451.0 layer to
provide additional portions of the payload. A false value indicates that the IEEE 1451.0 layer has more
octets to send and will call write() additional times. A true value indicates that the complete payload has
been transferred from the IEEE 1451.0 layer to the IEEE 1451.X layer.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::flush

IDL: Args::UInt16 flush();

This method is called by the IEEE 1451.0 layer to flush any cached information to the remote side. In most
cases, this call is not used because the IEEE 1451.X layer will always perform the transfer when the
write() call is invoked with “last” set to true.

Parameters:
None.

Return result: Error code

198
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

198 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.2.4

11.2.5

11.2.6

11.2.7

 IEEE1451Dot0::ModuleCommunication::P2PComm::readSize

IDL: Args::UInt16 readSize(out Args::UInt32 cacheSize);

This method is called by the IEEE 1451.0 layer to retrieve the number of octets available to be immediately
read. This represents the size of the cached data. This value may be less than the size of the complete
payload if the IEEE 1451.X layer has performed segmentation.

Parameters:
The [out] “cacheSize” returns the number of octets available to be immediately read.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::setPayloadSize

IDL: Args::UInt16 setPayloadSize(in Args::UInt32 size);

This method is called by the IEEE 1451.0 layer to set the total number of octets available in the full
payload. This method should be called when the IEEE 1451.0 layer expects to make multiple calls to
write() to pass the payload to the IEEE 1451.X layer in pieces. In cases where a single write() call is made
(i.e., last is true on the first call), this call is not needed as the IEEE 1451.X layer shall internally call this
method to record the payload size.

Parameters:
The “size” parameter specifies the full size of the payload.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::abort

IDL: Args::UInt16 abort();

This method is called by the IEEE 1451.0 layer on the initiating node to abort or reset a communication
channel. If the IEEE 1451.X layer has already initiated communication to the remote node, the
IEEE 1451.X layer shall make an effort to abort the remote processing. The “commId” may be used for
subsequent communications after this call. This method will not close the communication channel.

Parameters:
None.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::commStatus

IDL: Args::UInt16 commStatus(out Args::UInt16 statusCode);

This method is called by the IEEE 1451.0 layer on the initiating node to retrieve status information on the
local and remote state machine. Table 96 provides a list of the available status.

Parameters:
The [out] “statusCode” parameter returns the status information for the local (upper octet) and remote
(lower octet) state machines.

199
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 199

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Return result: Error code

Table 96—State machine status codes
Status enumeration State
1 Idle
2 InitiatorWriting
3 InitiatorClosing
4 InitiatorReceivePending
5 InitiatorReading
6 InitiatorAborting
7 ReceiverIncomingMsg
8 ReceiverReading
9 ReceiverWriting
10 ReceiverOutgoingMsg
11 ReceiverAborting
12–127 Reserved
128–255 Open to manufacturers

11.2.8

11.2.9

 IEEE1451Dot0::ModuleCommunication::P2PComm::setRemoteConfiguration

IDL: Args::UInt16 setRemoteConfiguration (
in Args::TimeDuration timeout,
in Args::ArgumentArray params);

This method is called by the IEEE 1451.0 layer on the initiating node to set the configuration on the remote
node. In cases where the params array needs to be transmitted to the remote node, it is recommended to use
the standard Encoder/Decoder mechanism to convert the ArgumentArray to/from an OctetArray.

Parameters:
The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “params” parameter is an ArgumentArray of configuration state variables. Each state variable of
interest to the IEEE 1451.X layer should be retrieved from this array to set up the remote IEEE 1451.X
instance.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::getRemoteConfiguration

IDL: Args::UInt16 getRemoteConfiguration (
in Args::TimeDuration timeout,
out Args::ArgumentArray params);

This method is called by the IEEE 1451.0 layer on the initiating node to get the configuration from the
remote node. In cases where the params array needs to be transmitted from the remote node, it is
recommended to use the standard Encoder/Decoder mechanism to convert the ArgumentArray to/from an
OctetArray.

Parameters:
The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

200
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

200 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.2.10

11.3

The [out] “params” parameter is an ArgumentArray of configuration state variables. Each state variable of
interest to the IEEE 1451.X layer should be stored in this array.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PComm::sendRemoteCommand

IDL: Args::UInt16 sendRemoteCommand(
in Args::TimeDuration timeout,
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,
in Args::ArgumentArray inArgs,
out Args::ArgumentArray outArgs);

This low-level mechanism sends an arbitrary command to the remote IEEE 1451.X layer. It is
recommended that the IEEE 1451.X layer use the standard Encoder/Decoder to convert the
ArgumentArrays to/from OctetArrays. This method will perform a blocking operation. The format of input
and output arguments is command dependent. The caller shall make sure to use the correct data types for
each input argument.

Parameters:
The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “cmdClassId” specifies the desired command class code. See Table 15 for details.

The “cmdFunctionId” specifies the desired command function code. See Clause 7 for details.

The “inArgs” are the input arguments in ArgumentArray form.

The [out] “outArgs” are returned output arguments.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm

IDL: interface NetComm { };

The NetComm interface is appropriate when the node needs to initiate access to one or more than one
destination.

The NetComm interface is provided by the IEEE 1451.X layer and is called by the IEEE 1451.0 layer to
perform communication operations. The methods that implement this interface are listed in Table 97.

201
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 201

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 97—Network Comm interface methods
IEEE1451Dot0::ModuleCommunication::NetComm
Args::UInt16 open(in Args::UInt16 destId, in Args::_Boolean twoWay, out Args::UInt16 maxPayloadLen, out
Args::UInt16 commId);
Args::UInt16 openQoS(in Args::UInt16 destId, in Args::_Boolean twoWay, out Args::UInt16 maxPayloadLen, out
Args::UInt16 commId, inout Args::QoSParams qosParams);
Args::UInt16 close(in Args::UInt16 commId);
Args::UInt16 readMsg(in Args::UInt16 commId, in Args::TimeDuration time-out, inout Args::UInt32 len, out
Args::OctetArray payload, out Args::_Boolean last);
Args::UInt16 readRsp(in Args::UInt16 commId, in Args::TimeDuration time-out, in Args::UInt16 msgId, in
Args::UInt32 maxLen, out Args::OctetArray payload, out Args::_Boolean last);
Args::UInt16 writeMsg(in Args::UInt16 commId, in Args::TimeDuration time-out, in Args::OctetArray payload, in
Args::_Boolean last, in Args::UInt16 msgId);
Args::UInt16 writeRsp(in Args::UInt16 commId, in Args::TimeDuration time-out, in Args::OctetArray payload, in
Args::_Boolean last);
Args::UInt16 flush(in Args::UInt16 commId);
Args::UInt16 readSize(in Args::UInt16 commId, out Args::UInt32 cacheSize);
Args::UInt16 setPayloadSize(in Args::UInt16 commId, in Args::UInt32 size);
Args::UInt16 abort(in Args::UInt16 commId);
Args::UInt16 commStatus(in Args::UInt16 commId, in Args::UInt16 msgId, out Args::UInt16 statusCode);
Args::UInt16 discoverDestinations();
Args::UInt16 joinGroup(in Args::UInt16 groupId, in Args::UInt16 destId);
Args::UInt16 leaveGroup(in Args::UInt16 groupId, in Args::UInt16 destId);
Args::UInt16 lookupDestId(in Args::UInt16 commId, out Args::UInt16 destId);
Args::UInt16 setRemoteConfiguration(in Args::UInt16 commId, in Args::TimeDuration time-out, in
Args::ArgumentArray params);
Args::UInt16 getRemoteConfiguration(in Args::UInt16 commId, in Args::TimeDuration time-out, out
Args::ArgumentArray params);
Args::UInt16 sendRemoteCommand(in Args::UInt16 commId, in Args::TimeDuration time-out, in Args::UInt8
cmdClassId, in Args::UInt8 cmdFunctionId, in Args::ArgumentArray inArgs, out Args::ArgumentArray outArgs);

11.3.1 IEEE1451Dot0::ModuleCommunication::NetComm::open

IDL: Args::UInt16 open(
in Args::UInt16 destId,
in Args::_Boolean twoWay,
out Args::UInt16 maxPayloadLen,
out Args::UInt16 commId);

This method is called by the IEEE 1451.0 layer on the initiating node to open a communication channel.

Parameters:
The “destId” parameter specifies the destination for the receiving NCAP or TIM.

If the “twoWay” parameter is true, it indicates that the initiator expects a return result from the
communication.

The [out] “maxPayloadLen” parameter indicates the maximum payload size that will be accepted in
subsequent write and read operations.

The [out] “commId” parameter is returned from this call.

Return result: Error code

202
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

202 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.2

11.3.3

11.3.4

 IEEE1451Dot0::ModuleCommunication::NetComm::openQoS

IDL: Args::UInt16 openQoS(
in Args::UInt16 destId,
in Args::_Boolean twoWay,
out Args::UInt16 maxPayloadLen,
out Args::UInt16 commId,
inout Args::QoSParams qosParams);

This method is called by the IEEE 1451.0 layer on the initiating node to open a communication channel
with “quality of service” parameters. If the call fails with QOS_FAILURE, the qosParams will be modified
to indicate values that the IEEE 1451.X layer can provide.

Parameters:
The “destId” parameter specifies the destination for the receiving NCAP or TIM.

If the “twoWay” parameter is true, it indicates that the initiator expects a return result from the
communication.

The [out] “maxPayloadLen” parameter indicates the maximum payload size that will be accepted in
subsequent write and read operations.

The [out] “commId” parameter is returned from this call.

The [inout] “qosParams” parameter provides desired “quality of service” parameters.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::close

IDL: Args::UInt16 close(Args::UInt16 commId);

This method is called by the IEEE 1451.0 layer to close a communication channel. This is called the IEEE
1451.0 layer on the initiating node. No further communications on this “commId” are allowed once the
channel is closed.

Parameters:
The “commId” parameter specifies the communication channel.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::readMsg

IDL: Args::UInt16 readMsg(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
inout Args::UInt32 len,
out Args::OctetArray payload,
out Args::_Boolean last);

This method is called by the IEEE 1451.0 layer to retrieve information on the current communication
operation. This method is always called by the IEEE 1451.0 layer on the receiving node for both one-way
and two-way communication sequences.

203
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 203

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.5

In cases where the IEEE 1451.0 layer makes multiple readMsg() calls for large payloads, the “len” value
returns the length of each transfer, not the total length. See 11.3.9, the readSize() method, to manage the
cached length.

Parameters:
The “commId” parameter specifies the communication channel.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

As an “in” function the “len” parameter indicates the maximum number of octets to be transferred by the
IEEE 1451.X layer. In the reply it indicates the number of octets transferred.

The [out] “payload” parameter is the OctetArray provided by the IEEE 1451.0 layer to the IEEE 1451.X
layer. The IEEE 1451.X layer will transfer available data into this array. Note the length of the returned
OctetArray may be less than the maxLen parameter.

The [out] “last” parameter indicates if additional calls to readMsg() should be performed by the
IEEE 1451.0 layer. A false value indicates that the IEEE 1451.X layer has more octets to communicate to
the IEEE 1451.0 layer and that the IEEE 1451.0 layer must make additional readMsg() calls. A true value
indicates that the complete payload has been transferred from the IEEE 1451.X layer to the
IEEE 1451.0 layer.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::readRsp

IDL: Args::UInt16 readRsp(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
in Args::UInt16 msgId,
in Args::UInt32 maxLen,
out Args::OctetArray payload,
out Args::_Boolean last);

This method is called by the IEEE 1451.0 layer to retrieve the response information on the current
communication operation. This method is always called by the IEEE 1451.0 layer on the initiating node for
two-way communication sequences.

In cases where the IEEE 1451.0 layer makes multiple readRsp() calls for large payloads, the “len” value
returns the length of each transfer, not the total length. See 11.3.9, the readSize() method, to manage the
cached length.

Parameters:
The “commId” parameter specifies the communication channel.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “msgId” parameter shall be the same value that was provided in the writeMsg() call that began this
transaction. See the notifyRsp() callback on how the initiator is notified that the response is ready.

The “maxLen” parameter indicates the maximum number of octets to be transferred by the IEEE 1451.X
layer.

The [out] “payload” parameter is the OctetArray provided by the IEEE 1451.0 layer to the IEEE 1451.X
layer. The IEEE 1451.X layer will transfer available data into this array. Note the length of the OctetArray
may be less than the maxLen parameter.

204
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

204 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.6

11.3.7

The [out] “last” parameter indicates if additional calls to readRsp() should be performed by the
IEEE 1451.0 layer. A false value indicates that the IEEE 1451.X layer has more octets to communicate to
the IEEE 1451.0 layer and that the IEEE 1451.0 layer must make additional readRsp() calls. A true value
indicates that the complete payload has been transferred from the IEEE 1451.X layer to the
IEEE 1451.0 layer.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::writeMsg

IDL: Args::UInt16 writeMsg(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
in Args::OctetArray payload,
in Args::_Boolean last,
in Args::UInt16 msgId);

This method is called by the IEEE 1451.0 layer to begin or continue a communication operation. It is only
called on the initiating node to begin communication. For two-way communications, see writeRsp() for
how the receiving node provides the response.

Parameters:
The “commId” parameter specifies the communication channel.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “payload” parameter is the OctetArray to be communicated.

The “last” parameter indicates if additional calls to writeMsg() will be made by the IEEE 1451.0 layer to
provide additional portions of the payload. A false value indicates that the IEEE 1451.0 layer has more
octets to send and will call writeMsg() additional times. A true value indicates that the complete payload
has been transferred from the IEEE 1451.0 layer to the IEEE 1451.X layer.

The “msgId” parameter defines the “message ID” for this transaction. In two-way transactions, the
IEEE 1451.X layer shall pass this same “msgId” back to the initiator in the NetReceive::notifyRsp() call.
A value of 0 indicates a “one way” call.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::writeRsp

IDL: Args::UInt16 writeRsp(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
in Args::OctetArray payload,
in Args::_Boolean last);

This method is called by the IEEE 1451.0 layer to return a response to a command.

Parameters:
The “commId” parameter specifies the communication channel.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
timeout error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “payload” parameter is the OctetArray to be communicated.

205
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 205

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.8

11.3.9

11.3.10

The “last” parameter indicates if additional calls to writeRsp() will be made by the IEEE 1451.0 layer to
provide additional portions of the payload. A false value indicates that the IEEE 1451.0 layer has more
octets to send and will call writeRsp() additional times. A true value indicates that the complete payload
has been transferred from the IEEE 1451.0 layer to the IEEE 1451.X layer.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::flush

IDL: Args::UInt16 flush(in Args::UInt16 commId);

This method is called by the IEEE 1451.0 layer to flush any cached information to the remote side. In most
cases, this call is not used because the IEEE 1451.X layer will always perform the transfer when the
writeMsg() or writeRsp() call is invoked with “last” set to true.

Parameters:
The “commId” parameter specifies the communication channel.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::readSize

IDL: Args::UInt16 readSize(
in Args::UInt16 commId,
out Args::UInt32 cacheSize);

This method is called by the IEEE 1451.0 layer to retrieve the number of octets available to be immediately
read. This represents the size of the cached data. This value may be less than the size of the complete
payload if the IEEE 1451.X layer has performed segmentation.

Parameters:
The “commId” parameter specifies the communication channel.

The [out] “cacheSize” returns the number of octets available to be immediately read.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::setPayloadSize

IDL: Args::UInt16 setPayloadSize(
in Args::UInt16 commId,
in Args::UInt32 size);

This method is called by the IEEE 1451.0 layer to set the total number of octets available in the full
payload. This method should be called when the IEEE 1451.0 layer expects to make multiple calls to
writeMsg() or writeRsp() to pass the payload to the IEEE 1451.X layer in pieces. In cases where a single
writeMsg() or writeRsp() call is made (i.e., last is true), this call is not needed as the IEEE 1451.X layer
shall internally call this method to record the payload size.

206
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

206 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.11

11.3.12

11.3.13

Parameters:
The “commId” parameter specifies the communication channel.

The “size” parameter specifies the full size of the payload.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::abort

IDL: Args::UInt16 abort(in Args::UInt16 commId);

This method is called by the IEEE 1451.0 layer on the initiating node to abort or reset a communication
channel. If the IEEE 1451.X layer has already initiated communication to the remote node, the
IEEE 1451.X layer shall make an effort to abort the remote processing. The “commId” may be used for
subsequent communications after this call. This method will not close the communication channel.

Parameters:
The “commId” parameter specifies the communication channel.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::commStatus

IDL: Args::UInt16 commStatus(
in Args::UInt16 commId,
in Args::UInt16 msgId,
out Args::UInt16 statusCode);

This method is called by the IEEE 1451.0 layer on the initiating node to retrieve status information on the
local and remote state machine. Table 96 provides a list of the available status.

Parameters:
The “commId” parameter specifies the communication channel.

The “msgId” parameter specifies the message transaction ID.

The [out] “statusCode” parameter returns the status information for the local (upper octet) and remote
(lower octet) state machines.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::discoverDestinations

IDL: Args::UInt16 discoverDestinations();

This method is called by the IEEE 1451.0 layer to force a discovery and registration of all TIMs accessible
through this IEEE 1451.X instance. In response, the IEEE 1451.X layer will invoke the
Register::registerDest() method for each destination.

In normal situations, the IEEE 1451.X layer should automatically call registerDest() at initialization time
and during a hot-swap event.

207
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 207

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.14

11.3.15

11.3.16

Parameters:
None.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::joinGroup

IDL: Args::UInt16 joinGroup(
In Args::UInt16 groupId,
In Args::UInt16 destId);

This method is called by the IEEE 1451.0 layer to add a destination TIM to a multicast group. If the group
does not exist, it will be created by this call.

NOTE—This call does not assign TransducerChannels to an AddressGroup. That is accomplished using the
AddressGroup definition command described in 7.1.2.3.

Parameters:
The “groupId” parameter specifies the group to join.

The “destId” parameter specifies the node to add to the group.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::leaveGroup

IDL: Args::UInt16 leaveGroup(
in Args::UInt16 groupId,
in Args::UInt16 destId);

This method is called by the IEEE 1451.0 layer to remove a destination from a multicast group. A call to
close() for a groupId will result in all destinations being removed from the group.

Parameters:
The “groupId” parameter specifies the group to leave.

The “destId” parameter specifies the node to remove from the group.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::lookupDestId

IDL: Args::UInt16 lookupDestId (
in Args::UInt16 commId,
out Args::UInt16 destId);

This method is called by the IEEE 1451.0 layer to convert the commId back into the destId. This may be
used on the receiving side to find out the destination ID of the sending node.

Parameters:
The “commId” parameter specifies the communication channel.

The [out] “destId” parameter specifies the destination associated with the commId.

208
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

208 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.17

11.3.18

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::setRemoteConfiguration

IDL: Args::UInt16 setRemoteConfiguration(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
in Args::ArgumentArray params);

This method is called by the IEEE 1451.0 layer to set the configuration on the remote destination. The
contents of the ArgumentArray are IEEE 1451.X specific. In cases where the ArgumentArray needs to be
transmitted to the remote node, the standard Encode/Decode mechanism is recommended to convert the
ArgumentArray into/ from OctetArray form.

Parameters:
The “commId” parameter specifies the communications channel.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The “params” parameter specifies the configuration parameters.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetComm::getRemoteConfiguration

IDL: Args::UInt16 getRemoteConfiguration(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
out Args::ArgumentArray params);

This method is called by the IEEE 1451.0 layer to get the configuration from the remote destination. The
contents of the ArgumentArray are IEEE 1451.X specific. In cases where the ArgumentArray needs to be
transmitted to the remote node, the standard Encode/Decode mechanism is recommended to convert the
ArgumentArray into/from OctetArray form.

Parameters:
The “commId” parameter specifies the communications channel.

The “timeout” parameter specifies the maximum amount of time the caller is willing to block before a
time-out error should be returned. A value of secs == 0, nsecs == –1 means “wait forever.”

The [out] “params” parameter specifies the configuration parameters.

Return result: Error code

209
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 209

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.3.19

11.4

 IEEE1451Dot0::ModuleCommunication::NetComm::sendRemoteCommand

IDL: Args::UInt16 sendRemoteCommand(
in Args::UInt16 commId,
in Args::TimeDuration timeout,
in Args::UInt8 cmdClassId,
in Args::UInt8 cmdFunctionId,
in Args::ArgumentArray inArgs,
out Args::ArgumentArray outArgs);

This low-level mechanism sends an arbitrary command to the remote IEEE 1451.X layer. It is
recommended that the IEEE 1451.X layer use the standard Encoder/Decoder to convert the
ArgumentArrays to/from OctetArrays. This method will perform a blocking operation. The format of input
and output arguments is command dependent. The caller shall make sure to use the correct data types for
each input argument.

Parameters:
The “commId” specifies the communication channel.

The “cmdClassId” specifies the desired command class code. See Table 15 for details.

The “cmdFunctionId” specifies the desired command function code. See Clause 7 for details.

The “timeout” is the maximum time to wait before a time-out error. A value of secs == 0, nsecs == –1
means “wait forever.”

The “inArgs” are the input arguments in ArgumentArray form.

The [out] “outArgs” are returned output arguments.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Registration

IDL: interface Registration { }

The abstract Registration Interface is a collection of methods provided by the IEEE 1451.0 layer and is
called by the IEEE 1451.X layer. The methods are listed in Table 98. See the interfaces P2PRegistration
and NetRegistration for additional methods.

Table 98—Registration interface methods
IEEE1451Dot0::ModuleCommunication::Registration
Args::UInt16 unRegisterModule (in Args::UInt8 moduleId);
Args::UInt16 reportModules (in Args::UInt8 maxLen, in Args::UInt8 offset, out Args::UInt8Array moduleIds);
Args::UInt16 getCommModule(in Args::UInt8 moduleId, out Comm commObject, out Args::UInt8 type, out
Args:UInt8 technologyId);

11.4.1 IEEE1451Dot0::ModuleCommunication::Registration::registerModule

Two methods are used to register an IEEE 1451.X interface with the IEEE 1451.0 layer. One method,
P2Pregistration (see 11.5.1), is called by devices using the P2PComm methods. The other method,
NetRegistration (see 11.6.1), is used with devices using the NetComm methods. The enumerations used to
identify the various interfaces are listed in Table 99.

210
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

210 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 99—Communication module identifiers
Enumeration Standard
0 Reserved
1 IEEE Std 1451.2-1997 using 10-wire TII
2 IEEE Std 1451.2-1997 using RS-232
3 IEEE Std 1451.3-2003
4 IEEE Std 1451.5-2007, Clause 6 [B4]
5 IEEE Std 1451.5-2007, Clause 8 [B4]
6 IEEE Std 1451.5-2007, Clause 7 [B4]
7 IEEE Std 1451.5-2007, Clause 9 [B4]
8 IEEE P1451.6 [B3]
9–254 Reserved
255 Not in conformance to any released or in development standard

11.4.2

11.4.3

 IEEE1451Dot0::ModuleCommunication::Registration::unRegisterModule

IDL: Args::UInt16 unRegisterModule (in Args::UInt8 moduleId);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer to de-register an
interface. Its purpose is to inform the IEEE 1451.0 layer that this instance of the IEEE 1451.X interface is
no longer available.

Parameters:
The “moduleId” parameter specifies which interface to de-register. The IEEE 1451.0 layer will remove all
knowledge of this interface from its cache.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::Registration::reportModules

IDL: Args::UInt16 reportModules (
in Args::UInt16 maxLen,
in Args::UInt16 offset,
out Args::UInt8Array moduleIds);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer or other layers to
report the known interfaces.

Parameters:
The “maxLen” parameter indicates the maximum number of interfaces to report.

The “offset” parameter indicates the starting position when the number of modules registered is greater
than maxLen. Zero is the beginning position.

The [out] “moduleIds” parameter contains the return values. These are the “moduleId” value for each
available module interface. The length of this array may be less than maxLen.

Return result: Error code

211
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 211

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.4.4

11.5

 IEEE1451Dot0::ModuleCommunication::Registration::getCommModule

IDL: Args::UInt16 getCommModule(
in Args::UInt8 moduleId,
out Comm commObject,
out Args::UInt8 type,
out Args::UInt8 technologyId);

This returns the abstract “Comm” object. By consulting the “type” parameter, a safe downcast to either the
“P2PComm” or “NetComm” object may be performed.

Use extreme caution when accessing the underlying “Comm” objects as incorrect usage can compromise
the IEEE 1451.0 and IEEE 1451.X layers. This method is provided to allow expansion beyond the
IEEE 1451.0 architecture. The enumerations for the argument “type” are listed in Table 94.

Parameters:
The “moduleId” parameter is the desired communications module ID.

The [out] “commObject” parameter is returned to the application and is a reference to the underlying
object.

The [out] “type” parameter is returned to the application in order to allow a safe downcast. Valid values are
listed in Table 94.

The [out] “technologyId” specifies the underlying IEEE 1451.X technology. See Table 99 for a list of the
enumerations used to identify these technologies.

 Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PRegistration

IDL: interface P2PRegistration { }

The P2P Registration Interface is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X
layer for the P2P case. The methods that make up this interface are listed in Table 100.

Table 100—P2PRegistration interface methods
IEEE1451Dot0::ModuleCommunication::P2PRegistration
Args::UInt16 registerModule(in P2PComm commInterface, in Args::UInt8 technologyId, in Args::_String name,
out Args::UInt8 moduleId);
Args::UInt16 registerDestination(in Args::UInt8 moduleId, in Args::UInt16 maxPayloadSize);
Args::UInt16 unregisterDestination(in Args::UInt8 moduleId);

11.5.1 IEEE1451Dot0::ModuleCommunication::P2PRegistration::registerModule

IDL: Args::UInt16 registerModule(
in P2PComm commInterface,
in Args::UInt8 technologyId,
in Args::_String name,
out Args::UInt8 moduleId);

212
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

212 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.5.2

11.5.3

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer during
configuration for the “P2P” case. Its purpose is to inform the IEEE 1451.0 layer that the IEEE 1451.X
layer is available.

Parameters:
The “commInterface” parameter specifies the P2PComm interface. See Table 94 for possible values. the
IEEE 1451.0 layer will cache this information and use it to invoke appropriate methods when engaging in
communication operations.

The “technologyId” specifies the underlying IEEE 1451.X technology. See Table 99 for a list of the
enumerations used to identify these technologies.

The “name” parameter is a human readable name string for display purposes.

The out “moduleId” parameter is returned as a “interface identifier” that can be used in the unRegister()
method.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PRegistration::registerDestination

IDL: Args::UInt16 registerDestination(
in Args::UInt8 moduleId,
in Args::UInt16 maxPayloadSize);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer during
configuration for the “P2P” case. Its purpose is to inform the IEEE 1451.0 layer that a valid TIM has been
attached to the interface and is available.

Parameters:
The “moduleId” parameter specifies the P2PComm “interface identifier”

The “maxPayloadLen” parameter indicates the maximum payload size that will be accepted in subsequent
read() and write() operations.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::P2PRegistration::unregisterDestination

IDL: Args::UInt16 unregisterDestination(in Args::UInt8 moduleId);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer during
configuration for the “P2P” case. Its purpose is to inform the IEEE 1451.0 layer that the TIM has been
detached from the interface and is no longer available.

Parameters:
The “moduleId” parameter specifies the P2PComm “interface identifier”

Return result: Error code

213
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 213

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.6 IEEE1451Dot0::ModuleCommunication::NetRegistration

IDL: interface NetRegistration { }

The NetRegistration Interface is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer
for the network case. The methods required by this interface are listed in Table 101.

Table 101—NetRegistration interface methods
IEEE1451Dot0::ModuleCommunication::NetRegistration
Args::UInt16 registerModule (in NetComm commInterface, in Args::UInt8 technologyId, in Args::_String name,
out Args::UInt8 moduleId);
Args::UInt16 registerDestination (in Args::UInt8 moduleId, out Args::UInt16 destId);
Args::UInt16 unRegisterDestination (in Args::UInt8 moduleId, in Args::UInt16 destId);
Args::UInt16 reportDestinations (in Args::UInt8 moduleId, in Args::UInt16 maxLen, in Args::UInt16 offset, out
Args::UInt16Array destinations);
Args::UInt16 reportGroups (in Args::UInt8 moduleId, in Args::UInt16 maxLen, in Args::UInt16 offset, out
Args::UInt16Array groups);
Args::UInt16 reportGroupMembers (in Args::UInt8 moduleId, in Args::UInt16 groupId, in Args::UInt16 maxLen,
in Args::UInt16 offset, out Args::UInt16Array groups);

11.6.1

11.6.2

 IEEE1451Dot0::ModuleCommunication::NetRegistration::registerModule

IDL: Args::UInt16 registerModule(
in NetComm commInterface,
in Args::UInt8 technologyId,
in Args::_String name,
out Args::UInt8 moduleId);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer during
configuration for the “Net” case. Its purpose is to inform the IEEE 1451.0 layer that the IEEE 1451.X layer
is available.

Parameters:
The “commInterface” parameter specifies the NetComm interface. See Table 94 for possible values. The
IEEE 1451.0 layer will cache this information and use it to invoke appropriate methods when engaging in
communication operations.

The “technologyId” specifies the underlying IEEE 1451.X technology. See Table 99 for a list of the
enumerations used to identify these technologies.

The “name” parameter is a human-readable name string for display purposes.

The [out] “moduleId” parameter is returned as a “interface identifier” that can be used in the unRegister()
method.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetRegistration::registerDestination

IDL: Args::UInt16 registerDestination (
in Args::UInt8 moduleId,
out Args::UInt16 destId);

214
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

214 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.6.3

11.6.4

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer to register a new
destination. Its purpose is to inform the IEEE 1451.0 layer that the new destination is available. It is the
responsibility of the IEEE 1451.X layer to detect whether a new TIM appears in the system and to register
it with the IEEE 1451.0 layer.

Parameters:
The “moduleId” parameter specifies instance ID for this IEEE 1451.X interface.

The [out] “destId” parameter is returned. The “destination identifier” is assigned by the IEEE 1451.0 layer.
The IEEE 1451.X layer will need to cache appropriate communication endpoint information for this
“destId.” The “destId” parameter will be passed back to the IEEE 1451.X layer during the open() or
openQoS() call.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetRegistration::unRegisterDestination

IDL: Args::UInt16 unRegisterDestination (
in Args::UInt8 moduleId,
in Args::UInt16 destId);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer to unregister a
destination. Its purpose is to inform the IEEE 1451.0 layer that the destination is no longer available. It is
the responsibility of the IEEE 1451.X layer to detect whether a TIM disappears from the system and
unRegister that TIM with the IEEE 1451.0 layer.

Parameters:
The “moduleId” parameter specifies the instance ID for this IEEE 1451.X interface.

The “destId” parameter is the destination identifier to unregister.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetRegistration::reportDestinations

IDL: Args::UInt16 reportDestinations (
in Args::UInt8 moduleId,
in Args::UInt16 maxLen,
in Args::UInt16 offset,
out Args::UInt16Array destinations);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer or other layers to
report the known destinations associated with this IEEE 1451.X interface. Note that group destinations are
not returned in this call. The maxLen and offset parameters can be used on memory-constrained systems to
retrieve only a portion of the known modules.

Parameters:
The “moduleId” specifies the instance ID for this IEEE 1451.X interface.

The “maxLen” parameter indicates the maximum number of interfaces to report.

The “offset” parameter indicates the desired starting position, with zero being the first position.

The [out] “destinations” parameter provides the return values. These are the “destId” values for each
known destination.

215
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 215

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.6.5

11.6.6

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetRegistration::reportGroups

IDL: Args::UInt16 reportGroups (
in Args::UInt8 moduleId,
in Args::UInt16 maxLen,
in Args::UInt16 offset,
out Args::UInt16Array groups);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer or other layers to
report the known groups associated with this IEEE 1451.X interface.

Parameters:
The “moduleId” specifies the instance ID for this IEEE 1451.X interface.

The “maxLen” parameter indicates the maximum number of interfaces to report.

The “offset” parameter indicates the desired starting position, with zero being the first position.

The [out] “groups” parameter provides an array for the IEEE 1451.0 layer to use to return the values.
These are the “destId” values for each known group destination.

Return result: Error code

 IEEE1451Dot0::ModuleCommunication::NetRegistration::reportGroupMembers

IDL: Args::UInt16 reportGroupMembers (
in Args::UInt8 moduleId,
in Args::UInt16 groupId,
in Args::UInt16 maxLen,
in Args::UInt16 offset,
out Args::UInt16Array groups);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer or other layers to
report the known members in a specific “groupId” that is associated with this IEEE 1451.X interface.

Parameters:
The “moduleId” specifies the instance ID for this IEEE 1451.X interface.

The “groupId” parameter indicates the desired group ID.

The “maxLen” parameter indicates the maximum number of interfaces to report.

The “offset” parameter indicates the desired starting position, with zero being the first position.

The [out] “groups” parameter provides an array for the IEEE 1451.0 layer to use to return the values.
These are the “destId” values for each known group destination.

Return result: Error code

216
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

216 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.7

11.8

 IEEE1451Dot0::ModuleCommunication::Receive

IDL: interface Receive { }

The abstract Receive Interface does not define any generic methods. It is provided for future expansion.

 IEEE1451Dot0::ModuleCommunication::P2PReceive

IDL: interface P2PReceive { }

The P2PReceive interface is a collection of methods provided by the IEEE 1451.0 layer and is called by
the IEEE 1451.X layer. The methods used to implement this interface are listed in Table 102.

Table 102—P2PReceive interface methods
IEEE1451Dot0::ModuleCommunication::P2PReceive
Args::UInt16 abort(in Args::UInt16 status);
Args::UInt16 notifyMsg(in Args::_Boolean twoWay, in Args::UInt32 payloadLen, in Args::UInt32 cacheLen, in
Args::UInt16 status);
Args::UInt16 notifyRsp(in Args::UInt32 payloadLen, in Args::UInt32 cacheLen, in Args::UInt16 status);

11.8.1

11.8.2

 IEEE1451Dot0::ModuleCommunication::P2PReceive::abort

IDL: Args::UInt16 abort(in Args::UInt16 status);

This method is called by the IEEE 1451.X layer to abort the current operation. This will be called by the
receiving node’s IEEE 1451.X layer when the IEEE 1451.0 command processing has already been initiated
and must be terminated.

Parameters:
The “status” parameter provides an error code on why abort() was called.

Return result: Error code returned back to the IEEE 1451.X layer. Typically, this return value will be
ignored by the IEEE 1451.X layer.

 IEEE1451Dot0::ModuleCommunication::P2PReceive::notifyMsg

IDL: Args::UInt16 notifyMsg(
in Args::_Boolean twoWay,
in Args::UInt32 payloadLen,
in Args::UInt32 cacheLen,
in Args::UInt16 status);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer when an
incoming message is available. This is invoked on the receiving node.

Parameters:
The “twoWay” parameter indicates if the command does not generate a reply. A “true” value indicates a
reply is expected.

The “payloadLen” parameter indicates the total size of the payload.

217
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 217

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.8.3

11.9

The “cacheLen” parameter indicates the number of octets that can be immediately read.

The “status” parameter provides an error code on why notifyMsg() was called.

Return result: Error code returned back to the IEEE 1451.X layer. Typically, this return value will be
ignored by the IEEE 1451.X layer.

 IEEE1451Dot0::ModuleCommunication::P2PReceive::notifyRsp

IDL: Args::UInt16 notifyRsp(
in Args::UInt32 payloadLen,
in Args::UInt32 cacheLen,
in Args::UInt16 status);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer when an
incoming response message is available. This is invoked on the initiating node for two-way
communications.

Parameters:
The “payloadLen” parameter indicates the total size of the payload.

The “cacheLen” parameter indicates the number of octets that can be immediately read.

The “status” parameter provides an error code on why notifyRsp() was called.

Return result: Error code returned back to the IEEE 1451.X layer. Typically, this return value will be
ignored by the IEEE 1451.X layer.

 IEEE1451Dot0::ModuleCommunication::NetReceive

IDL: interface NetReceive { }

The NetReceive interface is a collection of methods provided by the IEEE 1451.0 layer and is called by the
IEEE 1451.X layer. The methods used to implement this interface are listed in Table 103.

Table 103—NetReceive interface methods
IEEE1451Dot0::ModuleCommunication::NetReceive
Args::UInt16 abort(in Args::UInt16 commId, in Args::UInt16 status);
Args::UInt16 notifyMsg(in Args::UInt16 rcvCommId, in Args::_Boolean twoWay, in Args::UInt32 payloadLen, in
Args::UInt32 cacheLen, in Args::UInt16 maxPayloadLen, in Args::UInt16 status);
Args::UInt16 notifyRsp(in Args::UInt16 rcvCommId, in Args::UInt16 msgId, in Args::UInt32 payloadLen, in
Args::UInt32 cacheLen, in Args::UInt16 maxPayloadLen, in Args::UInt16 status);

11.9.1 IEEE1451Dot0::ModuleCommunication::NetReceive::abort

IDL: Args::UInt16 abort(
in Args::UInt16 commId,
in Args::UInt16 status);

This method is called by the IEEE 1451.X layer to abort the current operation. This will be called by the
receiving node’s IEEE 1451.X layer when the IEEE 1451.0 command processing has already been initiated
and must be terminated.

218
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

218 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

11.9.2

11.9.3

If the commId argument is zero, this call will abort all active transactions.

Parameters:
The “commId” parameter specifies the active communication channel.

The “status” parameter provides an error code on why notifyRsp() was called.

Return result: Error code returned back to the IEEE 1451.X layer. Typically, this return value will be
ignored by the IEEE 1451.X layer.

 IEEE1451Dot0::ModuleCommunication::NetReceive::notifyMsg

IDL: Args::UInt16 notifyMsg(
in Args::UInt16 rcvCommId,
in Args::_Boolean twoWay,
in Args::UInt32 payloadLen,
in Args::UInt32 cacheLen,
in Args::UInt16 maxPayloadLen,
in Args::UInt16 status);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer when an
incoming message is available. This is invoked on the receiving node.

Parameters:
The “rcvCommId” parameter specifies the active communication channel. Note that the receiving node’s
IEEE 1451.0 layer does not call open() or close() on this “rcvCommId.” This “rcvCommId” is managed
by the IEEE 1451.X layer.

If the “twoWay” parameter is true, then a response is expected in this transaction.

The “payloadLen” parameter indicates the total size of the payload.

The “cacheLen” parameter indicates the number of octets that can be immediately read.

The “maxPayloadLen” parameter indicates the maximum payload size that will be accepted in subsequent
readMsg() and writeRsp() operations.

The “status” parameter provides an error code on why notifyRsp() was called.

Return result: Error code returned back to the IEEE 1451.X layer. Typically, this return value will be
ignored by the IEEE 1451.X layer.

 IEEE1451Dot0::ModuleCommunication::NetReceive::notifyRsp

IDL: Args::UInt16 notifyRsp(
in Args::UInt16 rcvCommId,
in Args::UInt16 msgId,
in Args::UInt32 payloadLen,
in Args::UInt32 cacheLen,
in Args::UInt16 maxPayloadLen,
in Args::UInt16 status);

This method is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer when an
incoming response message is available. This is invoked on the initiating node for two-way
communications.

NOTE—The receiving node’s IEEE 1451.0 layer does not call open(), so a “rcvCommId” is automatically provided in
this call. This “rcvCommId” is managed by the IEEE 1451.X layer.

219
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 219

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.

For “two way” communications, the receiving IEEE 1451.0 layer will invoke writeRsp() and eventually
close() to end this side of the transaction.

Parameters:
The “rcvCommId” parameter specifies the active communication channel. Note that the receiving node’s
IEEE 1451.0 layer does not call open() or close() on this “rcvCommId.” This “rcvCommId” is managed
by the IEEE 1451.X layer.

The “msgId” is passed to the IEEE 1451.0 layer to associate this reply with the corresponding call to
writeMsg().

The “payloadLen” parameter indicates the total size of the payload.

The “cacheLen” parameter indicates the number of octets that can be immediately read.

The “maxPayloadLen” parameter indicates the maximum payload size that will be accepted in subsequent
readRsp() operation.

The “status” parameter provides an error code on why notifyRsp() was called.

Return result: Error code returned back to the IEEE 1451.X layer. Typically, this return value will be
ignored by the IEEE 1451.X layer.

HTTP protocol

The HTTP is a protocol used to transfer or convey information on the World Wide Web. HTTP is a client–
server protocol by which two processors can communicate over a TCP/IP connection. An HTTP server is a
program that resides in a processor listening to a port for HTTP requests. An HTTP client opens a TCP/IP
connection to the server via a socket, transmits a request, and then waits for a reply from the server. For
this IEEE standard, the “client-–server” model, which is used to define HTTP, is analogous to the IEEE
1451.0 “NCAP-End User.” The NCAP can be compared with the “server” as it serves data to the attached
network, and the End-User can be compared with the “client” as the end-user receives sensor data to view
from the server and sends commands and data to the server to drive actuators.

HTTP Client Request: The HTTP client sends a request message formatted according to the rules of
the HTTP standard—an HTTP Request. This message specifies the resource that the client wishes to
retrieve or includes information to be provided to the server.

HTTP Server Response: The server reads and interprets the request. It takes action relevant to the
request and creates an HTTP response message, which it sends back to the client. The response
message indicates whether the request was successful and may contain the content of the resource
that the client requested, if appropriate.

HTTP defines eight methods indicating the desired action to be performed on the identified resource. These
methods include GET, POST, HEAD, PUT, DELETE, TRACE, and OPTIONS. The APIs in this clause
use only the GET and POST methods.

GET: Retrieve whatever information is identified by the Request-URI. This is typically how a query form
works. The interaction is more like a question, such as a query, read operation, or lookup. GET can be used
to retrieve data from the server. In this API, GET can be used to read and write transducer data and
transducer TEDS.

POST: Used to request that the origin server accept the entity enclosed in the request as a new subordinate
of the resource identified by the Request-URI in the Request-Line. With HTTP this is typically how a
complex data submission works. The interaction is more like an order, or the interaction changes the state
of the resource in a way that the user would perceive (for example, a subscription to a service) or would

220
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

220 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.1

hold accountable for the results of the interaction. This method can be used to take a command or a
commitment from the user. It is often used to pass form data to a server. In this API, POST can be used to
read and write transducer data and TEDS.

 IEEE 1451.0 HTTP API

The TSI is an NCAP-only API used by measurement and control applications to access the IEEE 1451.0
layer. This API contains operations to read and write TransducerChannels, read and write TEDS, and send
configuration, control, and operation commands to the TIMs. The Transducer Services Interface of the
IEEE 1451.0 layer contains five interfaces: TransducerAccess, TransducerManager, TimDiscovery,
TEDSManager, and AppCallback. The first four interfaces are implemented by the IEEE 1451.0 layer and
are called by the measurement applications. If the application desires advanced optional features, it will
need to implement the “AppCallback” interface, which the IEEE 1451.0 layer will invoke.

Discovery: Methods for applications to discover available IEEE 1451.X communications modules, TIMs,
and TransducerChannels are organized in this interface.

TransducerAccess: When an application desires to access transducer and actuator TransducerChannels,
it will use methods on this interface.

TransducerManager: Applications that need more control over TIM access will use methods on this
interface. For example to lock the TIM for exclusive use and to send arbitrary commands to the TIM.

TEDSManager: Applications use methods on this interface to read and write TEDS. This class also
manages the NCAP-side TEDS cache information.

AppCallback: Applications that need advanced features need to implement this interface. For example,
this allows the application to configure measurement streams and the IEEE 1451.0 layer will invoke
appropriate callbacks in the application.

NOTE—There is no AppCallback API specified in this document.

The IEEE 1451.0 HTTP APIs focuses mainly on accessing transducer data and TEDS using the HTTP 1.1
protocol. Figure 23 shows that HTTP 1.1 accesses an IEEE 1451.0 NCAP on which a HTTP server is
running. In Figure 23, the “S: in the TIMs means “Sensor.” Similairly the “A” means “Actuator.” Users
can send an HTTP request to the HTTP server on the NCAP and get an HTTP response from the HTTP
server. The request–response process can be described as follows:

a) A user or client sends an HTTP request to the HTTP server on the IEEE 1451.0 NCAP.

b) The HTTP server on the NCAP receives an HTTP request, processes it, and then calls the
corresponding IEEE 1451.0 API.

c) The IEEE 1451.0 API calls on the IEEE 1451.X API to communicate with the IEEE 1451.X
TIM and to get the results from the TIM.

d) The HTTP server on the NCAP gets the results from the IEEE 1451.0 API and then returns the
HTTP response to the user.

221
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 221

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Users

TIM n

A

S
IEEE

1451.x

TIM 1

A

S
IEEE

1451.xHTTP
Request NCAP

HTTP
Server

IEEE
1451.0

IEEE
1451.x

HTTP
Response

Figure 23—HTTP access to an IEEE 1451.0 NCAP

12.1.1 HTTP message format

In this clause, we describe the use of the “http” protocol to send messages from a remote client to an
IEEE 1451.0 NCAP, which, for this model, acts like a server, serving transducer data to the remote client.
Table 104 lists the format of the http message, Table 105 gives examples of possible arguments, and Table
106 lists the http APIs. The HTTP message from a remote client unit will be transmitted across a network
connecting the remote client with the IEEE 1451.X transducer nodes. The message will adhere to the
HTTP URL syntax (RFC 2616) as follows:

http://<host>:<port>/<path>?<parameters>

Table 104—HTTP communications message format
Field Definition Example
<host>: The host portion of this statement will include the

target IEEE 1451 node domain name.
<host> = “192.168.1.91”

<port> The port number is optional and will default to port
#80 if this is not specified in the request. It may be
useful to select an unused port # (not port #80) that
will become the main IEEE 1451 port. The downside
of using a non-standard port # is that many security
routers will only allow non-standard port numbers
through the use of an explicit rule change.

<port>=”80”

<path> The path indicates the IEEE 1451 path including the
command itself.

<path>=”1451/TransducerAccess/ReadData
”

<parameters> The parameters associated with the command. <parameters>=“timId=1&channelId=2&tim
eout=14&samplingMode=continuous&form
at=text”

Table 105—Example parameters
Field Definition Example
timId The identifier of selected TIM. See 10.1.2. 1
channelId The identifier of the selected TransducerChannel of the TIM. See 10.2.1. 2
timeout This argument specifies how long to wait to perform the reading before

generating a time-out error.
14

samplingMode This argument specifies the sampling mechanism. See 5.10.1 and 7.1.2.4. Continuous
format “format” is the desired return format. The options are “text,” “HTML,” or

“xml.” The contents of the string are case insensitive.
text

222
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

222 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Table 106—HTTP API
API type Name Path

TIMDiscovery 1451/Discovery/TIMDiscovery Discovery API
TransducerDiscovery 1451/Discovery/TransducerDiscovery
ReadData 1451/TransducerAccess/ReadData
StartReadData 1451/TransducerAccess/StartReadData

Transducer Access API

MeasurementUpdate 1451/TransducerAccess/MeasurementUpdate
WriteData 1451/TransducerAccess/WriteData
StartWriteData 1451/TransducerAccess/StartWriteData
ReadTeds 1451/TEDSManager/ReadTeds
ReadRawTeds 1451/TEDSManager/ReadRawTeds

TEDS Manager API

WriteTeds 1451/TEDSManager/WriteTeds
WriteRawTeds 1451/TEDSManager/WriteRawTeds
UpdateTedsCache 1451/TEDSManager/UpdateTedsCache
SendCommand 1451/TransducerManager/SendCommand
StartCommand 1451/TransducerManager/StartCommand

Transducer Manager API

CommandComplete 1451/TransducerManager/CommandComplete
Trigger 1451/TransducerManager/Trigger
StartTrigger 1451/TransducerManager/StartTrigger

12.1.2

12.1.2.1

12.1.2.2

12.1.2.3

 HTTP response format

The output specifications or output arguments, for example, ArgumentArray, can be included in the http
request or can be included in the response to the http request. The output format can be either XML,
HTML, or TEXT format.

The response format is specified in the format argument of the http message. Responses shall be formatted
as specified in this section

 XML response format

If XML format is specified, the response shall be formatted as specified in the XML schema associated
with that command. The formatting specified in the commands relies on a type library based on the data
types defined in Clause 4. A full XML schema is available at

http://grouper.ieee.org/groups/1451/0/1451HTTPAPI/.

The file name is SmartTransducerHTTPResponse.xsd.

 HTML response format

If HTML response format is specified, the response shall be formatted as a valid web page in HTTP 1.1
format. The web page formatting and layout is not specified. However, all parameters that are specified
responses shall use the tagged data format, with the tag matching the return response identifier specified in
the return format of the command.

 Text response

Text response shall be in the format where individual parameters are returned and shall be terminated with
a carriage return/line feed sequence (CR/LF) (ASCII 13,10). Values shall be returned in the order specified
by the semantics of the command.

223
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 223

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.2

12.2.1

12.2.1.1

12.2.1.2

If an array is returned as a response, each value shall be separated by a comma and the entire array shall be
terminated with a carriage return/line feed sequence. A multi-dimensional array shall be returned with the
right-most ordinal being indexed first. A CR/LF sequence shall be returned after each complete set of
right-most indexes has been returned. This is commonly referred to as csv format.

Integers shall be returned in the format where and <Sign><Value> <Sign>=”+” or “-“
 is defined as a string containing one or more of the characters between the value <Value> “0” and

“9”.

Floating point numbers shall be returned in scientific notation in the format:
 <Sign><Leading digit>.<Mantissa>E<Sign><Exponent>

Where is as defined above, is a single character as defined in <Sign> <Leading Digit> <Value>
above. And and are as defined for above. <Mantissa> <Exponent> <Value>

Any value returned that represents an enumeration shall return its ordinal value as an integer.

Any value returned that represents a string shall return that string enclosed in quotation marks
(. An embedded quote mark shall be returned as a doubled quotation mark (). “<string>”) “”

 Discovery API

The Discovery API focuses on discovering all of the available TIMs and TransducerChannels
(transducers).

 TIMDiscovery

This API supports reporting the timIds of all TIMs connected to a given NCAP (host). This API
corresponds to as described in 10.1.2. Args::UInt16 reportTims()

Path: 1451/Discovery/TIMDiscovery

GET: Retrieves the timIds of all TIMs connected to the NCAP (host), and returns the timIds in an XML
document or ASCII format.

 Input parameters

The following parameters shall be supplied with this API call:

_ Specifies the response format as defined in 12.1.2. String responseFormat:

 TIMDiscoveryHTTPResponse

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.
UInt16Array timeIds: timIds of all TIMs available to this NCAP.

224
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

224 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.2.1.3

12.2.1.4

12.2.1.5

12.2.1.6

12.2.1.7

 TIMDiscovery XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="TIMDiscoveryHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timIds" type="stml:UInt16Array"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 TransducerDiscovery

This API supports reporting channelIds of all transducer available in the specified TIM of the specified
NCAP (host). This retrieves the transducer list and names for this TIM. This information is retrieved from
the cached TEDS in the NCAP. This API corresponds to the interface Args::UInt16
reportChannels()as described in 10.1.3.

Path: 1451/Discovery/TransducerDiscovery

GET: Retrieves the channelIds of all transducers available in specified TIM of the NCAP (host), and
reports the channelIds in a specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the specified TIM.
_String responseFormat: Specifies the response format as defined in 12.1.2.

 TransducerDiscoveryHTTPResponse

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information.
UInt16 timId: the timId of specified TIM.
UInt16Array channelIds: a list of the channelIds of all transducers (sensors and actuators) available in the

specified TIM.
StringArray transducerNames: a list of the transducerNames of all transducer (sensors and actuators)

available in the specified TIM.

 TransducerDiscovery XML response schema

If the response format is “XML”, the following schema shall be used for the response.

225
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 225

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.3

12.3.1

12.3.1.1

12.3.1.1.1

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType="TransducerDiscoveryHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16"/>
 <xs:element name="channelIds" type="stml:UInt16Array"/>
 <xs:element name="transducerNames" type="stml:StringArray"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 Transducer access API

The Transducer Access API focuses on reading and writing transducers (sensors and actuators) or
TransducerChannels.

 Transducer ReadData API

The Transducer read API is used to read transducer data (value).

 ReadData

This API supports retrieving transducer data from a TransducerChannel with a specified channelId on the
TIM specified by a timId on a specified NCAP (host).

This API is corresponding to the as described in 10.2.6. Args::UInt16 readData()

Path: 1451/TransducerAccess/ReadData

GET: Retrieves data from the specified TransducerChannel in the specified TIM of the NCAP (host), and
returns the transducer’s data in a specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the TIM containing the TransducerChannel from which the data will be read.

UInt16 channelId: the channelId of the TransducerChannel that is being read.

TimeDuration timeout: this argument specifies how long to wait to perform the reading without generating
a time-out error if no response is received. A value of secs == 0, nsecs == –1 implies wait forever. Using a
value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 SamplingMode: this argument specifies the triggering mechanism. See 5.10.1 and 7.1.2.4 for details.

_String responseFormat: specifies the response format as defined in 12.1.2.

226
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

226 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.3.1.1.2

12.3.1.1.3

12.3.1.2

12.3.1.2.1

 ReadDataHTTPResponse

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM

UInt16 channelId: the channelId of the specified TransducerChannel

ArgumentArray transducerData: this array contains the data read from the specified TransducerChannel of
the selected TIM.

 ReadData XML rsponse schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="ReadDataHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 <xs:element name="transducerData" type="stml:ArgumentArrayType"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 StartReadData

This API supports starting to retrieve transducer data of specified transducer of specified TIM of specified
NCAP (host). This method begins a non-blocking read of the specified TransducerChannels. This API is
corresponding to the Args::UInt16 startReadData()as described in 10.2.8. The transducer data
to be transferred are completed by calling the MeasurementUpdate API.

Path: 1451/TransducerAccess/StartReadData

GET: Starting to retrieve transducer data of transducer available in specified TIM of the NCAP (host), and
returns the error code in a specified format.

 Input parameters

The following parameters shall be supplied with this API call.

UInt16 timId: the timId of the TIM containing the TransducerChannel to be read.

UInt16 channelId: the channelId of the specified TransducerChannelChannel.

TimeInstance triggerTime: this argument specifies when to begin the read operation.

227
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 227

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.3.1.2.2

12.3.1.2.3

12.3.1.3

12.3.1.3.1

TimeDuration timeout: this argument specifies how long to wait to perform the reading without generating
a time-out error if no response is received.. A value of secs == 0, nsecs == –1 implies wait forever. Using a
value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 SamplingMode: this argument specifies the triggering mechanism. See 5.10.1 and 7.1.2.4 for details.

_String responseFormat: specifies the response format as defined in 12.1.2.

 StartReadData HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

 StartReadData XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="StartReadDataHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 MeasurementUpdate

In this API, the non-blocking read initiated by a StartReadData call is completed, retrieving transducer data
of specified transducer of specified TIM on the specified NCAP (host). This API is corresponding to the

as described in 10.6.1. Args::UInt16 measurementUpdate()

Path: 1451/TransducerAccess/MeasurementUpdate

GET: Retrieves transducer data of transducer available in specified TIM of the NCAP (host), and returns
the transducer data in a specified format.

 Input parameters

The following parameters shall be supplied with this API call.

the timId of the TIM containing the TransducerChannel to be read. UInt16 timId:

the channelId of the specified TransducerChannelChannelUInt16 channelId:

228
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

228 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.3.1.3.2

12.3.1.3.3

12.3.2

12.3.2.1

specifies the response format._String responseFormat:

 Measurement Update HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

ArgumentArray transducerData: this array contains the data read from the specified TransducerChannel of
the selected TIM.

 Measurement Update XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="MeasurementUpdateHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16"/>
 <xs:element name="transducerId" type="stml:UInt16"/>
 <xs:element name="transducerData" type="stml:ArgumentArrayType"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 Transducer WriteData API

The Transducer write API is used to write TransducerChannel data (value).

 WriteData

In this API, writing transducer data of specified transducer of specified TIM of specified NCAP (host).
This method performs a blocking write of the specified TransducerChannels or transducers. This API is
corresponding to the Args::UInt16 writeData() as described in 10.2.7.

Path: 1451/TransducerAccess/WriteData

POST: Writes transducer data to the designated TransducerChannel in the specified TIM connected to the
NCAP (host).

229
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 229

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.3.2.1.1

12.3.2.1.2

12.3.2.1.3

12.3.2.2

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the TIM containing the TransducerChannel to be written.

UInt16 channelId: the channelId of specified TransducerChannel.

TimeDuration timeout: this argument specifies how long to wait after writing the data before
generating a time-out error if the return is not received. A value of secs == 0, nsecs == –1 implies wait
forever. Using a value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 SamplingMode: this argument specifies the sampling mechanism. See 5.10.1 and 7.1.2.4 for
details.

ArgumentArray transducerData: this array contains the data to be written to the specified
TransducerChannel of the selected TIM.

_String responseFormat: specifies the response format as defined in 12.1.2.

 WriteData HTTP response

The response to this API call shall contain the following parameters.

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

 WriteData XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="WriteDataHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/> </xs:sequence>
</xs:complexType>
</xs:schema>

 StartWriteData

In this API, writing transducer data for the specified transducer of the specified TIM on the specified
NCAP (host). This method performs a non-blocking write of the specified TransducerChannel. The user is
responsible for determining when the command completes by sending a SendCommand call (12.5.1) with
the ReadStatusEventRegister command specified (7.1.1.8), and checking for the DataProcessed bit

230
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

230 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.3.2.2.1

12.3.2.2.2

12.3.2.2.3

(5.13.10) to be asserted. This API corresponds to the Args::UInt16 startWriteData() as
described in 10.2.9.

Path: 1451/TransducerAccess/StartWriteData

POST: Writes transducer data to the designated TransducerChannel in the specified TIM connected to the
NCAP (host), and returns result in a specified format.

 Input parameters

The following parameters shall be supplied with this API call.

UInt16 timId: the timId of the TIM containing the TransducerChannel to be read.

UInt16 channelId: the channelId of specified transducer.

TimeInstance triggerTime: This argument specifies when to begin the write operation.

TimeDuration timeout: this argument specifies how long to wait after writing the data before
generating a time-out error if no response is received.. A value of secs == 0, nsecs == –1 implies wait
forever. Using a value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 SamplingMode: this argument specifies the triggering mechanism. See 5.10.1 and 7.1.2.4 for
details.

ArgumentArray transducerData: this array contains the data read from the specified
TransducerChannel of the selected TIM.

_String responseFormat: specifies the response format as defined in 12.1.2.

 StartWriteData HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

 StartWriteData XML response schema

If the response format is “XML”, the following schema shall be used for the response.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="StartWriteDataHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

231
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 231

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.4

12.4.1

12.4.1.1

12.4.1.2

 TEDS Manager API

The TEDS Access API includes ReadTEDS for reading TEDS and WriteTEDS for writing TEDS.

 ReadTeds

This API supports retrieving TEDS data associated with a specified TransducerChannel or TIM from a
specified NCAP (host). This method will read the desired TEDS block from the TEDS Cache. If the TEDS
is not available from the cache, it will read the TEDS from the TIM. This API is corresponding to the
Args::UInt16 readTeds()as described in 10.4.1.

Path: 1451/TEDSManager/ReadTeds

GET: Retrieves a TEDS from the specified TransducerChannel or TIM on the NCAP (host), and returns
the result in a specified format.

 Input parameters

The following parameters shall be supplied with this API call.

UInt16 timId: the timId of the TIM containing the TransducerChannel to be read.

UInt16 channelId: the channelId of specified TransducerChannel. This argument will be zero if a
TEDS associated with the entire TIM is being accessed.

TimeDuration timeout: this argument specifies how long to wait to perform the reading without
generating a time-out error if no response is received. A value of secs == 0, nsecs == –1 implies wait
forever. Using a value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 TEDSType: this argument specifies the TEDSType as listed in Table 17 where it is called the
TEDS Access Code.

_String responseFormat: specifies the response format as defined in 12.1.2.

 ReadTEDS HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

UInt8 tedsType: this argument specifies the tedsType as listed in Table 17 where it is called the TEDS
Access Code.

ArgumentArray teds: this array contains the data read from the specified TEDS.

232
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

232 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.4.1.3

12.4.2

12.4.2.1

 ReadTEDS XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="ReadTEDSHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 <xs:element name="tedsType" type="stml:UInt8"/>
 <xs:element name="teds" type="stml:ArgumentArrayType"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 ReadRawTeds

This API supports retrieving rawTEDS data from a selected TransducerChannel or from a TIM on a
specified NCAP (host). This method will read the desired TEDS block from the TIM bypassing the TEDS
Cache in the NCAP. The TEDS cache is not updated. This API is corresponding to the Args::UInt16
readRawTeds()as described in 10.4.3:

For the purposes of this API, all TEDS are binary structures. In order to encode these structures in a
specified format, it is necessary to encode them as text. To accomplish this, all TEDS contents shall be
encoded using the Base64 encoding described in 6.8 of RFC 2045 [B8].

Path: 1451/TEDSManager/ReadRawTeds

GET: Retrieves rawTEDS of TransducerChannel available in specified TIM of the NCAP (host), and
displays the result in a specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the TIM containing the TransducerChannel to be read.

UInt16 channelId: the channelId of specified TransducerChannel. This argument will be zero if a
TEDS associated with the entire TIM is being accessed.

TimeDuration timeout: this argument specifies how long to wait to perform the reading without
generating a time-out error if no response is received. A value of secs == 0, nsecs == –1 implies wait
forever. Using a value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 TEDSType: This argument specifies the TEDSType as listed in Table 17 where it is called TEDS
Access Code.

_String responseFormat: specifies the response format.

233
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 233

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.4.2.2

12.4.2.3

12.4.3

12.4.3.1

 ReadRawTeds HTTP response

The response to this API call shall contain the following parameters.

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

UInt8 tedsType: this argument specifies the tedsType as listed in Table 17 where it is called TEDS
Access Code.

OctetArray TEDS: Raw TEDS data of specified TransducerChannel or TIM encoded as Base64.

 ReadRawTEDS XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="ReadRawTEDSHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 <xs:element name="tedsType" type="stml:UInt8"/>
 <xs:element name="teds" type="stml:ArgumentArrayType"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 WriteTeds

This API is used when writing TEDS to a specified TransducerChannel or TIM of the specified NCAP
(host). This method will write the desired TEDS block to the TIM. The TEDS cache is also updated if the
write succeeds. The provided TEDS information is encoded in an ArgumentArray. This API corresponds
to the Args::UInt16 writeTeds()as described in 10.4.2:

Path: 1451/TEDSManager/WriteTeds

POST: Writes the TEDS data to the specified TransducerChannel or TIM of the specified NCAP (host),
and displays the result in the specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the TIM containing the TEDS to be written.

UInt16 channelId: the channelId of specified TransducerChannel. This argument will be zero if a
TEDS associated with the entire TIM is being accessed.

234
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

234 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.4.3.2

12.4.3.3

12.4.4

TimeDuration timeout: this argument specifies how long to wait after writing the TEDS before
generating a time-out error if no response is received.. A value of secs == 0, nsecs == –1 implies wait
forever. Using a value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 TEDSType: this argument specifies the TEDSType as listed in Table 17 where it is called TEDS
Access Code.

ArgumentArray TEDS: TEDS data of specified TransducerChannel or TIM.

_String responseFormat: specifies the response format as defined in 12.1.2.

 WriteTEDS HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the TIM containing the TEDS to be written.

UInt16 channelId: the channelId of specified TransducerChannel. This argument will be zero if a
TEDS associated with the entire TIM is being accessed.

UInt8 tedsType: this argument specifies the tedsType as listed in Table 17 where it is called the TEDS
Access Code.

 WriteTEDS XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="WriteTEDSHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="tedsId" type="stml:UInt16"/>
 <xs:element name="tedsType" type="stml:UInt8"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 WriteRawTeds

In this API, writing rawTEDS data of specified transducer of specified TIM of specified NCAP (host).
This method will write the desired TEDS block to the TIM bypassing the TEDS cache. The provided
TEDS information is encoded in “tuple” form in an OctetArray. This API is corresponding to the
Args::UInt16 writeRawTeds()as described in 10.4.4:

For the purposes of this API, all TEDS are binary structures. In order to encode these structures in a
specified format, it is necessary to encode them as text. To accomplish this, all TEDS contents shall be
encoded using the Base64 encoding described in 6.8 of RFC 2045.

Path: 1451/TEDSManager/WriteRawTeds

235
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 235

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.4.4.1

12.4.4.2

12.4.4.3

POST: Writes transducer rawTEDS data of transducer available in specified TIM of the NCAP (host), and
displays the result in a specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the specified TIM

UInt16 channelId: the channelId of the specified TransducerChannel or “0” if the TEDS applies to
the entire TIM.

TimeDuration timeout: specifies how long to wait after writing the TEDS before generating a time-
out error if no response is received. A value of secs == 0, nsecs == –1 implies wait forever. Using a value
of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 tedsType: specifies the tedsType as listed in Table 17 where it is called the TEDS Access Code.

OctetArray rawTEDS: Raw TEDS data of specified TransducerChannel or of specified TIM.

_String responseFormat: Specifies the response format as defined in 12.1.2.

 WriteRawTEDS HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

UInt8 tedsType: specifies the tedsType as listed in Table 17 where it is called the TEDS Access Code.

 WriteRawTEDS XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="WriteRawTEDSHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 <xs:element name="tedsType" type="stml:UInt8"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

236
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

236 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.4.5

12.4.5.1

12.4.5.2

12.4.5.3

 UpdateTedsCache

In this API, updating the TEDS cache of the specified TransducerChannel or TIM of specified NCAP
(host). This API will update the TEDS cache. The TEDS checksum will be read from the TIM and
compared with the cached TEDS checksum. If the checksums differ, the TEDS will be read from the TIM
and stored in the cache. This API corresponds to the Args::UInt16 updateTedsCache as described in
10.4.5:

Path: 1451/TedsManager/UpdateTedsCache

GET: Updates the TEDS cache of specified transducer of specified TIM of specified NCAP (host), and
displays the results in a specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: a timId of specified TIM.

UInt16 channelId: a channelId of specified transducer or “0” means reading TIM TEDS.

TimeDuration timeout: specifies how long to wait to perform the reading w/o generating a time-out
error.

UInt8 tedsType: specifies the tedsType as listed in Table 17 where it is called the TEDS Access
Code.

_String responseFormat: specifies the response format as defined in 12.1.2.

 UpdateTedsCache HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information.

UInt16 timId: a timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

UInt8 tedsType: specifies the tedsType as listed in Table 17 where it is called the TEDS Access
Code.

 UpdateTEDS XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="UpdateTEDSHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>

237
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 237

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.5

12.5.1

12.5.1.1

12.5.1.2

 <xs:element name="tedsType" type="stml:UInt8"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 Transducer Manager API

This API contains four APIs. The SendCommand and StartCommand APIs allow the system to send
commands directly to a TransducerChannel or TIM. Trigger and StartTrigger APIs are used to send
triggers to a TransducerChannel or group of TransducerChannels on the same NCAP.

 SendCommand

This method will perform a blocking operation. The format of input and output arguments are command
dependent. The caller must make sure to use the correct data types for each input argument. This API is
corresponding to the Args::UInt16 sendCommand() as described in 10.3.5:

Path: 1451/TransducerManager/SendCommand

POST: Sends a command to a TransducerChannel or TIM of the NCAP (host), and returns the result in a
specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

TimeDuration timeout: this argument specifies how long to wait after writing the TEDS before generating
a time-out error if no response is received.. A value of secs == 0, nsecs == –1 implies wait forever. Using a
value of “wait forever” is extremely dangerous as it can effectively lock out a resource.

UInt8 cmdClassId: specifies the desired command class code as described in 7.1 and listed in Table 15.

UInt8 cmdFunctionId: specifies the desired command function code. cmdFunctionIds are described with
the description of each command in Clause 7 and will be listed in the Commands TEDS for non-standard
commands.

ArgumentArray inArgs: the input arguments in ArgumentArray form.

_String responseFormat: specifies the response format as defined in 12.1.2.

 SendCommand HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

ArgumentArray outArgs: returned output arguments.

238
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

238 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.5.1.3

12.5.2

12.5.2.1

12.5.2.2

 SendCommand XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="SendCommandHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 <xs:element name="outArgs" type="stml:ArgumentArrayType"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 StartCommand

This method starts a non-blocking operation. The format of input arguments are command dependent. The
caller must make sure to use the correct data types for each input argument. This API is corresponding to
the Args::UInt16 startCommand()as described in 10.3.7. The returned ArgumentArray is
completed by calling CompleteCommand API.

Path: 1451/TransducerManager/StartCommand

GET: Sends a command to a TransducerChannel or TIM of the NCAP (host), and returns the result in a
specified format.

 Input parameters

The following parameters shall be supplied with this API call.

UInt16 timId: the timId of the specified TIM

UInt16 channelId: the channelId of the specified TransducerChannel or “0” addressed to the TIM.

TimeInstance triggerTime: specifies when to begin the operation.

TimeDuration Timeout: the maximum time to wait before a time-out error.

UInt8 cmdClassId: specifies the desired command class code as described in 7.1 and listed in Table 15.

UInt8 cmdFunctionId: specifies the desired command function code. cmdFunctionIds are described with
the description of each command in clause 7 and will be listed in the Commands TEDS for non-standard
commands.

ArgumentArray inArgs: the input arguments in ArgumentArray form. These are command dependent.

_String responseFormat: 12.1.2 specifies the response format.

 StartCommand HTTP response

The response to this API call shall contain the following parameters:

239
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 239

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.5.2.3

12.5.3

12.5.3.1

12.5.3.2

UInt16 errorCode: error information as defined in 9.3.1.2 from the non-blocking command complete
operation.

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel.

 StartCommand XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="StartCommandHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 CommandComplete

This method completes a non-blocking StartCommand operation. The format of input arguments is
command dependent. The caller must make sure to use the correct data types for each input argument. This
API is corresponding to dArgs::UInt16 commandComplete()as described in 11.6.4:

Path: 1451/TransducerManager/CommandComplete

GET: Retrieves result of transducer available in specified TIM of the NCAP (host), and returns the result
from the StartCommand specified in 12.5.2 in the specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel or “0” addressed to the TIM.

_String responseFormat: specifies the response format.

 CommandComplete HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2 from the non-blocking command complete
operation.

UInt16 timId: the timId of the specified TIM.

240
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

240 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.5.3.3

12.5.4

12.5.4.1

12.5.4.2

UInt16 channelId: the channelId of the specified TransducerChannel.

ArgumentArray outArgs: the returned ArgumentArray. This information is specific to each command.

 CommandComplete XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="CommandCompleteHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="transducerId" type="stml:UInt16"/>
 <xs:element name="outArgs" type="stml:ArgumentArrayType"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 Trigger

This method performs a blocking trigger on the specified TransducerChannel or group of
TransducerChannels. This API is corresponding to the Args::UInt16 trigger()as described in 10.3.9:

Path: 1451/TransducerManager/Trigger

POST: trigger the TransducerChannel or TransducerChannels attached to a particular NCAP (host).

 Input parameters

The following parameters shall be supplied with this API call:

Int16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel or “0” if read TIM TEDS.

TimeInstance triggerTime: specifies when to begin the operation.

TimeDuration Timeout: the maximum time to wait before a time-out error.

UInt16 SamplingMode: specifies the sampling mode for the TransducerChannel(s). See 5.11 for
details.

_String responseFormat: specifies the response format as defined in 12.1.2.

 Trigger HTTP response

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

UInt16 timId: the timId of the specified TIM.

241
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 241

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.5.4.3

12.5.5

12.5.5.1

12.5.5.2

UInt16 channelId: the channelId of the specified TransducerChannel or “0” if read TIM TEDS.

 Trigger XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="TriggerHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

 StartTrigger

This method performs a non-blocking trigger on the specified TransducerChannel or TransducerChannels.
The user is responsible for determining when the command completes by sending a SendCommand call
(12.5.1) with the ReadStatusEventRegister command specified (7.1.1.8), and checking for the
DataProcessed bit (5.13.10) to be asserted. This API is corresponding to the Args::UInt16
startTrigger() as described in 10.3.10.

Path: 1451/TransducerManager/StartTrigger

POST: Starts a trigger to the transducer available in the specified TIM of the NCAP (host), and displays
the result in a specified format.

 Input parameters

The following parameters shall be supplied with this API call:

UInt16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel or “0” if read TIM TEDS.

TimeInstance triggerTime: specifies when to begin the operation.

TimeDuration Timeout: is the maximum time to wait before a time-out error.

UInt16 SamplingMode: specifies the trigger mode. See 5.11 for details.

_String responseFormat: specifies the response format as defined in 12.1.2.

 StartTriggerResponse

The response to this API call shall contain the following parameters:

UInt16 errorCode: error information as defined in 9.3.1.2.

242
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

242 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

12.5.5.3

Int16 timId: the timId of the specified TIM.

UInt16 channelId: the channelId of the specified TransducerChannel or “0” if read TIM TEDS.

 StartTrigger XML response schema

If the response format is “XML”, the following schema shall be used for the response:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:stml=http://grouper.ieee.org/groups/1451/0/1451HTTPAPI
<xs:complexType name="StartTriggerHTTPResponse">
 <xs:sequence>
 <xs:element name="errorCode" type="stml:UInt16"/>
 <xs:element name="timId" type="stml:UInt16Array"/>
 <xs:element name="channelId" type="stml:UInt16"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

243
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 243

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

244
Copyright © 2007 IEEE. All rights reserved.

Annex A

(informative)

Bibliography

[B1] Hamilton, B., “A compact representation of physical units,” Hewlett-Packard Company, Palo Alto,
CA, Hewlett-Packard Laboratories Technical Report HPL-96-61, 1995.11

[B2] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, New York,
Institute of Electrical and Electronics Engineers, Inc.

[B3] IEEE P1451.6, Draft Standard for a Smart Transducer Interface for Sensors and Actuators—A High-
Speed CANopen-Based Transducer Network Interface for Intrinsically Safe and Non-Intrinsically Safe
Applications.12

[B4] IEEE Std 1451.5-2007, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—
Wireless Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats.13,14

[B5] ISO 8601, Data Elements and Interchange Formats—Information Interchange—Representation of
Dates and Times.15

[B6] ISO/IEC 7498-1, Information Technology—Open Systems Interconnection—Basic Reference Model:
The Basic Model.16

11 Available from Aligent Technical Publications Department, 1501 Page Mill Road, Mail Stop 2L, Palo Alto, CA 94304, USA.
12 This IEEE standards project was not approved by the IEEE-SA Standards Board at the time this publication went to press. For
information about obtaining a draft, contact the IEEE.
13 IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ
08854, USA (http://standards.ieee.org/).
14 The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
15 ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/ Suisse (http://www.iso.ch/). ISO publications are also available in the United States from the Sales Department,
American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
16 ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.com/). Electronic copies are available in the United
States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).

ISO/IEC/IEEE 21450:2010(E)

244 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

[B7] OGC™ Recommendation Paper, Version: 1.0, “URNs of definitions in ogc namespace,” OGC
document 05-010, 2005.

[B8] RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies.17

[B9] Taylor, B. N., Ed., The International System of Units (SI), National Institute of Standards and
Technology, Special Publication 330. Washington, D.C.: U.S. Government Printing Office, August 1991.

[B10] Taylor, B. N. and Kuyatt, C. E., “Guidelines for evaluating and expressing the uncertainty of NIST
measurement results,” NIST Technical Note 1297, National Institute of Standards Technology,
Gaithersburg, MD, 1994 edition.

17 RFC publications are available from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, USA
(http://global.ihs.com/).

245
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 245

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

246
Copyright © 2007 IEEE. All rights reserved.

Annex B

(informative)

Guidance to Transducer Services Interface

Measurement and control applications interact with the IEEE 1451.0 layer by the Transducer Services
Interface. This annex gives examples of the use of this interface.

The simplest and most common measurement application will be reading a TransducerChannel’s value. If
we assume that the TransducerChannel is being operated in the immediate operation sampling mode, the
TransducerChannel will automatically trigger the measurement and return the result. Hence, this is a polled
measurement.

The sequence diagram in Figure B.1 illustrates the flow. The application is on the left, and time runs down
the diagram. IEEE 1451.0 processing details below the public API are not illustrated:

Figure B.1—Simple polled measurement example

The application (labeled MeasApp object) accesses methods on the TimDiscovery object to discover
available TIMs and TransducerChannels.

Once channel selection has been made, the open() call is invoked on the TransducerAccess object. This
will return a valid “transducerID” that will be used in subsequent calls.

ISO/IEC/IEEE 21450:2010(E)

246 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

When the application is ready to make a measurement, it invokes the read() call. The new measurement
value will be returned in the “result” output parameter. The result is an ArgumentArray object, and the
application will use the get() method to retrieve measurement attributes of interest. For example, the
“value” attribute has the measurement’s value, whereas the “timestamp” attribute contains the time when
the measurement was made.

The application can control what attributes are returned in the ArgumentArray by using the
configureAttributes() call on the TransducerManager object (not shown). For example, the “units,”
“accuracy,” “name,” and “id” attributes may be enabled. This will force the read() call to return an
ArgumentArray with these attributes for more complete “self describing” data.

The application can invoke read() as often as necessary to acquire multiple readings. When the application
is done, the close() call is invoked to free resources.

The above example illustrates the simplest case where the following conditions hold:

A single TransducerChannel is being accessed.

The application blocks until the result is returned. The maximum amount of time the application is
willing to wait is specified by the “timeout” parameter.

The application specifies the desired sampling mode. In this example, the immediate operation
sampling mode is assumed that will cause the TransducerChannel to make a measurement.

Methods are available to perform more elaborate measurement sequences.

B.1 Non-blocking Read example

In many measurement and control applications, measurements are requested or scheduled by one call.
Later, when the measurement process has completed, the results are delivered back to the application via a
callback. This non-blocking example is illustrated in Figure B.2.

Figure B.2—Non-blocking Read example

247
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 247

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

In the non-blocking example, the application implements the AppCallback interface. During the
startRead() call, this interface is passed in as the “callback” parameter. The desired trigger time and time-
out are also provided.

When the measurement completes, the measurementUpdate() callback method is invoked to pass results
back to the applications.

B.2 Generic SendCommand() mechanism

As discussed in Clause 7, many commands are defined in the IEEE 1451.0 layer. In many cases, specific
“convenience” methods are provided via the APIs to make it easy for the application to perform useful
work, for example, reading a TransducerChannel or TEDS. Behind these “convenience” methods, a
generic sendCommand() mechanism is used. To access features that are not exposed via “convenience”
methods, the sendCommand() method is available and used as follows:

An open() call is made to get a “transducerId” for the desired TIM and TransducerChannel.
A “commandId” is selected from all possible commands as enumerated in Clause 7. This UInt16 number

contains the command “class” as the upper 8 bits and the command “function” code as the lower 8
bits.

All command specific input arguments are packaged into the “inArgs” ArgumentArray. The position and
types of arguments in the ArgumentArray shall match what is required for the command in question.

The sendCommand() call is invoked.
Output parameters are returned to the caller via the “outArgs” ArgumentArray. Again, the position and

types of arguments in this ArgumentArray will match what is returned by the command in question.

Figure B.3 illustrates the use of the sendCommand() mechanism.

Figure B.3—SendCommand sequence diagram

A non-blocking version of this command is also available. See startCommand() and the
commandComplete() callback.

A non-blocking version of this command is also available. See startCommand() and the
commandComplete() callback.

248
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

248 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

B.3 IEEE 1451.0 processing details

To illustrate the type of processing that occurs behind the read() call when making a measurement, the
sequence diagram in Figure B.4 is presented. Because the internal details of the IEEE 1451.0 layer are not
part of the this standard, this diagram is only an aid to explain one way that the IEEE 1451.0 processing
could be structured.

Figure B.4—Details of the read operation sequence diagram

249
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 249

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

The application is on the left, and the IEEE 1451.X layers are in the center. Note the open() call and TIM-
side processing above the IEEE 1451.0 layer are not illustrated in this diagram. Here, we assume the
application is performing an immediate read of TransducerChannel 1 from the desired TIM. Once the
application invokes the read() method, the following processing occurs:

a) An appropriate command is formatted to instruct the TIM to read the desired
TransducerChannel with the specified samplingmode (see 7.1.2.4) (immediate mode operation
in this case). This packages all input arguments into the “inArg” ArgumentArray.

b) The Codec’s encode() method is used to build the command “payload” OctetArray. As this is a
read command, the “payload” contains the following octets. Note that the outgoing “payload” is
10 octets long.

1) TransducerChannel identifier of 0x0001 as a UInt16. This is the TransducerChannel
number to be read.

2) Command Class of 0x02 as a UInt8 that indicates an “operational” command class.

3) Command Function code as a UInt8. The command code is “Read TransducerChannel
data-set segment” (value 1) in this case.

4) Length of variable portion of 0x0004 as a UInt16.

5) The DataSetOffset is the only argument of the command, and it contains 0x00000000 as a
UInt32 since the data set contains a single value.

6) The write() command is invoked on the IEEE 1451.X layer to initiate transfer of the
OctetArray to the TIM. This thread will now block as it waits for the TIM to make the
measurement. The maximum amount of time to wait is specified by the application.

7) When the TIM-side processing has completed, the IEEE 1451.X layer will transfer a result
OctetArray back to the NCAP. This will result in the notify() method being invoked.

8) The Notify processing wakes up the blocked application thread.

9) The read() method is invoked to retrieve the response OctetArray.

10) The Codec’s decode() method is used to convert the OctetArray back to an
ArgumentArray.

11) The CorrectionEngine’s convert() method is used to generate corrected values (i.e.,
conversion from TIM-side to NCAP-side units).

12) The ArgumentArray is further formatted to return the desired measurement attributes. This
may involve extracting select information from cached TEDS (for example, units).

13) The ArgumentArray is returned as an “out” parameter back to the application.

250
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

250 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Annex C

(informative)

Guidance to Module Communication Interface

C.1 Module communication API discussion

The logical communication between the NCAP and TIMs or between TIMs is handled by this “Module
Communication” API. The four aspects of this API are as follows:

a) The communication messaging may be either “one-way” from the initiator to the receiver or the
communication may be “two-way” where the initiator sends a command to the receiver who
then replies.

b) The communication messaging may be either “one-to-one” where only two devices are involved
or the communication may be “one-to-many” where the initiator is communicating with a group
of devices. The “one-to-many” is always limited to “one-way” communications.

c) The communication may be either “default” or “special” Quality of Service. Default is a best-
effort delivery without any special communication mechanisms to provide better quality.

d) The physical interface may be a simple “point-to-point” link or may be a “network” where
multiple devices share the communication medium.

The “ModuleCommunication” API is subdivided into three main interfaces: “Comm,” “Registration,” and
“Receive.” The “Comm” interface is implemented by the IEEE 1451.X layer and is called by the
IEEE 1451.0 layer to control communications between the NCAP and TIMs. The “Registration” interface
is provided by the IEEE 1451.0 layer and is called by the IEEE 1451.X layer to register itself and to
register known destinations. The “Receive” interface is provided by the IEEE 1451.0 layer and is called by
the IEEE 1451.X layer when incoming communication messages are received by the
IEEE 1451.X layer across the link.

Each of these three interfaces is further subdivided into two sub-interfaces: the “point-to-point” case where
an NCAP and TIM are directly communication with each other, and the “network” case where a NCAP
and multiple TIMs are communicating together. The prefix “P2P” and “Net” are used to differentiate these
cases. Figure C.1 illustrates these relationships for the Comm interfaces. Figure C.2 illustrates these
relationships for the Registration interfaces. Figure C.3 illustrates these relationships for the Receive
interfaces.

Note that “point-to-point” is from a communication point of view. It does not imply that the underlying
physical link is point to point.

251
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 251

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure C.1— Communications methods

Figure C.2—Registration interfaces

252
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

252 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure C.3—Receive interfaces

C.2 Symmetric APIs

These APIs are symmetric and support NCAP-to-TIM, TIM-to-NCAP, and optionally TIM-to-TIM
communications. Each communication operation begins with the initiating node sending a payload to one
or more receiving nodes. Optionally, the receiving node may issue a reply to the initiating node.

The following communication patterns are supported:

Two-way/one-to-one. Example: NCAP issues a read TEDS command to a specific TIM. TIM replies with
the TEDS contents.

One-way/one-to-one. Example: TIM generates a periodic measurement that is sent back to the NCAP.

One-way/one-to-many. Example: NCAP issues a group trigger command that flows to multiple TIMs
participating in the measurement.

C.3 Implementation choices

The NCAP and TIMs may make different choices on what interfaces are implemented and still be able to
communicate with each other. The key issue is whether the device needs to initiate communication to many
devices or whether it only communicates to a single destination. The former case would need to implement
the NetComm interface. The later case would implement the P2PComm interface. A device that only
receives and replies (i.e., it never initiates) would also implement the P2PComm interface.

The second issue to consider is how many different IEEE 1451.X communication paths are supported on
the device and whether they are static or dynamic in nature. In most cases, only a single IEEE 1451.X
communication path is available. Consequently, the software build process (for example, linker) can be
used to attach the IEEE 1451.X implementation to the IEEE 1451.0 implementation. This negates the need
to use some methods of the Registration interface.

253
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 253

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

A slightly more complex device may provide a fixed set of IEEE 1451.X communication paths. Again,
because these paths are known at build time, the SW build process (for example, linker) can be used to
manage registration. The IEEE 1451.0 layer will be responsible for using the correct IEEE 1451.X instance
when trying to communicate through that path.

A high-end device may need to be able to dynamically manage what IEEE 1451.X communication paths
are available. For this situation, a dynamic registration mechanism is provided to allow the IEEE 1451.X
implementation to notify the IEEE 1451.0 layer that it is available. This is appropriate for both P2PComm
and NetComm situations.

A device that is connected to a multi-drop IEEE 1451.X network and needs to initiate communications to
more than one destination would implement the NetComm interface. This interface provides additional
methods and parameters to handle simultaneous overlapping communication transactions to multiple
destinations.

C.4 Implementation examples

The simplest situation is a basic TIM that only replies to requests from the NCAP. This could be over a
“point-to-point” link (for example, IEEE 1451.2-RS232) or over a “network” physical link (for example,
Clause 7 of IEEE Std 1451.5-2007 [B4]). However from the point of view of this TIM, it only replies to
requests. It never initiates a communication operation. Because the communication requirements are so
simple, the TIM’s IEEE 1451.X implementation would provide the P2PComm interface. Because there is
only a single IEEE 1451.X Comm implementation, the registration mechanism would be through static
linkage established during the software build process.

The next simplest case is a simple NCAP with a single point-to-point physical connection to a single TIM
(for example, IEEE 1451.2-RS232). The NCAP’s IEEE 1451.X implementation would also provide the
P2PComm interface. The IEEE 1451.X-to-IEEE 1451.0 linkage would be through the software build
process.

Growing in complexity is a NCAP with multiple point-to-point physical connections (for example, multiple
IEEE 1451.2-RS232 ports). Multiple IEEE 1451.X instances are needed, one for each physical connection.
The P2PComm interface would be provided in each case. The IEEE 1451.0 implementation on the NCAP
is responsible for using the appropriate IEEE 1451.X interface when it communicates with each TIM.

The most complex NCAP needs to support multiple physical interfaces of various types, and the
configuration is dynamic in nature. Each physical interface would need either a P2PComm or NetComm
instance. These instances also dynamically register themselves so that the IEEE 1451.0 layer knows they
are available.

C.5 Node communication parameters

In the NetComm configurations, each node on the network is uniquely identified by IEEE 1451.X-specific
“node” communication parameters. For example with IEEE 1451.5-802.11, each node has a unique IP
address and network ports are allocated for IEEE 1451.0 communications. Each IEEE 1451.X technology
could have a different set of required parameters.

Although the nature of these parameters is specific to each IEEE 1451.X technology, the IEEE 1451.0
layer needs the ability to query and pass them around the system in a generic form. The
getNodeParams() call is used to retrieve these parameters in an ArgumentArray. This call returns the
parameters from the local IEEE 1451.X layer.

254
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

254 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

C.6 The destination identifier “destId” parameter

In the IEEE 1451.0 layer, the single “owning” NCAP and associated TIMs form a logical communication
group. Each node (either the NCAP or a TIM) is assigned a unique UInt16 ID by the IEEE 1451.0 layer on
the NCAP-side. Value 0x0000 is reserved as the broadcast address and a value of 0x0001 is reserved as the
“owning” NCAP address. This “IEEE 1451.0 Destination ID” will be called the destId in the remainder of
this document.

On the NCAP-side, the IEEE 1451.X layer is responsible for discovering all TIMs in the logical
communication group and registering them with the NCAP-side IEEE 1451.0 layer by calling the
registerDest() method. The IEEE 1451.0 layer will assign the unique “destId”, and the IEEE 1451.X layer
shall cache appropriate network “node” information and associate it with this “destId.” For example, a
IEEE 1451.5-802.11 implementation would need to associate the “destId” with the remote node’s IP
address and port number.

On the TIM-side, the IEEE 1451.X layer must know how to communicate with the “owning” NCAP using
“destId” 0x0001. No registration with the TIM-side IEEE 1451.0 layer is required.

As an optional feature, in cases where a TIM is initiating communicates with a different destination (for
example, a TIM-generated trigger command to another TIM or a group), an IEEE 1451.0 command is
provided on the TIM-side to handle the necessary configuration. The ArgumentArray retrieved via the
getNodeParams() on the destination TIM (or group) will be passed to the initiating TIM’s IEEE 1451.0
layer. This information will be passed down to the initiating TIM’s IEEE 1451.X layer via the
addDestination() call where it can cache the necessary private network destination information. In this
case, the IEEE 1451.X layer on the initiating TIM would not call the IEEE 1451.0’s registerDest()
method.

The “destId” 0x0000 is reserved as the broadcast address for the logical communication group. It may only
be used to send one-way messages to all nodes within the group.

C.7 The communication session “commId” parameter

When initiating communications, the IEEE 1451.0 layer will invoke the open() or openQoS() calls and
specify a “destId” and a unique “commId.” If these calls succeed, IEEE p1451.0 will refer to that session
by the “commId.” When the IEEE 1451.0 layer is finished, it will invoke close() to notify the
IEEE 1451.X layer that the session has completed and IEEE 1451.X resources can be safely reclaimed.

Optionally, the IEEE 1451.X layer can support multiple open() calls to the same or different destinations.
When IEEE 1451.X has reached network or memory resource limits, it should generate appropriate fail
codes. The IEEE 1451.0 layer should attempt to call close() to free up IEEE 1451.X resources before
subsequent calls to open().

By supporting multiple open() calls, IEEE 1451.X is allowing overlapped communications which usually
result in improved efficiencies. This is an optional feature.

In cases where the node is the receiving role, IEEE 1451.X will invoke the notifyMsg() method on the
IEEE 1451.0 layer and provide a unique “commId.” In this case, open() is not called on the receiving side.
The IEEE 1451.0 layer will use that “commId” to read the incoming network data via the
readMsg() call. Optionally, the IEEE 1451.0 layer will use that “commId” to send a response back to the
initiating node. The IEEE 1451.0 layer will not call close() on this commId because this is handled
internally by the IEEE 1451.X layer.

255
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 255

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

C.8 The message transaction identifier “msgId” parameter

When initiating communications after successfully calling the open() or openQoS() calls, the
IEEE 1451.0 layer will begin communications by calling the writeMsg() method. The IEEE 1451.0 layer
will provide the appropriate “commId” so that the IEEE 1451.X layer will know what communication
session to use. The IEEE 1451.0 layer will also specify a unique “msgId” so that the IEEE 1451.X layer
will know how to associate a response to the outgoing message. The IEEE 1451.X layer is responsible for
caching both these IDs for use in the notifyRsp() callback to the IEEE 1451.0 layer when the response has
been received.

Optionally, the IEEE 1451.X layer can support multiple calls to writeMsg() on the same “commId” but
with different “msgIds.” This allows for overlapped communications over the same communication session
and can result in significant performance improvements. When the IEEE 1451.X layer reaches memory or
network limits, it should fails on subsequent writeMsg() calls. The IEEE 1451.0 layer would back off until
pending responses have been received before further calls to writeMsg().

C.9 Memory constrained implementations

The design of these APIs is intended to work on devices that have severe RAM memory constraints like an
8-bit PIC microprocessor. When the IEEE 1451.0 layer invokes the methods that read or write the
OctetArray from/to the IEEE 1451.X layer (for example, readMsg(), readRsp(), writeMsg(), and
writeRsp()), the IEEE 1451.0 layer will always specify the maximum number of octets that it is providing
or can accept. Multiple calls to these methods may be required to transfer large OctetArrays. A “last” flag
parameter is used to signal when the complete OctetArray has been transferred.

In these memory-constrained situations, it is extremely important that the IEEE 1451.X layer provide a
mechanism where the flow of octets across the network can be regulated. A common example is a memory
constrained TIM that is performing a write TEDS operation. If the TEDS block is larger than the available
TIM-side memory, the IEEE 1451.0 layer on the TIM will need to read the OctetArray in pieces via the
readRsp() call. With each piece, it will write the data to appropriate persistence storage (for example,
flash). Note that this may take a very long time if the flash must be erased. In any case, it is a IEEE 1451.X
responsibility to wait for the IEEE 1451.0 layer to make the subsequent readMsg() call without
overrunning any local network buffers. In most cases, this will require IEEE 1451.X flow control messages
between the NCAP and TIM.

C.10 IEEE 1451.X communication state machines

Figure C.4 and Figure C.5 illustrate the state transitions for the “initiating” and “receiving” nodes. In the
NetComm case when simultaneous transactions are supported, each <“commId”, “msgId”> pair results in
new invocation of these state machines. Figure C.4 diagrams the state machine for the initiating node and
Figure C.5 gives the state diagram for the receiving node.

256
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

256 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure C.4—Communications state machine for the initiating node

257
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

© IEEE 2007 – All rights reserved 257

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

IEEE Std 1451.0-2007
IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication

Protocols, and Transducer Electronic Data Sheet (TEDS) Formats

Figure C.5—Communications state machine for the receiving node

258
Copyright © 2007 IEEE. All rights reserved.

ISO/IEC/IEEE 21450:2010(E)

258 © IEEE 2007 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C/IE
EE 21

45
0:2

01
0

https://iecnorm.com/api/?name=5817bf15914c8d4410e764b55b9daafb

	IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats
	Foreword
	IEEE Std 1451.0
	IEEE Standard for a Smart Transducer
	Introduction
	Notice to users
	Errata
	Interpretations
	Patents

	CONTENTS
	IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Conformance

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Data types
	4.1 Unsigned octet integer
	4.2 Unsigned 16 bit integer
	4.3 Signed 32 bit integer
	4.4 Unsigned 32 bit integer
	4.5 Single-precision real
	4.6 Double-precision real
	4.7 String
	4.8 Boolean
	4.9 IEEE1451Dot0::Args::TimeRepresentation
	4.10 Data types for associated applications
	4.11 Physical Units
	4.12 Universal unique identification
	4.13 Arbitrary octet array
	4.14 String array
	4.15 Boolean array
	4.16 Array of 8 bit signed integers
	4.17 Array of 16 bit signed integers
	4.18 Array of 32 bit signed integers
	4.19 Array of 8 bit unsigned integers
	4.20 Array of 16 bit unsigned integers
	4.21 Array of 32 bit unsigned integers
	4.22 Array of single-precision real numbers
	4.23 Array of double-precision real numbers
	4.24 Array of TimeDuration data types
	4.25 Array of TimeInstance data types

	5. Smart transducer functional specification
	5.1 IEEE 1451 family reference model
	5.2 Plug-and-play capability
	5.3 Addresses
	5.4 Common characteristics
	5.5 Transducer Electronic Data Sheets
	5.6 TransducerChannel type descriptions
	5.7 Embedded TransducerChannels
	5.8 TransducerChannel groups
	5.9 TransducerChannel proxy
	5.10 Attributes and operating modes
	5.11 Triggering
	5.12 Synchronization
	5.13 Status
	5.14 Service request logic
	5.15 Hot-swap capability

	6. Message structures
	6.1 Data transmission order and bit significance
	6.2 Command message structure
	6.3 Reply messages
	6.4 TIM initiated message structure

	7. Commands
	7.1 Standard commands
	7.2 Manufacturer-defined commands

	8. TEDS specification
	8.1 General format for TEDS
	8.2 Order of octets in numeric fields
	8.3 TEDS identification header
	8.4 Meta-TEDS
	8.5 TransducerChannel TEDS
	8.6 Calibration TEDS
	8.7 Frequency Response TEDS
	8.8 Transfer Function TEDS
	8.9 Text-based TEDS
	8.10 End User Application Specific TEDS
	8.11 User’s Transducer Name TEDS
	8.12 Manufacturer-defined TEDS
	8.13 PHY TEDS

	9. Introduction to the IEEE 1451.0 API
	9.1 API goals
	9.2 API design decisions
	9.3 IEEE1451Dot0

	10. Transducer services API
	10.1 IEEE1451Dot0::TransducerServices::TimDiscovery
	10.2 IEEE1451Dot0::TransducerServices::TransducerAccess
	10.3 IEEE1451Dot0::TransducerServices::TransducerManager
	10.4 IEEE1451Dot0::TransducerServices::TedsManager
	10.5 IEEE1451Dot0::TransducerServices::CommManager
	10.6 IEEE1451Dot0::TransducerServices::AppCallback

	11. Module Communications API
	11.1 IEEE1451Dot0::ModuleCommunication::Comm
	11.2 IEEE1451Dot0::ModuleCommunication::P2PComm
	11.3 IEEE1451Dot0::ModuleCommunication::NetComm
	11.4 IEEE1451Dot0::ModuleCommunication::Registration
	11.5 IEEE1451Dot0::ModuleCommunication::P2PRegistration
	11.6 IEEE1451Dot0::ModuleCommunication::NetRegistration
	11.7 IEEE1451Dot0::ModuleCommunication::Receive
	11.8 IEEE1451Dot0::ModuleCommunication::P2PReceive
	11.9 IEEE1451Dot0::ModuleCommunication::NetReceive

	12. HTTP protocol
	12.1 IEEE 1451.0 HTTP API
	12.2 Discovery API
	12.3 Transducer access API
	12.4 TEDS Manager API
	12.5 Transducer Manager API

	Annex A (informative) Bibliography
	Annex B (informative) Guidance to Transducer Services Interface
	Annex C (informative) Guidance to Module Communication Interface
	Annex D (informative) XML Schema for Text-based TEDS
	Annex E (informative) Example Meta-Identification TEDS
	Annex F (informative) Example TransducerChannel Identification TEDS
	Annex G (informative) Example Calibration Identification TEDS
	Annex H (informative) Example Commands TEDS
	Annex I (informative) Example Location and Title TEDS
	Annex J (informative) Example Units Extension TEDS
	Annex K (informative) Examples of Physical Units
	Annex L (informative) TEDS read and write protocols
	Annex M (informative) Trigger logic configurations
	Annex N (informative) Notation summary for IDL
	Annex O (informative) TEDS implementation of a simple sensor
	Annex P (informative) IEEE list of participants

