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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non- in liaj i i ield of information
technolpgy, 1ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

Internagonal Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standaids adopted by the technical committee are circulated to the member bodies for voting, Publication as
an Interpational Standard requires approval by at least 75 % of the member/bedies casting a vote.

Attentioh is drawn to the possibility that some of the elements of this.document may be the slbject of patent
rights. 150 shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 9496 was prepared by Joint Technical Committee  ISO/IEC JTC 1, Informatipn technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces, in
collaboffation with ITU-T. The identical text is published as ITU-T Rec. Z.200.

This folirth edition cancels and replaces the third edition (ISO/IEC 9496:1998), which has Reen technically
revised
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INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

CHILL — THE ITU-T PROGRAMMING LANGUAGE

This Recommendation | International Standard defines the ITU-T programming language CHILL. When CHILL was

first defined

in 1980 "CHILL" stood for CCITT High Level Language.

The following subclauses of this clause introduce some of the motivations behind the language design and provide an
overview of the language features.

For informalion concerning the variety of introductory and training material on this subject, the reader-is 14

Manuals, "I

An alternati

troduction to CHILL" and "CHILL user's manual".

ve definition of CHILL, in a strict mathematical form (based on the VDM notation), is avd

Manual entifled "Formal definition of CHILL".

1.1 G¢

CHILL is a
embedded sy

CHILL was

enhancy

be suff}
hardwa

provide

cater fo

be easy

The express
set of facilit

bneral

strongly typed, block structured language designed primarily for the“implementation of large
stems.

Hesigned to:
reliability and run time efficiency by means of extensive compile-time checking;

ciently flexible and powerful to encompass the.féquired range of applications and to exploit
¢,

facilities that encourage piecewise and modular development of large systems;

r real-time applications by providing-built-in concurrency and time supervision primitives;

permit fhe generation of highly efficient object code;

to learn and use.

ve power inherernt in the language design allows engineers to select the appropriate construct
es such that the resulting implementation can match the original specification more precisely.

Because CHIILL is careful to distinguish between static and dynamic objects, nearly all the semantic che

achieved at
exceptions W

compile.time. This has obvious run time benefits. Violation of CHILL dynamic rules result
hich can be intercepted by an appropriate exception handler (however, generation of such impl

ferred to the

ilable in the

hnd complex

a variety of

from a rich

tking can be
in run-time
cit checks is

optional, unl

s&a nser defined handler is explicitly specified)

CHILL permits programs to be written in a machine independent manner. The language itself is machine independent;
however, particular compilation systems may require the provision of specific implementation defined objects. It should
be noted that programs containing such objects will not, in general, be portable.

1.2

Language survey

A CHILL program consists essentially of three parts:

a description of objects;
a description of actions which are to be performed upon the objects;

a description of the program structure.

ITU-T Rec. Z.200
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Objects are described by data statements (declaration and definition statements), actions are described by action
statements and the program structure is described by program structuring statements.

The manipulatable objects of CHILL are values and locations where values can be stored. The actions define the
operations to be performed upon the objects and the order in which values are stored into and retrieved from locations.
The program structure determines the lifetime and visibility of objects.

CHILL provides for extensive static checking of the use of objects in a given context.

In the following subclauses, a summary of the various CHILL concepts is given. Each subclause is an introduction to a
clause with the same title, describing the concept in detail.

1.3 Modes and classes

A location h
and other py
Properties o
representatid

A value has

hs a mode attached to it. The mode of a location defines the set of values which may residesin
operties associated with it (note that not all properties of a location are determinable by its”1
[ locations are: size, internal structure, read-onliness, referability, etc. Properties of values
n, ordering, applicable operations, etc.

CHILL provjdes the following categories of modes:

—  discretg modes: integer, character, boolean, set (enumerations) modes and ranges thereof;
—  real mofles: floating point modes and ranges thereof;

—  powers¢t modes: sets of elements of some discrete mode;

—  referen¢e modes: bound references, free references.and rows used as references to locations;
—  composite modes: string, array and structure modes;

—  procedyre modes: procedures considered as‘manipulatable data objects;

—  instanc¢ modes: identifications forprocesses;

—  synchrgnization modes: event and buffer modes for process synchronization and communication;

input-of

moreta

CHILL prov
definitions.

timing modes:

itput modes: association, access and text modes for input-output operations;
durdtion and absolute time modes for time supervision;

nodes: module, region and task modes for object orientation with single inheritance

ides dendtations for a set of standard modes. Program defined modes can be introduced by mg

Bome-language constructs have a so-called dynamic mode attached. A dynamic mode is a m

some propeifties can be determined only dynamically. Dynamic modes are always parameterized modes W

parameters.

that location
mode alone).
are: internal

h class attached to it. The class of a value determines the modes of the locations‘that may contaif the value.

ans of mode
de of which
yith run-time

mode that is not dynamic is called a static mode.

With moreta modes CHILL supports object oriented programming in a very versatile manner. There are three kinds of
modes for objects:

module modes: the values of these modes behave very much like modules and resemble therefore mostly the

objects in classical object oriented programming (e.g. Smalltalk, C++, Eiffel, Java);

region modes: the values of these modes behave very much like regions. Such objects are usually not found in

classical object oriented programming;

task modes:

the values of these modes have essentially the same structure as regions but have their own
thread of control, and communication between them and other objects is done asynchronously.

Classes have no denotation in CHILL. They are introduced in the metalanguage only to describe static and dynamic

context conditions.

ITU-T Rec. Z.200 (1999 E)
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14 Locations and their accesses

Locations are places where values can be stored or from which values can be obtained. In order to store or obtain a value,
a location has to be accessed.

Declaration statements define names to be used for accessing a location. There are:
Y
2)

location declarations;

loc-identity declarations.

The first one creates locations and establishes access names to the newly created locations. The latter one establishes new
access names for locations created elsewhere.

Apart from location declarations, new locations can be created by means of a GETSTACK or ALLOCATE built-in routine
call yielding[reference valucs (sec below) to the newly created location.

A location 1
value is obt
reference va
referable, b
must be a std

A location n
new value in

A location
not necess
property. T|
arrays, and s
A location h
The followir]
referability

storage clas

regionality:

1.5

Values are |
undefined V
situation (in

z:[ily referable. A location containing at least one read-only sub-location is said to have th

b: whether or not it is statically.allocated;

Values and their operations

hay be referable. This means that a corresponding reference value exists for the location. T
nined as the result of the referencing operation, applied to the referable location: By der
ue, the referred location is obtained. CHILL requires certain locations to be referable and oth
it for other locations it is left to the implementation to decide whether or not they, are referable
tically determinable property of locations.

to it (except when initializing).

ay be composite, which means that it has sub-locations which ¢an be accessed separately. A sy

he accessing methods delivering sub-locations (or sub-yalues) are indexing and slicing for st
election for structures.

hs a mode attached. If this mode is dynamic, the 16¢ation is called a dynamic mode location.
g properties of a location, although staticallydeterminable, are not part of the mode:

whether or not a reference value exists for the location;

whether or not the location.is declared within a region.

asic objeetsion which specific operations are defined. A value is either a (CHILL) defined
alue (in‘the’' CHILL sense). The usage of an undefined value in specified contexts results in
the CHILL sense) and the program is considered to be incorrect.

his reference
eferencing a
ers to be not
Referability

nay have a read-only mode, which means that it can only be accessed~to*obtain a value and not to store a

b-location is
e read-only
ings and for

value or an
in undefined

CHILL allo

1 : 1 1 1 1 : 1 1 1 1 : .
S 10CAUOIIS 10 DT USTU IIT COIMITALS WIITIT VAIUCsS dIT TO(UITTU. o UILS TAST, UIC TOUALUIOIT IS dCCTS

the value contained in it.

ed to obtain

A value has a class attached. Strong values are values that besides their class also have a mode attached. In that case the
value is always one of the values defined by the mode. The class is used for compatibility checking and the mode for
describing properties of the value. Some contexts require those properties to be known and a strong value will then be
required.

A value may be literal, in which case it denotes an implementation independent discrete value, known at compile time.
A value may be constant, in which case it always delivers the same value, i.e. it need only be evaluated once. When the
context requires a literal or constant value, the value is assumed to be evaluated before run-time and therefore cannot
generate a run-time exception. A value may be intra-regional, in which case it can refer somehow to locations declared
within a region. A value may be composite, i.e. contain sub-values.

Synonym definition statements establish new names to denote constant values.

ITU-T Rec. Z.200 (1999E)
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1.6 Actions

Actions constitute the algorithmic part of a CHILL program.

The assignment action stores a (computed) value into one or more locations. The procedure call invokes a procedure, a
built-in routine call invokes a built-in routine (a built-in routine is a procedure whose definition need not be written in
CHILL and whose parameter and result mechanism may be more general). To return from and/or establish the result of a
procedure call, the return and result actions are used.

To control the sequential action flow, CHILL provides the following flow of control actions:

if action: for a two-way branch;

case action: for a multiple branch. The selection of the branch may be based upon several values, similarly to

a decision table;

do actiqgp——for-iteration-or-bracketing:

exit actfon: for leaving a bracketed action or a module in a structured manner;

cause agtion: to cause a specific exception;

goto acfion: for unconditional transfer to a labelled program point.

Action and
action.

lata statements can be grouped together to form a module or begin-end block, which form af(compound)

To control th receive case

actions, and

e concurrent action flow, CHILL provides the start, stop, delay, continue, send, delay case, and|
Feceive and start expressions.

1.7 InI)ut and output
The input and output facilities of CHILL provide the means to.communicate with a variety of devices i the outside
world.

The input-oy

Through an
association 1
defined attri

tput reference model knows three states. In the free state there is no interaction with the outside

ASSOCIATE operation, the file handling state is entered. In the file handling state there are
hode, which denote outside world objects. It is possible via built-in routines to read and modify
butes of associations, i.e. existingl.-readable, writeable, indexable, sequencible and variable.

world.

locations of
the language
File creation

and deletionfare also done in the file handling-state.

Through the
data transfer
state various|
WRITEREC

CONNECT operation, a location of access mode is connected to a location of an association njode, and the
state is entered. The-CONNECT operation allows positioning of a base index in a file. In the|data transfer
attributes of locations’ of access mode can be inspected and the data transfer operations READRECORD and
DRD can be applied!

Through the hich can be

transferred t

text trapsfer operations, CHILL values can be represented in a human-readable form w
or fromra-file or a CHILL location.

1.8 E

ception handling
r k=]

The dynamic semantic conditions of CHILL are those (non context-free) conditions that, in general, cannot be statically
determined. (It is left to the implementation to decide whether or not to generate code to test the dynamic conditions at
run time, unless an appropriate handler is explicitly specified.) The violation of a dynamic semantic rule causes a run-
time exception; however, if an implementation can determine statically that a dynamic condition will be violated, it may
reject the program.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an assert action.
When, at a given program point, an exception occurs, control is transferred to the associated handler for that exception, if
one is specified. Whether or not a handler is specified for an exception at a given point can be statically determined. If no
explicit handler is specified, control may be transferred to an implementation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception name, an implementation defined exception name,
or a program defined exception name. Note that when a handler is specified for an exception name, the associated
dynamic condition must be checked.

ITU-T Rec. Z.200 (1999 E)
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1.9 Time supervision

Time supervision facilities of CHILL provide the means to react to the elapsing of time in the external world. A process
becomes timeoutable when it reaches a well-defined point in the execution of certain actions. At this point it may be
interrupted. When this happens, control is transferred to an appropriate handler.

Programs may detect the elapsing of a period of time or may synchronize to an absolute point of time or at precise
intervals without cumulated drifts. Built-in routines for time are provided to convert absolute time values and duration
values into integer values, to suspend a process until a time supervision expires.

1.10 Program structure

The program structuring statements are the begin-end block, module, procedure, process, region and moreta mode. The

program stry

The lifetime
declared (in
implicitly dg

A name is
encompasse

Begin-end b

Modules arg
statements, i

A procedure
It may retur
procedure c4

Processes, t4
can be achie

Generic tem
be construct
statements a|
generic inst
parameters Vj

A complete
definition. T
can be a mo
template.

cturing statements provide the means of controlling the lifetime of locations and the visibility-of

of a location is the time during which a location exists within the program. Locatiéns-can
a location declaration) or generated (GETSTACK or ALLOCATE built-in routing ¢all), or
clared or generated as the result of the use of language constructs.

aid to be visible at a certain point in the program if it may be used at/that point. The scop
all the points where it is visible, i.e. where the denoted object is identified\by that name.

ocks determine both visibility of names and lifetime of locations:

provided to restrict the visibility of names to protect against unauthorized usage. By means
is possible to exercise control over the visibility of namies in various program parts.

h a value (value procedure) or a location (loeation procedure), or deliver no result. In the 13
n only be called in a procedure call action.

sk locations, regions and region locations provide the means by which a structure of concurrej
ved.

blates provide the means by which generic modules, regions, procedures, processes and moret
pd. These templates can be parameterized by SYN constants, modes and procedures. Generic
Fe used to obtain (nongeneric) modules, regions, procedures, processes and moreta modes whi
inces. A generic instance is obtained from a generic template T by replacing in T the fo
ith the corresponding actual generic parameters.

CHILL program is a list of program units that is considered to be surrounded by an (imagir
his outermost process is started by the system under whose control the program is executed. A
ule,\a region, a moreta synmode definition statement, a moreta newmode definition statement

names.
be explicitly

they can be

e of a name

of visibility

is a (possibly parameterized) sub-program that may be invoked (called) at different places within a program.

tter case the

it executions

a modes can
instantiation
ch are called
'mal generic

Jary) process
program unit
or a generic

Constructs are provided to facilitate various ways of piecewise development of programs. A spec module and spec
region are used to define the static properties of a program piece, a context is used to define the static properties of seized
names. In addition it is possible to specify that the text of a program piece is to be found somewhere else through the
remote facility.

1.11 Concurrent execution

CHILL allows for the concurrent execution of program units. A thread (process or task) is the unit of concurrent
execution. The evaluation of a start expression causes the creation of a new process of the indicated process definition.
The process is then considered to be executed concurrently with the starting thread. CHILL allows for one or more
processes with the same or different definition to be active at one time. The stop action, executed by a process or a task,
causes its termination.
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A thread is always in one of two states; it can be active or delayed. The transition from active to delayed is called the
delaying of the thread; the transition from delayed to active is called the re-activation of the thread. The execution of
delaying actions on events, or receiving actions on buffers or signals, or sending actions on buffers, or call action to a
component procedure of a region location, or call action to a component procedure of a task location in case there is not
enough storage to perform can cause the executing thread to become delayed. The execution of a continue action on
events, or sending actions on buffers or signals, or receiving actions on buffers, or release of a region location, or at the
beginning of the execution of an externally called component procedure of a task location can cause a delayed thread to
become active again.

Buffers and events are locations with restricted use. The operations send, receive and receive case are defined on buffers;
the operations delay, delay case and continue are defined on events. Buffers are a means of synchronizing and
transmitting information between processes. Events are used only for synchronization. Signals are defined in signal
definition statements. They denote functions for composing and decomposing lists of values transmitted between
processes. Send actions and receive case actions provide for communication of a list of values and for synchronization.

cess to data

A region or
structures th

1.12 G¢

The semanti
and the visi
determine w

The mode rt
modes and
defined in t
dynamic.

The scope 11
explicit visil
where they 4
is used are ¢
each applied

1.13

CHILL allo
defined prod

An implemg
considered

region location is a special kind of module. Its use is to provide for mutually exclusiyve, a
t are shared by several threads.

bneral semantic properties

L (non context-free) conditions of CHILL are the mode and class compatibility conditions (mo
bility conditions (scope checking). The mode rules determine how ‘names may be used; the
here names may be used.

hles are formulated in terms of compatibility requirements.between modes, between classes
lasses. The compatibility requirements between modeS)and classes and between classes th
erms of equivalence relations between modes. If dyhamic modes are involved, mode check

iles determine the visibility of names through ‘the program structure and explicit visibility sta
ility statements influence the scope of the mentioned names. Names introduced in a program
re defined or declared. This place is called the defining occurrence of the name. The places whi
alled applied occurrences of the namie) The name binding rules associate a unique defining ocd
occurrence of the name.

Implementation options

vs for implementation defined integer modes, implementation defined built-in routines, im
ess names, implementation defined exception handlers and implementation defined exception n

ntation~defined integer mode must be denoted by an implementation defined mode name.
p be‘defined in a newmode definition statement that is not specified in CHILL. Extending

de checking)
scope rules

and between
bmselves are
ing is partly

ements. The
have a place
ere the name
urrence with

blementation
hmes.

This name is

the existing
ramework of

CHILL-defiped. arithmetic operations to the implementation defined integer modes is allowed within the f]

the CHILL syntactic and semantic rules. Examples of implementation defined integer modes are long integers, and short
integers.

A built-in routine is a procedure whose definition need not be written in CHILL and that may have a more general
parameter passing and result transmission scheme than CHILL procedures.

A built-in process name is a process name whose definition need not be written in CHILL and that may have a more
general parameter passing scheme than CHILL processes. A CHILL process may cooperate with built-in processes or
start such processes.

An implementation defined exception handler is a handler appended to a process definition. If this handler receives
control after the occurrence of an exception, the implementation decides which actions are to be taken. An
implementation defined exception is caused if an implementation defined dynamic condition is violated.

ITU-T Rec. Z.200 (1999 E)


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

2

2.1

ISO/IEC 9

Preliminaries

The metalanguage

The CHILL description consists of two parts:

2.1.1

the description of the context-free syntax;

the description of the semantic conditions.

The context-free syntax description

496:2003(E)

The context-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are indicated by

one or more

English words, written in slanted characters, enclosed between angular brackets (< and >). Thi

s indicator is

called a non

terminal symbol. For each non-terminal symbol, a production rule is given in an appropriate sy

A production rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side-of thg

and one or 11
are separateq

Sometimes t
free descript

Syntactic elg
indicated by

hore constructs, consisting of non-terminal and/or terminal symbols at the right-hand sidé-" The
by a vertical bar ( | ) to denote alternative productions for the non-terminal symbol.

he non-terminal symbol includes an underlined part. This underlined part does not form part of
on but defines a semantic category (see 2.1.2).

ments may be grouped together by using curly brackets ({ and }). Repetition of curly bracke
an asterisk (*) or plus (7). An asterisk indicates that the group is\Optional and can be further

number of times; a plus indicates that the group must be present and can be-further repeated any number

example, { 4
syntactic ele)
group may ¢

A distinctior
derived synt
explained in

It is to be
Recommend

context-free
of the syntag

2.1.2 Th

Each syntac]
properties,

The section

The section

}* stands for any sequence of A's, including zero, while { 4/} Stands for any sequence of at |
ments are grouped using square brackets ([ and ]), then_the)group is optional. A curly or squs
bntain one or more vertical bars, indicating alternative syntactic elements.

is made between strict syntax, for which the semantic conditions are given directly, and deriveq
hx is considered to be an extension of the strictyntax and the semantics for the derived syntax
terms of the associated strict syntax.

noted that the context-free syntax~description is chosen to suit the semantic descrip
ption | International Standard and is‘not made to suit any particular parsing algorithm (e.g. th

ambiguities introduced in the interest of clarity). The ambiguities are resolved using the sema
tic elements.

e semantic description

fic category (nonstérminal symbol) is described in sub-sections semantics, static properti
tatic conditions‘and dynamic conditions.

emanties-describes the concepts denoted by the syntactic categories (i.e. their meaning and beh

static properties defines statically determinable semantic properties of the syntactic catg

ntax section.
symbol =,
e constructs

the context-

ed groups is
repeated any
bf times. For
tast one A. If
re bracketed

| syntax. The
is indirectly

tion in this
bre are some
htic category

ps, dynamic

aviour).

gory. These

properties a
used.
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category is

The section dynamic properties defines the properties of the syntactic category, which are known only dynamically.

The section static conditions describes the context-dependent, statically checkable conditions which must be fulfilled
when the syntactic category is used. Some static conditions are expressed in the syntax by means of an underlined part in
the non-terminal symbol (see 2.1.1). This use requires the non-terminal to be of a specific semantic category. For
example, boolean expression is identical to <expression> in the context-free sense, but semantically it requires the
expression to be of a boolean class.

The section dynamic conditions describes the context-dependent conditions that must be fulfilled during execution. In
some cases, conditions are static if no dynamic modes are involved. In those cases, the condition is mentioned under
static conditions and referred to under dynamic conditions. In other cases, dynamic conditions can be checked
statically; an implementation may treat this as a violation of a static condition.
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In the semantic description, different fonts are used in the following ways: slanted font (without < and >) is used to
indicate syntactic objects; corresponding terms in roman font indicate corresponding semantic objects (e.g. a location
denotes a location). Bolding is used to name semantic properties; sometimes a property can be expressed syntactically as
well as semantically (e.g. the sentence "the expression is constant" means the same as "the expression is a constant
expression").

Unless otherwise specified, the semantics, properties and conditions described in the sub-section of a syntactic category
hold regardless of the context in which in other sections that syntactic category may appear.

The properties of a syntactic category A that has a production rule of the form A4 ::= B, where B is a syntactic category,
are the same as B unless otherwise specified.

In this Recommendation | International Standard, virtual names are introduced to describe modes, locations and values
which do not occur explicitly in the program text. In such cases the name is preceded by an ampersand (&) symbol.
These names are introduced for descriptive purposes only.

2.1.3 The examples

For most syptax sections, there is a section examples giving one or more examples of the defined syntactic categories.
These examples are extracted from a set of program examples contained in Appendix IV. References indicgte via which
syntax rule dach example is produced and from which example it is taken.

For examplq, 6.20 (d+5)/5 (1.2) indicates an example of the terminal string (d+5)/5, produced via rule| (1.2) of the
appropriate §yntax section, taken from program example no. 6 line 20.

2.14 The binding rules in the metalanguage

Sometimes fhe semantic description mentions CHILL special simple name strings (see Appendix III). Tlhese special
simple namg strings are always used with their CHILL meaning and ate therefore not influenced by the binding rules of
an actual CHILL program.

2.2 Vocabulary

Programs are represented using the CHILL character-set (see Appendix I) except for wide character literals, wide
character strjng literals and comments. The representation of a CHILL program is not specified, which mdans that it is
also possiblg to use a multi-byte character representation. The CHILL alphabet is represented by the syntagtic category
<character>} from which any character that is irrthe CHILL character set can be derived as a terminal production. The
characters of UCS-2 level 1 are represented(by the syntactic category <wide character>, from which any dharacter that
is in the UC$-2 level 1 set can be derived as a terminal production.

The lexical dlements of CHILL are:
e  special pymbols;
*  simple pame strings;

. literals.

The special gymbols are listed in Appendix II. They can be formed by a single character or by character compinations.

Simple name strings are formed according to the following syntax:

syntax:

<simple name string> ::= (1)

<letter> { <letter> | <digit>| _}* (1.1)

<letter> ::= (2)
A|B|C|DIE|F|G|H|I|J|IK|L|M (2.1)
INJO[P|QIR[S|T|U|V[W[X]|Y|Z (2.2)
la|blc|dle|f|glhfi|j[k|l[m 2.3)
Infofplqlr|s|tiulv[w[x]|y]|z 2.4)

<digit> ::= 3)
0]11213]|4]5]16|7|8]9 (3.1)

8 ITU-T Rec. Z.200 (1999 E)
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semantics: The underline character (_) forms part of the simple name string; e.g. the simple name string /life time is
different from the simple name string lifetime. Lower case and upper case letters are different, e.g. Status and status are
two different simple name strings.

The language has a number of special simple name strings with predetermined meanings (see Appendix III). Some of
them are reserved, i.c. they cannot be used for other purposes.

The special simple name strings in a piece must either all be in upper case representation or all be in lower case
representation. The reserved simple name strings are only reserved in the chosen representation (e.g. if the lower case
fashion is chosen, row is reserved, ROW is not).

static conditions: A simple name string may not be one of the reserved simple name strings (see Appendix III.1).

23 Theuseof spaces
A sequence ¢f one or more spaces is allowed before and after each lexical element. Such a sequence i§ calleql a delimiter.
Lexical elements are also terminated by the first character that cannot be part of the lexical element. For instance,
IFBTHEN will be considered a simple name string and not as the beginning of an action Hy\'\B THEN, //* will be
considered gs the concatenation symbol (//) followed by an asterisk (*) and not as a divide\symbol (/) followed by a
comment oppning bracket (/*).
24 Comments
syntax:
<g¢omment> ::= (1)
<bracketed comment> 1.1)
| <line-end comment> 1.2)
<bracketed comment> ::= (2)
/* <character string> */ 2.1)
<line-end comment> ::= (3)
— — <character string> <end-of-line> 3.1)
<g¢haracter string> ::= (4)
{ <character> }* 4.1)
| { <wide character> }* 4.2)
NOTE — End-of-line derotes the end of the line in which the comment occurs.
semantics: A comment conveys information to the reader of a program. It has no influence on the program s¢mantics.

A comment Tiay be/nserted at all places where spaces are allowed as delimiters.

A bracketed comment is terminated by the first occurrence of the special sequence: */. A line-end comment is terminated

by the first o
examples:

4.1 /%

2.5

ccurrence of the end of the line.

from collected algorithms from CACM no. 93 */

Format effectors

2.1)

The format effectors BS (Backspace), CR (Carriage return), FF (Form feed), HT (Horizontal tabulation), LF (Line feed),
VT (Vertical tabulation) of the CHILL character set (see Appendix I, positions FE( to FEs) and the end-of-line are not
mentioned in the CHILL context-free syntax description. When used, they have the same delimiting effect as a space.
Spaces and format effectors may not occur within lexical elements (except character string literals).

ITU-T Rec. Z.200
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2.6 Compiler directives
syntax:

<directive clause> ::=
<> <directive> { , <directive> }* <>

<directive> ::=
<implementation directive>

(1)
(1.1)

2)
2.1)

semantics: A directive clause conveys information to the compiler. This information is specified in an implementation

defined format.

An implementation directive must not influence the program semantics, i.e. a program with implementation directives is

correct, in the CHILL sense, if and only if it is correct without these directives.

A directive dlause is terminated by the first occurrence of the directive ending symbol (<>). A directive may contain any

character of fhe character set (see Appendix I).

static propefties: A directive clause may be inserted at any place where spaces are allowed as delimiters. It has the same
delimiting effect as a space. The names used in a directive clause follow an implementation’ defined name binding

scheme whigh does not influence the CHILL name binding rules (see 12.2).

2.7 Names and their defining occurrences
syntax:

<game> ::=
<name string>
| <qualified name>
| <moreta component name>

<game string> ::=
<simple name string>
| <prefixed name string>

<prefixed name string> ::=
<prefix> | <simple name-string>

<prefix> ::=
<simple prefix»{ ¥ <simple prefix> }*

<yimple prefix> ::=
<simple name string>

<defining occiirrence> ::=
<simple name string>

<{lefiing occurrence list> ::=
E3

(1)
1.1)
1.2)
1.3)

2)
2.1)
2.2)

3)
3.1)

4)
4.1)

(5)
5.1)

(6)
6.1)

(7)

Aot aas L Todseas ),
MCJI»ILLILS oceurrcricc L) MC/LILLIt‘g oceurrcritc f

<set element name> ::=
<simple name string>

<set element name defining occurrence> ::=
<simple name string>

<field name> ::=
<simple name string>

<field name defining occurrence> ::=
<simple name string>

<field name defining occurrence list> ::=
<field name defining occurrence> { , <field name defining occurrence> }*

10 ITU-T Rec. Z.200 (1999 E)
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<exception name> ::= (13)
<simple name string> (13.1)

| <prefixed name string> (13.2)

<text reference name> ::= (14)
<simple name string> (14.1)

| <prefixed name string> (14.2)
<component name> ::= (15)
<simple name string> (15.1)
<component name defining occurrence> ::= (16)
<simple name string> (16.1)
<qualified name> ::= (17)
<simple name string> | <component name> d7.1)

<moreta component name> ::= (18)
<moreta location> . { <simple name string> | <qualified name> } (18.1)

semantics: 1
production

terminal pro
object defing
the case of n

Defining ocd
defining occ

Similarly, fi
by those fiel
denote the ¢

Exception ng

Text referen
to the rules 1

Names in a program denote objects. Given an occurrence of a name (formally: an occurrence
f name) in a program, the binding rules of 12.2 provide defining occuriences (formally: od

d or declared by the defining occurrences. (There can be more thap.one defining occurrence f
nmes with quasi defining occurrences and in the case of names of components of moreta modes|

urrences are said to define the name. A name is said to be an‘applied occurrence of the name ¢
rrence to which it is bound. The name has its rightmostysimple name string equal to that of the

bld names are bound to field name defining occurrences and denote the fields (of a structure m
d name defining occurrences. Moreta componentzpames are bound to component defining occi
mponents (of a moreta mode) defined by those component name defining occurrences.

mes are used to identify exception handlers according to the rules stated in clause 8.

Le names are used to identify descriptions of pieces of source text in an implementation defined
h 10.10.1.

When a na
bound defi

Qualified n

definition of notation: Given a name string NS, and a string of characters P, which is either a prefix or
result of prefixing NS with P, written P ! NS, is defined as follows:

if P is elmpty, then P ! NS is NS:

e is bound to more than one defining occurrence, each of the defining occurrences to which
s or declares the same-object (see 10.10 and 12.2.2 for precise rules).

es are used to'‘identify components of moreta modes.

bf a terminal
currences of

Huctions of defining occurrence) to which that (occurrence of) name is'beund. The name then denotes the

or a name in

)

reated by the
name.

ode) defined

rrences and

way, subject

the name is

s empty, the

characters in NS.

For example

,ifPis"g/r"and NSis"s /n" then P I NSis"q /r/s/n".

otherwise P | NS is the name string obtained by concatenating all the characters in P, a prefixing operator and all the

static properties: Each simple name string has a canonical name string attached which is the simple name string itself.
A name string has a canonical name string attached which is:

if the name string is a simple name string, then the canonical name string of that simple name string;

if the name string is a prefixed name string, then the concatenation in left to right order of all simple name strings in

the name string, separated by prefixing operators, i.e. interspersed spaces, comments and format effectors (if any)

are left

out.
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In the rest of this Recommendation | International Standard:

name string in that name, exception name or text reference name, respectively;

the name string of a name, exception name or text reference name is used to denote the canonical name string of the

the name string of a defining occurrence, field name, field name defining occurrence, moreta component name or

moreta component defining occurrence is used to denote the canonical name string of the simple name string in that
defining occurrence, field name, field name defining occurrence, moreta component name or moreta component
defining occurrence, respectively.

The binding

field na|

moreta
the mo

A name inhg
field name i

it is bound.
the moreta c

static condi

If a qualifie
component 1

3.1 G

A location h|

rules are such that:

names with a simple name string are bound to defining occurrences with the same name string;

mes are bound to field name defining occurrences with the same name string as the fieldnames

component names are bound to moreta component name defining occurrences with the same n¢
eta component names.

rits all the static properties attached to the name defined by the defining ‘oscurrence to which it
herits all static properties attached to the field name defined by the field’name defining occurre
A moreta component name inherits all static properties attached, tosthe moreta component nam
mponent name defining occurrence to which it is bound.

ions: The simple name string denoted in a qualified nameyand followed by ! must be a moreta n

I name of the form "M ! component name" occurs.outside the definition of the moreta mode
ame must be the name of a SYN, a SYNMODE, @v a NEWMODE component of M.

Miodes and classes

bneral

values that npay be contained in-the'location, the access methods of the location and the allowed operations g

The class at

fached to a valye is’a means of determining the modes of the locations that may contain the

values are sfrong. A streng‘value has a class and a mode attached. Strong values are required in those v

where mode

3.1.1 M

information,1s needed.

bdes

me string as

is bound. A
ce to which
e defined by

ode name.

M, then the

hs a mode attached todt:*a value has a class attached to it. The mode attached to a location defines the set of

n the values.
value. Some
hlue contexts

CHILL has static modes (i.e. modes for which all properties are statically determinable) and dynamic modes (i.e. modes
for which some properties are only known at run time). Dynamic modes are always parameterized modes with run-time

parameters.

Static modes are terminal productions of the syntactic category mode.

Modes are also parameterized by values not explicitly denoted in the program text.

3.1.2

Classes

Classes have no denotation in CHILL.

The following kinds of classes exist and any value in a CHILL program has a class of one of these kinds:

12
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For a mode M there exists the M-value class. All values with such a class and only those values are strong and the mode
attached to the value is M.
*  For amode M there exists the M-derived class.
*  For any mode M there exists the M-reference class.
e The null class.

. The all class.

The last two classes are constant classes, i.e. they do not depend on a mode M. A class is said to be dynamic if and only
if it is an M-value class, an M-derived class, or an M-reference class, where M is a dynamic mode.

3.1.3 Properties of, and relations between, modes and classes

Modes in CHILL have propertles These may be heredltary or non- hered1tary propertles A heredltary property is
inherited fro A that apply to
all modes (ekcept for the first, they are all deﬁned in 12.1):

* A moddq has a novelty (defined in 3.2.2, 3.2.3 and 3.3).

* A modq can have the read-only property.

* A modq can be parameterizable.

* A moddq can have the referencing property.

* A modg can have the tagged parameterized property.

* A moddq can have the non-value property.

Classes in CHILL may have the following properties (defined in 12.1):
* A class|can have a root mode.

e One or more classes may have a resulting class.

Operations ih CHILL are determined by the modes and classes of locations and values. This is expressed [by the mode
checking rulps which are defined in 12.1 as a number of relations between modes and classes. There exists fhe following
relations:

*  Two m¢des can be similar.

¢ Two mddes can be v-equivalent.

*  Two m¢des can be equivalent.

e Two md¢des can be l-equivalent.

*  Two m¢des can be alike.

*  Two m¢des can be novelty-bound.

e Two m¢des can bedéad-compatible.

*  Two m¢des can'be’dynamic read-compatible.

*  Two m¢deS.can be dynamic equivalent.

. A mode<an be restrictable to a mode.
e A mode can be compatible with a class.

e A class can be compatible with a class.

3.2 Mode definitions

3.2.1 General

syntax:
<mode definition> ::= (1)
<defining occurrence list> = <defining mode> (1.1)
<defining mode> ::= 2)
<mode> (2.1)

ITU-T Rec. Z.200 (1999 E) 13
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derived syntax: A mode definition where the defining occurrence list consists of more than one defining occurrence is
derived from several mode definitions, one for each defining occurrence, separated by commas, with the same defining
mode. For example:

NEWMODE dollar, pound = INT,;

is derived from:

NEWMODE dollar = INT, pound = INT;

semantics: A mode definition defines a name that denotes the specified mode. Mode definitions occur in synmode and
newmode definition statements. A synmode is synonymous with its defining mode. A newmode is not synonymous
with its defining mode. The difference is defined in terms of the property novelty, that is used in the mode checking

(see 12.1).

static prope

Predefined
names (if an

rtes: A defining occurrence 1n a mode definition dennes a mode name.

node names, implementation defined integer mode names and implementation defined-floating
y, see 3.4.2 and 3.5.1) are also mode names.

A mode name has a defining mode which is the defining mode in the mode definition which,defines it. (F

and implem:
name are thd

A set of recu
each mode d
synonym naj

A set of recy

Any mode b,
mode. A pat

all nam

for eacl
name);

the mar
the first

[Example: N

A path is saf
at the marke

static condi

ntation defined mode names this defining mode is a virtual mode.) The hereditary propertia
se of its defining mode.

rsive definitions is a set of mode definitions or synonym definitiong(se¢ 5.1) such that the defi
e defined by a definition in the set.
rsive mode definitions is a set of recursive definitions having only mode definitions.

ping or containing a mode name defined in a set of teécursive mode definitions is said to denot
h in a set of recursive mode definitions is a list ofgnode names, each name indexed with a marke

s in the path have a different definition;

| name, its successor is or directly occurs in its defining mode (the successor of the last nani
ker indicates uniquely the position of the name in the defining mode of its predecessor (the pi
name is the last name).

EWMODE M = STRUCT (i M, n REF M); contains two paths: {M;} and {M,,}.]

e if and only iftat I€ast one of its names is contained in a reference mode, a row mode, or a pro
1 place.

tions: For any set of recursive mode definitions, all its paths must be safe. (The first path of]

above is not lsafe.)

point mode

r predefined
s of a mode

ing mode in

efinition or constant value or mode in each synonym definition as,\or directly contains, a mode name or a

£ a recursive
r such that:

e is the first

edecessor of

cedure mode

the example

examples:
1.15
3.3

3.2.2

syntax:

operand_mode = INT

complex = STRUCT (re,im FLOAT)

Synmode definitions

<synmode definition statement> ::=

SYNMODE <mode definition> { , <mode definition> }* ;
| <remote program unit>

(1.1)
(1.1)

(1)
(1.1)
(1.2)

semantics: A synmode definition statement defines mode names which are synonymous with their defining mode.

14

ITU-T Rec. Z.200

(1999 E)


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)
static properties: A defining occurrence in a mode definition in a synmode definition statement defines a synmode name
(which is also a mode name). A synmode name is said to be synonymous with a mode M (conversely, M is said to be
synonymous with the synmode name) if and only if:

»  either M is the defining mode of the synmode name;

e or the defining mode of the synmode name is itself a synmode name synonymous with M.
Two mode names A and B are synonymous if and only if:

. either A and B are the same name;

*  or A is the defining mode of B and B is a synmode name;

*  or B is the defining mode of A and A is a synmode name;

e or the defining mode name of A is synonymous to B and A is a synmode name;
e or the defining mode name of B is synonymous to A and B is a synmode name.
The novelty|of a synmode name is that of its defining mode.

If the definipg mode is a discrete range mode or a floating point range mode, then the-parent mode of the synmode

name is thaf| of its defining mode. If the defining mode is a varying string mode} ‘thén the component [mode of the
synmode nane is that of its defining mode.

examples:
6.3 SYNMODE month = SET (jan, feb, mar, apr, may, jun,
Jjul, aug, sep, oct, nov, dec); 1.1)
3.23 Ndwmode definitions
syntax:
<gewmode definition statement> ::= (1)
NEWMODE <mode definition> { , <mode definition>}*; 1.1)
| <remote program unit> 1.2)

semantics: A newmode definition statemént defines mode names which are not synonymous with their defihing mode.

static propdrties: A defining otcurrence in a mode definition in a newmode definition statement defines|a newmode
name (whicH is also a mode, name).

The novelty|of the newmode name is the defining occurrence which defines it. If the defining mode of the newmode
name is a digcrete range’mode or a floating point range mode, then the virtual mode &name is introduced gs the parent
mode of the mewmode name. The defining mode of &name is the parent mode of the discrete range mode jor the one of
the floating point range mode, and the novelty of &name is that of the newmode name.

If the defining mode is a varying string mode, then the virtual mode &name is introduced as the component mode of
the newmode name. The defining mode of &name is the component mode of the varying string mode, and the novelty
of &name is that of the newmode name.

If the defining occurrence of the mode definition is a quasi defining occurrence, then the novelty is a quasi novelty,
otherwise it is a real novelty.

static conditions: If the novelty is a quasi novelty, then at most one real novelty must be novelty bound to it.

examples:
11.6 NEWMODE /ine = INT (1:8); (1.1)
11.12 NEWMODE board = ARRAY (line) ARRAY (column) square; (1.1)

ITU-T Rec. Z.200 (1999E) 15
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33

syntax:

Mode classification

<mode> ::= (1)
[ READ | <non-composite mode> (1.1)

| [ READ ] <composite mode> (1.2)

| <formal generic mode indication> (1.3)
<non-composite mode> ::= (2)
<discrete mode> 2.1)

| <real mode> 2.2)

| <powerset mode> (2.3)

| <reference mode> (2.4)

[ <procedure mode 2.5)

| <instance mode> 2.6)

| <synchronization mode> 2.7)

|  <input-output mode> 2.8)

| <timing mode> 2.9)

semantics: 4
only mode, i
whether it w|

static prope
Itisar

It is an
mode 0
variant

Itis an
it i

it §
mg

A mode has|
properties a
are defined
the read-onl

A mode has

A mode defines a set of values and the operations which are allowed on the yalues. A mode m4
ndicating that a location of that mode may not be accessed to store a value.“A mode has a novels
hs introduced via a newmode definition statement or not.

rties: A mode has the following hereditary properties:

bad-only mode if it is an explicit or an implicit read-onlyymode.
explicit read-only mode if READ is specified or itds.a parameterized array mode, a paramet
| a parameterized structure mode, where the origin array mode name, origin string mode na
structure mode name, respectively, in it is a read-only mode.

mplicit read-only mode if it is not an explicit read-only mode and if:

5 the element mode of a read-only string mode or a read-only array mode (see 3.13.2 and 3.13

s a field mode of a read-only structure mode or it is the mode of a tag field of a parameteri
de (see 3.13.4).

the same propetties as the non-composite mode or composite mode in it. In the following
e defined for predefined mode names and for modes that are not mode names; the properties of]
n 3.2. Read-only modes have the same properties as their corresponding non-read-only mod
y property(see 12.1.1.1).

y be a read-
y, indicating

erized string
me or origin

3);
ved structure
sections, the

mode names
bs except for

théfollowing non-hereditary properties:

novelty

of a mode which is not a mode name (nor READ mode name) is defined as follows:

A novelty that is either nil or the defining occurrence in a mode definition in a newmode definition statement. The

if it is a parameterized string mode, a parameterized array mode or a parameterized structure mode, its

novelty is that of its origin string mode, origin array mode or origin variant structure mode, respectively;

if i

t is a discrete range mode or a floating point range mode, its novelty is that of its parent mode;

otherwise its novelty is nil.

The novelty of a mode that is a mode name (READ mode name) is defined in 3.2.2 and 3.2.3.
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34.1

syntax:

ISO/IEC 9

Discrete modes

General

<discrete mode> ::=

<integer mode>
<boolean mode>
<character mode>
<set mode>

<discrete range mode>

semantics: A discrete mode defines sets and subsets of totally-ordered values.

496:2003(E)

(1)
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

34.2 In

syntax:

eger modes

nteger mode> ::=
<integer mode name>

predefined

semantics:

the usual ordlering and arithmetic operations are defined (see 5.3). An implémentation may define other i

ames: The name /NT is predefined as an integer mode name.

n integer mode defines a set of signed integer values between implementation defined bound

(1)
1.1)

5 over which
teger modes

with differept bounds (e.g. LONG INT, SHORT INT, UNSIGNED INT) that may also be used as parent modes for
ranges (see 13.2). The &/NT mode is introduced as the virtual mode that-Contains all the values of all prede
modes defingd by the implementation. The internal representation ofiah integer value is the integer value its

&INT is not

predefined mode (although it may have the same bounds as those of a predefined integer mo

static propefties: An integer mode has the following hereditary properties:

An up
defined

L]
examples:

1.5 IN

343 Bo

syntax:

er bound and a lower bound which are.the literals denoting respectively the highest and
by the integer mode. They are implementation defined.

A number of values which is upper bound=lower bound + 1.

(T

olean modes

boolearn~mode> ::=
<boolean mode name>

fined integer
p1f. Note that
le).

lowest value

1.1)

(1)
1.1)

predefined names: The name BOOL is predefined as a boolean mode name.

semantics: A boolean mode defines the logical truth values (TRUE and FALSE), with the usual boolean operations
(see 5.3). The internal representations of FALSE and TRUE are the integer values 0 and 1, respectively. This
representation defines the ordering of the values.

static properties: A boolean mode has the following hereditary properties:

An upp
examples:

54

er bound which is TRUE, and a lower bound which is FALSE.

A number of values which is 2.

BOOL
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344

syntax:

96:2003(E)

Character modes

<character mode> ::=

<character mode name>

predefined names: The names CHAR and WCHAR are predefined as character mode names.

(1)
(1.1)

semantics: A character mode defines the character values as described by the CHILL character set (see Appendix I) in
case of CHAR or by ISO/IEC 10646-1 in case of WCHAR. These alphabets define the ordering of the characters and the
integer values which are their internal representations.

static prope

rties: A character mode has the following hereditary properties:

An upper bound and a lower bound which are the character literals denoting respectively the highest and lowest

value d

examples:
8.4 C
3.4.5 Se
syntax:
<
<
<A
<A
<1
<

semantics: 4
by defining
values is the

eTined by CHAK or WCHAK respectively.

A number of values which is 256 in case of CHAR, and which is given in ISO/IEC 10646-1 in case-of

[1AR

t modes

et mode> ::=
SET ( <set list>)
| <set mode name>

et list> ::=
<numbered set list>
| <unnumbered set list>

umbered set list> ::=
<numbered set element> { , <numbered set element>}*

umbered set element> ::=
<set element name defining occurrence> = <integer literal expression>

nnumbered set list> ::=
<set element>{\y<set element>}*

et element> ::=
<set element name defining occurrence>

A set mode defines a set of named and unnamed values. The named values are denoted by the n
ccurrences in the set list; the unnamed values are the other values. The internal representation
intéger value associated with them. This representation defines the ordering of the values.

WCHAR.

1.1)

(1)
1.1)
1.2)

2)
2.1)
2.2)

3)
3.1)

4)
4.1)

)
5.1)

(6)
6.1)

hmes defined
bf the named

The maximum number of values of a set mode is implementation defined.

static properties: A defining occurrence in a set list defines a set element name. A set element name has a set mode
attached, which is the set mode.

A set mode has the following hereditary properties:

A set of set element names which is the set of names defined by defining occurrences in its set list.

Each set element name of a set mode has an internal representation value attached which is, in the case of a

numbered set element, the value delivered by the integer literal expression in it; otherwise one of the values 0, 1, 2,
etc., according to its position in the unnumbered set list. For example in: SET (a, b), a has representation value 0,
and b has representation value 1 attached.

values, respectively.
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It is a numbered set mode if the set list in it is a numbered set list; otherwise it is an unnumbered set mode.

static conditions: For each pair of integer literal expressions ey, ey in the set list NUM (e;) and NUM (e;) must deliver
different non-negative results.

examples:
11.7
6.3

3.4.6

syntax:

<4

SET ( occupied, free)

month

Discrete range modes

(1.1)
(1.2)

<

derived syn

semantics: 4
the literal rd
range values|

static prope
follows:

If the d

’l‘».)l/l th lunsc I’lUbf/’C
<discrete mode name> ( <literal range>)
| RANGE ( <literal range>)
| BIN ( <integer literal expression>)
| <discrete range mode name>

iteral range> ::=
<lower bound> : <upper bound>

ower bound> ::=
<discrete literal expression>

ipper bound> ::=
<discrete literal expression™>

ax: The notation BIN (n) is derived from RANGE (0 27— 1), e.g. BIN (2+]) stands for RAN
\ discrete range mode defines the set of values ranging between the bounds specified (bounds

nge. The range is taken from a specific parent.faode that determines the operations on and or

rties: A discrete range mode has the following non-hereditary property: it has a parent mod|

screte range mode is of the form:

<discrete mode name> ( <literal range>)

then if the discrete mode name'is not a discrete range mode, the parent mode is the discrete mode nan

it is the
If the d

then th
literal A

parent mode of the@iscrete mode name.
screte range madeis of the form:
RANGE ( <literal range>)

parent-mode depends on the resulting class of the classes of the upper bound and lower
inge:

if

chosen by the implementation such tha

(1)
1.1)
1.2)
1.3)
1.4)

2)
2.1)

3)
3.1)

“4)
4.1)

GE (0: 7).
included) by
dering of the

e, defined as

be; otherwise

bound in the

t it contains the range of values delivered by literal range;

otherwise it is the root mode of the resulting class.

ned-dnteger mode

If the discrete range mode is a discrete range mode name which is a synmode name, then its parent mode is that of

the defining mode of the synmode name; otherwise it is a newmode name and then its parent mode is the virtually
introduced parent mode (see 3.2.3).

A discrete range mode has the following hereditary properties:

bound, respectively, in the literal range.

the upp

er bound and lower bound of the discrete range mode.

It is a numbered range mode if its parent mode is a numbered set mode.
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A number of values which is the value delivered by NUM (U) — NUM (L) + 1, where U and L denote respectively
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static conditions: The classes of upper bound and lower bound must be compatible and both must be compatible with
the discrete mode name, if specified.

Lower bound must deliver a value that is less than or equal to the value delivered by upper bound, and both values must
belong to the set of values defined by discrete mode name, if specified.

The integer literal expression in case of BIN must deliver a non-negative value.

If the parent mode is an integer mode, there must exist a predefined integer mode that contains the set of values
included between the lower bound and the upper bound.

If the discrete range mode is of the form:

RANGE ( <literal range> ) or <discrete mode name> ( <literal range>)

then the evdluation of the T.Jower bound, 2.upper bound, must not depend directly or indirectly on the[value of the

1.lower boupd, 2.upper bound of the discrete range mode. If the discrete range mode is of the form:

BIN ( <integer literal expression>)

then the evaluation of the infeger literal expression must not depend directly or indirectlyyon the value ¢f the upper
bound of th¢ discrete range mode.
examples:
9.5 INT (2:max) 1.1)
11.12 lige 1.4)
3.5 R¢al modes
syntax:
<geal mode> ::= (1)
<floating point mode> 1.1)
| <floating point range mode>. 1.2)

semantics: 4

A real mode specifies a set of numerical values which approximate a continuous range of real nu

mbers.

3.5.1 Flpating point modes
syntax:
<floating pointniode> ::= (1)
<floating point mode name> 1.1)

predefined Tames: The name FLOAT is predefined as a floating point mode name.

semantics: A floating point mode defines a set of numeric approximations to a range of real values, together with their
minimum relative accuracy, between implementation defined bounds, over which the usual ordering and arithmetic
operations are defined (see 5.3). This set contains only the values which can be represented by the implementation. An
implementation may define other floating point modes with different bounds and/or precision (e.g. LONG FLOAT,
SHORT FLOAT) that may also be used as parent modes for ranges (see 13.3). The &FLOAT mode is introduced as the
virtual mode that contains all the values of all predefined floating point modes defined by the implementation. The
internal representation of a floating point value is the floating point value itself. Note that &FLOAT is not a predefined
mode (although it may have the same bounds as those of a predefined floating point mode).

static properties: A floating point mode has the following hereditary properties:

An upper bound and a lower bound which are the literals denoting respectively the highest and lowest value
defined by the floating point mode. They are implementation defined.

A precision which is the maximum number of significant decimal digits defined by the mode.
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value and the largest negative value exactly representable in the floating point mode, zero excluded.

A positive lower limit and a negative upper limit which are the literals denoting respectively the smallest positive

examples:
FLOAT (1.1)
3.5.2 Floating point range modes
syntax:
<floating point range mode> ::= (1)
<floating point mode name> ( <float value range>) (1.1)
| RANGE ( <float value range> [ , <significant digits>]) (1.2)
| <floating point range mode name> (1.3)
<float value range> ::= (2)
<lower float bound> : <upper float bound> 2.1)
<lower float bound> :: = 3)
<floating point literal expression> 3.1)
<mpper float bound> :: = (4)
<floating point literal expression> 4.1)
<gyignificant digits> ::= (5)
<integer literal expression> 5.1)
semantics: A floating point range mode defines the set of values ranging ‘between the bounds specified (bounds
included) by| float value range with the number of significant digits specified by significant digits. The rgnge is taken
from a speciffic parent mode that determines the operations on and ordetring of the range values. For example, RANGE
(-10.0E1 : 1D.0F1, 2) denotes the values: —10.0,-9.9, ..., -0.11, -0.1505.0.1, ..., 10.0.
static propejrties: A floating point range mode has the following non-hereditary property: it has a parent njode, defined
as follows:
e Ifthe flpating point range mode is of the form:

then if the floating point mode name is not a floating point range mode, the parent mode is the floatin

name;

If the fl

then thd
in the /7
if
po
ra

<floating point mode name> ( <float value range>)

b point mode

therwise it is the parent mode of the'floating point mode name.

bating point range mode is of the form:

RANGE ( <float value range> [ , <significant digits>])

parent mode depends on the resulting class of the classes of the upper float bound and lowe
yeral range:

t is an M-dépived class, where M is a floating point mode, then the parent mode is a predefi
nt mode (chosen by the implementation such that it contains the range of values delivered b
1ge, with-the precision defined below;

=

(o)

lIerwise it is the root mode of the resulting class.

float bound

ned floating
y float value

If the floating point range mode is a floating point range mode name which is a synmode name, then its parent

mode is that of the defining mode of the synmode name; otherwise it is a newmode name and then its parent mode
is the virtually introduced parent mode (see 3.2.3).

A floating point range mode has the following hereditary properties:

upper float bound, respectively, in the float value range.

A precision which is, if the floating point range mode is of the form:

RANGE ( <float value range> [ , <significant digits> | )

the value delivered by significant digits if specified;

otherwise the greatest precision of the precisions of lower float bound and upper float bound.

Otherwise it is that of the floating point mode name or the floating point range mode name.

ITU-T Rec. Z.200
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static conditions: Lower float bound must deliver a value that is less than or equal to the value delivered by upper float
bound, and both values must belong to the set of values defined by floating point mode name, if specified.

There must exist a predefined floating point mode that contains both upper bound and lower bound with the specified

precision.

The value delivered by significant digit must be greater than zero.

The evaluation of the 1.Jower float bound, 2.upper float bound, must not depend directly or indirectly on the value of the

1.lower bou

3.6

syntax:

nd, 2.upper bound of the floating point range mode.

Powerset modes

<powerset mode> ::=

()

semantics: 4
subsets of th

The maximul

static prope

POWERSET <member mode>

|  <powerset mode name>

nember mode> ::=
<discrete mode>

\ powerset mode defines values that are sets of values of its member mode. Powerset values r
e member mode. The usual set-theoretic operators are defined on powerset values (see 5.3).

m number of values of the member mode is implementation defined.

rties: A powerset mode has the following hereditary property:

A memper mode which is the member mode.

examples:
8.4 POWERSET CHAR
9.5 POWERSET INT (2:max)
9.6 nymber_list
3.7 Ré¢ference modes
3.71 Gdneral
syntax:
<feference mode> ::=

semantics: 4
references r

<bound reference mode>
<free.reference mode>
<r@w-inode>

\ reference mode defines references (addresses or descriptors) to referable locations. By defii
bfer to Jlocations of a given static mode or a set of related moreta modes; free references

locations of

hny‘static mode; rows refer to locations of a dynamic mode.

1.1)
1.2)

2)
2.1)

hinge over all

1.1)
1.1)
1.2)

(1)
1.1)
1.2)
1.3)

nition, bound
may refer to

The dereferencing operation is defined on reference values (see 4.2.3, 4.2.4 and 4.2.5), delivering the location that is

referenced.

Two reference values are equal if and only if they both refer to the same location, or both do not refer to a location (i.e.

they are the value NULL).
3.7.2 Bound reference modes
syntax:
<bound reference mode> ::=
REF <referenced mode>
| <bound reference mode name>
<referenced mode> ::=
<mode>
22 ITU-T Rec. Z.200 (1999 E)
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semantics: A bound reference mode defines reference values to locations of the specified referenced mode.

If the referenced mode is a non-moreta mode M then the bound reference mode defines reference values to locations
of M.

If the referenced mode is a moreta mode MM then the bound reference mode defines reference values to locations of
MM or any successor of MM.

static properties: A bound reference mode has the following hereditary property:

e Avreferenced mode which is the referenced mode.

examples:
10.42 REF cell (1.1)
3.7.3 Free reference modes
syntax:
<free reference mode> ::= (1)

<free reference mode name> 1.1)

predefined pames: The name P7R is predefined as a free reference mode name.
semantics: A free reference mode defines reference values to locations of any static nied€.
examples:

198 PR 1.1)

3.74 Rdw modes

syntax:
<tow mode> ::= (1)
ROW <string mode> 1.1)
| ROW <array mode> 1.2)
| ROW <variant structure modex 1.3)
| <row mode name> 1.4)

semantics: |A row mode defines referencé,values to locations of dynamic mode (which are locatigns of some
parameterizdd mode with non constant parameters).

A row value|may refer to:
e string I¢gcations with non constant string length;
e array locations with.den constant upper bound;

*  parameferized structure locations with non constant parameters.

static propefties:A row mode has the following hereditary property:

* A referenced urigim mode which 1s the stringmode; the array mode; or the varian structure mode, Tespectively.

static condition: The variant structure mode must be parameterizable.

examples:
8.6 ROW CHARS (max) (1.1)
3.8 Procedure modes
syntax:
<procedure mode> ::= (1)
PROC ( [ <parameter list>]) [ <result spec> ]
[ EXCEPTIONS ( <exception list>) | (1.1)
| <procedure mode name> (1.2)

ITU-T Rec. Z.200 (1999 E) 23
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<parameter list> ::=

<parameter spec> { , <parameter spec>}*

<parameter spec> ::=

<mode> [ <parameter attribute> |

<parameter attribute> ::=

IN | OUT | INOUT | LOC [ DYNAMIC ]

<result spec> ::=

RETURNS ( <mode> [ <result attribute> | )

<result attribute>::=

[ NONREF ] LOC [ DYNAMIC ]

2)
2.1)

3)
(3.1)

4)
“.1)

)
(5.1)

(6)
(6.1)

<4

semantics: 4
that are nam
Procedure n
sending it as

Procedure v4

Two procedi
both denote

static prope,

A list 0|
defined

An opti
result s

A possi
static condit

IfLOC is sp

xception [1st> ::=
<exception name> { , <exception name>}*

\ procedure mode defines (general) procedure values, i.e. the objects denoted by general proc
s defined in procedure definition statements. Procedure values indicate pieces of code’in a dyng
odes allow for manipulating a procedure dynamically, e.g. passing it as a patameter to othef
message value to a buffer, storing it into a location, etc.

lues can be called (see 6.7).

ire values are equal if and only if they denote the same procedure in the same dynamic conte
ho procedure (i.e. they are the value NULL).

Ities: A procedure mode has the following hereditary prépetties:

[ parameter specs, each consisting of a mode and‘possibly a parameter attribute. The parame
by the parameter list.

onal result spec, consisting of a mode andan optional result attribute. The result spec is dg
bec.

bly empty list of exception names, which are those mentioned in the exception list.
ions: All names mentioned din exception list must be different.

ecified in the parameter\spec or in the result spec, the mode in it may have the non-value props

(7)
7.1)

bdure names
mic context.
procedures,

xt, or if they

fer specs are

fined by the

erty.

If DYNAMIC is specified in the'parameter spec or in the result spec, the mode in it must be parameterizaljle.

3.9

Instance modes

syntax:

<instance mode> ::=

<instance mode name>

predefined names: The name INSTANCE is predefined as an instance mode name.

(1)
(1.1)

semantics: An instance mode defines values which identify processes. The creation of a new process (see 5.2.15, 6.13
and 11.1) yields a unique instance value as identification for the created process.

Two instance values are equal if and only if they identify the same process, or they both identify no process (i.c. they are
the value NULL).

examples:

15.39

24
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3.10.1

syntax:
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Synchronization modes

General

<synchronization mode> ::= (1)
<event mode> (1.1)
| <buffer mode> (1.2)

semantics: A synchronization mode provides a means for synchronization and communication between processes (see
clause 11). There exists no expression in CHILL denoting a value defined by a synchronization mode. As a consequence,
there are no operations defined on the values.

3.10.2

Event modes

syntax:

<4

semantics: 4
event mode
6.16 and 6.1

The event ¢
number is uf

An event md
to it.

static prope
* Anopti
static condi

The evaluati
mode.

vent mode> ::=
EVENT [ ( <event length>) |
| <event mode name>

vent length> ::=
<integer literal expression>

An event mode location provides a means for synchronization between _procésses. The operatiof
locations are the continue action, the delay action and the delay case.action, which are descri
[/, respectively.

ngth specifies the maximum number of processes that may become delayed on an event 1
limited if no event length is specified.

de location which contains the undefined value is an'empty" event, i.e. no delayed processes|

rties: An event mode has the following hereditary property:

bnal event length which is the value delivered by event length.
ions: The event length must deliver a-positive value.

pn of the event length must not-depend directly or indirectly on the value of the event length

(1)
1.1)
1.2)

2)
2.1)

s defined on
bed in 6.15,

pcation; that

are attached

of the event

examples:
14.10 EVENT 1.1)
3.10.3  Buffer modes
syntax:
<buffer mode> ::= (1)
BUFFER [ ( <buffer length>) | <buffer element mode> 1.1)
—<buffer-mode mame 1.2)
<buffer length> ::= (2)
<integer literal expression> 2.1)
<buffer element mode> ::= (3)
<mode> (3.1)

semantics: A buffer mode location provides a means for synchronization and communication between processes. The
operations defined on buffer locations are the send action and the receive case action, described in 6.18 and 6.19,

respectively.

The buffer length specifies the maximum number of values that can be stored in a buffer location; that number is
unlimited if no buffer length is specified.

A buffer mode location which contains the undefined value is an "empty" buffer, i.e. no delayed processes are attached
to it nor are there messages in the buffer.

ITU-T Rec. Z.200

(1999 E)

25


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: A buffer mode has the following hereditary properties:

An optional buffer length which is the value delivered by buffer length.

A buffer element mode which is the buffer element mode.
static conditions: The buffer length must deliver a non-negative value.

The buffer element mode must not have the non-value property.

The evaluation of the buffer length must not depend directly or indirectly on the value of the buffer length of the buffer

mode.
examples:
16.30 BUFFER (1) user _messages (1.1)
16.34 user_buffers (1.2)
3.11 InI)ut-Output Modes
3.11.1 Ggdneral
syntax:
<input-output mode> ::= (1)
<association mode> 1.1)
| <access mode> 1.2)
| <text mode> 1.3)

semantics: 4
expression i
defined on th

An input-output mode provides a means for input-output operations as defined in clause 7. Th
h CHILL denoting a value defined by an input-output mode. As a consequence, there are 1
e values.

ere exists no
0 operations

examples:
20.17 ABSOCIATION 1.1)
3.11.2  Association modes
syntax:
<gssociation mode> ::= (1)
<association mode name> 1.1)

predefined pames: The name ASSOCIATION is predefined as an association mode name.

semantics: 4
relation is cd

An association modeTocation provides a means for representing a relation to an outside world o
lled an association in CHILL; associations can be created by the built-in routine ASSOCIATE

bject. Such a
ind be ended

by DISSOCIMTE.
An associatipn mode [ocation which contains the undefined value is "empty", i.e. it does not contain an association.
3.11.3  Agcess'modes
syntax:
<access mode> ::= (1)
ACCESS [ ( <index mode>) | [ <record mode> | DYNAMIC | ] (1.1)
| <access mode name> (1.2)
<record mode> ::= 2)
<mode> (2.1)
<index mode> ::= (3)
<discrete mode> (3.1)
| <literal range> (3.2)

derived syntax: The index mode notation /iteral range is derived from the discrete mode RANGE (literal range).

semantics: An access mode location provides a means for positioning a file and for transferring values from a CHILL
program to a file in the outside world, and vice versa.

26
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An access mode may define a record mode; this record mode defines the root mode of the class of the values that can be
transferred via a location of that access mode to or from a file. The mode of the transferred value may be dynamic, i.e.
the size of the record may vary, when the attribute DYNAMIC is specified in the access mode denotation or when
record mode is a varying string mode. In the latter case DYNAMIC need not be specified.

An access mode may also define an index mode; such an index mode defines the size of a "window" to (a part of) the
file, from which it is possible to read (or write) records randomly. Such a window can be positioned in an (indexable)
file by the connect operation. If no index mode is specified, then it is possible to transfer records only sequentially.

An access mode location which contains the undefined value is "empty", i.e. it is not connected to an association.

static properties: An access mode has the following hereditary properties:

*  An optional record mode which is the record mode if present. It is a dynamic record mode if DYNAMIC is
specified or if record mode is a varying string mode, otherwise it is a static record mode.

e  An optipnal index mode which s the index mode.

¢ Optiongl upper bound and lower bound which are the upper bound and lower bound of the”infdex mode, if
present

static condifions: The optional record mode must not have the non-value property.
If DYNAMIC is specified, the record mode must be parameterizable and must not be-a-tagless structure njode.
The index mpde must neither be a numbered set mode nor a numbered range mode.
If the index mode is a literal range of the form:

<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must.not>depend directly or indirectly on the |value of the
1.lower boupd, 2.upper bound of the access mode.

examples:

20.18 AICCESS (index_set) record_type 1.1)
22.20 ALCCESS string DYNAMIC 1.1)
20.18 rdcord_type 2.1)
20.18 index_set 3.1)

3.11.4 Text modes

syntax:

<fext moder = (1)

<narrow text mode> 1.1)

|) <wide text mode> 1.2)

<narrowtext mode> = (2)

TEXT ( <text length>) [ <index mode>] [ DYNAMIC ] (2.1)

<wide text mode> ::= (3)

WTEXT ( <text length>) [ <index mode>] [ DYNAMIC ] (3.1)

<text length> ::= (4)

<integer literal expression> (4.1)

semantics: A text mode location provides a means for transferring values represented in human-readable form from a
CHILL program to a file in the outside world, and vice versa. A text mode location has a text record sub-location and an
access sub-location. The text record sub-location is initialized with an empty string.

A text mode has a text length, which defines the maximum length of the records that can be transferred, and possibly an
index mode that has the same meaning as for access modes. The actual length attribute of a text mode location is the
actual length of its text record.
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A text mode location which contains the undefined value has a text record sub-location that contains the empty string
and an access sub-location that contains the undefined value.

static properties: A text mode has the following hereditary properties:

A text length which is the value delivered by text length.

length>) VARYING in case of WTEXT.

A text record mode which is CHARS (<text length>) VARYING in case of TEXT and which is WCHARS (<text

It has an access mode which is ACCESS [(<index mode>)] CHARS (<text length>) [DYNAMIC] in case of

TEXT and which is WCHARS (<text length>) [DYNAMIC] in case of WTEXT (<index mode> and DYNAMIC

are part

present.

of the mode only if they are specified).

Optional upper bound and lower bound which are the upper bound and lower bound of the index mode, if

static condit

then, the ev

ions: If the index mode is a literal range of the form:
<lower bound> : <upper bound>

hluation of the 1.Jower bound, 2.upper bound, must not depend directly or indirectly on the

1.lower boupd, 2.upper bound of the text mode.

examples:

26.8 T

3.12

3.121

syntax:

EXT (80) DYNAMIC

Timing modes

Gdneral

<fiming mode> ::=

semantics: 4
are created b

3.12.2
syntax:

<(

<duration mode>
| <absolute time mode>

\ timing mode provides a means,for time supervision of processes as described in clause 9. T
y a set of built-in routines. The\relational operators are defined on timing values.

Dyration modes

Juration mode>' :: =
<duration mode name>

predefined Tames: The name DURATION is predefined as a duration mode name.

value of the

2.1)

(1)
1.1)
1.2)

iming values

(1)
1.1)

semantics: A duration mode defines values which represent periods of time. The set of values defined by the duration
mode is implementation defined. An implementation may choose to represent duration values as pairs of precision and
value. Duration values are ordered in the intuitive way.

3.12.3

syntax:

Absolute time modes

<absolute time mode> ::=

<absolute time mode name>

predefined names: The name 7/ME is predefined as an absolute time mode name.

(1)
(1.1)

semantics: An absolute time mode defines values which represent points in time. The set of values defined by the
absolute time mode is implementation defined. Absolute time values are ordered in the intuitive way.
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3131 Ge

syntax:
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Composite modes

neral

<composite mode> ::= (1)
<string mode> (1.1)

| <array mode> (1.2)

| <structure mode> (1.3)

| <moreta mode> (1.4)

semantics: A composite mode defines composite values, i.e. values consisting of sub-components which can be accessed

or obtained (

3.13.2 St

syntax:

<4

semantics: 4

A varying sfring mode defines bit or character string values whose actual length ranges from 0 to the string
wn only at runtime from the value of the attribute actual length. For a fixed string mode the actual length

length is kng
is always eq
boolean valu

String value

The string v
the followin

: 1
"TITZ Moucs

{tring mode> ::=

gtring type> =

see 4.2.6-4.2.10 and 5.2.6-5.2.10).

<string type> ( <string length>) [ VARYING ]
| <parameterized string mode>

| <string mode name>

arameterized string mode> ::=
<origin string mode name> ( <string length>)
<parameterized string mode name>

rigin string mode name> ::=
<string mode name>

BOOLS
CHARS
WCHARS

tring length> ::=
<integer literal expression=

\ fixed string mode defines bit-Or'character string values of a length indicated or implied by the

ual to the string length. Character strings are sequences of character values; bit strings are
es.

are either emipty or have string elements which are numbered from 0 upward.

lues of a.given string mode are totally-ordered in accordance with the ordering of the compone
b definition.

(1)
1.1)
1.2)
1.3)

2)
2.1)
2.2)

3)
3.1)

4)
4.1)
4.2)
4.3)

)
5.1)

string mode.
length. The

sequences of

ht values and

are emnty or hava tha camaa lonath 1 and o —
o e & s

0<i<l A

Two strings

G and £ ara aqual 1f and only i f thay # for-al
aha——afre-equdr—H—aia—oRryHtaeY HioFar

TO—Cpty O Tty © TS TSt T

string s precedes ¢ when either:

there exists an index j such that s(j) < #(j) and s(0: j—1)=#0:j— 1), or
LENGTH (s) < LENGTH (f) and s = {0 UP LENGTH (s)).

The concatenation operator is defined on string values. The usual logical operators are defined on bit string values and
operate between their corresponding elements (see 5.3).

The maximu
static prope

m length of string modes is implementation defined.

rties: A string mode has the following hereditary properties:

A string length which is the value delivered by string length.

ITU-T Rec. Z.200
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An element mode which is either M or READ M, where M is BOOL, CHAR or WCHAR depending on whether

string type specifies BOOLS, CHARS or WCHARS, or the element mode of the origin string mode name,
respectively. The element mode will be READ M if and only if the string mode is a read-only mode; in such case it
is an implicit read-only mode.

mode; otherwise it is a fixed string mode.

A string mode is parameterized if and only if it is a parameterized string mode.

It is a varying string mode if VARYING is specified or if the origin string mode name denotes a varying string

A parameterized string mode has an origin string mode which is the mode denoted by origin string mode name.

A varying string mode has the following non-hereditary property: it has a component mode, defined as follows:

If the varying string mode is of the form:

<string type> ( <string length>) VARYING

then it i
If the v

then th
synony

If the v
definin
virtuall

static condi

The value dg
the string le
not introduc

The evaluati
mode.

examples:
7.51 C
22.22 C
3.13.3
syntax:

<

5 <string type> ( <string length>).
irying string mode is of the form:

<origin string mode name> ( <string length>)

mous with the component mode of the origin string mode name.

\rying string mode is a string mode name which is a synmode name, thenvitS component mode
b mode of the synmode name; otherwise it is a newmode name-and then its component
introduced component mode (see 3.2.3).

ions: The string length must deliver a non-negative value.

livered by the string length directly contained in a parametérized string mode must be less tha
ngth of the origin string mode name. This condition applies only to the parameterized string m
bd virtually.

pn of the string length must not depend directly ‘or indirectly on the value of the string length

HARS (20)
HARS (20) VARYING

Arxray modes

rray mode> %=
ARRAY ( <index mode> { , <index mode> }*)
<element mode> { <element layout> }*
[ \Zparameterized array mode>
' <array mode name>

b component mode is &name ( string length ), where &name is a virtually_introduced synmode name

is that of the
mode is the

n or equal to
odes that are

of the string

1.1)
1.1)

(1)

1.1)
1.2)
1.3)

<parameterized array mode> ::=

<origin array mode name> ( <upper index>)
| <parameterized array mode name>

<origin array mode name> ::=

<array mode name>

<upper index> ::=

<discrete literal expression>

<element mode> ::=

<mode>

2)
2.1)
2.2)

3)
3.1)

“)
4.1)

)
(5.1)

derived syntax: An array mode with more than one index mode (denoting a multi-dimensional array), is derived syntax

for an array
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is derived from:
ARRAY (RANGE (7:20)) ARRAY (RANGE (1:10)) INT
Only if this derived syntax is used, is more than one element layout occurrence allowed. The number of element layout
occurrences must be less than or equal to the number of index mode occurrences. In that case, the leftmost element layout

is associated with the innermost element mode, etc.

semantics: An array mode defines composite values, which are lists of values defined by its element mode. The physical
layout of an array location or value can be controlled by element layout specification (see 3.13.5). Two array values are

equal if and only if they have the same number of elements and the corresponding element values are equal.

The maximum number of elements of array modes is implementation defined.

static properties: An array mode has the following hereditary properties:

An ind
discretg

where
bound i

respecti
An eler
array n
the arr(
An elen
otherwi

NOPA¢

A num

where 4

An array mo
A paramete

static condi

bx mode which is the index mode if it is not a parameterized array mode, otherwise the index
range mode constructed as:

&name (lower bound : upper bound)

kname is a virtual synmode name synonymous with the index mode of origin array mode
5 the lower bound of the index mode of the origin array mode name and upper bound is the upp

An upper bound and a lower bound which are the upper bound and the,\lower bound of its

vely.

hent mode which is either M or READ M, where M is the elemént mode, or the element mode
ode name, respectively. The element mode will be READ-M if and only if M is not a read-on

nent layout which, if it is a parameterized array mede,is the element layout of its origin array
ce it is either the specified element layout, or-the implementation default, which is eithg
CK.

ber of elements which is the value delivered'by:

NUM (upper bound) — NUM (lower bound) + 1

[pper bound and lower bound ar€ respectively the upper bound and the lower bound of its ind¢

It is a mapped mode if element layout is specified and is a step.

de is parameterized if and only if it is a parameterized array mode.
rized array mod¢-has an origin array mode which is the mode denoted by origin array mode na

ions: The.class of upper index must be compatible with the index mode of the origin array mg

the value delivered by it must lie in the range defined by that index mode.

y mode is a read-only mode. The element mode is an implicit read-only mode if it is READ M.

mode is the

name, lower
er index.

ndex mode,

of the origin

ly mode and
|

mode name;
r PACK or

X mode.

(ne.

de name and

If the array

or indirectly

on the value of the upper bound of the array mode. If the array mode is neither a parameterzzed array mode nor an
array mode name, and if the index mode is a literal range of the form:

<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the value of the
1.lower bound, 2.upper bound of the array mode.

examples:

5.27 ARRAY (1:16) STRUCT (c4, c¢2, ¢l BOOL) (1.1)
11.12 ARRAY (line) ARRAY (column) square (1.1)
11.17 board (1.3)
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3.13.4  Structure modes

syntax:
<structure mode> ::= (1)
STRUCT ( <field> { , <field>}*) (1.1)
| <parameterized structure mode> (1.2)
|  <structure mode name> (1.3)
<field> ::= 2)
<fixed field> (2.1)
| <alternative field> (2.2)
<fixed field> ::= (3)
<field name defining occurrence list> <mode> [ <field layout> ] (3.1)
<dlternative field> ::= (4)
CASE [ <tag list> ] OF
<variant alternative> { , <variant alternative> }*
[ ELSE [ <variant field> { , <variant field> }* | ] ESAC 4.1)
<variant alternative> ::= (5)
[ <case label specification> ] : [ <variant field> { , <variant field>,}* ] 5.1)
<fag list> ::= (6)
<tag field name> { , <tag field name> }* 6.1)
<variant field> ::= (7)
<field name defining occurrence list> <mode> [ <field layout> ] 7.1)
<parameterized structure mode> ::= (8)
<origin variant structure mode name> ( <liteval expression list>') 8.1)
| <parameterized structure mode name> 8.2)
<¢rigin variant structure mode name> ::= 9)
<variant structure mode name>; 9.1)
<literal expression list> ::= (10)
<discrete literal expression> { , <discrete literal expression> }* (10.1)
derived syntax: A fixed field occurrence-or variant field occurrence, where field name defining occurrencq list consists
of more thaf one field name defining occurrence, is derived syntax for several fixed field occurrences or [variant field
occurrences |with one field nanie“defining occurrence respectively, each with the specified mode and dptional field
layout. In th¢ case of field layout, this field layout must not be pos. For example:
STRUCT{,J BOOL PACK)
is derived from:
SFRUCT (/ BOOL PACK, J BOOL PACK)

semantics: Structure modes define composite values consisting of a list of values, selectable by a component name. Each
value is defined by a mode that is attached to the component name. Structure values may reside in (composite) structure
locations, where the component name serves as an access to the sub-location. The components of a structure value or
location are called fields and their names field names.

There are fixed structures, variant structures and parameterized structures.

Fixed structures consist only of fixed fields, i.e. ficlds that are always present and that can be accessed without any

dynamic che

ck.

Variant structures have variant fields, i.e. fields that are not always present. For tagged variant structures, the presence
of these fields is known only at run time from the value(s) of certain associated fixed field(s) called tag ficlds. Tag-less
variant structures do not have tag fields. Because the composition of a variant structure may change during run time,

the size of a

variant structure location is based upon the largest choice (worst case) of variant alternatives.
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In an alternative field the variant alternative chosen is that for which values give in the case label specification match; if
no value match, the variant alternative following ELSE (which will be present) is chosen.

A parameterized structure is determined from a variant structure mode for which the choice of variant alternatives is
statically specified by means of literal expressions. The composition is fixed from the point of the creation of the
parameterized structure and may not change during run time. The tag fields, if present, are read-only and automatically
initialized with the specified values. For a parameterized structure location, a precise amount of storage can be allocated
at the point of declaration or generation. Note that dynamic parameterized structure modes also exist; their semantics
are defined in 3.14.4.

The layout of a structure location or value can be controlled by means of a field layout specification (see 3.13.5).

Two structure values are equal if and only if the corresponding component values are equal. However, if the structure
values are tag-less variant structure values, the result of comparison is implementation defined.

For a mode with the tagged parameterized property the undefined value denotes a value in which tag field sub-values
are equal to the corresponding parameter values and all the other ones are equal to the undefined value:

static propeyties:

general: A sfructure mode has the following hereditary properties:
e Itisafixed structure mode if it is a structure mode that does not directly contain\an‘alfernative field ocqurrence.
e Itisa vpriant structure mode if it is a structure mode and contains at least'ene’ alternative field occurrerce.

* Itis a pprameterized structure mode if it is a parameterized structure mode.

. It has a|set of field names. This set is defined below for the diffefent cases. A name is said to be a field name if and
only if {t is defined in a field name defining occurrence list invfixed fields or variant fields in a structure|mode.

Each fited field, variant field and therefore each fieldmame of a structure mode has a field mode attached that is
either Mf or READ M, where M is the mode in the fixed-field or variant field. The field mode is READ M if M is not
a read-pnly mode and either the structure mode i@ read-only mode, or the field is a tag field of a parameterized
structurg mode. The field mode is an implicit réad-only mode if it is READ M.

A fixedl|field, variant field and therefore.a field name of a given structure mode has a field layout attadhed to it that
is the fipld layout in the fixed field or.variant field, if present; otherwise it is the default field layout, which is either
PACK jor NOPACK.

e Itis a mpapped mode if its field-names have a field layout that is pos.

fixed structures: A fixed structure mode has the following hereditary property:

e A set of field names which is the set of names defined by any field name defining occurrence list i1 fixed fields.
These fleld names-are fixed field names.

variant structures: A variant structure mode has the following hereditary properties:

e A set of field names which is the union of the set of names defined by any field name defining occurrence list in
fixed fields and the set of names defined by any field name defining occurrence list in alternative fields. Field
names defined by a field name defining occurrence list in fixed fields are the fixed field names of the variant
structure mode; its other field names are the variant field names.

¢ A field name of a variant structure mode is a tag field name if and only if it occurs in any tag list of an alternative
field. Alternative fields in which no tag lists are specified are tag-less alternative fields.

e A variant structure mode is a tag-less variant structure mode if all its alternative field occurrences are tag-less.
Otherwise it is a tagged variant structure mode.

e A variant structure mode is a parameterizable variant structure mode if it is either a tagged variant structure

mode or a tag-less variant structure mode where for each of the alternative field occurrences a case label
specification is given for all the variant alternative occurrences in it.
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A parameterizable variant structure mode has a list of classes attached, determined as follows:

names in the order that they are defined in fixed fields;

if it is a tagged variant structure mode, the list of M; — value classes, where M; are the modes of the tag field

if it is a tag-less variant structure mode, the list is built up from the individual resulting lists of classes of

each alternative field by concatenating them in the order as the alternative fields occur. The resulting list of
classes of an alternative field occurrence is the resulting list of classes of the list of case label specification
occurrences in it (see 12.3).

parameterized structures: A parameterized structure mode has the following hereditary properties:

An origin variant structure mode which is the mode denoted by origin variant structure mode name.

A set of field names which is the union of the set of fixed field names of its origin variant structure mode and the

set of
occurre

The set]
structur

Alisto

Itisa
mode; ¢

For dynamig
static condi
general: All

If any field h

variant structures: A tag field name must be a fixedfield name and must be textually defined before all th
nces in whose tag list it is mention€d. (As a consequence, a tag field precedes all the variant fields that

field occurrdg
depend upon

The mode of]

In a varian
alternative f]
case label s
variant alten

If, for a tag-
fields must h

hces that are selected by the list of values defined by literal expression list.

of tag field names of a parameterized structure mode is the set of tag field names‘of”its ox
e mode.

I values attached, defined by literal expression list.

agged parameterized structure mode if its origin variant structure-mode is a tagged vari
therwise the parameterized structure mode is tag-less.

parameterized structure modes see 3.14.4.
ions:
field names of a structure mode must be different.

as a field layout which is pos, all the fields must'have a field layout which must be pos.

it.) The mode of a tag field name.must be a discrete mode.
variant field may have neither the non-value property nor the tagged parameterized propert

b structure mode the~alfernative field occurrences must be either all tagged or all tag-less
elds, case label specification must be specified in each variant alternative. For tag-less alter]
becification may\be omitted in all variant alternative occurrences together, or must be speci
prative occurrence.

Jess yariant structure mode, any of its alternative fields has case label specification given, all i
ave case label specification.

hosc variant hield names of 1tS origin variant structure¢ mode that are detmed m variarnj alternative

igin variant

hnt structure

e alternative

For tagged
native fields,
fied for each

s alternative

For alternative fields, the case selection conditions must be fulfilled (see 12.3), and the same completeness, consistency
and compatibility requirements must hold as for the case action (see 6.4). Each of the tag field names of tag list (if
present) serves as a case selector with the M-value class, where M is the mode of the tag field name. In the case of tag-
less alternative fields, the checks involving the case selector are ignored.

For a parameterizable variant structure mode none of the classes of its attached list of classes may be the all class.
(This condition is automatically fulfilled by a tagged variant structure mode.)

parameterized structures: The origin variant structure mode name must be parameterizable.

There must be as many literal expressions in the literal expression list as there are classes in the list of classes of the
origin variant structure mode name. The class of each literal expression must be compatible with the corresponding (by
position) class of the list of classes. If the latter class is an M-value class, the value delivered by the literal expression

must be one
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examples:
3.3 STRUCT (re, im INT) (1.1)
11.7 STRUCT (status SET (occupied, free),
CASE status OF
(occupied): p piece,
(free):
ESAC) (1.1)
2.6 fraction (1.3)
11.7 status SET (occupied, free) (3.1)
11.8 status 6.1)
11.9 p pbiece 7.1)
3.13.5 Layout description for array modes and structure modes
syntax:
<¢lement layout> ::= (1)
PACK | NOPACK | <step> 1.1)
<field layout> ::= (2)
PACK | NOPACK | <pos> 2.1)
<gtep> ::= (3)
STEP ( <pos> [, <step size>]) 3.1)
<pos> ::= (4)
POS (<word> , <start bit> , <length>\) 4.1)
| POS (<word> [, <start bit> [ : <end bit>]]) 4.2)
<word> ::= (5)
<integer literal expression> 5.1)
<§tep size> ::= (6)
<integer literal expresgsion> 6.1)
<§tart bit> ::= (7)
<integer literal expression> 7.1)
<¢nd bit> ::= (8)
<integer literal expression> 8.1)
<length>\= 9)
<integer literal expression> 9.1)

semantics: It is possible to control the layout of an array or a structure by giving packing or mapping information in its
mode. Packing information is either PACK or NOPACK, mapping information is either step in the case of array modes,
or pos in the case of structure modes. The absence of element layout or field layout in an array or structure mode will
always be interpreted as packing information, i.e. either as PACK or as NOPACK.

If PACK is specified for elements of an array or fields of a structure, it means that the use of memory space is optimized
for the array elements or structure fields, whereas NOPACK implies that the access time for the array elements or the
structure fields is optimized. NOPACK also implies referable.

The PACK, NOPACK information is applied only for one level, i.e. it is applied to the elements of the array or fields of
the structure, not for possible components of the array element or structure field. The layout information is always
attached to the nearest mode to which it may apply and which does not already have layout attached. For example, if the
default packing is NOPACK:

STRUCT ( fARRAY (0:1) m PACK)
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is equivalent

to:

STRUCT ( fARRAY (0:1) m PACK NOPACK)

It is also possible to control the precise layout of an array or a structure by specifying positioning information for its
components in the mode. This positioning information is given in the following ways:

array mode.

the mode of the field.

Mapping information with pos is given in terms of word and bit-offsets. A pos of the form:

POS ( <word> , <start bit> , <length>)

defines a bit-offset of

For array modes, the positioning information is given for all elements together, in the form of a step following the

For structure modes, the positioning information is given for each field individually, in the form of a pos, following

and a length

NUM (word) * WIDTH + NUM (start bit)
of NUM (length) bits, where WIDTH is the (implementation defined) number of bits in a-word

an integer literal expression.

When pos is|
each locatiof

A step of thg

defines a ser

The j-th eler
the bit-offsef

Defaults

The notation}:

1S semantica

The notation|:

1S semantica

where BSIZ]

and word is

specified in field layout it defines that the corresponding field starts at the given)bit-offset from the start of

 of the structure mode, and occupies the given length.

form:
STEP (<pos> , <step size>)

es of bit-offsets b; for i taking values 0 to n—1 where # is the number of elements in the array,
b;=1* NUM (step size)

hent of the array starts at a bit-offset of p + b; from the'start of each location of the array mod|
specified in pos. Each element occupies the length given in pos.

POS (<word> , <start bit> : <end hit>)
ly equivalent to:

POS (<word> , <start bit>’NUM (<end bit>) — NUM (<start bit>) + 1)

POS (<word> , <start bit>)
ly equivaledfto:
POS.(sword> , <start bit> , BSIZE)

' iSthe minimum number of bits which is needed to be occupied by the component for whi

ind

e, where p is

h the pos is

specified.

The notation

POS (<word>)

is semantically equivalent to:

POS (<word> , 0, BSIZE)

The notation:

STEP (<pos>)

is semantically equivalent to

STEP (<pos> , SSIZE)

where SSIZE is the <length> specified in pos or derivable from pos by the above rules.
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static properties: For any location of an array mode the element layout of the mode determines the referability of its
sub-locations (including sub-arrays, array slices) as follows:

either all sub-locations are referable, or none of them are;

if the element layout is NOPACK all sub-locations are referable.

For any location of a structure mode, the referability of the structure field selected by a field name is determined by the
field layout of the field name as follows:

the field name is referable if the field layout is NOPACK.

static conditions: If the element mode of a given array mode or the field mode of a field name of a given structure
mode, is itself an array or structure mode, then it must be a mapped mode if the given array or structure mode is

mapped.

N

N

UM (word), NUM (start bit), NUM (end bit), NUM (length) and NUM (step size) 2 0;

[/M (start bit) and NUM (end bit) < WIDTH; NUM (start bit) < NUM (end bif).

Each implenjentation defines for each mode a minimum number of bits its values need to occupy,-call this the minimum

bit occupand
the mode. Fg
is the offset

For each pos
array compo

For each majpped array mode the step size must not be less than the length given or implied in the pos.

Consistency]

Consistency]
component
occurrence;
nor both foll

Feasibility:

that the refet
field) layou
components

examples:
17.5 P

19.14 P

3.14 Dy

y. For discrete modes it is any number of bits not less than log to the base two-of’the number
r array modes it is the offset of the element of the highest index plus its occupiedbits. For struc
f the highest bit occupied.

the length specified must not be less than the minimum bit occupaney-.of the mode of the assoc
hents.

and feasibility

: No component of a structure may be specified-Such that it occupies any bits occupied
f the same object except in the case of twoovariant field names defined in the same altd
however, in the latter case the variant field names may not both be defined in the same variaj
bwing ELSE.

There are no language defined feasibility requirements, except for the one that can be deduced

ability of a sub-location of any (neférable or non-referable) location is determined only by thg
, which is a property of the.‘mode of the location. This places some restrictions on the
that themselves have referable’components.

\CK
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mamic¢ modes

of values of
ure modes it

iated field or

by another
rnative field
t alternative

from the rule
b (element or
mapping of

1.1)
4.2)

3.14.1

General

A dynamic mode is a mode of which some properties are known only at run time. Dynamic modes are always
parameterized modes with one or more run-time parameters. For description purposes, virtual denotations are introduced
in this Recommendation | International Standard. These virtual denotations are preceded by the ampersand symbol (&) to
distinguish them from actual notations which appear in a CHILL program text.

3.14.2 Dynamic string modes

virtual denotation: &<origin string mode name> ( <integer expression>)
semantics: A dynamic string mode is a parameterized string mode with non constant length.

static properties: Dynamic string modes have the same properties as string modes, except for the properties described
below.
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dynamic properties:
* A dynamic string mode has a dynamic string length which is the value delivered by integer expression.

* A dynamic string mode has an upper bound and a lower bound which are the values delivered by string length —1
and 0, respectively.

3.14.3 Dynamic array modes
virtual denotation: &<origin array mode name> ( <discrete expression>)
semantics: A dynamic array mode is a parameterized array mode with non constant upper bound.

static properties: Dynamic array modes have the same properties as array modes, except for the properties described
below.

dynamic properties:

e A dynalnic array mode has a dynamic upper bound which is the value delivered by discrete exprdssion, and a
dynamif number of elements which is the value delivered by:

NUM (discrete expression) — NUM (lower bound) + 1

where lpwer bound is the lower bound of the origin array mode name.
3.144 Dynamic parameterized structure modes
virtual dendtation: &<origin variant structure mode name> ( <expression list> )
semantics: A dynamic parameterized structure mode is a parameterized striicture mode with non constanf parameters.

static properties: The static properties of a dynamic parameterized structure mode are those of a static pajrameterized
structure mofde except for the following:

*  The set|of field names of a dynamic parameterized structure*mode is the set of field names of its oxfigin variant
structurg mode.

dynamic properties:

* A dynamic parameterized structure mode has‘a-list of values attached that is the list of values delivered by the
expressjons in the expression list.

3.15 Mbpreta Modes

3.15.1 Ggdneral

syntax:

<moreta mode*y= (1)
<modile mode> 1.1)
| _<region mode> 1.2)
[ y<task mode> 1.3)
| <generic moreta mode instantiation> 1.4)
—<interfaceode 1.5)
| <moreta mode name> [ ( <actual parameter list>) | (1.6)

semantics:

module mode — A location of module mode has the same properties as a module without an action statement list.
region mode — A location of region mode has the same properties as a region.

task mode — A location of task mode has essentially the same structure as a module mode location without process
definitions. The direct access to the components of a location, whose mode is a task mode, is mutually exclusive. A
location, whose mode is a task mode, may be executed concurrently with other threads (see 11.1).

generic moreta mode instantiation — A generic moreta mode instantiation is obtained statically by an instantiation of a
generic moreta mode template (see 10.11).

interface mode — An interface mode consists of specifications and signatures only.
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static conditions:
Moreta modes are not parameterizable.
Moreta modes and generic moreta mode templates cannot be nested.

(1.1) — (1.5) are only allowed in synmode and newmode definitions, i.e. anonymous moreta modes are not allowed.

3.15.2 Module Modes

syntax:
<module mode> ::= (1)
<module mode specification> (1.1)
| <module mode body> (1.2)
<fioduie mode specijication> .. = (2)
MODULE SPEC [ [ ASSIGNABLE [ FINAL ] | ABSTRACT | |
[ NOT_ASSIGNABLE [ ABSTRACT | FINAL ]]]
<module inheritance clause>
{<module specification component>}* [<invariant part>]
END [<simple name string>] 2.1)
<module mode body> ::= (3)
MODULE BODY [ [ ASSIGNABLE [ FINAL ]| ABSTRACT\]
[ NOT_ASSIGNABLE [ ABSTRACT | FINAL 1]
<module inheritance clause>
{<module body component>}* [<invariant part>]
END [ <handler> ] [<simple name string>] 3.1)
<module inheritance clause> ::= 4)
[<module inheritance>] [<implementation clduse>] 4.1)
<module inheritance> ::= (5)
BASED_ON <module mode name> 5.1)
<implementation clause> ::= (6)
IMPLEMENTS <interface mode name> { , <interface mode name> }* 6.1)
<module specification component>::= (7)
<common module coniponent> 7.1)
| <declaration statement> 7.2)
| <simple guardéd procedure signature statement> 7.3)
| <inline guarded procedure definition statement> 7.4)
| <process(specification statement> 7.5)
| <signaldefinition statement> 7.6)
| <gfantstatement> 7.7)
<modulesbody component> ::= (8)
<common module component> 8.1)
| <simple guarded procedure definition statement> 8.2)
| <process definition statement> (8.3)
<common module component> ::= 9)
<synonym definition statement> 9.1)
| <synmode definition statement> (9.2)
| <newmode definition statement> (9.3)
| <seize statement> (9.4)
<invariant part> ::= (10)
INVARIANT <boolean expression> (10.1)

semantics: A module mode defines composite values consisting of a list of components selectable by component names.
Module values may reside in (composite) module locations.

A module mode is defined by giving two separate parts: a module mode specification and a module mode body.
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The specification part defines the interface of the values of a module mode.
The body part defines the behaviour of the values of a module mode.

The boolean expression of the invariant part must be true before and after any call of a public component procedure or a
public component process.

static properties: If the attribute ASSIGNABLE is specified, the mode is an assignable module mode. An assignable
module mode can be used in the same way as a mode for which READ is not specified (see 3.3).

If the attribute NOT _ASSIGNABLE is specified, the mode has the not_assignable property, indicating that the location
of that mode may not be accessed to store the value and may not be accessed to copy its value.

If neither ASSIGNABLE nor NOT_ASSIGNABLE is specified the mode is not_assignable by default.

If the attribute ABSTRACT is specified, the mode is an abstract mode.

If a module
module inhe

If an implem|
and these m

The effect o
immediate b
these base nj
visibility seg

A module sp
Mg, is called

A module s
granted by M

A module b
the mode of

An abstract|
static condi

For each md
occurrence.

If specified,
definition. T

If one of thg
specification

If a module

inheritance is given, the mode MD being defined is immediately derived from the mode MB
itance, and MB is an immediate base mode of MD.

entation clause 1C is given, the mode MD being defined is immediately derived fromdhé modes
des are immediate base modes of MD.

f the module inheritance clause is that the derived mode behaves as if it Contained all comp|
ase modes except for the constructor and destructor component procedures/of these base mod
odes is itself a derived mode, this inheritance of components is to be {iniderstood in a transitive
12.2.

pcification component contained in a module mode specification'\Mg or SEIZEd into Mg, which
a public component of the mode of Mg.

becification component contained in a module mode>specification Mg or SEIZEd into Mg,
(g, is called an internal component of the mode of Mg}

dy component C contained in a module mode bédy Mp or SEIZEd into Mg, is called a private g
Mp if C is neither a public nor an internal component of the mode of Mg.

module mode has the property not_assignable.
ions: A module mode cannot be.used as the mode in a synonym definition.

dule mode specification, there*must be one module mode body with the same name string in

the simple name string after END must be equal to the name string of the defining occurrence
his holds for module mode specification and for module mode body.

attributes ASSIGNABLE, NOT_ASSIGNABLE, ABSTRACT or FINAL is specified in a 1
, it must also be specified in the corresponding module mode body.

node specification contains a module inheritance clause, the corresponding module mode body

the same mo

given in the

given in IC,

onents of its
es. If any of
manner. For

is granted by

which is not

omponent of

the defining

of this mode

odule mode

must contain

Hileqinheritance clause.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature then this procedure has
the property incomplete.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature statement this procedure
must be public.

For each simple, complete guarded procedure signature statement S of a module mode specification, the corresponding
module mode body must contain a corresponding simple guarded procedure definition statement D, where the guarded
procedure signature of S matches the guarded procedure definition of D (see 12.1.3).

If P is a simple, incomplete guarded procedure signature of a module mode specification, the corresponding module
mode body must not contain a simple guarded procedure definition matching P.

For each process specification of a module mode specification, the corresponding module mode body must contain a
corresponding process definition (see 12.1.3).
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If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature statement this
procedure must be public.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature PD contained in a
module mode specification M then the immediate base mode MB of M must contain or have inherited a public simple
guarded procedure signature PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is not
SEIZEd.

A module mode is an abstract module mode if it contains at least one incomplete component procedure (see 10.4). In
this case the attribute ABSTRACT must be specified.

An abstract module mode name can only be used as the module mode name in a module inheritance or as a referenced
mode.

If a module mode M has at least one (sub-)component with non-value property, then M also has the non-value
property and the attribute ASSIGNABLE must not be specified (see 12.1.1.5).

If a module Imode M contains the attribute FINAL M is called a final module mode. A final module¢ mefle cannot be
used as a baje mode in a moreta inheritance.

A final modple mode must not contain an incomplete component procedure.

3.15.3 Rdgion Modes

syntax:
<fegion mode> ::= (1)
<region mode specification> 1.1)
| <region mode body> 1.2)
<fegion mode specification> ::= (2)

REGION SPEC [ABSTRACT | FINAL] [<zegion inheritance>]
{<region specification component>}* [<invariant part>]
END [<simple name string>] 2.1)

<fegion mode body> ::= (3)
REGION BODY [ABSTRACT{FINAL] [<region inheritance clause>]
{<region body component>}* [<invariant part>]

END [<handler>] [<simple.name string>| 3.1)

<gegion inheritance clause> :;= (4)
[<region inheritance>] [<implementation clause>] 4.1)

<gegion inheritance> ;.= (5)
BASED_ON/{<module mode name> | <region mode name>} 5.1)

<tegion specification component> ::= (6)
<common module component> 6.1)

| “<declaration statement> 6.2)

[ “\<simple guarded procedure signature statement> 6.3)

[ <signal definition statement> 6.4)

I gvnmf Sstatement 6 5)
<region body component> ::= (7)
<common module component> (7.1)

| <simple guarded procedure definition statement> (7.2)

semantics: A region mode defines composite values consisting of a list of components selectable by component names.
Region values may reside in (composite) region locations.

A region mode is defined by giving two separate parts: a region mode specification and a region mode body.

The specification part defines the interface of the values of the region mode.

The body part defines the behaviour of the values of the region mode.

The boolean expression of the invariant part must be true before and after any call of a public component procedure.
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static properties: A region mode has always the not_assignable property.
If the attribute ABSTRACT is specified, the mode is an abstract mode.

If a region inheritance is given, the mode MD being defined is immediately derived from the mode MB given in the
region inheritance, and MB is an immediate base mode of MD.

If an implementation clause I1C is given, the mode MD being defined is immediately derived from the modes given in IC,
and these modes are immediate base modes of MD.

The effect of the region inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base modes except for the constructor and destructor component procedures of these base modes. If any of
these base modes is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For
visibility see 12.2.

A region specification component contained in a region mode specification Mg or SEIZEd into Mg, which is granted by
Mg, is calleqrapubliccomporment of the mode of My

A region spdcification component contained in a region mode specification Mg or SEIZEd into Mg, which if not granted
by Mg, is called an internal component of the mode of Mg.

A region bogly component C contained in a region mode body Mg or SEIZEd into Mg, is called?a private domponent of
the mode of My if C is neither a public nor an internal component of the mode of Mp.

static conditions: A region mode cannot be used as the mode in a synonym definition.

For each region mode specification, there must be one region mode body with the same name string in|the defining
occurrence.

If specified, [the simple name string after END must be equal to the namé¢ string of the defining occurrence jof this mode
definition. This holds for region mode specification and for region mode body.

If the attribyite ABSTRACT or FINAL is specified in a region~mode specification, it must also be spdcified in the
corresponding region mode body.

If a region mode specification contains a region inheritarnce clause, the corresponding region mode body must contain
the same region inheritance clause.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature then this procedure has
the property [incomplete.

If the attribute INCOMPLETE (see 10.4).is-specified in a simple guarded procedure signature statement this procedure

must be pujlc

For each simple, complete guardéd-procedure signature statement S of a region mode specification, the cprresponding
region modelbody must contain-a-.corresponding simple guarded procedure definition statement D (see 12.1.B), where the
guarded profedure signature 0f'S matches the guarded procedure definition of D.

If P is a simple, incompléte guarded procedure signature of a region mode specification, the corresponding|region mode
body must npt contain‘a-simple guarded procedure definition matching P.

If the attribpte’, REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature sfatement this
procedure must\be public

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature PD contained in a
region mode specification M then the immediate base mode MB of M must contain or have inherited a public simple
guarded procedure signature PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is not
SEIZEd.

A region mode is an abstract region mode if it contains at least one incomplete component procedure (see 10.4). In this
case the attribute ABSTRACT must be specified.

An abstract region mode name can only be used as the region mode name in a region inheritance or as a referenced
mode.

A region mode specification must not grant any location.

If the base mode of a region mode is a module mode M then M must have the not_assignable property, must not grant
any location and must not contain any inline guarded component procedure or any component process.
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If a region mode M contains the attribute FINAL M is called a final region mode. A final region mode cannot be used as
a base mode in a region inheritance.

A final region mode must not contain an incomplete component procedure.

3.15.4 Task Modes

syntax:
<task mode> ::= (1)
<task mode specification> (1.1)
| <task mode body> (1.2))
<task mode specification> ::= (2)

TASK SPEC [ABSTRACT | FINAL] [<task inheritance clause>]
[<invariant part>] {<task specification component>}*
END [<simple name string>] 2.1)

<task mode body> ::= 3)
TASK BODY [ABSTRACT | FINAL] [<fask inheritance clause>)
{<task body component>}* [<invariant part>|

END [<handler>] [<simple name string>] 3.1)
<task inheritance clause> ::= (4)
[<task inheritance>] [<implementation clause>] 4.1)
<task inheritance> ::= (5)
BASED_ON {<module mode name> | <task mode name>} 5.1)
<dask specification component> ::= (6)
<region specification component> 6.1)
<fask body component> ::= (7)
<region body component> 7.1)

semantics: A task mode defines composite values consisting of a list of components selectable by component names.
Task values may reside in (composite) task locations.

A task mode|is defined by giving two separate parts: a task mode specification and a task mode body.
The specifichtion part defines the interfaee of the values of the task mode.

The body part defines the behaviour.of the values of the task mode.

The boolean| expression of the invariant part must be true before and after any call of a public component pfocedure.
static propefties: A task'mode has the not_assignable property.

If the attribufe ABSTRACT is specified, the mode is an abstract mode.

Ifa task il’lh;'} SEVPPL 3 tha aada NN “‘ein" de-ﬁ“anl 3c 1o diatalyy darivad Hon thg o da MB giv\_n in the task

SGivzan
THECTo—grv o tHoThHoaC—Tvio o S THH ORIt CT ) Oty CaTr ot oal

inheritance, and MB is an immediate base mode of MD.

If an implementation clause 1C is given, the mode MD being defined is immediately derived from the modes given in IC,
and these modes are immediate base modes of MD.

The effect of the task inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base modes except for the constructor and destructor component procedures of these base modes. If any of
these base modes is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For
visibility see 12.2.

A task specification component contained in a fask mode specification Mg or SEIZEd into Mg, which is granted by Mg, is
called a public component of the mode of Mg.

A task specification component contained in a task mode specification Mg or SEIZEd into Mg, which is not granted by
Mg, is called an internal component of the mode of Mg.
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A task body component C contained in a task mode body Mg or SEIZEd into Mg, is called a private component of the

mode of Mg

if C is neither a public nor an internal component of the mode of Mg.

static conditions: A task mode cannot be used as the mode in a synonym definition.

For each task mode specification, there must be one fask mode body with the same name string in the defining

occurrence.

If specified, the simple name string after END must be equal to the name string of the defining occurrence of this mode
definition. This holds for task mode specification and for task mode body.

If the attribute ABSTRACT or FINAL is specified in a task mode specification, it must also be specified in the
corresponding task mode body.

If a task mode specification contains a task inheritance clause, the corresponding task mode body must contain the same

task inheritapree-ctertses

All public cqmponent procedures of a task mode must only have IN parameters and must not have a resui# sy

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signaturethen this p
the property incomplete.

If the attribufe INCOMPLETE (see 10.4) is specified in a simple guarded procedure sigudture statement t}

must be pub

For each sin
task mode b
guarded pro

ic.

hple, complete guarded procedure signature statement S of a taskinode specification, the c
bdy must contain a corresponding simple guarded procedure definition statement D (see 12.1.]
redure signature of S matches the guarded procedure definition of D.

If P is a simple, incomplete guarded procedure signature of a task/' miode specification, the correspondir

body must n

If the attrib
procedure m|

If the attribyl
mode specifi
procedure si

A task mode
the attribute

An abstract|
A task mode|
If an immed

grant any lo
contain only

t contain a simple guarded procedure definition matching P.

ite REIMPLEMENT (see 10.4) is specified 1y a simple guarded procedure signature si
st be public.

te REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature PD conta
cation M then the immediate base mode of M must contain or have inherited a public sin|

onature PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is no

is an abstract task mode if'it contains at least one incomplete component procedure (see 10.4
ABSTRACT must be specified.

task mode name can only be used as the task mode name in a task inheritance or as a referenced
specification must not grant any location.
ate base.mode of a task mode is a module mode M then M must have the not_assignable prope

cation, 'must not contain any inline guarded component procedure or any component proce
public procedures which fulfill the restrictions of public component procedures of task modes.

ec.

rocedure has

lis procedure

brresponding
), where the

g task mode

latement this

ned in a task
iple guarded
t SEIZEd.

. In this case

/ mode.

rty, must not
ks, and must

If a task mode M contains the attribute FINAL M is called a final task mode. A final task mode cannot be used as a base
mode in a task inheritance.

A final task mode must not contain an incomplete component procedure.

3.15.5
syntax:
<i
<i
44

ITU-T Rec. Z.200

Interface Modes

nterface mode> ::=
INTERFACE [<interface inheritance>] {<interface component>}*
END [<simple name string>|

nterface inheritance> ::=

BASED_ON <interface mode name> { , <interface mode name> }*

(1999 E)
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nterface component> ::= 3)
<common module component> 3.1)

| <declaration statement> (3.2)

| <simple guarded procedure signature statement> (3.3)

| <process specification statement> (3.4)

| <signal definition statement> (3.5)

semantics: An interface mode defines a moreta mode which can only be used as a base mode in the definition of other
moreta modes and as the referenced mode of a bound reference mode.

static properties: If interface inheritance 11 is given, the mode MD being defined is immediately derived from the

modes given

in II, and these modes are immediate base modes of MD.

The effect of the interface inheritance is that the derived mode behaves as if it contained all components of its immediate
base modes. If any of these base modes is itself a derived mode, this inheritance of components is to be understood in a
transitive manner. For visibility see 12.2.

All interfacd
components

An interface]
static condi

If specified,
definition.

The attributg
procedures I

The attributg
an interface

4 Locations and their accesses
4.1 Dé¢clarations
4.1.1 Gg¢neral
syntax:
<declaration statement> ;=
DCL <declaration> { , <declaration> }* ;
<declaration> ::=

semantics: 4

components (including the SEIZEd ones) are implicitly GRANTed and therefore all are_g

mode is an abstract mode.
ions: An interface mode cannot be used as the mode in a synonym definition.

the simple name string after END must be equal to the name string of the/defining occurrence

INCOMPLETE (see 10.4) must be specified in all simple guarded procedure signatures;
ave the property incomplete.

REIMPLEMENT (see 10.4) must not be specified in asimple guarded procedure signature
Component.

<location declaration>
<loc~identity declaration>

\ declaration statement declares one or more names to be an access to a location.

alled public

of this mode

herefore, all

statement of

(1)
1.1)

2)
2.1)
2.2)

examples:

6.9
d,

11.36

4.1.2

syntax:

DCL INT := julian_day number,

m, y INT;

starting_square LOC := b(m.lin_1)(m.col 1)

Location declarations

<location declaration> ::=

<i

<defining occurrence list> <mode> [ STATIC ]| [ <initialization> ]

nitialization> ::=
<reach-bound initialization>
| <lifetime-bound initialization>
| <moreta-bound initialization>
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<reach-bound initialization> ::= (3)
<assignment symbol> <value> [ <handler> ] (3.1)
<lifetime-bound initialization> ::= (4)
INIT <assignment symbol> <constant value> (4.1)
<moreta-bound initialization> ::= (5)
( [ <constructor actual parameter list> ] ) [ <handler> ] (5.1)

semantics: A location declaration creates as many locations as there are defining occurrences specified in the defining
occurrence list.

With reach-bound initialization, the value is evaluated each time the reach in which the declaration is placed is entered
(see 10.2) and the delivered value is assigned to the location(s). Before the value is evaluated the location(s) contain(s)

the undefined value.

With lifetim
beginning of

If the mode

empty) parafeter list is specified, the corresponding constructor of the mode is applied to the’hewly create

the mode is 4

Specifying no initialization is semantically equivalent to the specification of a /Jifefime-bound initializat

undefined vj

The meanin
parameteriz

tagged
parame

non-va

thd
att|

the
the

the
the

the
an

The ser

-bound initialization, the value yielded by the constant value is assigned to the location(s)~onl
the lifetime of the location(s) (see 10.2 and 10.9).

task mode, the task belonging to the newly created location is started.

hlue (see 5.3.1).

b of the undefined value as initialization for a location which has attached a mode with

=

ed property or the non-value property is as follows:

parameterized property: the created tag field sub:-location(s) are initialized with their ¢
er value.

ue property:

created event and/or buffer (sub-)location(s) are initialized to "empty", i.e. no delayed p
hched to the event or buffer nor are theré, messages in the buffer;

created access (subs)lpeation(s) are initialized to "empty", i.e. they are not connected to an asso

created text (stb-)location(s) have a text record sub-location which is initialized with an emp
access sub-location which is initialized with "empty", i.e. it is not connected to an association.

nantics«@fSTATIC and handler can be found in 10.9 and clause 8, respectively.

If the lifeti

e.0f7a moreta location L ends and the mode of the location contains a destructor, then this

y once at the

is a moreta mode, first all initializations in the components are performed in textnal order. Iff a (possibly

d location. If

jon with the

the tagged

brresponding

rOCEsSSeS are

created region and/or task (sub-)location(s) are initialized to "empty", i.e. no delayed threads afle attached to
m,
created association (sub-)location(s) are initialized to "empty", i.e. they do not contain an assog

iation;
ciation;

ty string and

destructor is

applied to L

(See 10.2).

static properties: A defining occurrence in a location declaration defines a location name. The mode attached to the
location name is the mode specified in the location declaration. A location name is referable.

static conditions: The class of the value or constant value must be compatible with the mode and the delivered value
should be one of the values defined by the mode, or the undefined value.

If the mode has the read-only property, initialization must be specified. If the mode has the non-value property, reach-
bound initialization must not be specified.

If initialization is specified, the value must be regionally safe for the location (see 11.2.2).
dynamic conditions: In the case of reach-bound initialization, the assignment conditions of value with respect to the

mode apply (see 6.2).
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examples:
5.7
6.9

8.4

4.1.3

syntax:

ISO/IEC 9

k2, x, w, t, s, r BOOL
;= julian_day number
INIT := ['A":'Z7]

Loc-identity declarations

<loc-identity declaration> ::=

<defining occurrence list> <mode> LOC [ DYNAMIC ]
<assignment symbol> <location> [ <handler> ]

496:2003(E)

(1.1)
(3.1)
“.1)

(1)
(1.1)

semantics:
occurrences
specified.

If the locatid
is placed is

lifetime of tH
static prope]
a loc-identit
the dynamic

It is not alloy

A loc-identi

static conditions: If DYNAMIC is specified in the loc-identityndeclaration, the mode must be paramete

specified md
compatible

The location
mode.

:\ ‘lUb'idCllLiLy dCbldldliUll CITALCS a5 1IdIly  aCCCSS TIdITCS 10 lilC prbiﬁCd iUdeiUll adS LhUlC
specified in the defining occurrence list. The mode of the location may be dynamic onlyAif D

n is evaluated dynamically, this evaluation is done each time the reach in which theloc-identit
entered. In this case, a declared name denotes an undefined location prior to the\first evaluati
e access denoted by the declared name (see 10.2 and 10.9).

Irties: A defining occurrence in a loc-identity declaration defines a loc-identity name. The mod
y name is, if DYNAMIC is not specified, the mode specified in the locsidentity declaration; o
lly parameterized version of it that has the same parameters as theanode of the location.

ved to create a location of a moreta mode with the DYNAMIC property.

Ly name is referable if and only if the specified location{s réferable.

de must be dynamic read-compatible with the thode of the /ocation if DYNAMIC is specifi
with the mode of the location otherwise.

must not be a string element or string.Slice in which the mode of the string location is a vs

are defining
YNAMIC is

y declaration
n during the

e attached to
therwise it is

rizable. The
ed and read-

\rying string

dynamic conditions: The RANGEFAIL ot>FAGFAIL exception occurs if DYNAMIC is specified, and the above-
mentioned gl;lnamic read-compatible cheek fails.
examples:
11.36 starting square LOC “=/b(m.lin_1)(m.col_1) 1.1)
4.2 Lqcations
4.2.1 Ggneral
syntax:
<location> ::= (1)
<access name> (1.1)
| <dereferenced bound reference> (1.2)
| <dereferenced free reference> (1.3)
| <dereferenced row> (1.4)
| <string element> (1.5)
| <string slice> (1.6)
| <array element> (1.7)
| <array slice> (1.8)
| <structure field> (1.9)
| <location procedure call> (1.10)
| <location built-in routine call> (1.11)
| <location conversion> (1.12)
| <predefined moreta location> (1.13)
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semantics: A location is an object that can contain values. Locations have to be accessed to store or obtain a value.
static properties: A location has the following properties:

A mode, as defined in the appropriate sections. This mode is either static or dynamic.

It is static or not (see 10.9).

It is intra-regional or extra-regional (see 11.2.2).

It is referable or not. The language definition requires certain locations to be referable and others to be not

referable as defined in the appropriate sections. An implementation may extend referability to other locations
except when explicitly disallowed.

4.2.2

syntax:

Access names

<(

semantics: 4

a locat
parame

parame]

a locati

If the locatiq
are impleme

static propé
identity nam

a loc-identity name, i.e. a name explicitly declared in a loc-identity declaration or implicitly declare

a locati[

ccess name> =
<location name>
| <loc-identity name>
| <location enumeration name>
| <location do-with name>

\n access name delivers a location. An access name is one of the followings

on name, i.e. a name explicitly declared in a location declaration—or implicitly declared
yer without the LOC attribute;

fer with the LOC attribute;
n enumeration name, i.e. a loop counter in a location enumeration;

n do-with name, i.e. a field name used as direct@ccess in the do action with a with part.

n denoted by a location do-with name is a variant field of a tag-less variant structure location, {
htation defined.

rties: The (possibly dynamic) modeJattached to an access name is the mode of the locatio
b, location enumeration name orlocation do-with name, respectively.

An access n
enumeration|

dynamic copditions: When acecssing via a loc-identity name, it must not denote an undefined location.

When acces
location mu
denoted loca

ame is referable if and onlyJif it is a location name, a referable loc-identity name, a refers
name, or a referable [ocation do-with name.

ing via a locSidentity name a location which is a variant field, the variant field access cond
it be satisfigd (see 4.2.10). Accessing via a location do-with name causes a TAGFAIL exc
tion is a'variant field and the variant field access conditions for the location are not satisfied.

(1)
1.1)
1.2)
1.3)
1.4)

in a formal

| in a formal

he semantics

h name, loc-

ble location

tions for the
eption if the

examples:
4.12 a (1.1)
11.39 starting (1.2)
15.35 each (1.3)
5.10 cl (1.4)
4.2.3 Dereferenced bound references
syntax:

<dereferenced bound reference> ::= (1)

<bound reference primitive value> —> [ <mode name> | (1.1)

semantics: A dereferenced bound reference delivers the location that is referenced by the bound reference value.
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static properties: The mode attached to a dereferenced bound reference is the mode name if specified, otherwise the
referenced mode of the mode of the bound reference primitive value. A dereferenced bound reference is referable.

static conditions: The bound reference primitive value must be strong. If the optional mode name is specified, it must be
read-compatible with the referenced mode of the mode of the bound reference primitive value.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if the bound reference primitive value delivers the value NULL.

If the referenced location is a variant field, the variant field access conditions for the location must be satisfied
(see 4.2.10).

examples:

1054 p—> (1.1)

4.2.4 Ddreferenced free references

syntax:
<dereferenced free reference> ::= (1)
<free reference primitive value> —> <mode name> 1.1)

semantics: A dereferenced free reference delivers the location that is referenced by thefree reference value.

static properties: The mode attached to a dereferenced free reference is the mode-name. A dereferenced ffee reference
is referable.

static conditions: The free reference primitive value must be strong.

dynamic copditions: The lifetime of the referenced location must notshave ended.

The EMPTY|exception occurs if the free reference primitive value-delivers the value NULL.
The mode nqme must be read-compatible with the mode of'the referenced location.

If the refergnced location is a variant field, the wvafiant field access conditions for the location must| be satisfied
(see 4.2.10).

4.2.5 Ddreferenced rows
syntax:

<dereferenced row> : ;= (1)
<row primitivevalue> —> 1.1)

semantics: A dereferencedirow delivers the location that is referenced by the row value.
static propefties: The.dynamic mode attached to a dereferenced row is constructed as follows:

&<origin mode name> ( <parameter> { , <parameter> }*)

where &origin mode name 1s a virtual synmode name synonymous with the referenced origin mode of the mode of the
row primitive value and where the parameters are, depending on the referenced origin mode:

*  the dynamic string length, in the case of a string mode;
*  the dynamic upper bound, in the case of an array mode;

e the list of values associated with the mode of the parameterized structure location, in the case of a variant structure
mode.

A dereferenced row is referable.
static conditions: The row primitive value must be strong.
dynamic conditions: The lifetime of the referenced location must not have ended.

The EMPTY exception occurs if the row primitive value delivers NULL.
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If the referenced location is a variant field, the variant field access conditions for the location must be satisfied

(see 4.2.10).

examples:

8.11 input —>

4.2.6 String elements

syntax:

<string element> ::=

<string location> ( <start element>)

<start element> ::=

<integer expression>

(1.1)

(1)
(1.1)

2)
2.1)

semantics: 4

static prope

If the mode

dynamic copditions: The RANGEFAIL exception occurs if the following relation doesnot hold:

Where L is t
examples:
18.16 St
4.2.7 St
syntax:
<
<
<
<

semantics:
indicated by

0 < NUM (start element) < L — 1

he actual length of the string location.

ing —> (1)

'ing slices

tring slice> ::=
<string location> ( <left element> : <right element>)
| <string location> ( <start element> UP <slice size>")

eft element> ::=
<integer expression>

ight element> ::=
<integer expression>

lice size> ::=
<integer expression>

slice is deter

mitted from the specified expressions.

\ string element delivers a (sub-)location which is the element of the specified string locatien
start element.

rties: The mode attached to the string element is the element mode of the mode of the st7ing lod

f the string location is a varying string mode, then the string element is not referable.

\ string-slice delivers a (possibly dynamic) string location that is the part of the specified st
left elément and right element or start element and slice size. The (possibly dynamic) length

indicated by

ation.

1.1)

(1)
1.1)
1.2)

2)
2.1)

3)
3.1)

)
4.1)

ring location
of the string

A string slice in which the right element delivers a value which is less than that delivered by the left element or in which

slice size del

ivers a non positive value denotes an empty string.

static properties: The (possibly dynamic) mode attached to a string slice is a parameterized string mode constructed

as:

&name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the string location if it is a

fixed string mode, otherwise with the component mode, and where string size is either:

or

NUM (right element) — NUM (left element) + 1

NUM (slice size).
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However, if an empty string is denoted, string size is 0. The mode attached to a string slice is static if string size is
literal, i.e. left element and right element are literal or slice size is literal; otherwise the mode is dynamic.

If the mode of the string location is a varying string mode, then the string slice is not referable.
static conditions: The following relations must hold:

0 < NUM (left element) < L — 1

0 < NUM (right element) < L — 1

0 < NUM (start element) < L — 1

NUM (start element) + NUM (slice size) < L

where L is the actual length of the string location. If L and the value all integer expressions are known dtatically, the
relations can/be checked statically.

dynamic conditions: The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

examples:
18.26 blanks (count : 9) 1.1)
18.23 stying —>(scanstart UP 10) 1.2)

4.2.8 Anfray elements

syntax:
<grray element> ::= (1)
<array location> ( <expression list>") 1.1)
<¢xpression list> ::= (2)
<expression> { , <expression> ¥ 2.1)

derived syntax: The notation: ( <expression list>") is derived syntax for:
( <expression>) { ( <expression>) }*

where there pre as many parenthesized expressions as there are expressions in the expression list. Thus an ayray element
in the strict §yntax has only one-(index) expression.

semantics: An array element delivers a (sub-)location which is the element of the specified array location|indicated by
expression.

static propeftiest The mode attached to the array element is the element mode of the mode of the array locgtion.

An array element 1S Teterable if the element Iayout of the mode of the array focarion s NOPATCK:

static conditions: The class of the expression must be compatible with the index mode of the mode of the array
location.

dynamic conditions: The RANGEFAIL exception occurs if the following relation does not hold:
L < expression < U

where L and U are the lower bound and the (possibly dynamic) upper bound of the mode of the array location,
respectively.

examples:

11.36 b(m.lin_1)(m.col 1) (1.1)
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4.2.9

syntax:

Array slices

<array slice> ::=

<array location> ( <lower element> : <upper element>)
| <array location> ( <first element> UP <slice size>)

<lower element> ::=

<expression>

<upper element> ::=

<expression>

<first element> ::=

(1)
(1.1)
(1.2)

2)
2.1)

3)
3.1)

4

semantics: 4
indicated by
to the lowe
expressions.

static prope
as:

where &na
upper index

eXpTession
An array slice delivers a (possibly dynamic) array location which is the part of the specified a

lower element and upper element or first element and slice size. The lower bound of-the/array
bound of the specified array; the (possibly dynamic) upper bound is determined from

rties: The (possibly dynamic) mode attached to an array slice is a parameterized array mods

&name (upper index)

be is a virtual synmode name synonymous with the (possibly dynamic) mode of the array
is either an expression whose class is compatible with the\classes of lower element and upper

delivers a vallue such that:

or is an expr

where L is tH

The mode a
literal or s/i

An array sli

static condi
the index m

The followin]

NUM (upper index) = NUM (L) + NUM (upper element) — NUM (lower element)

ession whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slice size) — 1

e lower bound of the mode of the-array location.

tached to an array slice is Static if upper index is literal, i.e. lower element and upper elem
e size is literal; otherwase the mode is dynamic.

e is referable if the/element layout of the mode of the array location is NOPACK.

ions: The-classes of lower element and upper element or the class of first element must be cont
de of thelarray location.

4.1)

rray location
slice is equal
he specified

constructed

location and
element and

ent are both

patible with

g.relations must hold:

L < NUM (lower element) < NUM (upper element) < U
1 < NUM (slice size) < NUM (U) - NUM (L) + 1

NUM (L) < NUM (first element) < NUM (first element) + NUM (slice size) — 1 < NUM (U)

where L and U are respectively the lower bound and upper bound of the mode of the array location. If U and the value
of all expressions are known statically, the relations can be checked statically.

dynamic conditions: The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

examples:

17.27
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4.2.10 Structure fields

syntax:

<structure field> ::= (1)
<structure location> . <field name> (1.1)

semantics: A structure field delivers a (sub-)location which is the field of the specified structure location indicated by
field name. If the structure location has a tag-less variant structure mode and the field name is a variant field name, the
semantics are implementation defined.

static properties: The mode of the structure field is the mode of the field name.

A structure field is referable if the field layout of the field name is NOPACK.

static condiflfonmsT T fiefd rame TSt be a ame from the Set ot field Tames ot the mode of UIE SITucture lopation.

dynamic copditions: A /ocation must not denote:

e ataggefl variant structure mode location in which the associated tag field value(s) indicate(s)-that the fiicld does not
exist;

e adynarpic parameterized structure mode location in which the associated list of valués indicates that the field does
not exigt.

The above mentioned conditions are called the variant field access conditions fot.the location. The TAGFAJIL exception
occurs if they are not satisfied for the structure location.

examples:

10.57 lalst —.info 1.1)

4.2.11 Ldcation procedure calls
syntax:

<Jocation procedure call> ::= (1)
<l[ocation procedure call> 1.1)

semantics: A location procedure call delivers the location returned from the procedure.
static propgrties: The mode attached to a location procedure call is the mode of the result spec of [the location
procedure cqll if DYNAMIC isnot specified in it; otherwise it is the dynamically parameterized version pf it that has

the same parpmeters as the mode of the delivered location.

The location procedurecall is referable if NONREEF is not specified in the result spec of the location proc¢dure call.

delivered loqation’ must not have ended.

dynamic cq-ditions: The location procedure call must not deliver an undefined location and the lifptime of the

4.2.12 Location built-in routine calls
syntax:

<location built-in routine call> ::= (1)
<location built-in routine call> (1.1)

semantics: A location built-in routine call delivers the location returned from the built-in routine call.

static properties: The mode attached to the location built-in routine call is the mode of the result spec of the [ocation
built-in routine call.

dynamic conditions: The location built-in routine call must not deliver an undefined location and the lifetime of the
delivered location must not have ended.
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4.2.13 Location conversions

syntax:

<location conversion> ::= (1)
<mode name> # ( <static mode location>) (1.1)

semantics: A location conversion delivers the location denoted by static mode location. However, it overrides the
CHILL mode checking and compatibility rules and explicitly attaches a mode to the location without any change in the
internal representation.

The precise dynamic semantics of a location conversion are implementation defined.

static properties: The mode of a location conversion is the mode name.

A location conversion is referable.

static conditions: The static mode location must be referable.

The followir]g relation must hold:

SIZE (mode name) = SIZE (static mode location)

4.2.14 Predefined moreta location
syntax:

<predefined moreta location> ::= (1)
SELF 1.1)

semantics: n a component procedure and/or process P of a morefa{mode, SELF denotes that moreta logation ML to
which P is cfirrently being applied. The mode of SELF is the modeof ML.

static conditions: The use of SELF is allowed only inside thedefinition of a moreta mode.

5 Values and their operations
5.1 Syjnonym definitions
syntax:
<§ynonym definition-statement> ::= (1)
SYN <synonym definition> { , <synonym definition>}* ; 1.1)
<yynonym definition> ::= (2)
<defining occurrence list> [ <mode> | = <constant value> 2.1)

derived syntax:’A synonym definition, where defining occurrence list consists of more than one defining ofpcurrence, is

1 1 Jofsaiss £ b d ot s+l 11
deered fI‘OTr STVCTars yrnorynt uc_/uulftul; OCCUITCnCCS OO TOT CalTru it g OCTur reric eIt taC—SarT cotstant Value and

mode, if present. E.g. SYN i, j = 3, is derived from SYN i = 3, j = 3,.
semantics: A synonym definition defines a name that denotes the specified constant value.
static properties: A defining occurrence in a synonym definition defines a synonym name.

The class of the synonym name is, if a mode is specified, the M-value class, where M is the mode, otherwise the class of
the constant value.

A synonym name is undefined if and only if the constant value is an undefined value (see 5.3.1).
A synonym name is literal if and only if the constant value is literal.

static conditions: If a mode is specified, it must be compatible with the class of the constant value and the value
delivered by the constant value must be one of the values defined by the mode.
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The evaluation of the constant value must not depend directly or indirectly on the constant value of the synonym name.

examples:

1.17 SYN neutral for _add =0,

neutral_for_mult = 1; (1.1)
2.18 neutral for_add fraction = [ 0,1] (2.1)
5.2 Primitive value

5.2.1 General

syntax:

<

semantics: 4
class based
Check failur

static prope
A primitive
conversion,

expression.

A primitive

that is litera).

rimitive value> ::= (1)
<location contents> 1.1)

| <value name> 1.2)
| <literal> 1.3)
| <tuple> 1.4)
| <value string element> 1.5)
| <value string slice> 1.6)
| <value array element> 1.7)
| <value array slice> 1.8)
| <value structure field> 1.9)
| <expression conversion> (1.10)
| <representation conversion> (1.11)
| <value procedure call> (1.12)
| <value built-in routine call> (1.13)
| <start expression> (1.14)
| <zero-adic operator> (1.15)
| <parenthesized expression> (1.16)

\ primitive value is the basic constituent of an expression. Some primitive values have a dynamic class, i.e. a
n a dynamic mode. For these primitive values the compatibility checks can only be completed at run time.
e will then result in the 74 GF4IL'or RANGEFAIL exception.

rties: The class of the primitive value is the class of the location contents, value name, etc., respgctively.

alue is constant if and only if it is a constant value name, a literal, a constant tuple, a constamt expression
p constant representation conversion, a constant value built-in routine call or a constant parenthesized

alueisliteral if and only if it is a value name that is literal, a discrete /iteral, or a value built-ig routine call

5.2.2 Location contents
syntax:
<location contents> ::= (1)
location> (1.1)

semantics: A location contents delivers the value contained in the specified location. The location is accessed to obtain
the stored value.

static properties: The class of the location contents is the M-value class, where M is the (possibly dynamic) mode of the

location.

static conditions: The mode of the /ocation must not have the non-value property.
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dynamic conditions: The delivered value must not be undefined.

examples:
3.7 c2.im
5.2.3 Value names

syntax:

<value name> ::=

semantics: 4

a value
a value

a value

If the value
implementat

static prope

name, value
A value nam

A value nan
attached a pi|

static condi

a synon

a generjal procedure name (see 10.4).

synonym name>
<value enumeration name>

<value do-with name>
<value receive name>
<general procedure name>

(1.1)

(1)
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

A value name delivers a value. A value name is one of the following:

ym name, i.e. a name defined in a synonym definition statement;

enumeration name, i.e. a name defined by a loop counter in a value enumeration;
do-with name, i.c. a field name introduced as value name in the do action with awith part,

receive name, i.e. a name introduced in a receive case action;

denoted by a value do-with name is a variant field of a tag-less wariant structure value, the s
on defined.

rties: The class of a value name is the class of the synduym name, value enumeration name,
receive name or the M-derived class, where M is the mode of the general procedure name, resp

e is literal if and only if it is a synonym name thatds literal.

e is constant if it is a synonym name or a.general procedure name denoting a procedure nan
ocedure definition which is not surrounded’by a block.

ions: The synonym name must not be-undefined.

emantics are

alue do-with
petively.

ne which has

dynamic copditions: Evaluating a value do-with name causes a TAGFAIL exception if the denoted value|is a variant
field and the|variant field access conditions for the value are not satisfied.
examples:
10.12 mpx 1.1)
8.8 i 1.2)
15.54 this counter 1.4)
5.2.4 Literals
5.2.4.1 General
syntax:
literal> ::= (1)
integer literal> (1.1)
| <floating point literal> (1.2)
| <boolean literal> (1.3)
| <character literal> (1.4)
| <set literal> (1.5)
| <emptiness literal> (1.6)
| <character string literal> (1.7)
| <bit string literal> (1.8)

semantics: A literal delivers a constant value.
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static properties: The class of the /literal is the class of the integer literal, boolean literal, etc., respectively. A literal is

discrete if it

is either an integer literal, a boolean literal, a character literal or a set literal.

The letter together with the following apostrophe which starts an integer literal, boolean literal, bit string literal, wide
character literal or wide character string literal (i.e. B', D', H', O', W', b', d', h', o', w') is a literal qualification.

5.2.4.2 Integer literals

syntax:

<integer literal> ::= (1)
unsigned integer literal> (1.1)
| <signed integer literal> (1.2)
<unmsigned integer literal> ::= (2)
decimatimteger-titerat 2.1)
| <binary integer literal> 2.2)
| <octal integer literal> 2.3)
| <hexadecimal integer literal> 2.4)
<{igned integer literal> ::= (3)
— <unsigned integer literal> 3.1)
<decimal integer literal> ::= (4)
[{D|d} '] <digit sequence> 4.1)
<binary integer literal> ::= (5)
{Blb} ' {O[1]_}* 5.1)
<qctal integer literal> ::= (6)
{O]o0}' {<octal digit>| }T 6.1)
<hexadecimal integer literal> ::= (7)
{H|h>}"{ <hexadecimal digit>| . *F 7.1)
<hexadecimal digit> ::= 8)
<digit>|A|B|C|D|E|Ffa[b|c|d]|e]|f 8.1)
<¢ctal digit> ::= 9)
0112131415677 9.1)
<{dligit sequence> ::= (10)
{ <digit> | (H" (10.1)
semantics: An integer literal delivers an integer value. The usual decimal (base 10) notation is provided as
(base 2), octpl (base 8) and-hexadecimal (base 16). The underline character () is not significant, i.e. it se
readability apd it does\not influence the denoted value.
A signed intpger literal delivers a value which is the additive inverse of that delivered by the unsigned inte]
it.

static properties: The class of an integer literal is the &INT-derived class. An integer literal is constant and literal.

bell as binary
rves only for

oer literal in

static conditions: The string following the apostrophe (') and the digit sequence must not consist solely of underline

characters.

The value delivered by integer literal must be one of the values defined by the &/NT mode.

examples:

6.11 1721 119
D'l 721 119
B'101011 110100
0'53 64
H'AF4

2.1)
2.1)
2.2)
2.3)
(2.4)
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5.2.4.3 Floating point literals

syntax:

<floating point literal> ::=

unsigned floating point literal>
<signed floating point literal>

<unsigned floating point literal> ::=

<digit sequence> . [ <digit sequence> | [ <exponent> |
[ <digit sequence> ] . <digit sequence> [ <exponent> |

<signed floating point literal> ::=

<4

derived syn
literal in wh

semantics: 4

A signed flg
point literal

If the floatiq
modes of thd
delivered by

for representiing the floating point literal.

static prope
and literal.

The precisidg
sequences th

— <unsigned floating point literal>

(1)
(1.1)
(1.2)

2)
2.1)
2.2)

3)
(3.1)

xponent> ;1=
E <digit sequence>
E — <digit sequence>

tax: A floating point literal in which 1. a digit sequence, 2. an exponent is missing)is derived
ch 1. the digit sequence is 0, 2. the exponent is E1.

A floating point literal delivers a floating point value, expressed as a decimal number in scientifi

ating point literal delivers a value which is the additive inverse of-that delivered by the unsig
nit.

g point literal lies between the upper bound and lower. bound of one of the predefined fj

implementation but is not exactly representable, the floating point literal value is approximated
an implicit representation conversion to the predefined floating point mode chosen by the im

rties: The class of a floating point literal is the’ &FLOAT-derived class. A floating point literq

n of a floating point literal is the sufn)of the number of significant decimal digits delivered by
at form its mantissa.

4)
4.1)
4.2)

syntax for a

notation.

tned floating

oating point
to the value
blementation

/ is constant

the two digit

static condifions: The value delivered by-floating point literal must be one of the values defined by the &FIJOAT mode.
examples:
10.0E1 1.1)
—365.0E-5 1.1)
5.2.44 B(101ean literals
syntax:

<boolean literal> ::= (1)

boolean literal name> (1.1)

predefined names: The names FALSE and TRUE are predefined as boolean literal names.

semantics: A boolean literal delivers a boolean value.

static properties: The class of a boolean literal is the BOOL-derived class. A boolean literal is constant and literal.

examples:

5.42
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5.24.5

syntax:

ISO/IEC 9

Character literals

<character literal> ::=

narrow character literal>
<wide character literal>

<narrow character literal> ::=

" { <character> | <control sequence>}"'

<wide character literal> ::=

{ W |w }'{ <character> | <control sequence>}"'

<control sequence> ::=

" (<integer literal expression> { , <integer literal expression> }*)

il ol £
Ho=SsPpectai crici-aetres

496:2003(E)

(1)
(1.1)
(1.2)

@)
2.1)

3)
(3.1)

4)
“.1)
4.2)

semantics: /4

Apart from the printable representation, the control sequence representation may be used. A coutrol seque

the circumf]
representatid

\ character literal delivers a character value.

AN

ex character (”) is followed by an open parenthesis denotes the sequénce of charal
ns are the integer literal expression in it; otherwise if it is followed by (another circumflex

4.3)

ice in which
cters whose
character it

denotes itself, otherwise it denotes the character whose representation is obtained by{logically negating the b7 of the

internal repr

static propé
literal is the

static condi

The value dd
the represent
the set of va
character lif|

examples:
7.9 'M
5.2.4.6 Se
syntax:

<

semantics: 4

static prope
depends upo|

psentation of the non-special character in it (see 12.4.4 and Appendix [).

rties: The class of a narrow character literal is the CHAR-detived class. The class of a wi
WCHAR-derived class. A character literal is constant and literal

ions: A control sequence in a character literal must denete.only one character.

livered by an integer literal expression in a control seguence must belong to the range of valug
ations of the characters in the CHILL character set (See Appendix I) in case of narrow characte|
ues defined by the representations of characters™in the set of characters of ISO/IEC 10646-1 in
bral.

h.thé context where the set literal occurs, according to the following list:

fle character

s defined by
- literal or to
case of wide

(' 2.1)
 literals
et literal> ::= (1)
[ <mode name> . | <set element name> 1.1)
\ set literal-delivers a set value. A set literal is a name defined in a set mode.
rties; The class of a set /literal is the M-value class, where M is the mode name, if specified. (Ptherwise, M

same rules defined for the tuple (see 5.2.5);

then M

if the set literal is used as a value in a tuple, then M is the mode of that value;

if the set literal is used in a literal range to define a discrete range mode of the form:

<discrete mode name> ( <literal range>)

is the discrete mode name;

if the set literal is used in a place where a tuple without the mode name can be used, then M is derived following the

if the set literal is the usage expression, the where expression, the index expression or the write expression in a

built-in routine for input output (see 7.4), then M is respectively USAGE, WHERE, the index mode of the access
location or of the text location, the record mode of the access location;

it is contained;

ITU-T Rec. Z.200
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e if the set literal is the upper index in a parameterized array mode, then M is the corresponding index mode of the
origin array mode;

» if the set literal is an expression in a parameterized structure mode, then M is the root mode of the corresponding
tag field name in the origin variant structure mode;

» if the set literal is used in an array element or array slice, then M is the corresponding index mode in the array
mode;

e if the set literal is used in a case label, then M is derived from the mode of the corresponding tag field name (for
structure mode), from the mode of the corresponding selector in the case selector list (for case action or conditional
expression), or from the index mode (for tuple).

» if the set literal is used as the lower bound or the upper bound and a discrete mode name is specified in the literal
range in which it is contained, then M is the discrete mode name.

A set literal is constant and literal

static condifions: The optional mode name may be omitted only in the contexts specified above.

The set element name must belong to the set of set element names of M.

examples:
6.51 ddc 1.1)
11.78 kipg 1.1)

5.2.4.7 Emptiness literal

syntax:
<¢mptiness literal> ::= (1)
<emptiness literal name> 1.1)

predefined pames: The name NULL is predefined as an emptiness literal name.

semantics: The emptiness literal delivers either the empty*reference value, i.e. a value which does not refer fo a location,
the empty procedure value, i.e. a value which does\not indicate a procedure, or the empty instance value} i.e. a value
which does not identify a process.

static propefties: The class of the emptinessiteral is the null class. An emptiness literal is constant.

examples:

10.43 NULL 1.1)

5.2.4.8 CHharacter stringditerals

syntax:

<¢hargcter string literal> ::= (1)

<narrow character string literal> 1.1)

| _<wide character string literal> 1.2)

<narrow character string literal> ::= (2)

" { <non-reserved character> | <quote> | <control sequence>}* " 2.1)

<wide character string literal> ::= (3)

{ W'| W'} " { <non-reserved wide character> | <quote> | <control sequence>}*" (3.1)

<quote> ::= (4)

nn (4. I)

semantics: A character string literal delivers a character string value that may be of length 0. It is a list of values for the
elements of the string; the values are given for the elements in increasing order of their index from left to right. To
represent the character quote (") within a character string literal, it has to be written twice ("").

static properties: The string length of a character string literal is the number of non-reserved character, quote and
characters denoted by control sequence occurrences.
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The class of a character string literal is the CHARS (n)-derived class, where n is the string length of the narrow
character string literal. The class of a character string literal is the WCHARS (n)-derived class, where n is the string

length of the wide character string literal. A character string literal is constant.
examples:

8.20 "4-B<ZAA9IK'"

5.2.4.9 Bit string literals
syntax:

<bit string literal> ::=
<binary bit string literal>
| <octal bit string literal>
| <hexadecimal bit string literal>

2.1)

(1)
(1.1)
(1.2)
(1.3)

<binary bit string literal> ::=
{Blbj " {O[1]_}*'

<qctal bit string literal> ::=
{O]o}'{<octal digit>| }*"'

<hexadecimal bit string literal> ::=
{H|h}"{<hexadecimal digit>| }*'

2)
2.1)

3)
3.1)

4)
4.1)

semantics: A bit string literal delivers a bit string value that may be of length 0-Binary, octal or hexadecithal notations

may be used. The underline character (_ ) is insignificant, i.e. it serves only:for readability and does not
indicated value.

A Dbit string [literal is a list of values for the elements of the string;¢{the“values are given for the elements
order of theif index from left to right.

nfluence the

n increasing

static propdrties: The string length of a bit string literal iszeither the number of 0 and / occurrences infa binary bit
string literal, three times the number of octal digit occurrences in an octal bit string literal or four times the number of

hexadecimall digit occurrences in a hexadecimal bit string-literal.

The class ofja bit string literal is the BOOLS (n)-dérived class, where 7 is the string length of the bit string|literal. A bit

string literallis constant.
examples:
B'101011_1J0100’
0'53_64'
H'AF4'

5.2.5 Tuples

syntax:

1.1)
1.2)
1.3)

<tuple> ::=
[ <mode name> ] (: { <powerset tuple> |
<array tuple> | <structure tuple> } :)

<powerset tuple> ::=
[ { <expression> | <range>} {, { <expression>|<range>} }* |

<range> ::=
<expression> : <expression>

<array tuple> ::=
<unlabelled array tuple>
| <labelled array tuple>

<unlabelled array tuple> ::=
<value> { , <value>}*

(1)
(1.1)

2)
2.1)

3)
(3.1)

4)
“.1)
4.2)

)
(5.1)
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<labelled array tuple> ::= (6)
<case label list> : <value> { , <case label list> : <value>}* (6.1)
<structure tuple> ::= (7)
<unlabelled structure tuple> (7.1)

| <labelled structure tuple> (7.2)
<unlabelled structure tuple> ::= (8)
<value> { , <value> }* 8.1

<labelled structure tuple> ::= 9)
<field name list> : <value> { , <field name list> : <value> }* 9.1)

<field name list> ::= (10)
. <field name> { , . <field name> }* (10.1)

derived syn
indicated in

semantics: /4

If it is a pow

ax: The tuple opening and closing brackets, [ and ], are derived syntax for (: and :), respectivel
he syntax to avoid confusion with the use of square brackets as meta symbols.

\ tuple delivers either a powerset value, an array value or a structure value.

erset value, it consists of a list of expressions and/or ranges denoting those mémber values wh

powerset va

the range. Iff the second expression delivers a value which is less than the value(delivered by the first ex
range is empyty, i.e. it denotes no values. The powerset tuple may denote the empty powerset value.

If it is an arfay value, it is a (possibly labelled) list of values for the elenients of the array; in the unlabelle
the values afe given for the elements in increasing order of their index; in the labelled array tuple, the valy
for the elempnts whose indices are specified in the case label list labelling the value. It can be used as a
large array fuples where many values are the same. The label ELSE denotes all the index values nd

explicitly. T

If it is a strul

tuple, the values are given for the fields in the samerder as they are specified in the attached structure

labelled stru
value.

The order o
evaluated in

static propé
depends upo|

if the 7
locatio

if the 1

e. A range denotes those values which lie between or are one of the valués’delivered by the e

e label * denotes all index values (for further details; see 12.3).

cture value, it is a (possibly labelled) set of values for the fields of the structure. In the unlabe
Cture tuple, the values are given for theficlds whose field names are specified in the field nan
f evaluation of the expressions.and values in a tuple is undefined and they may be conside
any order.

rties: The class of(ayuple is the M-value class, where M is the mode name, if specified.
h the context whete the tuple occurs, according to the following list:

iple is the vglue or constant value in an initialization in a location declaration, then M is the
declarafion,

ple’is-the right-hand side value in a single assignment action, then M is the (possibly dynamic

. This is not

ch are in the
Kpressions in
pression, the

| array tuple,
les are given
horthand for
t mentioned

led structure
mode. In the
e list for the

red as being

Dtherwise M

mode in the

mode of the

left-han|

d side location;

if the tuple is the constant value in a synonym definition with a specified mode, then M is that mode;

the corresponding parameter spec, then M is the mode in the corresponding parameter spec;

name of the result action or return action (see 6.8);

name or the buffer element mode of the mode of the buffer location;
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if the tuple is used in an operand-2 and one of the operands is strong, then M is the mode of the strong operand,;

if the tuple is an actual parameter in a procedure call or in a start expression where DYNAMIC is not specified in

if the fuple is the value in a return action or a result action, then M is the mode of the result spec of the procedure

if the tuple is a value in a send action, then it is the associated mode specified in the signal definition of the signal

if the tuple is an expression in an array tuple, then M is the element mode of the mode of the array tuple;
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e if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple where the associated field
name list consists of only one field name, then M is the mode of the field in the structure tuple for which the tuple is
specified;

e if the tuple is the value in a GETSTACK or ALLOCATE built-in routine call, then M is the mode denoted by mode
argument.

A tuple is constant if and only if each value or expression occurring in it is constant.

static conditions: The optional mode name may be omitted only in the contexts specified above. Depending on whether
a powerset tuple, array tuple or structure tuple is specified, the following compatibility requirements must be fulfilled:

a) Powerset tuple

1) The mode of the fuple must be a powerset mode.

2) The class of each expression must be compatible with the member mode of the mode of the 7uple

3) Fof a constant powerset tuple the value delivered by each expression must be one of the values’ddfined by that
mé¢mber mode.

b) Array typle

1) The mode of the fuple must be an array mode.

2) The class of each value must be compatible with the element mode of the<tmode of the tuple.

3) In|the case of an unlabelled array tuple, there must be as many ‘eceurrences of value as theg number of
eldments of the array mode of the tuple.

4) In|the case of a labelled array tuple, the case selection canditions must hold for the list of cqse label list
ocgurrences (see 12.3). The resulting class of the list must\be compatible with the index mode of the mode of
thg ruple. The list of case label specifications must be complete.

5) Inlthe case of a labelled array tuple, the values explicitly indicated by each case label in a case Igbel list must
be[values defined by the index mode of the ruple:

6) Inpn unlabelled array tuple, at least one valie occurrence must be an expression.

7) For a constant array tuple, where theselement mode of the mode of the tuple is a discrete mode, ejich specified
value must deliver a value defined by-that element mode, unless it is an undefined value.

c) Structute tuple

1) The mode of the tuple must be a structure mode.

2) This mode must not'beja structure mode which has field names which are invisible (see 12.2.5).
In the case off an unlabelled-structure tuple:
—  If the mode of'the tuple is neither a variant structure mode nor a parameterized structure mode, then:

3) Therednust be as many occurrences of value as there are field names in the list of field names of| the mode of
thernpie:

4) The class of each value must be compatible with the mode of the corresponding (by position) field name of

the mode of the tuple.

—  If the mode of the tuple is a tagged variant structure mode or a tagged parameterized structure mode, then:

5)
6)

7)

Each value specified for a tag field must be a discrete literal expression.

There must be as many occurrences of value as there are field names indicated as existing by the value(s)
delivered by the discrete literal expression occurrences specified for the tag fields.

The class of each value must be compatible with the mode of the corresponding field name.

—  Ifthe mode of the fuple is a tag-less variant structure mode or a tag-less parameterized structure mode,

8) No unlabelled structure tuple is allowed.
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In the case o

9)

96:2003(E)

f a labelled structure tuple:

If the mode of the tuple is neither a variant structure mode nor a parameterized structure mode, then:

the tuple.

Each field name of the list of field names of the mode of the tuple must be mentioned once and only once in

10) The class of each value must be compatible with the mode of every field name specified in the field name list
labelling that value. The modes of all field names in the field name list must be equivalent.

11) Ea

12)

ch value that is specified for a tag field must be a discrete literal expression.

If the mode of the fuple is a tagged variant structure mode or a tagged parameterized structure mode, then:

Each field name that denotes a fixed field or a field indicated as existing by the value(s) delivered by the

discrete literal expression occurrences specified for the tag fields must be mentioned once and only once in the
tuple

13) Th

lay
If the m

14) Ed
Fi

e class of each value must be compatible with the mode of any field name specified in_the, 7
elling that value.

ode of the tuple is a tag-less variant structure mode or a tag-less parameterized structure mod

ch field name must be mentioned at most once in the tuple. All the fixed field-hames must b
ld names mentioned in the tuple, which are defined in the same alternatiye field, must all be d

samne variant alternative or all be defined after ELSE. All field names of\an“alternative field in

alt

Th
lay

15)

16) If
litd

the

17) Fo

de
18) At

No fuple m
(see 11.2.2).

dynamic co
associated fi
conditions aj

If the tuple
satisfied.

If the tuple h
c16 are not §

brnative or all field names defined after ELSE must be mentioned.

e class of each value must be compatible with the mode of any*field name specified in the fi
elling that value.

he mode of the tuple is a tagged parameterized structute mode, the list of values delivered by
ral expression occurrences specified for the tag fieldsi\must be the same as the list of values of
tuple.

[ a constant structure tuple, each value specified for a field with a discrete mode must de
fined by the field mode, unless it is an undefined value.

least one value occurrence must be an expression.

ditions: The assignment conditions of any value with respect to the member mode, elem|
1d mode, in the case-0f‘powerset tuple, array tuple or structure tuple, respectively (see 6.2) aj
. b2, ¢4, ¢7, cl10, c13-and c15).

has a dynamjciarray mode, the RANGEFAIL exception occurs if any of the conditions b3 d

as adynamic parameterized structure mode, the TAGFAIL exception occurs if any of the cond
atisfied.

bld name list
e, then:
e mentioned.

efined in the
each variant

bld name list

the discrete
the mode of

iver a value

hy have two value occurrences.fin it, such that one is extra-regional and the other is inftra-regional

pnt mode or
bply (refer to

r bS5 are not

itions c14 or

The value delivered by a fuple must not be undefined.

examples:

9.6 number_list [ ]"

9.7 [2:max]

8.26 [(4):3,('B"'K",'Z"):1,(ELSE). 0]
17.5 [(¥):""]

12.35 (:NULL,NULL,536:)

11.18 [.status:occupied,.p: [white,rook] ]
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(6.1)
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(7.1)
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5.2.6 Value string elements

syntax:
<value string element> ::= (1)
<string primitive value> ( <start element>) (1.1)

NOTE - If the string primitive value is a string location, the syntactic construct is ambiguous and will be interpreted as a string
element (see 4.2.6).

semantics: A value string element delivers a value which is the element of the specified string value indicated by start
element.

static properties: The class of the value string element is the M-value class, where M is the element mode of the mode
of the string primitive value.

A value string element is constant if and only if string primitive value and start element are constant.
dynamic copditions: The value delivered by a value string element must not be undefined.

The RANGEJFAIL exception occurs if the following relation does not hold:

0 < NUM (start element) < L — 1

Where L is the actual length of the string primitive value.

5.2.7 V4lue string slices

syntax:
<value string slice> ::= (1)
<string primitive value> ( <left element>": <right element>) 1.1)
| <string primitive value> ( <start elément> UP <slice size>) 1.2)

NOTE — If the string primitive value is a string location;the syntactic construct is ambiguous and will be interpreted a$ a string slice
(see 4.2.7).

semantics: A value string slice delivers a\(possibly dynamic) string value which is the part of the specified string value
indicated by| left element and right element or start element and slice size. The (possibly dynamic) length [of the string
slice is deterpnined from the specified.expressions.

A string slicp in which the right element delivers a value which is less than that delivered by the left elemenf or in which
slice size dellivers a non positive value denotes an empty string.

static propefrties: The.(possibly dynamic) class of a value string slice is the M-value class if the string prinfitive value is
strong and dtherwise the M-derived class, where M is a parameterized string mode constructed as:

Sname (string size)
T S 7

where &name is a virtual synmode name synonymous with the (possibly dynamic) root mode of the string primitive
value if it is a fixed string mode, otherwise with the component mode, and where string size is either

NUM (right element) — NUM (left element) + 1

or

NUM (slice size).

However, if an empty string is denoted, string size is 0. The class of a value string slice is static if string size is literal,
i.e. left element and right element are literal or slice size is literal; otherwise the class is dynamic.

A value string slice is constant if and only if string primitive value and string size are constant.
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static conditions: The following relations must hold:
0 < NUM (left element) < L — 1
0 < NUM (right element) < L — 1
0 < NUM (start element) < L — 1
NUM (start element) + NUM (slice size) < L

where L is the actual length of the string primitive value. If L and the value all integer expressions are known statically,
the relations can be checked statically.

dynamic conditions: The value delivered by a value string slice must not be undefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

5.2.8 VJlue array elements

syntax:
<value array element> ::= (1)
<array primitive value> ( <expression list>) 1.1)

NOTE - If tHe array primitive value is an array location the syntactic construct is ambiguous-and will be interpretdd as an array
element (see 4.2.8).

derived synfax: See 4.2.8.

semantics: A value array element delivers a value which is the element-of the specified array value findicated by
expression.

static properties: The class of the value array element is the M-value class, where M is the element mode| of the mode
of the array primitive value.

A value arrdy element is constant if and only if array primitive value and expression are constant.

static condiftions: The class of the expression mustdbe compatible with the index mode of the mode pf the array
primitive value.

dynamic conditions: The value delivered by-a:value array element must not be undefined.
The RANGEJFAIL exception occurs if the-following relation does not hold:
L < expression U

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the array pripmitive value,
respectively,

5.2.9 V4lue array slices

syntax:
<value array slice> ::= (1)
<array primitive value> ( <lower element> : <upper element>) (1.1)
| <array primitive value> ( <first element> UP <slice size>) (1.2)

NOTE - If the array primitive value is an array location, the syntactic construct is ambiguous and will be interpreted as an array slice
(see 4.2.9).

semantics: A value array slice delivers an (possibly dynamic) array value which is the part of the specified array value
indicated by lower element and upper element, or first element and slice size. The lower bound of the value array slice is
equal to the lower bound of the specified array value; the (possibly dynamic) upper bound is determined from the
specified expressions.

static properties: The (possibly dynamic) class of a value array slice is the M-value class, where M is a parameterized
array mode constructed as:

&name (upper index)
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where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the array primitive value
and upper index is either an expression whose class is compatible with the classes of lower element and upper element
and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element) — NUM (lower element)

or is an expression whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slice size) — 1

where L is the lower bound of the mode of the array primitive value.

The class of a value array slice is static if upper index is literal, i.e. lower element and upper element both are literal or
slice size is literal; otherwise the class is dynamic.

static conditions: The classes of lower element and upper element or the class of first element must be compatible with
the index mode of the array primitive value.

The followir]g relations must hold:

L < NUM (lower element) < NUM (upper element) < U

1 < NUM (slice size) < NUM (U) - NUM (L) + 1

NUM (L) £ NUM (first element) < NUM (first element) + NUM (slice size)— 1 < NUM (U)

where L and| U are, respectively, the lower bound and upper bound of the mode of\thé array primitive vajue. If U and
the value of hll expressions are known statically, the relations can be checked statically.

A value arrdy slice is constant if and only if array primitive value and upper-index are constant.
dynamic copditions: The value delivered by a value array slice must not,be undefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

5.2.10 V3alue structure fields
syntax:

<Yalue structure field> ::= (1)
<structure primitive value> ~<field name> 1.1)

NOTE - If tie structure primitive value is a structure location, the syntactic construct is ambiguous and will be irfterpreted as a
structure field (see 4.2.10).

semantics: A value structure field delivers a value which is the field of the specified structure value indidated by field
name. If the|structure primitive value-has a tag-less variant structure mode and the field name is a variant field name,
the semanticp are implementatiofi defined.

static propefties: The class‘of-value structure field is the M-value class, where M is the mode of the field ndme.
A value strugture fieldis eonstant if and only if structure primitive value is constant.

static condifions The field name must be a name from the set of field names of the mode of the structyre primitive
value.

dynamic conditions: The value delivered by a value structure field must not be undefined.

A value must not denote:

e atagged variant structure mode value in which the associated tag field value(s) indicate(s) that the denoted field
does not exist;

* adynamic parameterized structure mode value in which the associated list of values indicates that the field does
not exist.

The above-mentioned conditions are called the variant field access conditions for the value (note that the conditions do
not include the occurrence of an exception). The TAGFAIL exception occurs if they are not satisfied for the structure
primitive value.

examples:

11.140 b (lin)(col).status (1.1)
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5.2.11

syntax:

96:2003(E)

Expression conversion

<expression conversion> ::=

<mode name> # ( <expression>)

(1)
(1.1)

NOTE - If the expression is a static mode location, the syntactic construct is ambiguous and will be interpreted as a location
conversion (see 4.2.13).

semantics: An expression conversion overrides the CHILL mode checking and compatibility rules. It explicitly attaches
a mode to the expression without any change in the internal representation.

static properties: The class of the expression conversion is the M-value class, where M is the mode name. An
expression conversion is constant if and only if the expression is constant.

static condit

and the size

5.2.12 Rd
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presentation conversion

epresentation conversion> ::=
<mode name> ( <expression>)

A representation conversion overrides the CHILL mode checking~and compatibility rules.
ode to the expression and may change the internal representation of the value delivered by th
mode of the mode name is a discrete mode and the class of the value delivered by the expressio
e delivered by the representation conversion is such that:

NUM (mode name (expression)) = NUM (expression)

tion conversion in which mode name and the root;mode of the class of the expression are resped
er mode and a floating point mode;

)¢ point mode and an integer mode;

)¢ point mode and another floating peint mode with different root modes,

sult of the representation cofiversion is the value of expression itself, otherwise it is one of th
the set of values of mede name that delimit the smallest interval in which the value delivered b

5 a duration mode) delivers an integer value which represents in milliseconds the value

tion conversion in which mode name or the root mode of the class of the expression is a structu

A representation conyersion in which mode name is an integer mode and the root mode of th¢

€ expression

(1)
1.1)
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n is discrete,

tively:

an approximation. If the valu¢.delivered by expression is exactly representable in the set of vajues of mode
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y expression
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e is a~parameterized structure mode whose origin structure mode is similar with it, deliver
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in which the list of tag values is different from that of the parameterlzed structure mode the result of the representation
conversion is implementation defined.

A representation conversion in which the mode M of the mode name is a reference mode and the class of the expression

is the null

class, the result of the representation conversion is null,

of —> ((expression) —>) then the result is equal to it, otherwise the result is implementation defined.

if M is compatible with the class

Otherwise, the value delivered by the representation conversion is implementation defined and may depend on the
internal representation of values.

static properties: The class of the representation conversion is the M-value class, where M is the mode name. A
representation conversion is constant if and only if the expression is constant.

static conditions: The mode name must not have the non-value property. An implementation may impose additional
static conditions.
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dynamic conditions: In the case of an expression that is not constant:

a RANGEFAIL exception occurs if mode name is a duration mode and the root mode of the class of the expression

is an integer mode (or vice versa), and the value delivered by representation conversion does not belong to the set
of values defined for mode name;

an OVERFLOW exception occurs if:

does not define a value with an internal representation equal to NUM (expression);

the class of the value delivered by expression is discrete and the mode of mode name is a discrete mode which

the mode of mode name and the root mode of the class of the expression are, independently, an integer mode

or a floating point mode, and the expression delivers a value that does not lie between the bounds of the root
mode of mode name;

an UNDERFLOW exception occurs if the mode name and the root mode of the class of the expression are floating

point modes, and the value delivered by expression is greater than the negative lower limit and less than the

Ppositive

An impleme
implementat

5.2.13

syntax:

semantics: /

static prope
the value prd

lower Iimit ot the mode name, and 1s different irom zero.

ntation may impose additional dynamic conditions that, when violated, cause an exception’dg
on.

Vdlue procedure calls

alue procedure call> ::=
<value procedure call>

\ value procedure call delivers the value returned from a procedure:

rties: The class of the value procedure call is the M-valug.class, where M is the mode of the r
cedure call.

dynamic copditions: The value procedure call must not deliver'an undefined value (see sections 5.3.1 and

examples:
6.50 Jul
11.63 oA
5.2.14

syntax:

<3

semantics: 4

static prope

Vian_day number([ 10,dec,1979])

~ bishop(b,m)

V4lue built-in routine calls

alue built-in routiné call> ::=
<value built-in routine call>

A value builtzin‘routine call delivers the value returned by the built-in routine.

rties: The class attached to the value built-in routine call is the class of the value built-in routing

fined by the

(1)
1.1)

psult spec of

b.8).

1.1)
1.1)

(1)
1.1)

call.

and 6.8).

dynamic co11diti0ns: The value built-in routine call must not deliver an undefined value (see sections 5.3.1

5.2.15

syntax:

Start expressions

<start expression> ::=

START <process name> ( [ <actual parameter list> ] )

(1)

(1.1)

semantics: The evaluation of the start expression creates and activates a new process whose definition is indicated by the
process name (see clause 11). The start expression delivers the instance value identifying the created process. Parameter
passing is analogous to procedure parameter passing; however, additional actual parameters may be given with an
implementation defined meaning.

static properties: The class of the start expression is the INSTANCE-derived class.

static conditions: The number of actual parameter occurrences in the actual parameter list must not be less than the
number of formal parameter occurrences in the formal parameter list of the process definition of the process name. If
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the number of actual parameters is m and the number of formal parameters is #n (/m = n), the compatibility and regionality
requirements for the first n actual parameters are the same as for procedure parameter passing (see 6.7). The static
conditions for the rest of the actual parameters are implementation defined.

dynamic conditions: For parameter passing, the assignment conditions of any actual value with respect to the mode of
its associated formal parameter apply (see 6.7).

The start expression causes the SPACEFAIL exception if storage requirements cannot be satisfied.

examples:

15.35 START counter() (1.1)
5.2.16  Zero-adic operator

syntax:

<gero-adic operator> ::= (1)
THIS 1.1)

semantics: The zero-adic operator delivers the unique instance value identifying the process exeetiting it. If {t is executed
by a task locption a THIS FAIL exception occurs.

static propefties: The class of the zero-adic operator is the INSTANCE-derived class.

static conditions: The zero-adic operator THIS must not occur inside a task mode(definition.

5.2.17 Parenthesized expression
syntax:

<parenthesized expression> ::= (1)
( <expression>) 1.1)

semantics: A parenthesized expression delivers the value delivered by the evaluation of the expression.
static propefties: The class of the parenthesized expression is the class of the expression.

A parenthesized expression is constant (literal) if'and only if the expression is constant (literal).

examples:
5.10 (al OR bl1) 1.1)
5.3 Values and expressions

5.3.1 Gdneral

syntax:
<value> ::= (1)
C./L[/l CA)A)[«.UIL ],])
| <undefined value> (1.2)
<undefined value> ::= (2)
* (2.1)
| <undefined synonym name> (2.2)

semantics: A value is either an undefined value or a (CHILL defined) value delivered as the result of the evaluation of
an expression.

Except where explicitly indicated to the contrary, the order of evaluation of the constituents of an expression and their
sub-constituents, etc., is undefined and they may be considered as being evaluated in any order. They need only be
evaluated to the point that the value to be delivered is determined uniquely. If the context requires a constant or literal
expression, the evaluation is assumed to be done prior to run time and cannot cause an exception. An implementation
will define ranges of allowed values for literal and constant expressions and may reject a program if such a prior-to-run-
time evaluation delivers a value outside the implementation defined bounds.
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static properties: The class of a value is the class of the expression or undefined value, respectively.

The class of the undefined value is the all class if the undefined value is a *; otherwise the class is the class of the
undefined synonym name.

A value is constant if and only if it is an undefined value or an expression which is constant. A value is literal if and
only if it is an expression which is literal.

dynamic properties: A value is said to be undefined if it is denoted by the undefined value or when explicitly indicated
in this Recommendation | International Standard. A composite value is undefined if and only if all its sub-components
(i.e. substring values, element values, field values) are undefined.

examples:
6.40 (146_097%c)/4+(1_461%y)/4
+(153*m~+2)/5+day+1 721 119 (1.1)
5.3.2  Expressions
syntax:
<¢xpression> ::= (1)
<operand—0> 1.1)
| <conditional expression> 1.2)
<¢onditional expression> ::= (2)
| IF <boolean expression> <then alternative>
<else alternative> FI 2.1)
| CASE <case selector list> OF { <value case alternativez}%
[ ELSE <sub expression>] ESAC 2.2)
<then alternative> ::= (3)
THEN <sub expression> 3.1)
<¢lse alternative> ::= (4)
ELSE <sub expression> 4.1)
| ELSIF <boolean expression>
<then alternative> <else alternatiye> 4.2)
<§ub expression> ::= (5)
<expression> 5.1)
<vYalue case alternative> ::= (6)
<case label specification> : <sub expression> ; 6.1)
semantics: IIf IF is specified, the boalean expression is evaluated and if it yields TRUE, the result is the value delivered
by the sub expression in the then.alternative, otherwise it is the value delivered by the else alternative.
The value dglivered by an.else alternative is the value of the sub expression if ELSE is specified, otherwisg the boolean
expression 1§ evaluated<and if it yields TRUE, it is the value delivered by the sub expression in the then alternative,
otherwise it |s the value delivered by the else alternative.
If CASE is gpegified, the sub expressions in the case selector list are evaluated and if a case label specificagion matches,
the result is|théwwalue delivered by the corresponding sub expression, otherwise it is the value delivereql by the sub

expression following ELSE (which will be present).
Unused sub expressions in a conditional expression are not evaluated.

static properties: If an expression is an operand—0, the class of the expression is the class of the operand—0. If it is a
conditional expression, the class of the expression is the M-value class, where M is the mode which depends on the
context where the conditional expression occurs according to the same rules that define the mode of the class of a tuple
without a mode name (see 5.2.5).

An expression is constant (literal) if and only if it is either an operand—0 which is constant (literal), or a conditional
expression in which all boolean expression or case selector list in it are constant (literal) and in which all sub
expressions in it are constant (literal).

static conditions: If an expression is a conditional expression the following conditions apply:

e a conditional expression may occur only in the contexts in which a tuple without a mode name in front of it may
occur;
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each sub expression must be compatible with the mode that is derived from the context with the same rules as for

tuples. However, the dynamic part of the compatibility relation applies only to the selected sub expression;

consistency and compatibility requirements must hold as for the case action (see 6.4);

other is

intra-regional (see 11.2.2).

if CASE is specified, the case selection conditions must be fulfilled (see 12.3), and the same completeness,

no conditional expression may have two sub expression occurrences in it such that one is extra-regional and the

dynamic conditions: In the case of a conditional expression, the assignment conditions of the value delivered by the

selected sub
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examples:
10.31 i<min (1.1)
10.31 i<min OR >max (1.2)
5.3.4 Operand-1
syntax:
<operand—I> ::= (1)
<operand—2> (1.1)
| <sub operand—1> { AND | ANDIF >} <operand-2> (1.2)
<sub operand—1> ::= (2)
<operand—1> (2.1)
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semantics: If AND or ANDIF is specified, sub operand—1 and operand—2 deliver:

*  boolean values, in which case AND denotes the logical "conjunction" operation, delivering a boolean value. If
ANDIF is specified and sub operand—1 delivers the boolean value FALSE, then this is the result, otherwise the
result is the value delivered by operand-2;

e Dbit string values, in which case AND denotes the logical operation on corresponding element of the bit strings,
delivering a bit string value;

*  powerset values, in which case AND denotes the "intersection" operation of powerset values delivering a powerset
value as a result.

static propertiesb If an operand—1 is an operand-2, the class of operand—1 is the class of operand-2.

If AND or ANDIF is specified, the class of operand—1 is the resulting class of the classes of sub operand—I and
operand-2.

An operand+t1 1s constant (literal) if and only if it is either an operand—2 which is constant (literal), or built up from an
operand—1 and an operand—2 which are both constant (literal).

static conditions: If AND or ANDIF is specified, the class of sub operand—I must be compatiblé with| the class of
operand—-2. |f ANDIF is specified, both classes must have a boolean root mode, otherwise both classes jmust have a
boolean, powerset or bit string root mode, in which case the actual length of sub operand—4and operand—} must be the
same. This check is dynamic if one or both modes is (are) dynamic or varying string modes,

dynamic copditions: In the case of AND, a RANGEFAIL exception occurs if one or beth operands have a dynamic class
and the dynamic part of the above-mentioned compatibility check fails.

examples:
5.10 (dl ORbI) 1.1)
5.10 NPT k2 AND (al OR bI) 1.2)

5.3.5 Operand-2

syntax:

<gperand-2> ::= (1)
<operand—3> 1.1)
|  <sub operand—2> <operator=3> <operand—3> 1.2)
<yub operand-2> ::= (2)
<operand-2> 2.1)
<¢perator-3> ::= 3)
<relational‘operator> 3.1)
| <membership operator> 3.2)
| <powerset inclusion operator> 3.3)
<gelational'eperator> ::= (4)
=== ]>=<|<= 4.1)
<mentbership operator> ::= )

IN (5.1)
<powerset inclusion operator> ::= (6)
<=|>=|<|> (6.1)

semantics: The equality (=) and inequality (/=) operators are defined between all values of a given mode. The other
relational operators (less than: <, less than or equal to: <=, greater than: >, greater than or equal to: >=) are defined
between values of a given discrete, timing, string or floating point mode. All the relational operators deliver a boolean
value as result.

The membership operator is defined between a member value and a powerset value. The operator delivers TRUE if the
member value is in the specified powerset value, otherwise FALSE.

The powerset inclusion operators are defined between powerset values and they test whether or not a powerset value is
contained in: <=, is properly contained in: <, contains: >= or properly contains: > the other powerset value. A powerset
inclusion operator delivers a boolean value as result.
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static properties: If an operand-2 is an operand-3, the class of operand-2 is the class of operand—3. If an operator-3 is
specified, the class of operand-2 is the BOOL-derived class.

An operand-2 is constant (literal) if and only if it is either an operand—3 which is constant (literal) or built up from a
sub operand-2 and an operand—3 which are both constant (literal).

static conditions: If an operator-3 is specified, the following compatibility requirements between the class of sub
operand—2 and the class of operand—3 must be fulfilled:

e if operator-3 is = or /=, both classes must be compatible;

e if operator-3 is a relational operator other than = or /=, both classes must be compatible and must have a discrete,
timing, string or floating point root mode;

e if operator-3 is a membership operator, the class of operand—3 must have a powerset root mode and the class of
sub operand—2 must be compatible with the member mode of that root mode;

e if operqtor-3 is a powerset inclusion operator, both classes must be compatible and must have ayppwerset root
mode.

dynamic copditions: In the case of a relational operator, a RANGEFAIL or TAGFAIL exception.occurs if one or both
operands haye a dynamic class and the dynamic part of the above-mentioned compatibility check fails. The TAGFAIL
exception odcurs if and only if a dynamic class is based upon a dynamic parameterized structure mode.

examples:
10.50 NULL 1.1)
10.50 last=NULL 1.2)

5.3.6 Operand-3

syntax:

<¢perand—3> ::= (1)
<operand—4> 1.1)

|  <sub operand—3> <operator—4> <operand—4> 1.2)

<§ub operand-3> ::= (2)
<operand—3> 2.1)
<gperator—4> ::= 3)
<arithmetic additive operator> 3.1)

| <string concatenation operator> 3.2)

| <powerset diffexence operator> 3.3)
<grithmetic additive operator> ::= 4)
+ | _ 4 1)

<{tring copicatenation operator> ::= 5)
7 5.1)
<powerset difference operator> ::= (6)
— (6.1)

semantics: If operator—4 is an arithmetic additive operator, both operands deliver either integer values or floating point
values and the resulting integer value or floating point value respectively is the sum (+) or difference (—) of the two
values.

If operator—4 is a string concatenation operator, both operands deliver either bit string values or character string values;
the resulting value consists of the concatenation of these values. Boolean (character) values are also allowed; they are
regarded as bit (character) string values of length 1.

If operator—4 is the powerset difference operator, both operands deliver powerset values and the resulting value is the
powerset value consisting of those member values which are in the value delivered by sub operand—3 and not in the
value delivered by operand—4.

If the class of operand-3 has a floating point root mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.
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static properties: If an operand-3 is an operand—4, the class of operand-3 is the class of operand—4. If an operator—4 is
specified, the class of operand-3 is determined by operator—4 as follows:

if operator—4 is a string concatenation operator, the class of operand-3 is dependent on the classes of operand—4

and sub operand-3, in which an operand that is a boolean or a character value is regarded as a value whose class is a
BOOLS (1)-derived class or CHARS (1)-derived class, respectively:

if none of them is strong, the class is the BOOLS (n)-derived class or CHARS (n)-derived class, depending on

whether both operands are bit or character strings, where # is the sum of the string lengths of the root modes
of both classes;

otherwise the class is the &name(n)-value class, where &name is a virtual synmode name synonymous with

the root mode of the resulting class of the classes of the operands and # is the sum of the string lengths of the
root modes of both classes;

(this class is dynamic if one or both operands have a dynamic class);
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haracter string root mode; or

classes of both operands must be compatible with the BOOL mode or both be compatible wi
de; or

class of one operand must have a bit,(character) string root mode and the other must be com
BOOL (CHAR) mode.

tor—4 is the powerset difference operator, the classes of both operands must be compatible aj
owerset root mode.

hditions: In the case-ofian operand-3 that is not constant, if operator—4 is an arithmetic addit

erand—3 is the

tup from an
tive operator

erand—3 and

hd they must
e root mode

or both have

th the CHAR

patible with

nd both must

ive operator,

an OVERFLPW exception ocours-if an addition (+) or a subtraction (—) gives rise to a value that is not one pf the values
defined by the root mode of the class of operand-3, or one or both operands do not belong to the set of yalues of the
root mode of operand—3:
In the case ¢f an operand-3 that is not constant, an UNDERFLOW exception occurs if the class of opefand—3 has a
floating poinft rogt mode and the exact mathematical addition (+) or subtraction (—) give rise to a value that is greater
than the negative upper limit and less than the positive lower limit of the root mode of operand-3, ang is different
from zero.
examples:
1.6 J (1.1)
1.6 i+j (1.2)
5.3.7 Operand—4
syntax:
<operand—4> ::= (1)
<operand-5> (1.1)
| <sub operand—4> <arithmetic multiplicative operator> <operand—5> (1.2)
<sub operand—4> ::= 2)
<operand—4> (2.1)
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<arithmetic multiplicative operator> ::=

0|/ | MOD | REM

3)
(3.1)

semantics: If the arithmetic multiplicative operator is either the product ([) or the quotient operator (/), then both sub
operand—4 and operand-5 deliver either integer values or floating point values and the resulting integer value or floating
point value respectively is the product or quotient of both values.

If the arithmetic multiplicative operator is either the modulo (MOD) or division remainder (REM) operator, then both
sub operand—4 and operand-5 deliver integer values, and the resulting integer value is the modulo or division remainder
of both values.

The modulo operation is defined such that i MOD j delivers the unique integer value &, 0 < k& <j such that there is an
integer value n such that i = n [Jj + k; j must be greater than 0.

The quotient operation is defined such that all relations:

yield TRUE
The remaind

If the class o
same criterig

static prope|
operand—4 i

An operand-
operand—4 a

static condi
the classes 0
point root
be a predefi

ABS (x/y) = ABS (x) / ABS (y) and
sign (x/y) = sign (x) / sign (y) and
ABS (x) — (ABS (x) / ABS (y)) UABS (y) = ABS (x) MOD 4BS (y)
for all integer values x and y, where sign (x) =—1 if x < 0, otherwise sign (x) =.1:
er operation is defined such that x REM y = x — (x/y) Oy yields TRUE forall/integer values x an

f operand—4 has a floating point root mode, the result is the floating’peint value that approxima
n used for representation conversion, the result of the exact mathématical operation.

rties: If operand—4 is an operand-35, the class of operand—43s the class of operand-5; otherwis
the resulting class of the classes of sub operand—4 and.operand—5.

-4 is constant (literal) if and only if it is either an opérand—5 which is constant (literal), or bui
nd an operand—5 which are both constant (literal).

Hons: If an arithmetic multiplicative operator 1s specified between integer or floating point of
If operand—5 and sub operand—4 must be egmpatible and both must have an integer root mode
ode respectively. Furthermore, if operand—4 is not constant, the root mode of the class of op¢
hed integer mode or a predefined floating point mode.

dynamic conditions: In the case of an.operand—4 that is not constant, if an arithmetic multiplicativg

specified, af
(REM) oper
is performed

OVERFLOW exception occurs if a multiplication (D), a division (/), a modulo (MOD), or
ption gives rise to a valye that is not one of the values defined by the root mode of the class of ¢
on operand values forxwhich the operator is mathematically not defined, i.e. division or remai

d y.

es, using the

e the class of

tup from an

erands, then
or a floating
rand—4 must

operator is
a remainder
pperand—4 or
nder with an
r one or both

and—4 has a
hat is greater
1 is different

operand-5 delivering 0 or a moedulo operation with an operand—5 delivering a non-positive integer value, o
operands donot belong to the set of values of the root mode of operand—4.
In the case ¢f an opepaiid—4 that is not constant, an UNDERFLOW exception occurs if the class of ope
floating poirt root. mode and the exact mathematical multiplication ([) or division (/) give rise to a value t
than the negatiyé upper limit and less than the positive lower limit of the root mode of operand—4, an
from zero. 1
examples:
6.15 1 461
6.15 (4 0d+3)/1 461
5.3.8 Operand-5
syntax:
<operand-5> ::=
<operand—6>
| <sub operand—5> <exponentiation operator> <operand—6>
<sub operand—5> ::=
<operand-5>
76 ITU-T Rec. Z.200 (1999 E)
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<expomentiation operator> ::=

[

ISO/TEC 9496:2003(E)

3)
(3.1)

semantics: If the exponentiation operator is specified, sub operand—5 and operand—6 deliver a floating point value or an
integer value. The resulting value is that obtained by raising the value delivered by sub operand—5 to the power of that
delivered by operand—6.

If the class of operand—5 has a floating point reot mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.

static properties: If the operand-5 is an operand—6, the class of the operand-5 is the class of operand—6.
If the exponentiation operator is specified, the class of the operand-35 is that of the sub operand-5.

An operand-5 is constant (literal) if and only if it is either an operand—6 which is constant (literal), or built up from an
operand-5 and operand—6 which are both constant (literal).

static conditions: If an exponentiation operator is specified:

» if the clpss of sub operand-5 has a floating point reot mode, the class of operand—6 must have @ninteg¢r root mode
or a flogting point reot mode;

e otherwipe the class of sub operand-5 must have an integer root mode and the classcof’operand—6 must have an
integer oot mode.

dynamic conditions: In the case of an operand—5 which is not constant, an OVERFLOW exception [occurs if an
exponentiatipn operation gives rise to a value outside the range of the root mode ef.the class of the operand15.

In the case ¢f an operand—5 that is not constant, an UNDERFLOW exception occurs if the class of opefand—5 has a
floating point root mode and the exact mathematical exponentiation gives rise to a value that is less than|the positive
lower limit ¢f the root mode of operand—5.

If an exponeptiation operator is specified and the class of operand=>5 has an integer root mode, then if opeand—6 is not
constant its [value must be greater than or equal to zero.

examples:

rexd 1.2)

5.3.9 Operand—6

syntax:

<gperand—6> ::= (1)

[ <monadic operator> ] <operand—7> 1.1)

| <signed integer literal> 1.2)

| <signed floating point literal> 1.3)

<monadic opérator> ::= (2)

LINOT 2.1)

[ NEstring repetition operator> 2.2)

<ytring repetition operator> ::= 3)
(<integer literal expression>) 3.1)

NOTE - If the monadic operator is the change sign operator (—) and the operand-7 is an unsigned integer literal or an unsigned
floating point literal, the syntactic construct is ambiguous and will be interpreted as a signed integer literal or a signed floating point
literal respectively.

semantics: If the monadic operator is a change-sign operator (—), operand—7 delivers an integer value or a floating point
value and the resulting integer value or floating point value is the previous integer value or floating point value with its
sign changed.

If the monadic operator is NOT, operand—7 delivers a boolean value, a bit string value, or a powerset value. In the first
two cases the logical negation of the boolean value or of the elements of the bit string value is delivered. In the latter
case, the set complement value, i.e. the set of those member values which are not in the operand powerset value, is
delivered.

If the monadic operator is a string repetition operator, operand—7 is a character string literal or a bit string literal. If the
integer literal expression delivers 0, the result is the empty string value; otherwise the result is the string value formed by
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concatenating the string with itself as many times as specified by the value delivered by the integer literal expression

minus 1.
static prope

If a monadic

if the m

rties: If operand—6 is an operand-7, the class of operand—6 is the class of operand-7.

operator is specified, the class of operand—6 is:

onadic operator is — or NOT then the resulting class of operand-7,

if the monadic operator is the string repetition operator, then it is the CHARS (n)- or BOOLS (n)-derived class

(depending on whether the literal was a character string literal or bit string literal) where n = r [11, where 7 is the
value delivered by the integer literal expression and [ is the string length of the string literal.

An operand—6 is constant if and only if the operand—7 is constant. An operand—6 is literal if and only if the operand—7
is literal and the monadic operator is — or NOT.

static condi
root mode.
integer modg

If monadic d

If monadic
The integer

dynamic co
gives rise to

Furthermore, if operand—6 is not constant, the root mode of the class of operand—6 must be
or a predefined floating point mode.

perator is NOT, the class of operand—7 must have a boolean, bit string or powerset root mode.

iperator is the string repetition operator, operand—7 must be a character string literal or a bit
iteral expression must deliver a non-negative integer-value.

nditions: If operand—6 is not constant, an OVERFLOW exceptien_occurs if a change sign
a value which is not one of the values defined by the root mode of.the class of the operand—6.

In the case ¢f an operand—o6 that is not constant, an UNDERFLOW €xception occurs if the class of ope
floating poirjt root mode and the exact mathematical change sign opération (—) give rise to a value that is grg
negative upper limit and less than the positive lower limit of the.root mode of operand—6, and is different
examples:
5.10 NPT &2
7.54 @""
7.54 (9
5.3.10 Operand-7
syntax:

<gperand-7> :i=

<réferenced location>
| ~<primitive value>
<tefervenced location> ::=

ions: If monadic operator is —, the class of operand—7 must have an integer root mode or‘a ﬂ]oating point

1 predefined

tring literal.

—) operation

and—6 has a
ater than the
from zero.

1.1)
1.1)

2.2)

(1)
1.1)
1.2)

2)

—> <[ocation>

semantics: A referenced location delivers a reference to the specified location.

2.1)

static properties: The class of an operand—7 is the class of the referenced location or primitive value, respectively. The
class of the referenced location is the M-reference class where M is the mode of the location.

An operand-7 is constant if and only if the primitive value is constant or the referenced location is constant. A
referenced location is constant if and only if the location is static. An operand-7 is literal if and only if the primitive

value is liter

al.

static conditions: The /ocation must be referable.

examples:

8.25

78

ITU-T Rec. Z.200

—>C

(1999 E)

2.1)


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

6 Actions

6.1 General

ISO/IEC 9496:2003(E)

syntax:
<action statement> ::= (1)
[ <defining occurrence> : | <action> [ <handler> ][ <simple name string> ] ; (1.1)
| <module> (1.2)
| <spec module> (1.3)
| <context module> (1.4)
<action> ::= (2)
<bracketed action> (2.1)
|__<assignment action> 2.2)
| <call action> 2.3)
| <exit action> 2.4)
| <return action> 2.5)
| <result action> 2.6)
| <goto action> 2.7)
| <assert action> 2.8)
| <empty action> 2.9)
|  <start action> (2.10)
| <stop action> (2.11)
| <delay action> (2.12)
| <continue action> (2.13)
| <send action> (2.14)
| <cause action> (2.15)
<bracketed action> ::= (3)
<if action> 3.1)
| <case action> 3.2)
| <do action> 3.3)
| <begin-end block> 3.4)
| <delay case action> 3.5)
| <receive case action> 3.6)
| <timing action> 3.7)
semantics: Action statements constitutethe algorithmic part of a CHILL program. Any action statement may be labelled.
Those actions that have no exception defined may not have a handler appended.
static propefties: A defining ocCuirence in an action statement defines a label name.
static conditions: The simple.name string may only be given after an action which is a bracketed action of if a handler
is specified, jand only if@’defining occurrence is specified. The simple name string must be the same name(string as the
defining occyirrence.
6.2 Agsigniment action
syntax:

<assignment action> ::=

<single assignment action>
|  <multiple assignment action>

<single assignment action> ::=

<location> <assignment symbol> <value>
| <location> <assigning operator> <expression>

<multiple assignment action> ::=

<location> { , <location> } T <assignment symbol> <value>

<assigning operator> ::=

<closed dyadic operator> <assignment symbol>

(1)
(1.1)
(1.2)

2)
2.1)
2.2)

3)
(3.1)

#)
(4.1)
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<closed dyadic operator> ::= (5)
OR | XOR | AND (5.1)

| <powerset difference operator> (5.2)

| <arithmetic additive operator> (5.3)

| <arithmetic multiplicative operator> (5.4)

| <string concatenation operator> (5.5)
<assignment symbol> ::= (6)
= (6.1)

semantics: An assignment action stores a value into one or more locations.

If an assignment symbol is used, the value yielded by the right hand side is stored into the location(s) specified at the left

hand side.

If an assigning operator is used, the value contained in the location is combined with the right hand side value (in that

order) accor
location.

The evaluat
performed in

If the locati
depend on it

static condi
property nd
dynamic in ¢

The value m|

If any locati
the same; ot
length of th
condition is

If one of the
respectively,

If one of the
of mr are md

If one of the
of ml are mad

If the mode
be pairwise §

dynamic co
value are dy}

The RANGE|

[ing to the semantics oI the speciiied closed dyadic operator, and the result 1S stored back 1

on of the left hand side location(s), of the right hand side value, and of the assignment th
any order. Any assignment may be performed as soon as the value and a location have'been ev

n (or any of the locations) is the tag field of a variant structure, the semanties for the varia
are implementation defined.

ions: The modes of all location occurrences must be equivalent andthey must have neither t}
r the non-value property. Each mode must be compatible withCthe class of the value. Th
he case where dynamic mode locations and/or a value with a dynamic class are involved.

st be regionally safe for every location (see 11.2.2).

bn has a fixed string mode, then the string length of'thé. mode and the actual length of the v
herwise, if it has a varying string mode, then the string length of the mode must not be less th:
e value. This check is dynamic if one or both-modes is (are) dynamic or varying string
Called the string assignment condition.

assignments is of the form "pvl— = pyr=>}" where pvl and pvr have the mode "REF ML" an
and ML and MR are moreta mode namgs; then ML and MR must be on the same path.

assignments is of the form "pvl<» = mr;" where pvl has the mode "REF ML", and ML and thq
dule mode names, then mr suecOML must hold.

assignments is of the form "ml := pvr—;" where pvr has the mode "REF MR", and MR and thq
dule mode names, then MR succ ml must hold.

bf any of the locations of the left hand side is a module mode then the mode names of all those
ynonymous.

hditions:(The RANGEFAIL or TAGFAIL exception occurs if the mode of the location and/q
hamic medes and the dynamic part of the above-mentioned compatibility checks fails.

hto the same
emselves are
hluated.

ht fields that
e read-only

e checks are

hlue must be
in the actual
modes. This

1 "REF MR"

mode name

mode name

modes must

r that of the

odes and the

4L exception occurs if the mode of the location and/or that of the value are varying string

dynamic par

£ 1 — 1 —tl 1 1 L]
UTUIC aU0 VU HITIIIUIITU COLIIPAUUIIILy VIITUKS IdITS.

The RANGEFAIL exception occurs if any location has a discrete range mode (floating point range mode) and the value
delivered by the evaluation of value is neither one of the values defined by the discrete range mode (floating point range
mode) nor the undefined value.

If the mode of any location L is of the kind REF MM, where MM is a moreta mode, the following must hold: the mode
of the current value of the rhs must be a successor of the mode of L; otherwise the exception RANGEFAIL occurs.

The above-mentioned dynamic conditions together with the string assignment condition are called the assignment
conditions of a value with respect to a mode.

In the case o

f an assigning operator, the same exceptions are caused as if the expression:

<location> <closed dyadic operator> (<expression>)

were evaluated and the delivered value stored into the specified location (note that the location is evaluated once only).

80
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If the mode of any location L is of the kind "REF MM", where MM is a moreta mode, the mode of the current value of
the rhs must be a successor of the mode of L. Otherwise the exception RANGEFAIL occurs.

If any of the assignments is of the form "pvl— := pvr—;", "pvl— = mr;" or "ml := pvr—>;", where pvl and pvr have the
modes "REF ML" and "REF MR" respectively and ML, MR, ml, and mr are module modes, then the current modes of

the lhs and the rhs must fulfill the rules for the assignment of module modes.

examples:

4.12 a:=b+c (1.1)
10.25 stackindex- := 1 (2.1)
19.19 x—>.prev, x—>.next := NULL (3.1)
10.25 —= (4.1)

6.3 If laction

syntax:

<#f action> ::= (1)

IF <boolean expression> <then clause> [ <else clause> | FI 1.1)

<then clause> ::= (2)

THEN <action statement list> 2.1)

<¢lse clause> ::= (3)

ELSE <action statement list> 3.1)

| ELSIF <boolean expression> <then clause> [ <elsé clause> | 3.2)

derived synfax: The notation:

ELSIF <boolean expression> <then clause> | <else clause> |

is derived syntax for:

ELSE IF <boolean expression><then clause> [ <else clause> | FI;

semantics: An if action is a conditional two<way branch. If the boolean expression yields TRUE, the action $tatement list
following THEN is entered; otherwise the/action statement list following ELSE, if present, is entered.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
examples:

7.22 1K n >= 50 AHEN rn(r) := 'L
n—:= 50
=1

F 1.1)

10.50 IF last = NULL
THEN first,last := p;
ELSE last—.succ := p;
p—>.pred := last;

last :=p;
FI (1.1)
6.4 Case action
syntax:
<case action> ::= (1)
CASE <case selector list> OF [ <range list> ; | { <case alternative> }T
[ ELSE <action statement list> ] ESAC (1.1)
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<case selector list> ::=

<discrete expression> { , <discrete expression> }*

<range list> ::=

<discrete mode name> { , <discrete mode name> }*

<case alternative> ::=

<case label specification> : <action statement list>

)
2.1)

3)
(3.1)

“)
(4.1)

semantics: A case action is a multiple branch. It consists of the specification of one or more discrete expressions (the
case selector list) and a number of labelled action statement lists (case alternatives). Each action statement list is labelled
with a case label specification which consists of a list of case label list specifications (one for each case selector). Each
case label list defines a set of values. The use of a list of discrete expressions in the case selector list allows selection of
an alternative based on multiple conditions.

The case act
the case sele

The expressi
case alternat

static condit

The number

on enters that action statement list for which values given in the case label specification match
Ctor list; if no value match, the action statement list following ELSE is entered.

ons in the case selector list are evaluated in any order. They need be evaluated onlyp £0 the
ve is uniquely determined.

ions: For the list of case label specification occurrences, the case selection conditions apply (se

of discrete expression occurrences in the case selector list must be €qual to the number of d

resulting list of classes of the list of case label list occurrences and, if presentt0 the number of discretd

occurrences

The class of]
class of the ¥
(by position
class of the ¥

Any value d|
label (see 12
range defing
expression. |
must also lig

The optional
(see 12.3).

dynamic co
expression i

the range lis}.

n the range list.

any discrete expression in the case selector list must be.compatible with the corresponding
esulting list of classes of the case label list occurrences and, if present, compatible with the c
discrete mode name in the range list. The latter mode must also be compatible with the c
esulting list of classes.

elivered by a discrete literal expression or defined by a literal range or by a discrete mode na

the values in
oint where a
b 12.3).

lasses in the

mode name

by position)
brresponding
brresponding

me in a case

3) must lie in the range of the corresponding discrete mode name of the range list, if present, and also in the

d by the mode of the corresponding discrete expression in the case selector list, if it is a sty
n the latter case, the values defined(by the corresponding discrete mode name of the range li
in that range.

ELSE part according to the syntax may only be omitted if the list of case label list occurrencey

ditions: The RANGEFAIL exception occurs if a range list is specified and the value delivered

the case selectorist does not lie within the bounds specified by the corresponding discrete nj
A

ong discrete
t, if present,

is complete

by a discrete
ode name in

The SPACEFAIL exeeption occurs if storage requirements cannot be satisfied.
examples:
4.11 CASE order OF
(1): a:=b+c
RETURN;
(2): d:=0;
(ELSE): d :=1;
ESAC
11.43 starting.p.kind, starting.p.color
11.58 (rook),(*):
IF NOT ok_rook(b,m)
THEN
CAUSE illegal;
FI,
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6.5 Do action

6.5.1 General

syntax:

<do action> ::=

DO [ <control part> ; | <action statement list> OD

<control part> ::=

<for control> | <while control> ]
| <while control>
|  <with part>

ISO/TEC 9496:2003(E)

(1)
(1.1)

2)
2.1)
2.2)
(2.3)

semantics: A do action has one out of three different forms: the do-for and the do-while versions, both for looping, and

the do-with version as a

When the dd
the do action

If the specifi
do action, th
execution of]

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

is not terminated by the for control.

the action statement list.

-for and the do-while versions are combined, the while control is evaluated after the for gontro|, and only if

ed control part is a for control and/or while control, then for as long as control stays inside the reach of the
e action statement list is entered according to the control part, but the do reach"is not re-entdred for each

examples:
4.17 DP FORi:=1TOc¢,
op(a,b,d,order—1);
d:=a;
Oob 1.1)
15.58 DD WITH each,
IF this_counter = counter
THEN
status = idle;
EXIT find counter;
FI,
Oob 1.1)
6.5.2 For control
syntax:
<for control> ::= (1)
FOR{ \<iteration> { , <iteration> }* | EVER } 1.1)
<gteration>(:’s 2)
<value enumeration> 2.1)
|) <location enumeration> 2.2)
< Ml»’l/LC crurrcr Mtl:u’t (3)
<step enumeration> (3.1)
| <range enumeration> (3.2)
| <powerset enumeration> (3.3)
<step enumeration> ::= 4)
<loop counter> <assignment symbol>
<start value> [ <step value> ][ DOWN ] <end value> (4.1)
<loop counter> ::= (5)
<defining occurrence> (5.1)
<start value> ::= (6)
<discrete expression> (6.1)
<step value> ::= (7)
BY <integer expression> (7.1)
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<end value> ::= (8)
TO <discrete expression> 8.1)

<range enumeration> ::= 9)
<loop counter> [ DOWN ] IN <discrete mode name> (9.1)
<powerset enumeration> ::= (10)
<loop counter> [ DOWN ] IN <powerset expression> (10.1)

<location enumeration> ::= (11)
<loop counter> [ DOWN ] IN <composite object> (11.1)
<composite object> ::= (12)
<array location> (12.1)

| <array expression> (12.2)

| <string location> (12.3)

| <string expression> 2.4)

NOTE - If thg
object as a lod

semantics:
unspecified
decided to tg

1)

do for ¢
The act

2) valuee

The act|
is eithel
by a staj

The loo
range @

In the d
smalles
action §

Termin
discretd

powerset enumeration:

In the ¢
smalles
list wil

composite object is a string location or an array location, the syntactic ambiguity is resolved by itterpref
ation rather than an expression.

[he for control may mention several loop counters. The loop counters are evaluated each
rder, before entering the action statement list, and they need be evaluated only*up to the point
rminate the do action. The do action is terminated if at least one of the loop counters indicates tg

ver:

humeration:

on statement list is repeatedly entered for the set of speCified values of the loop counters. The
specified by a discrete mode name (range enumeration), or by a powerset value (powerset enu
It value, step value and end value (step enumeration):

p counter implicitly defines a name which denoftes its value or location inside the action stateme
numeration:

ase of range enumeration without (with) DOWN specification, the initial value of the loop ¢
(greatest) value in the set of values defined by the discrete mode name. For subsequent exec
tatement list, the next value willtbe evaluated as:

SUCC(previous valuwe) (PRED(previous value)).

htion occurs if the action statement list has been executed for the greatest (smallest) value dg
mode name.

hse of pawerset enumeration without (with) DOWN specification, the initial value of the loop ¢
(highest) member value in the denoted powerset value. If the powerset value is empty, the acti
not be executed. For subsequent executions of the action statement list, the next value wil

on list is indefinitely repeated. The do action can only terminate by a-transfer of control out of if.

ing composite

time in an
hat it can be
rmination.

set of values
meration), or

nt list.

ounter is the
utions of the

fined by the

ounter is the
on statement
be the next

greater

(smaller) member value in the powerset valne Termination occurs if the action statement

ist has been

executed for the greatest (smallest) value. When the do action is executed, the powerset expression is evaluated
only once.

step enumeration:

In the case of step enumeration without (with) DOWN specification, the set of values of the loop counter is
determined by a start value, an end value, and possibly a step value. When the do action is executed, these
expressions are evaluated only once in any order. The step value is always positive. The test for termination is made
before each execution of the action statement list. Initially, a test is made to determine whether the start value of the
loop counter is greater (smaller) than the end value. For subsequent executions, next value will be evaluated as:

previous value + step value (previous value — step value)

in the case of step value specification; otherwise as:
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Termination occurs if the evaluation yields a value which is greater (smaller) than the end value or would have
caused an OVERFLOW exception.

location enumeration:

In the case of a location enumeration without (with) DOWN specification, the action statement list is repeatedly
entered for a set of locations which are the elements of the array location denoted by array location or the
components of the string location denoted by string location. If an array expression or a string expression is
specified that is not a location, a location containing the specified value will be implicitly created. The lifetime of
the created location is the do action. The mode of the created location is dynamic if the value has a dynamic class.

The semantics are as if before each execution of the action statement list the loc-identity declaration:

DCL <loop counter> <mode> LOC := <composite object> (<index>);

were encountered, where mode is the element mode of the array location or &name(1) such that &name is a virtual

index b

action

termina)

the mod
static prope

value enum

step enume
value, the st¢

range enuni
mode name.

powerset enumeration: The class of the name defined by the loop counter is the M-value class, where M is

mode of the
location eny
mode of the
synmode na
A location ¢
static condi

The root mo

If the root 1

ent mode, and where index is initially set to the lower bound (upper bound) of the mode_ of]
efore each subsequent execution of the action statement list is set to SUCC (index) (PRED
tatement list will not be executed if the actual length of the string location equals 0: The
ted if index just after an execution of the action statement list is equal to the upperdound (low
e of location. When the do action is executed, the composite object is evaluated-enly once.
rties: A loop counter has a name string attached which is the name string @f/its defining occurre

bration: The name defined by the loop counter is a value enumeration-name.

ration: The class of the name defined by a loop counter is,theresulting class of the classes
' value, if present, and the end value.

eration: The class of the name defined by the loop counter is the M-value class, where M i

mode of the (strong) powerset expression.
meration: The name defined by the(oop counter is a location enumeration name. Its mode i
mode of the array location or array expression or the string mode &name(1), where &nam

ne synonymous with the mode'of string location or the root mode of the string expression.

numeration name is referable if the element layout of the mode of the array location is NOPA

de of the class-of a loop counter in a value enumeration must not be a numbered set mode.

node~ofi\the class of a loop counter is an integer mode, there must exist a predefined integ

contains all

helyaldes delivered by start value, end value and step value, if present.

ise with the
location and
index)). The
do action is
er bound) of

rece.

of the start

the discrete

the member

the element
b 1S a virtual

CK.

ions: The classes(ofyStart value, end value and step value, if present, must be pairwise compatible.

br mode that

dynamic conditions: A RANGEFAIL exception occurs if the value delivered by step value is not greater than 0. This

exception oc

curs outside the block of the do action.

examples:

4.17 FORi:=1TOc

15.37 FOR EVER

4.17 i:=1TOc

9.12 Jj := MIN (sieve) BY MIN (sieve) TO max
14.28 i ININT (1:100)
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6.5.3

syntax:

While control

<while control> ::=

WHILE <boolean expression>

()

(1.1)

semantics: The boolean expression is evaluated just before entering the action statement list (after the evaluation of the
for control, if present). If it yields TRUE, the action statement list is entered; otherwise the do action is terminated.

examples:
7.35 WHILE n >= ] (1.1)
6.5.4 With part
syntax:
<with part> ::= (1)
WITH <with control> { , <with control> }* 1.1)
<with control> ::= (2)
<structure location> 2.1)
| <structure primitive value> 2.2)
NOTE — If th¢ with control is a structure location, the syntactic ambiguity is resolved by intexpreting with control as a {ocation rather

than a primiti
semantics:

The visibilit
of the locati

If a structun
structure lod

If a structur
(strong) siry

When the d
entering the

static prope
name defini

If a structuré
class is the N
which is ma

If a structuri

The (visible) field names of the mode of the structure locations or structure value specified
control are made available as direct accesses to the fields.

e value.

rules are as if a field name defining occurrence were infroduced for each field name attached
n or primitive value and with the same name string as.the field name.

e location is specified, access names with the~§a@me name string as the field names of the
ation are implicitly declared, denoting the sub-locations of the structure location.

b primitive value is specified, value names with the same name string as the field names of the
cture primitive value are implicitly _defined, denoting the sub-values of the structure value.

b action is entered, the specifiéd structure locations and/or structure values are evaluated g
do action, in any order.

rties: The (virtual) defining occurrence introduced for a field name has the same name string
g occurrence of that field name.
-value class;-where M is the mode of that field name of the structure mode of the structure pr

le available as value do-with name.

b location is specified, a (virtual) defining occurrence in a with part defines a location do-w

in each with

to the mode

mode of the

mode of the

nce only on

by as the field

 primitive value\is specified, a (virtual) defining occurrence in a with part defines a value do-wjith name. Its

imitive value

th name. Its
tion do-with

mode is the

mod¢ of that field name of the mode of the structure location which is made available as loca

name. A location do-with name is referable if the field layout of the associated field name is NOPACK.

examples:
15.58 WITH each
6.6 Exit action

syntax:

<exit action> ::=

EXIT <label name>

(1.1)

(1)
(1.1)

semantics: An exit action is used to leave a bracketed action statement or a module. Execution is resumed immediately
after the closest surrounding bracketed action statement or module labelled with the label name.
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static conditions: The exit action must lie within the bracketed action statement or module of which the defining
occurrence in front has the same name string as label name.

If the exit action is placed within a procedure or process definition, the exited bracketed action statement or module must
also lie within the same procedure or process definition (i.e. the exit action cannot be used to leave procedures or
processes).

No handler may be appended to an exit action.

examples:

15.62 EXIT find counter (1.1)

6.7 Call action

syntax:
<¢all action> ::= (1)
<procedure call> 1.1)
| <built-in routine call> 1.2)
| <moreta component procedure call> 1.3)
<procedure call> ::= (2)
{ <procedure name> | <procedure primitive value> }
([ <actual parameter list>]) 2.1)
<gctual parameter list> ::= 3)
<actual parameter> { , <actual parameter> }* 3.1)
<qctual parameter> ::= (4)
<value> 4.1)
| <location> 4.2)
<built-in routine call> ::= (5)
<built-in routine name> ( [ <built=iti' routine parameter list> | ) 5.1)
<built-in routine parameter list> ::= (6)
<built-in routine parameter="{ , <built-in routine parameter> }* 6.1)
<built-in routine parameter> ;= (7)
<value> 7.1)
| <location> 7.2)
| <non-reserved'name> [ ( <built-in routine parameter list>") | 7.3)
<moreta componént-procedure call> ::= (8)
<moreta location> . <moreta component procedure call> [ <priority> | 8.1)
| <bound reference moreta location primitive value>—> .
<moreta component procedure call> [ <priority> | 8.2)
|/ <moreta component procedure call> [ <priority> | 8.3)
NOTE - If thd-aete-perameter-or-buit-in-routineparameteris-atocationthe-syntaetie-ambistity-is-resotved-by-intefpreting it as a

location rather than a value.
derived syntax: A procedure call P(...) of a moreta component procedure P is derived syntax for SELF.P(...).

semantics: A call action causes the call of either a procedure, a built-in routine, or a moreta component procedure. A
procedure call causes a call of the general procedure indicated by the value delivered by the procedure primitive value or
the procedure indicated by the procedure name. A moreta component procedure call L.name(...) causes the call of that
moreta component procedure which is identified by name in the mode of L. L is passed as an initial location parameter
to the procedure. The actual values and locations specified in the actual parameter list are passed to the procedure.

A built-in routine call is either a CHILL built-in routine call or an implementation built-in routine call (see 6.20
and 13.1, respectively).

A value, a location, or any program defined name that is not a reserved simple name string may be passed as built-in
routine parameter. The built-in routine call may return a value or a location.
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A built-in routine may be generic, i.e. its class (if it is a value built-in routine call) or its mode (if it is a location built-in
routine call) may depend not only on the built-in routine name but also on the static properties of the actual parameters
passed and the static context of the call.

A moreta component procedure call has always the structure "location . procedure call". This is characterized by the
expression "the procedure call is applied to the location".

For a moreta component procedure call the following steps are performed:
a) the called procedure is applied to a module mode location:

1) evaluation of the actual parameters

2) check of the precondition

3) check of the complete invariant

4) execution of the body of the procedure

5) chegck of the complete invariant
6) chgck of complete postcondition
7) return to the calling point
b) the callpd procedure is applied to a region mode location RL:
1) evaluation of the actual parameters
2) wdqit until RL is free and lock RL
3) chgck of the precondition
4)  chgck of the complete invariant
5) exg¢cution of the body of the procedure
6) check of the complete invariant
7)  chgck of complete postcondition
8) release RL
9) return to the calling point
c) the callpd procedure is applied to a task mode location TL:
the callpr performs the following steps:
1) evjluation of the actual parameters
2) semd procedure identificatign,-actual parameters and priority to TL
3) coftinue with next action
TL perfprms the following Steps:
1) redeive procedure identification and actual parameters according to priority
2) chgck of thesprecondition

3) che¢cKofthe complete invariant

4) execution of the body of the procedure
5) check of the complete invariant

6) check of complete postcondition

static properties: A procedure call has the following properties attached: a list of parameter specs, possibly a result
spec, a possibly empty set of exception names, a generality, a recursivity, and possibly it is intra-regional (the latter is
only possible with a procedure name, see 11.2.2). These properties are inherited from the procedure name, moreta
component procedure name or any mode compatible with the class of the procedure primitive value (in the latter case,
the generality is always general).

A procedure call with a result spec is a location procedure call if and only if LOC is specified in the result spec;
otherwise it is a value procedure call.

A built-in routine name is a CHILL or an implementation defined name that is considered to be defined in the reach of
the imaginary outermost process definition or in any context (see 10.8).
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A built-in routine call is a location built-in routine call if it delivers a location; it is a value built-in routine call if it
delivers a value.

static conditions: A priority can only be used in a call of a procedure applied to a task location.

The number of actual parameter occurrences in the procedure call must be the same as the number of its parameter
specs. The compatibility requirements for the actual parameter and corresponding (by position) parameter spec of the
procedure call are:

If the parameter spec has the IN attribute (default), the actual parameter must be a value whose class is compatible
with the mode in the corresponding parameter spec. The latter mode must not have the non-value property. The
actual parameter is a value which must be regionally safe for the procedure call.

If the parameter spec has the INOUT or OUT attribute, the actual parameter must be a location, whose mode must
be compatible with the M-value class, where M is the mode in the corresponding parameter spec. The mode of the
(actual) location must be static and must not have the read-only property nor the non-value property. The actual
paramefer 1s a location. It can be viewed as a value which must be regionally safe for the procedure call)l.

If the garameter spec has the INOUT attribute, the mode in the parameter spec must be compatiple with the
M-valug class where M is the mode of the location.

If the pgrameter spec has the LOC attribute specified without DYNAMIC, the actual pardameter must pe a location
which is both referable and such that the mode in the parameter spec is read-compatible with the [mode of the
(actual)| location, or the actual parameter must be a value which is not a location\but whose class iy compatible
with th¢ mode in the parameter spec. If the mode of the formal parameter is a moreta mode, the mode name of the
formal parameter and the mode name of the actual parameter must be sydonymous. If the mode df the formal
parameter is of the form "REF MM", where MM is a moreta mode, the medg€iof the formal parameter gnd the mode
of the aftual parameter must be similar.

If the pprameter spec has the LOC attribute with DYNAMIC specified, the actual parameter must be a location
which if both referable and such that the mode in the parametepspec is dynamic read-compatible wfith the mode
of the [actual) location, or the actual parameter must besa. value which is not a location but whose class is
compatible with a parameterized version of this mode.

If the pgarameter spec has the LOC attribute then:

— if the actual parameter is a location it must have the same regionality as the procedure call,

— if the actual parameter is a value then it.must be regionally safe for the procedure call.

dynamic ¢

procedure ¢
SPACEFAIL
then the prod

Parameter p4

ditions: A call action can cause any of the exceptions from the attached set of excepti
Il causes the EMPTY exception if the procedure primitive value delivers NULL. A call actid
exception if storage requiréments cannot be satisfied. If the recursivity of the procedure is ng
edure must not call itselfieither directly or indirectly.

ssing can cause the following exceptions:

n names. A
n causes the
n-recursive,

If the pgrameter spee, hias the IN or INOUT attribute, the assignment conditions of the (actual) value wjth respect to
the mode of the parameter spec apply at the point of the call (see 6.2) and the possible exceptions are daused before
the prodedure is-ealled.

f the formal
and possible

If the pprameter spec has the INOUT or OUT attribute, the assignment conditions of the local value
paramete i espect-to-—themode—o e—{(actua i a i 6
exceptions are caused after the procedure has returned.

If the parameter spec has the LOC attribute and the actual parameter is a value which is not a location, the
assignment conditions of the (actual) value with respect to the mode of the parameter spec apply at the point of the
call and the possible exceptions are caused before the procedure is called (see 6.2).

Assertion checking can cause the following exceptions:

If the precondition evaluates to FALSE the exception PREFAIL is caused. The search for an appropriate handler
begins at the end of the procedure body and continues according to 8.3.

If the postcondition evaluates to FALSE the exception POSTFAIL is caused. The search for an appropriate handler
begins at the end of the procedure body and continues according to 8.3.

If the invariant evaluates to FALSE the exception INVFAIL is caused. The search for an appropriate handler begins
at the end of the body of the corresponding moreta mode and continues according to 8.3.

ITU-T Rec. Z.200 (1999 E) 89


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The procedure primitive value must not deliver a procedure defined within a process definition whose activation is not
the same as the activation of the process executing the procedure call (other than the imaginary outermost process) and
the lifetime of the denoted procedure must not have ended.

If a call is applied to a task location TL then TL must not be ended.

examples:

4.18

6.8

syntax:

op(a,b,d,order—1)

Result and return action

<return action> ::=

RETURN [ <result>]

(1.1)

(1)
1.1)

<1

derived syn

semantics: A
or a value. A

esult action> ::=
RESULT <result>

esult> ::=
<value>
| <location>

ax: The return action with result is derived from DO RESULT <result>%RETURN; OD.

\ result action serves to establish the result to be delivered by a pro¢edure call. This result may
return action causes the return from the invocation of the procedure within whose definition if

2)
2.1)

3)
3.1)
3.2)

be a location
is placed. If

the proceduse returns a result, this result is determined by the latest exeeuted result action. If no result actjon has been

executed, thg

static prope
surrounding

static condi
action may d

A handler m

If LOC (LOIC DYNAMIC) is specified in the result spec of the procedure name of the result action, the r

a location, s
location. Thi
must have th

If LOC is n
class is com
procedure 1

dynamic conditions: If LOC is not specified in the result spec of the procedure name, the assignment con

value in the

procedure call delivers an undefined location or undefined,value, respectively.

Irties: A result action and a return action have a procédure name attached, which is the name
procedure definition.

ions: A return action and a result action must.\be textually surrounded by a procedure definit]
nly be specified if its procedure name has_aresult spec.

ust not be appended to a return action (Without result).

ich that the mode in the result'spec is read-compatible (dynamic read-compatible) with the
b location must be referable if NONREF is not specified in the result spec. The result is a lo
e same regionality as the procedure name attached to the result action.

t specified in the result spec of the procedure name of the result action, the result must be a
patible with the‘mode in the result spec. The result is a value which must be regionally
ame attached to'the result action.

esultaction with respect to the mode in the result spec of its procedure name apply.

f the closest

jon. A result

bsult must be

mode of the
ration which

alue, whose
safe for the

litions of the

examples:
4.21 RETURN (1.1)
1.6 RESULT i+j (2.1)
5.19 c (3.1)
6.9 Goto action
syntax:

<goto action> ::= (1)

GOTO <label name> (1.1)

semantics: A goto action causes a transfer of control. Execution is resumed with the action statement labelled with the

label name.
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static conditions: If a goto action is placed within a procedure or process definition, the label indicated by the label
name must also be defined within the definition (i.e. it is not possible to jump outside a procedure or process invocation).

A handler must not be appended to a goto action.

6.10 Assert action
syntax:

<assert action> ::= (1)
ASSERT <boolean expression> (1.1)

semantics: An assert action provides a means of testing a condition.
dynamic conditions: The ASSERTFAIL exception occurs if the boolean expression delivers FALSE.

examples:

4.7 ABSERT >0 AND c>0 AND order>0 1.1)

6.11 Empty action

syntax:
<empty action> ::= (1)
<empty> 1.1)
<¢mpty> ;= 2)

semantics: An empty action causes no action.

static conditions: A handler must not be appended to an empty action,

6.12 Cause action
syntax:

<gause action> ::= (1)
CAUSE <exception name> 1.1)

semantics: A cause action causes the exception whose name is indicated by exception name to occur.
static conditions: A handler must not be-appended to a cause action.

examples:

4.9 CAUSE wrong_input 1.1)

6.13 Sthrt action
syntax:

<{tartaetion> ::= (1)
<start expression> 1.1)

semantics: A start action evaluates the start expression (see 5.2.15) without using the resulting instance value.

examples:

14.45 START call_distributor () (1.1)

6.14 Stop action
syntax:

<stop action> ::= (1)
STOP (1.1)

semantics: A stop action terminates the process executing it (see 11.1).

static conditions: A /andler must not be appended to a stop action.
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6.15

syntax:

Continue action

<continue action> ::=

CONTINUE <event location>

semantics: A continue action evaluates the event location.

(1)
(1.1)

If the event location has a non-empty set of delayed processes attached, one of these, with the highest priority, will be re-
activated. If there are several such processes, one will be selected in an implementation defined way. If there are no such
processes, the continue action has no further effect.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

examples:
13.25 C
6.16 D¢
syntax:
<d
<

semantics: /4

Then a DEL]

If the execufing process becomes delayed, it becomes a member, with a priority of the set of delayed proce

to the specifi

dynamic pr
where it may

static condi

dynamic copditions: The DELAYFAIL exception occurs if the event location has a mode with an event ler]

which is equ

The lifetime

examples:
13.18 D
6.17 D¢
syntax:

NTINUL resource_jreed

lay action

elay action> ::=
DELAY <event location> [ <priority> ]

riority> ::=
PRIORITY <integer literal expression>

\ delay action evaluates the event location.

HYFAIL exception occurs (see below) or the executing process becomes delayed.

ed event location. The priority is the one specified, if any, otherwise 0 (lowest).

pperties: A process executing a delay action bécomes timeoutable when it reaches the point
become delayed. It ceases to be timeoutable when it leaves that point.

ions: The integer literal expression must not deliver a negative value.

al to the number of processes altcady delayed on the event location.

of the event location must not end while the executing process is delayed on it.

ELAY resourcexfreed

lay case.action

1.1)

(1)
1.1)

2)
2.1)

tses attached

of execution

gth attached

1.1)

<delay case action> ::=

DELAY CASE [ SET <instance location> [ <priority> ] ; | <priority>; |
{ <delay alternative> }+

ESAC

<delay alternative> ::=

( <event list> ) : <action statement list>

<event list> ::=

<event location> { , <event location> }*

(1)

(1.1)

2)
2.1)

3)
3.1)

semantics: A delay case action evaluates, in any order, the instance location, if present, and all event locations specified
in a delay alternative.

Then a DELAYFAIL exception occurs (see below) or the executing process becomes delayed.
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If the executing process becomes delayed, it becomes a member with a priority of the set of delayed processes attached
to each of the specified event locations. The priority is the one specified, if any, otherwise 0 (lowest).

If the delayed process becomes re-activated by another process executing a continue action on an event location, the
corresponding action statement list is entered. If several delay alternatives specify the same event location, the choice
between them is not specified. Prior to entering, if an instance location is specified, the instance value identifying the
process that has executed the continue action is stored in it.

dynamic properties: A process executing a delay case action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property. The integer literal
expression in priority must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if any event location has a mode with an event length attached
which is equga : : i

The lifetime|of none of the event locations must end while the executing process is delayed on them.

The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
examples:

14.26 DELAY CASE

(operator_is_ready): /* some actions */

(switch_is_closed): DO FOR i IN INT (1:100);
CONTINUE operator_is_ready,
/* empty the queue */

OD;

EBAC 1.1)

6.18 Seind action

6.18.1 Ggdneral

syntax:
<{end action> ::= (1)
<send signal action> 1.1)
| <send buffer action> 1.2)

semantics: A send action initiatés:the transfer of synchronization information from a sending thread. [The detailed
semantics ddpend on whether the-synchronization object is a signal or a buffer.

6.18.2  Sepd signal action

syntax:
<yend'signal action> ::= (1)
SEND < cianal oo [ oalyo { vali o> VR )]
SEND<sienal pame=H<valwe>{—<veadue> 1+ 3
TO <instance primitive value> [ <priority> ] (1.1)

semantics: A send signal action evaluates, in any order, the list of values, if present, and the instance primitive value.

The signal specified by signal name is composed for transmission from the specified values and a priority. The priority is
the one specified, if any, otherwise 0 (lowest).

If the signal name has a process name attached, only processes with that name may receive the signal; if an instance
primitive value is specified, only the process identified by the instance primitive value may receive the signal.

If the signal has a non-empty set of delayed processes attached, in which one or more may receive the signal, one of
these will be re-activated. If there are several such processes, one will be selected in an implementation defined way. If
there are no such processes, the signal becomes pending.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

ITU-T Rec. Z.200 (1999 E) 93


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static conditions: The number of value occurrences must be equal to the number of modes of the signal name. The class
of each value must be compatible with the corresponding mode of the signal name. No value occurrence may be
intra-regional (see 11.2.2). The integer literal expression in priority must not deliver a negative value.

dynamic conditions: The assignment conditions of each value with respect to its corresponding mode of the signal name
apply.

The EMPTY exception occurs if the instance primitive value delivers NULL.

The lifetime of the process indicated by the value delivered by the instance primitive value must not have ended at the
point of the execution of the send signal action.

The SENDFAIL exception occurs if the signal name has a process name attached which is not the name of the process
indicated by the value delivered by the instance primitive value.

examples:

15.78 S]

15.86 S]

6.18.3  Se

syntax:

semantics: /

If the buffer|
several such]
capacity of t
stored with

exceeded if the buffer location has a mode with a buffer length attached which is equal to the number of v

stored in the

END ready TO received user

END readout(count) TO user

hd buffer action

end buffer action> ::=
SEND <buffer location> ( <value>) [ <priority> ]

A send buffer action evaluates the buffer location and the value in ahy-order.

location has a non-empty set of delayed processes attached;,one of these will be re-activated
processes, one will be selected in an implementation defined way. If there are no such procq
he buffer location is exceeded, the executing process becomes delayed with a priority. Otherwis
a priority. The priority is the one specified, if any,~otherwise 0 (lowest). The capacity of

buffer location.

If the execu

buffer locatipn. If a process becomes re-activated, it\is removed from all sets of delayed processes of wi

member.

dynamic prjoperties: A process executing-atsend buffer action becomes timeoutable when it reaches

execution w!

static condi
location. Thi
negative vali

dynamic co

the buffer lo
The lifetime

examples:

ing process becomes delayed, it becomes aimember of the set of delayed sending processes at

ere it may become delayed At\c€ases to be timeoutable when it leaves that point.

ions: The class of the value must be compatible with the buffer element mode of the mode
b value must not be intra-regional (see 11.2.2). The integer literal expression in priority must
ie.

nditions: Theassignment conditions of the value with respect to the buffer element mode of|
tation applyithe possible exceptions occur before the process may become delayed.

of thebuffer location must not end while the executing process is delayed on it.

1.1)
1.1)

(1)
1.1)

If there are
sses and the
t the value is
he buffer is
hlues already

ached to the
nich it was a

the point of

of the buffer

not deliver a

the mode of

16.123

6.19

6.19.1

syntax:

SEND user—> ([ready, —>counter_buffer]) ;

Receive case action

General

<receive case action> ::=

<receive signal case action>
| <receive buffer case action>

(1.1)

(1)
(1.1)
(1.2)

semantics: A receive case action receives synchronization information transmitted by a send action. The detailed
semantics depend on the synchronization object used, which is either a signal or a buffer. Entering a receive case action
does not necessarily result in a delaying of the executing thread (see clause 11 for further details).

94 ITU-T Rec. Z.200 (1999 E)


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

6.19.2

syntax:

ISO/IEC 9

Receive signal case action

<receive signal case action> ::=

RECEIVE CASE [ SET <instance location> ; |
{ <signal receive alternative> }+
[ ELSE <action statement list> ] ESAC
| RECEIVE [ SET <instance location> ]|
( <signal name> [ IN <location list>])

<location list> ::=

<location> { , <location> }*

<signal receive alternative> ::=

496:2003(E)

(1)

(1.1)
(1.2)

2)
2.1)

)

derived syn

<location>|
where <&ndq|
<location>1,
semantics: /
Then the ex
statement i

specified in
received, on

( <signal name> [ IN <defining occurrence list> | ) : <action statement list>

ax: The notation (1.2) is derived syntax for
RECEIVE CASE [ SET <instance location>; |
( <signal name> [ IN <&name>1, ..., <&name>, |):

(= <&name>1; ... <location>, .= <&name>,; ESAC,
me>1, ..., <&name>, are virtually introduced value receive names, and

..., <location>, are the locations in the location list.

\ receive signal case action evaluates the instance location{if present.

bcuting process: (immediately) receives a signal or, iffELSE is specified, enters the correspo
¥, otherwise becomes delayed. The executing process immediately receives a signal if one of a

h signal receive alternative is pending and may-be’ received by the process. If more than one s
e with the highest priority will be selected in an‘tmplementation defined way.

If the execufing process becomes delayed, it becomes a member of the set of delayed processes attached t

specified sig
receives a si

If the execul
instance loc{
the signal n3
carries a list

static prope
receive nam
signal name

nals. If the delayed process becomnies re-activated by another process executing a send sigi
bnal.

fing process receives a signal, the corresponding action statement list is entered. Prior to e
tion is specified, the instance value identifying the process that has sent the received signal is §
me of the received signal has a list of modes attached, a list of value receive names is specifig
of values, and the(value receive names denote their corresponding value in the entered action sf

rties: A defining occurrence in the defining occurrence list of a signal receive alternative de
e. Its class is the M-value class, where M is the corresponding mode in the list of modes att
in frontof it.

dynamic pr

3.1)

nding action
signal name
lgnal may be

each of the
nal action, it

tering, if an
tored in it. If
d; the signal
ntement list.

fines a value
ached to the

rties: A pr X ing a recei ignal ion mes tim le when it reach

execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property.

All signal name occurrences must be different.

b the point of

The optional IN and the defining occurrence list in the signal receive alternative must be specified if and only if the
signal name has a non-empty set of modes. The number of names in the defining occurrence list must be equal to the
number of modes of the signal name.

The assignment conditions of the values delivered by &namey, ..

location,, apply.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
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examples:

15.83

RECEIVE CASE

(advance): count + :=1;
(terminate):
SEND readout(count) TO user,
EXIT work loop;

ESAC

6.19.3

syntax:

Receive buffer case action

<receive buffer case action> ::=

derived syn

where <&na

semantics: 4

specified in

Then the ex
statement i,

sending prod

highest prio

If the execu]ling process becomes delayed, it becomes a member of the set of delayed processes attached t

specified bu
it receives a

If the execu
alternatives

location 1is f§
specified value receive name denotes the received value in the entered action statement list.

Another pro

delayed send

received val

value to be d

RECEIVE CASE [ SET <instance location> ; |
It 1+

(1.1)

)

<brfferreceirrettterretives—;
[ ELSE <action statement list> ]
ESAC

| RECEIVE [ SET <instance location> ]

( <buffer location >IN <location>)

buffer receive alternative> ::=
( <buffer location> IN <defining occurrence>) : <action statement list>

ax: The notation (1.2) is derived syntax for

RECEIVE CASE [ SET <instance location>; |

( <buffer location> IN <&name>) : <location> = <&namex;
pme> is a virtually introduced value receive name.

\ receive buffer case action evaluates, in any order, the iustance location, if present, and all buj
W buffer receive alternative.

ecuting process: (immediately) receives a value(or, if ELSE is specified, enters the correspo
, otherwise becomes delayed. The executingprocess immediately receives a value if one is sf
ess delayed on, one of the specified bufferJocations. If more than one value may be received,

ity will be selected in an implementation‘defined way.

alue.
ing process receives @.value, the corresponding action statement list is entered. If several b

specify the same buffer location, the choice between them is not specified. Prior to entering, i
pecified, the instance value identifying the process that has sent the received value is storg

ing proeesses of which is not empty. The re-activated process is one with the highest priority at

ledwas stored in the buffer location, otherwise the one sending the received value. In the forr

i ceeded), and

1.1)
1.2)

2)
2.1)

fer locations

nding action
ored in, or a
one with the

each of the

fer locations. If the delayed process becomes re-activated by another process executing a send puffer action,

uffer receive
[ an instance
d in it. The

ess becemes re-activated if the executing process receives a value from a buffer location, the aftached set of

ached, if the
er case, the

if more than one process may be re-activated, one will be selected in an implementation defined way. The re-activated
process is removed from the set of delayed sending processes attached to the buffer location.

static properties: A defining occurrence in a buffer receive alternative defines a value receive name. Its class is the
M-value class, where M is the buffer element mode of the mode of the buffer location labelling the buffer receive

alternative.

dynamic properties: A process executing a receive buffer case action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property.

The assignment conditions of the value denoted by &name with respect to the mode of the location apply.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
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6.20

syntax:

ISO/IEC 9

of none of the buffer locations must end while the executing process is delayed on them.

CHILL built-in routine calls

<CHILL built-in routine call> ::=

<CHILL simple built-in routine call>
| <CHILL location built-in routine call>
| <CHILL value built-in routine call>

predefined names: The CHILL built-in routine names are predefined as built-in routine names (see 6.7).

496:2003(E)

(1)
(1.1)
(1.2)
(1.3)

semantics: A CHILL built-in routine call is either a CHILL simple built-in routine call, which delivers no results
(see 6.20.1), a CHILL location built-in routine call, which delivers a location (see 6.20.2), or a CHILL value built-in

routine call,

static propé
routine call,

6.20.1

syntax:

semantics: 4
The simple b
clause 9.

6.20.2

syntax:

semantics: 4
routines for

6.20.3

syntax:

which delivers a value (see 6.20.3).

rties: A CHILL built-in routine call is a location built-in routine call if it is a CHELL) locd
it is a value built-in routine call if it is a CHILL value built-in routine call.

CHILL simple built-in routine calls

CHILL simple built-in routine call> ::=
<terminate built-in routine call>
| <io simple built-in routine call>
| <timing simple built-in routine call>

N CHILL simple built-in routine call is a built-in routinelcall which delivers neither a value n
uilt-in routines for input output are defined in clause 7»The simple built-in routines for timing 4

CHILL location built-in routine calls

CHILL location built-in routine call>::=
<io location built-in routine call>

\ CHILL location built-in‘routine call is a built-in routine call that delivers a location. The loc
nput output are defined.in clause 7.

CHILL value built-in'routine calls

tion built-in

(1)
1.1)
1.2)
1.3)

r a location.
re defined in

(1)
1.1)

htion built-in

CHILE value built-in routine call> ::= (1)
NUM ( <discrete expression>) 1.1)

| PRED ( <discrete expression> ) 1.2)
| SUCC ( <discrete expression>) (1.3)
| ABS ( <numeric expression>) (1.4)
| CARD ( <powerset expression>) (1.5)
| MAX ( <powerset expression>) (1.6)
|  MIN ( <powerset expression>) (1.7)
| SIZE ( { <location> | <mode argument> } ) (1.8)
|  UPPER ( <upper lower argument>) (1.9)
| LOWER ( <upper lower argument>) (1.10)
| LENGTH ( <length argument>) (1.11)
| <allocate built-in routine call> (1.12)
| <io value built-in routine call> (1.13)
| <time value built-in routine call> (1.14)
| SIN ( <floating point expression>) (1.15)
|  COS ( <floating point expression>) (1.16)
| TAN ( <floating point expression>) (1.17)

ITU-T Rec. Z.200

(1999 E)

97


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

|  ARCSIN ( <floating point expression>) (1.18)

| ARCCOS ( <floating point expression>) (1.19)

| ARCTAN ( <floating point expression>) (1.20)

| EXP ( <floating point expression>) (1.21)

| LN ( <floating point expression>) (1.22)

| LOG ( <floating point expression>) (1.23)

| SORT ( <floating point expression>) (1.24)

<numeric expression> ::= (2)

<integer expression> (2.1)

| <floating point expression> (2.2)

<mode argument> ::= (3)

<mode name> 3.1)

| <array mode name> ( <expression>) (3.2)

[ <string mode name> ( <inleger expression>) 3.3)

| <variant structure mode name> ( <expression list>) 3.4)

<wpper lower argument> ::= (4)

<array location> 4.1)

| <array expression> 4.2)

| <array mode name> 4.3)

|  <string location> 4.4)

| <string expression> 4.5)

| <string mode name> 4.6)

|  <discrete location> 4.7)

| <discrete expression> 4.8)

| <discrete mode name> 4.9)

| <floating point location> (4.10)

| <floating point expression> (4.11)

| <floating point mode name> (4.12)

| <access location> (4.13)

| <access mode name> (4.14)

| <text location> (4.15)

| <text mode name> (4.16)

<length argument> ::= (5)

<string location> 5.1)

| <string expression> 5.2)

| <string mode name> 5.3)

| <event locatien=> 5.4)

| <event mode hame> 5.5)

| <buffer lacation> 5.6)

| <buffermiode name> 5.7)

|  <téxtlocation> 5.8)

| «<text mode name> 5.9)
NOTE - If thg upper/ lower argument is an array location, a string location, a discrete location or a floating point location, the
syntactic ambjguity’is resolved by interpreting upper lower argument as a location rather than an expression or primitiye value. If the
length arguménT s a SITIAZ Tocation, e SyMTacTic Ambiguity 15 TesoIved by TNTeTpreting fengti argument as a tocattom rather than an

expression.

semantics: A CHILL value built-in routine call is a built-in routine call that delivers a value.
NUM delivers an integer value with the same internal representation as the value delivered by its argument.

PRED and SUCC deliver respectively the next lower and higher discrete value of their argument.

ABS is defined on numeric values, i.e. integer values and floating point values, delivering the corresponding absolute

value.

CARD, MAX and MIN are defined on powerset values. CARD delivers the number of element values in its argument.

MAX and MIN deliver respectively the greatest and smallest element value in their argument.
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SIZE is defined on referable locations and (possibly dynamic) modes. In the first case, it delivers the number of
addressable memory units occupied by that location; in the second case, the number of addressable memory units that a
referable location of that mode will occupy. The mode is static if the mode argument is a mode name, otherwise it is a
dynamically parameterized version of it, with parameters as specified in the mode argument. In the first case, the
location will not be evaluated at run time.

UPPER and LOWER are defined on (possibly dynamic):

e array, string, discrete, floating point, access and text locations, delivering the upper bound and lower bound of the
mode of the location;

e  array and string expressions, delivering the upper bound and lower bound of the mode of the value’s class;

e strong discrete and floating point expressions, delivering the upper bound and lower bound of the mode of the
value’s class;

*  array, string, discrete, floating point, access and text mode names, delivering the upper bound and lower bound of
the mode:

LENGTH is fefined on (possibly dynamic):

*  string aphd text locations and string expressions delivering the actual value of them;
*  event Idcations delivering the event length of the mode of the locations;

*  buffer Ipcations delivering the buffer length of the mode of the locations;

*  string :Lode names delivering the string length of the mode;

¢ text mode names delivering the text length of the mode;

¢ buffer node names delivering the buffer length of the mode;

e event mjode names delivering the event length of the mode.

SIN delivers|the sine of its argument (interpreted in radians).

COS delivers the cosine of its argument (interpreted in radians).

TAN deliver§ the tangent of its argument (interpreted in radians).

ARCSIN delfvers the sin~! function of its argument in.fHe range 172 : T72.
ARCCOS delivers the cos™! function of its argument in the range 0 : TU
ARCTAN delivers the tan~! function of its.arguiment in the range — 102 : T02.
EXP delivers the e* function, where x is 1t argument.

LN delivers the natural logarithmrofiits argument.

LOG deliverp the base 10 logarithm of its argument.

SORT delivers the squareroot of its argument.

The same rules fofithe evaluation of the result of built-in routine call with constant arguments as that|of constant
expression apply,(see 5.3.1).

static properties: The class of a VUM built-in toutine call is the &INVI-derived class. Ihe ouilt-in routine call is
constant (literal) if and only if the argument is constant (literal).

The class of a PRED or SUCC built-in routine call is the resulting class of the argument. The built-in routine call is
constant (literal) if and only if the argument is constant (literal).

The class of an ABS built-in routine call is the resulting class of the argument. The built-in routine call is constant
(literal) if and only if the argument is constant (literal).

The class of a CARD built-in routine call is the &INT-derived class. The built-in routine call is constant if and only if the
argument is constant.

The class of a MAX or MIN built-in routine call is the M-value class, where M is the member mode of the mode of the
powerset expression. The built-in routine call is constant if and only if the argument is constant.

The class of a SIZE built-in routine call is the &INT-derived class. The built-in routine call is constant if the mode of the
argument is static.
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The class of an UPPER and LOWER built-in routine call is:

the M-value class if upper lower argument is an array location, array expression or array mode name, where M is
the index mode of array location, array expression or array mode name, respectively;

the &INT-derived class if upper lower argument is a string location, string expression or string mode name;

the M-value class if upper lower argument is a discrete location, discrete expression or discrete mode name, where
M is the mode of discrete location, or discrete expression, or discrete mode name, respectively;

the M-value class if upper lower argument is a floating point location, floating point expression, or floating point
mode name, where M is the mode of the floating point location, floating point expression, or floating point mode

name, respectively;

the M-value class if upper lower argument is an access location or access mode name, where M is the index mode

of the mode of the access location or access mode name, respectively;

the M-y
mode o

An UPPER
name, a disc|
array locati
lower argun|
access locat

The class of
argument is
location, or

The class of

The class of
argument is

* for SIN
for CO{
for AR(
for AR(

for AR(
where S is th

A SIN, COS

alue class if upper lower argument is a text location or text mode name, where M is the index
[ the text location or text mode name, respectively.

br LOWER built-in routine call is literal if the upper lower argument is an array unode name, 3
ete mode name, a floating point mode name, an access mode name, or a text miode name, if the
n or string location is static, if the array expression or string expression hasya static class, of
ent is a discrete location, a discrete expression, a floating point location,a floating point e)
on, or a text location.

a LENGTH built-in routine call is the &INT-derived class. Thetbuilt-in routine call is literal
a string location with a static mode, a string expression with ‘aJstatic class, an event locatio
f it is a string mode name, an event mode name, a buffer medé.name, or a text mode name.

a TAN, EXP, LN, LOG or SORT built-in routine call is.the resulting class of its argument.

SIN, COS, ARCSIN, ARCCOS, ARCTAN is_the’s1. N-derived class, 2. N-value class if the
. an N-derived class, 2. an N-value class, where'N is a mode constructed as follows:

&RANGE (-1.0 : 1.0, 5)
: &RANGE (-1.0 : 1.0, 5)
'SIN: &RANGE (~T72 : T72,-S)
COS: &RANGE (0 : T.5)

[ TAN: &RANGE (W2 : 102, S)

e precision.of N, and the novelty is that of N.

mode of the

string mode
mode of the

if the upper
[pression, an

if the length
, or a buffer

class of the

TAN, ARCSIN, ARCCOS, ARCTAN, EXP, LN, LOG or SORT built-in routine call is constant (literal) if and
only if the ajgument is constant (literal).

static condi

10ns: 1T the argument of a FKED or SUCC built-in routine call 1S constant, 11 must not deliver,

respectively,

the smallest or greatest discrete value defined by the root mode of the class of the argument. The root mode of the
discrete expression argument of PRED and SUCC must not be a numbered set mode.

If the argument of a MAX or MIN built-in routine call is constant, it must not deliver the empty powerset value.

The location

The discrete

argument of SIZE must be referable.

expression and floating point expression as arguments of UPPER and LOWER must be strong.

If the upper lower argument is an access mode name or an access location, the corresponding access mode must have an

index mode.

If the upper lower argument is a text mode name or a text location, the corresponding text mode must have an index

mode.
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The following compatibility requirements hold for a mode argument which is not a single mode name:

The cla

ss of the expression must be compatible with the index mode of the array mode name.

496:2003(E)

The variant structure mode name must be parameterizable and there must be as many expressions in the

expression list as there are classes in its list of classes and the class of each expression must be compatible with the
corresponding class in the list of classes.

dynamic conditions: PRED and SUCC that are not constant cause the OVERFLOW exception if they are applied to the
smallest or greatest discrete value defined by the root mode of the class of the argument.

NUM and CARD that are not constant cause the OVERFLOW exception if the resulting value is outside the set of values
defined by &INT.

MAX and MIN cause the EMPTY exception if they are applied to empty powerset values.

ABS that is

not constant causes the OVERFILOW exception if the resnlting value is outside the bounds d

fined by the

root mode o

The RANGE]

the exp
mode n

the inte
name,

any exp
mode n

ARCSIN an(
range —1.0 :

LN and LOG
SORT that ig

SIN, COS, Tj
value is grea
case of an e
lower limit

ARCCOS, E,

f the class of the argument.

F'AIL exception occurs if in the mode argument:

ression delivers a value which does not belong to the set of values defined by thedndex mode
ime;

ber expression delivers a negative value or a value which is greater than the string length of the
ression in the expression list for which the corresponding class in theslist of classes of the varj
ime 1s an M-value class (i.e. is strong) delivers a value which is cutside the set of values define

| ARCCOS that are not constant cause the OVERFLOW ‘eXception if the argument does n
1.0.

that are not constant cause the OVERFLOW exception if the argument is not greater than zero.
not constant causes the OVERFLOW exceptiomifthe argument is not greater than or equal to 7

UN, ARCSIN, ARCTAN, LN and LOG that-are not constant cause the OVERFLOW exception if]
ter than the upper bound or less than the\lower bound of the root mode of the class of the arg
kact mathematical resulting value that is greater than the negative upper limit and less than

WP and SORT that are not constant cause the OVERFLOW exception if the resulting value is grg

f the root mode of the argument, @nd is different from zero, an UNDERFLOW exception occurs.

of the array

string mode

nnt structure

1 by M.

ot lie in the

£ro.

the resulting
hment. In the
the positive

ater than the

upper bound or less than the lower-bound of the root mode of the class of the argument. In the casq of an exact
mathematical resulting value that«is\greater than zero and less than the positive lower limit of the root|{mode of the
argument, aif UNDERFLOW exdeption occurs.
examples:
9.12 MIN (sieve) 1.7)
11.47 PRED((co! 1) 1.2)
1147  SUCCY{col 1) 1.3)
6.20.4 Dynamic storage handling built-in routines
syntax:
<allocate built-in routine call> ::= (1)
GETSTACK ( <mode argument> [ , <value> |
( [ <constructor actual parameter list>]) | ) (1.1)
| ALLOCATE ( <mode argument> [ , <value> |
( [ <constructor actual parameter list>1) 1) (1.2)
<terminate built-in routine call> ::= (2)
TERMINATE ( <reference primitive value>) 2.1)

semantics: GETSTACK and ALLOCATE create a location of the specified mode and deliver a reference value for the
created location. GETSTACK creates this location on the stack (see 10.9). A location whose mode is that of the mode
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argument is created and a value referring to it is delivered. The created location is initialized with the value of value, if
present; otherwise with the undefined value (see 4.1.2) if the mode argument is not a moreta mode.

If the mode argument is a moreta mode, first all initializations in the components are performed in textual order. If a
(possibly empty) parameter list is specified, the corresponding constructor of the mode argument is applied to the newly
created location. If the mode argument is a task mode, the task belonging to the newly created location is started.

TERMINATE ends the lifetime of the location referred to by the value delivered by reference primitive value. An
implementation might as a consequence release the storage occupied by this location, and if the reference primitive value

is a location

which is not read-only, assign the undefined value to the location.

If the reference primitive value refers to a region or a task location L, the following steps are performed sequentially:

a)

b) The thread executing the TERMINATE waits until L is empty.

L is closed. If a location is closed, no more external calls of the public component procedures in L are accepted.

c) Ifthem

static prope
mode of mod

respectively,

A GETSTAd
regional.

ode of L contains a destructor, that destructor is applied to L.

rties: The class of a GETSTACK or ALLOCATE built-in routine call is the M-refereneg’ class, w
le argument. M is either the mode name or a parameterized mode constructed as:

&<array mode name> ( <expression>) or
&<string mode name> ( <integer expression>) or

&<variant structure mode name> ( <expression list>),

K or ALLOCATE built-in routine call is intra-regional if it is surrounded by a region, otherwig

static condifions: The class of the value, if present, in thenGETSTACK and ALLOCATE built-in routine

compatible
mode.

If the mode

The value, 1
location.

dynamic prj
built-in routi

dynamic col[ld

ALLOCATE

For GETSTA

with the mode of mode argument; this check is dynamic in case the mode of mode argument

f mode argument has the read-only property, the second argument must be present.

[ present, in the GETSTACK aud) ALLOCATE built-in routine call, must be regionally safe fo

pperties: A referencelvalue is an allocated reference value if and only if it is returned by an
e call.

causes the-ALLOCATEFAIL exception if storage requirements cannot be satisfied.

CK and ALLOCATE the assignment conditions of the value delivered by value with respect to|

here M is the

e it is extra-

call must be

s a dynamic

r the created

ALLOCATE

itions: GETSTACK causes the SPACEFAIL exception if storage requirements cannot be satisffied.

the mode of

mode argum

e alJlJ]l)’ .

TERMINATE causes the EMPTY exception if the reference primitive value delivers the value NULL.

The reference primitive value must deliver an allocated reference value. The lifetime of the referenced location must not

have ended.

7.1

Input and Output

I/0O reference model

A model is used for the description of the input/output facilities in an implementation independent way; it distinguishes
three states for a given association location: a free state, a file handling state and a data transfer state.
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shows the three states and the possible transitions between the states.

free state The asspciation Iocati_on contain§ no value.
No relation to an outside worl object.
ASSOCIATE DISSOCIATE
fil The association location contains an association.
ne QOperations like create and delete a file_or change
handling its' roperties
state prop ’
CONNECT DISCONNECT
data L L
¢ f An access location is conpected to the association log
r:tr:teer Transfer data to/from a file:-a read and write operatiors.

The model 4
world, i.e. th
file can be 4
object that ¢

Manipulatin,
a file. An ag
association.

In the free st
operation ch
argument an

association fhust be creatéd; additional arguments may be used to indicate the kind of association for the o

initial values
of operation

ssumes that objects, in implementations often xéferred to as datasets, files or devices, exist i
e external environment of a CHILL program.“Such an outside world object is called a file in
physical device, a communication line or-just a file in a file management system; in genera
in produce and/or consume data.

b a file in CHILL requires an assegiation; an association is created by the associate operation an
sociation has attributes; these attributes describe the properties of a file that is or could be at

ate, there is no inteyaction or relation between the CHILL program and outside world objects. ]
anges the state of the model from the free state into the file handling state. This operation
association location and an implementation defined denotation for an outside world object

for the attributes of the association. A particular association also implies an (implementation d
that.may be applied on the file that is attached to that association.

ation.

h the outside
he model. A
, a file is an

1 it identifies
rached to the

[he associate
takes as one
for which an
bject and the
ppendent) set

In the file H

ded that the

association enables the particular operation; for operations that change the properties of a file, an exclusive association
for the file will be necessary in general.

The model assumes associations in general are exclusive, i.e. only one association exists at the same time for a given
outside world object. However, implementations may allow the creation of more associations for the same object,
provided that the object can be shared among different users (programs) and/or among different associations within the
same program. All operations in the file handling state take an association as an argument.

The dissociate operation is used to end an association for an outside world object; this operation causes transition from
the file handling state back to the free state.

Transferring data to or from a file is possible only in the data transfer state; transfer operations require an access location
to be connected to an association for that file. The connect operation connects an access location to an association and
changes the state of the model into the data transfer state. The operation takes an association location and an access
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location as arguments; the association location contains an association for the file to, or from, which data can be
transferred via the access location. Additional arguments of the connect operation denote for which type of transfer
operations the access location must be connected, and to which record the file must be positioned. At most one access
location can be connected to an association location at any one time.

The disconnect operation takes an access location as argument and disconnects it from the association it is connected to;
it changes the state of the model back to the file handling state.

In the data transfer state, an access location must be used as an argument of a transfer operation; there are two transfer
operations provided, namely, a read operation to transfer data from a file to the program and a write operation to transfer
data from the program to a file. The transfer operations use the record mode of the access location to transform CHILL
values into records of the file, and vice versa.

A file is viewed in the model as an array of values; each element of this array relates to a record of the file. The element
mode of this array is determined by the connect operation to be the record mode of the access location being connected.

An index V3
description

current ind
subsequent ¢

ex and a transfer index. The base index is set by the connect operation and remains(tncha
onnect operation; it is used to calculate the transfer index in transfer operations and.the curre

connect opeJ:tion. The transfer index denotes the position in the file where a transfer will takeplace; the ¢

denotes the

7.2 As

7.2.1 Ge

An associati
implies an (i

Association

denoting a Y
association 1

7.2.2

An associati
be attached t

The followin
existing
readab

writea

sequen

cord to which the file currently is positioned.

sociation values

neral

bn value reflects the properties of a file that is or could be attached to it. A particular associati
nplementation dependent) set of operations on the file thatis)possibly attached to it.

values have no denotation but are contained in locations of association mode; there exists n|
ralue of association mode. Association values can‘only be manipulated by built-in routines
bcation as parameter.

Atgributes of association values

o it.

g attributes are language defined:

: indicating that a (possibly empty) file is attached to the association;

e: indicating that(read operations are possible for the file when it is attached to the association;

e: indicatin@ that write operations are possible for the file when it is attached to the association

Ill
indexable: indicating that the file, when it is attached to the association, allows for random access to its|

rible; indicating that the file, when it is attached to the association, allows for sequential

records

f :]

2
the connect and transfer operations, three special index values will be used, namely,~a’blase index, a

file. In the
nged until a

nt index in a
irrent index

n value also

0 expression
that take an

bn value has attributes; the attributes(describe the properties of the association and the file that may or could

records;

access to its

file.

variable: indicating that the size of the records of the file, when it is attached to the association, may vary within the

These attributes have a boolean value; the attributes are initialized when the association is created and may be updated as
a consequence of particular operations on the association. This list comprises the language defined attributes only;
implementations may add attributes according to their own needs.

7.3 Access values

7.3.1 General

Access values are contained in locations of access mode. An access location is necessary to transfer data from or to a file
in the outside world.
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Access values have no denotation but are contained in locations of access mode; there exists no expression denoting a
value of access mode. Access values can only be manipulated by built-in routines that take an access location as
parameter.

7.3.2 Attributes of access values

Access values have attributes that describe their dynamic properties, the semantics of transfer operations, and the
conditions under which exceptions can occur.

CHILL defines the following attributes:

e usage: indicating for which transfer operation(s) the access location is connected to an association; the attribute is
set by the connect operation.

*  outoffile: indicating whether or not the transfer index calculated by the last read operation was in the file; the
attribute is initialized to FALSE by the connect operation and is set by every read operation.

7.4 Buyilt-in routines for input output

7.4.1 Gdneral

Language d¢fined built-in routines are defined for operations on association locations~and access locatjons, and for
inspecting ad changing the attributes of their values.

The built-in foutines will be described in the following sections.

syntax:

<o value built-in routine call> ::= (1)
<association attr built-in routine call> 1.1)

| <isassociated built-in routine call> 1.2)

| <access attr built-in routine call> 1.3)

| <readrecord built-in routine call> 1.4)

| <gettext built-in routine call> 1.5)

<o simple built-in routine call> ::= (2)
<dissociate built-in routine call> 2.1)

| <modification built-in routine call> 2.2)

| <comnect built-in routine,call> 2.3)

| <disconnect built-iproutine call> 2.4)

| <writerecord built-int routine call> 2.5)

| <text built-inaoutine call> 2.6)

| <settext built-in routine call> 2.7)

<ido location built~in-routine call> ::= (3)
<associate built-in routine call> 3.1)

static conditions; Achuilt-in routine parameter in an io built-in routine that is an association location, an acgess location
or a text locqtion must be referable.

7.4.2 Associating an outside world object

syntax:

<associate built-in routine call> ::= (1)
ASSOCIATE ( <association location> [ , <associate parameter list> ] ) (1.1)

<isassociated built-in routine call> ::= (2)
ISASSOCIATED ( <association location>) 2.1)

<associate parameter list> ::= 3)
<associate parameter> { , <associate parameter> }* 3.1)

<associate parameter> ::= (4)
<location> (4.1)

| <value> (4.2)
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semantics: ASSOCIATE creates an association to an outside world object. It initializes the association location with the
created association. It initializes the attributes of the created association. The association location is also returned as a
result of the call. The particular association that is created is determined by the locations and/or values occurring in the
associate parameter list; the modes (classes) and the semantics of these locations (values) are implementation defined.

ISASSOCIATED returns TRUE if association location contains an association and FALSE otherwise.

static properties: The class of an ISASSOCIATED built-in routine call is the BOOL-derived class. The mode of an

ASSOCIATE built-in routine call is the mode of the association location.

The regionality of an ASSOCIATE built-in routine call is that of the association location.

static conditions: The mode and the class of each associate parameter is implementation defined.

dynamic conditions: ASSOCIATE causes the ASSOCIATEFAIL exception if the association location already contains an

association or if the association cannot be created due to implementation defined reasons.

examples:

20.21 ABSOCIATE (file_association,"DSK:RECORDS.DAT");

7.4.3 Dipsociating an outside world object
syntax:

<dlissociate built-in routine call> ::=
DISSOCIATE ( <association location>)

1.1)

(1)
1.1)

semantics: DISSOCIATE terminates an association to an outside world objeet. An access location that is still connected
to the associpition contained in an association location is disconnected b€fore the association is terminated.

dynamic conditions: DISSOCIATE causes the NOTASSOCIATED exception if association location does npt contain an

association.
examples:

22.38 DISSOCIATE (association),

7.4.4 Adcessing association attributes
syntax:

<gssociation attr built-in xoutine call> ::=
EXISTING (<association location>)

| READABEE-{<association location>)

| WRITEABLE ( <association location>)

| INDEXABLE ( <association location>)

| SEQUENCIBLE ( <association location>)

|«HKARIABLE ( <association location>")

1.1)

(1)
1.1)
1.2)
1.3)
1.4)
1.5)
1.6)

semantics: EXISFING, READABLE, WRITEABLE, INDEXABLE, SEQUENCIBLE and VARIABLE return| respectively

the value of = = = -
contained in association location.

static properties: The class of an association attr built-in routine call is the BOOL-derived class.

> association

dynamic conditions: The association attr built-in routine call causes the NOTASSOCIATED exception if association

location does not contain an association.

7.4.5 Modifying association attributes
syntax:
<modification built-in routine call> ::=
CREATE ( <association location>")
| DELETE ( <association location>)
| MODIFY ( <association location> [ , <modify parameter list> ] )
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<modify parameter list> ::= 2)
<modify parameter> { , <modify parameter> }* 2.1)

<modify parameter> ::= 3)
<value> (3.1)

| <location> (3.2)

semantics: CREATE creates an empty file and attaches it to the association denoted by the association location. The
existing-attribute of the indicated association is set to TRUE if the operation succeeds.

DELETE detaches a file from the association denoted by association location and deletes the file. The existing-attribute
of the indicated association is set to FALSE if the operation succeeds.

MODIFY provides the means of changing properties of an outside world object for which an association exists and that is
denoted by association location; the locations and/or values that occur in modify parameter list describe how the
properties must be modified. The modes (classes) and the semantics of these locations (values) are implementation
defined.

dynamic conditions: CREATE, DELETE and MODIFY cause the NOTASSOCIATED exceptionif thq association
location doep not contain an association.

CREATE cayses the CREATEFAIL exception if one of the following conditions occurs:
e the exiling—attribute of the association is TRUE;

e the credtion of the file fails (implementation defined).

DELETE cayses the DELETEFAIL exception if one of the following conditions‘eecurs:
e the exi;[ing—attribute of the association is FALSE;

e the delgtion of the file fails (implementation defined).

MODIFY capses the MODIFYFAIL exception if the properties, defined by modify parameter list cannot of may not be
modified; th¢ conditions under which this exception can occug-are implementation defined.

examples:
21.39 CREATE (outassoc), 1.1)
21.69 DELETE (curassoc), 1.2)

7.4.6 Cdnnecting an access location

syntax:

<g¢onnect built-in routine call> ::= (1)

CONNECT ( <transfer location> , <association location> ,
<usage-expression> [ , <where expression> [ , <index expression>11]) 1.1)
<transfer location> ::= 2)
<access location> 2.1)
[” <text location> 2.2)
<usage expression> ::= 3)
<expression> 3.1)
<where expression> ::= (4)
<expression> (4.1)
<index expression> ::= (5)
<expression> (5.1)

predefined names: To control the connect operation, performed by the built-in routine CONNECT, two synmode names
are predefined in the language, namely, USAGE and WHERE; their defining modes are SET (READONLY,
WRITEONLY, READWRITE) and SET (FIRST, SAME, LAST), respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location must be connected to an
association, while values of the mode WHERE indicate how the file that is attached to an association must be positioned
by the connect operation.
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semantics: CONNECT connects the access location denoted by transfer location to the association that is contained in
association location; there must be a file attached to the denoted association; i.e. the association's existing-attribute must
be TRUE.

The access location denoted by transfer location is the location itself if it is an access location; otherwise the access sub-
location of the text location.

The value that is delivered by usage expression indicates for which type of transfer operations the access location must
be connected to the file. If the expression delivers READONLY, the connection is prepared for read operations only; if it
delivers WRITEONLY, the connection is set up for write operations only; if it delivers READWRITE, the connection is
prepared for both read and write operations.

The indexable-attribute of the denoted association must be TRUE if the access location has an index mode, while the
attribute must be TRUE if the location has no index mode.

sequencible-

CONNECT
current indg

if wher
first red

if wher:
change

if wher{
the file

After a basd
optional spe

if no in

if an ind

where |
index ej

If the access|
the usage e
current indg

An access 1
same time.

Any access
association i

re)positions the 11l that 1s attached to the denoted association; 1.€. 1t establishes a (new) ba

expression delivers FIRST or is not specified, the base index is set to 0; i.e. the file is-position
ord;

expression delivers SAME, the base index is set to the current index in the file; i.e. the file p

l;

is positioned after the last record.

index is set, a current index will be established by CONNECT. This current index depef
ification of an index expression:

lex expression is specified, the current index is set to'the (new) base index;
Jex expression is specified, the current index is sét;to
base index + NUM (v) — NUM (I)

denotes the lower bound of the access\location's index mode and v denotes the value that is
pression.

location is being connected-for'sequential write operations (i.e. the access location has no ind
ipression delivers WRITEONLY), then those records in the file that have an index greater th
x will be removed fromiithe file; i.e. the file may be truncated or emptied by CONNECT.

cation that has n¢ index mode cannot be connected to an association for read and write opef

location fo)which the denoted association may be connected will be disconnected implicit]
K connected to the location that is denoted by transfer location.

CONNECT ipitializes the outoffile-attribute of the access location to FALSE and sets the usage-attribute acd

x in the file. The (new) base index depends upon the value that is delivered by where expression:

be index and
)

ed before the

Dsition is not

expression delivers LAST, the base index is set to N, where N denotes the number of records in the file; i.e.

ds upon the

delivered by

ex mode and
hin the (new)

ations at the

y before the

ording to the

value that is

delivered by usage expression.

static properties: The mode attached to a fransfer location is the mode of the access location or the access mode of the

text location,

respectively.

static conditions: The mode of transfer location must have an index mode if an index expression is specified; the class
of the value delivered by index expression must be compatible with that index mode. The transfer location must have
the same regionality as the association location.

The class of

The class of

the value delivered by usage expression must be compatible with the USAGE-derived class.

the value delivered by where expression must be compatible with the WHERE-derived class.

dynamic conditions: CONNECT causes the NOTASSOCIATED exception if association location does not contain an

association.
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CONNECT causes the CONNECTFAIL exception if one of the following conditions occurs:

the association's existing-attribute is FALSE;

the association's indexable-attribute is FALSE and access location has an index mode;

the association's sequencible-attribute is FALSE and access location has no index mode;

access location;

expression delivers WRITEONLY or READWRITE,

496:2003(E)

the association's readable-attribute is FALSE and usage expression delivers READONLY or READWRITE;
the association's writeable-attribute is FALSE and usage expression delivers WRITEONLY or READWRITE;

where expression delivers SAME, while the association contained in association location is not connected to an

the association's variable-attribute is FALSE and the access location has a dynamic record mode, while usage

the ass
express

the accg

the assd
defined

CONNECT

The EMPTY)
examples:
20.22 C

20.22 Rj

7.4.7 Di
syntax:

<

semantics:

connected to|

bciation's variable-attribute is TRUE and the access location has a static record mode,
on delivers READONLY or READWRITE;

ss location has no index mode, while usage expression delivers READWRITE;

ciation contained in association location cannot be connected to the access location, due to im
conditions.

while usage

blementation

fauses the RANGEFAIL exception if the index mode of access location\is”a discrete range mode and the
index expresfion delivers a value which lies outside the bounds of that discrete range mode.

exception occurs if the access reference of the text location delivers the value NULL.

DNNECT (record_file, file association, READWRITE);.

FADWRITE

sconnecting an access location

Jisconnect built-in routine call> ;:=
DISCONNECT ( <transfer location>)

DISCONNECT disconnects ‘the access location denoted by transfer location from the ass

dynamic copditions: DISCONNECT causes the NOTCONNECTED exception if the access location denote

location is n

7.4.8 Ad

syntax:

bt connected to ‘an-association.

cessing attributes of access locations

1.1)
3.1)

(1)
1.1)

ciation it is

d by transfer

CCeSS AT DUl Foutine cait
GETASSOCIATION ( <transfer location>)
| GETUSAGE ( <transfer location>)
| OUTOFFILE ( <transfer location>)

(1)
(1.1)
(1.2)
(1.3)

semantics: GETASSOCIATION returns a reference value to the association location that the access location denoted by
transfer location is connected to; it returns NULL if the access location is not connected to an association.

GETUSAGE returns the value of the usage-attribute; i.e. READONLY (WRITEONLY) if the access location is connected
only for read (write) operations, or READWRITE if the access location is connected for both read and write operations.

OUTOFFILE returns the value of the outoffile-attribute of access location; i.e. TRUE if the last read operation calculated
a transfer index that was not in the file, FALSE otherwise.

static properties: The class of a GETASSOCIATION built-in routine call is the 4SSOCIATION-reference class. The
regionality of an GETASSOCIATION built-in routine call is that of the transfer location.
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The class of an OUTOFFILE built-in routine call is the BOOL-derived class.

The class of a GETUSAGE built-in routine call is the USAGE-derived class.

dynamic conditions: GETUSAGE and OUTOFFILE cause the NOTCONNECTED exception if the access location is not

connected to

an association.

examples:
21.47 OUTOFFILE (infiles (FALSE)) (1.3)
7.4.9 Data transfer operations
syntax:
<readrecord built-in routine call> ::= (1)
READRECORD ( <access location> [ , <index expression> |
[, <store location>]) 1.1)
<Writerecord built-in routine call> ::= (2)
WRITERECORD ( <access location> [ , <index expression> ] ,
<write expression>) 2.1)
<gtore location> ::= (3)
<static mode location> 3.1)
<Wwrite expression> ::= (4)
<expression> 4.1)
NOTE — If th¢ access location has an index mode, the syntactic ambiguity is resolved by interpreting the second argumgnt as an index

expression raf]

semantics: ]
defined. The
data to or fr
value of the |

Before a tramsfer takes place, the transfer index, i.e.\the position in the file of the record to be transferred,

If the acces
location has

where / is th
index expre.
current indg

The read op

READREC(

her than a store location.

For the transfer of data to or from a file, the built-in* routines WRITERECORD and READR
access location must have a record mode, and it must be connected to an association in ord
bm the file that is attached to that association:The transfer direction must not be in contradic
iccess location's usage-attribute.

b location has no index mode, the ‘transfer index is the current index incremented by 1;
an index mode, the transfer index-is calculated as follows:

transfer index := base index + NUM (v) — NUM (I) + 1

E lower bound of themode of the access location's index mode and v denotes the value that is
ion. If the transfer‘of the record with the calculated transfer index has been performed suc
X becomes the transfer index.

eration:

IRD tfansfers data from a file in the outside world to the CHILL program.

ECORD are
br to transfer
ion with the

s calculated.

f the access

delivered by
essfully, the

If the calcul
the record is

ted transfer index is not in the ﬁlpj the outoffile-attribute is set to TPT]F; otherwise the file i
read, and the outoffile-attribute is set to FALSE.

positioned,

The record that is read must not deliver an undefined value; the effect of the read operation is implementation defined if
the record being read from the file is not a legal value according to the record mode of the access location.

If a store location is specified, then the value of the record that was read is assigned to this location. If no store location
is specified, the value will be assigned to an implicitly created location; the lifetime of this location ends when the access
location is disconnected or reconnected. Whether the referenced location is created only once by the connect operation,
or every time a read operation is performed, is not defined.

READRECORD returns in both cases a reference value that refers to the (possibly dynamic mode) location to which the
value was assigned.

If the outoffile-attribute is set to TRUE as a result of the built-in routine call, then the NULL value is returned as a result
of the call.
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The write operation:

WRITERECORD transfers data from the CHILL program to a file in the outside world. The file is positioned to the
record with the calculated index and the record is written.

After the record has been written successfully, the number of records is set to the transfer index, if the latter is greater
than the actual number of records.

The record written by WRITERECORD is the value delivered by write expression.

static properties: The class of the value that was read by READRECORD 1is the M-value class, where M is the record
mode of the access location, if it has a static record mode, or a dynamically parameterized version of it, if the location
has a dynamic record mode; the parameters of such a dynamically parameterized record mode are:

the dynamic string length of the string value that was read in case of a string mode;

the dyn

the list

The class of]
it is the S-re

The regionality of a READRECORD built-in routine call is that of the store location if it'is specified, othery

of the acces
static condit

An index exj

has an index mode; the class of the value delivered by index expression.must be compatible with that index

The store lo
The mode of
If store loca
location, if 1

of it; the par:

The class of]

it has a static record mode or a varying string record mode; otherwise there should exist a dynamically p

version of r¢
write expres.

dynamic copditions: The RANGEFAIL or TAGFAIL exceptions occur if the dynamic part of the aboyj

compatibility

The READH
location is ni

hmic upper bound of the array value that was read in case of an array mode;

bf (tag) values associated with the mode of the structure value that was read in case of a ¥ariant
the READRECORD built-in routine call is the M-reference class if store location iSmet specifig
erence class, where S is the mode of the store location.
location.

ions: The access location must have a record mode.

bression may not be specified if access location has no index mode and must be specified if ac

ation must be referable.

store location must not have the read-only propérty.

fion is specified, then the mode of store lpcation must be equivalent with the record mode
has a static record mode or a varying:\string record mode, otherwise a dynamically paramete
hmeters of such a dynamically parameterized mode are those of the value that has been read.

the value delivered by write expiession must be compatible with the record mode of the acces
cord mode that is compatible with the class of write expression. The assignment conditions of
ion with respect to the:above mentioned mode apply.
 check fails,

ECORD.'and WRITERECORD built-in routine call cause the NOTCONNECTED exception
bt connected to an association.

structure.

td, otherwise

vise it is that

ess location
mode.

f the access
rized version

s location, if
arameterized
the value of

e mentioned

f the access

The READR

ECORD or WRITERECORD built-in routine call canse the RANGFEFAII exception if the in

lex mode of

access location is a discrete range mode and the index expression delivers a value that lies outside the bounds of that
discrete range mode.

The READRECORD built-in routine call causes the READFAIL exception if one of the following conditions occurs:

the value of the usage-attribute is WRITEONLY,

the reading of the record with the calculated index fails, due to outside world conditions.

the value of the outoffile-attribute is TRUE and the access location is connected for sequential read operations;

The WRITERECORD built-in routine call causes the WRITEFAIL exception if one of the following conditions occurs:

the value of the usage-attribute is READONLY,

the writing of the record with the calculated index fails, due to outside world conditions.
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If the RANGEFAIL exception or the NOTCONNECTED exception occur then it occurs before the value of any attribute
is changed and before the file is positioned.

examples:

20.24 READRECORD (record _file, curindex, record buffer), (1.1)

22.25 READRECORD (fileaccess), (1.1)

20.32 WRITERECORD (record _file, curindex, record buffer); (2.1)

21.61 WRITERECORD (outfile, buffers( flag )), (2.1)

20.24 record_buffer (3.1)

21.61 buffers( flag ) (4.1)

7.5 Tgxt input output

7.5.1 Gg¢neral

Text output|operations allow the representation of CHILL values in a human-readable form; text inpyt operations

perform the

Text transfe

bpposite transformation.

" operations are defined on top of the basic CHILL input/output modélhand operate on files

accessed either sequentially or randomly and whose records may have a fixed or yariable length.

The model 4
referred to a:

Manipulatin
to be conneg

Text transfer
locations tha

The possibil
but rather it

Text values

Text values
text mode. T|

7.5.2 A

Text values

actual
RANG]

I

ssumes that every record has a (possibly empty) positioning infofmation attached, in implemen
carriage control or control characters.

b a text file in CHILL requires an association; transferriig data to or from a text file requires a
ted to an association for that file.

operations can be applied to CHILL values that ay become records of some text file, as well
t are not necessarily related to any i/o activity ‘efithe program.

ty to recover from a piece of text the samie’CHILL values that originated it cannot be guaranted
Hepends on the specific representation that has been used.

ire contained in locations of text'mede. A text location is necessary to transfer data in human-re

nave no denotation but are contained in locations of text mode; there exists no expression denoti
ext values can only be manipulated by built-in routines that take a text location as parameter.

ributes of text values

ave attributes'that describe their dynamic properties. The following attributes are defined:

ndex: indicating the next character position of the text record to be read or written. It has a m|
' (0:[~1), where L is the text length of the value's mode. It is initialized to 0 when a text locatio

text re

ford reference: indicating a reference value to the text record sub-location of the text locaf

that may be

tations often

text location

as to CHILL

d in general,

dable form.

ng a value of

ode which is
n is created.

ion. It has a

mode which is REF M, where M is the text record mode of the value's mode.

REF M, where M is the access mode of the value's mode.

7.5.3 Te

syntax:

xt transfer operations

<text built-in routine call> ::=

READTEXT ( <text io argument list>)

| WRITETEXT ( <text io argument list>)

<text io argument list> ::=

112
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<text argument> ::= (3)
<text location> 3.1)

| <character string location> (3.2)

| <character string expression> (3.3)
<format argument> ::= (4)
<character string expression> (4.1)

<io list> ::= (5)
<io list element> { , <io list element> }* (5.1)

<io list element> ::= (6)
<value argument> (6.1)

| <location argument> (6.2)
<location argument> ::= (7)
<discrete location™> 7.1)

| <floating point location> 7.2)

| <string location> 7.3)

alue argument> ::= (8)
<discrete expression> 8.1)

| <floating point expression> 8.2)

| <string expression> 8.3)

NOTE — If thg io list element is a location, the syntactic ambiguity is resolved by interpreting the io list element as a loca
rather than a Jalue argument.

semantics: READTEXT applies the conversion, editing and i/o control functions contained in the format arg
text record flenoted by the text argument; this (possibly) produces a list.0f values that are assigned to the elg
io list in thp sequence in which they are specified. WRITETEXT performs the opposite operation. No
operations afe performed.

If the fext apgument is a character string location or a character string expression, then the conversioq]
functions arq applied without any relation with the external'world. In this case the actual index denotes a 10}
implicitly crpated at the beginning of the built-in routine call and initialized to 0. The text record is the ch
denoted by dharacter string location or character strinigyexpression and the text length its string length.

The elementp of the io list may be either:

*  value afguments and location arguments,or
*  variable clause widths as described below.
RelationshiIs between a format argument and an io list

The value dqglivered by a forinat argument must have the form of a format control string (see 7.5.4).

During the gxecution/of*a text i/o built-in routine call the format control string (see 7.5.4) denoted b
argument arjd the so-list are scanned from left to right. Each occurrence of a format text and format sp
interpreted ahd the dppropriate action is taken as follows:

tion argument

ument to the
ments of the
implicit i/o

and editing
cation that is
hracter string

y the format
peification is

a) format text

In READTEXT the text record should contain at the actual index position a string slice which is equal to the string

delivered by format text. In WRITETEXT, the string delivered by format text is transferred to the text

record. The

semantics are the same as if a format specification which is %C and an io list element that delivers the same string

value as that delivered by format text were encountered.

b) format specification

If the format specification contains a repetition factor, then it is equivalent to a sequence of as many format element

occurrences as the number denoted by repetition factor.

If the format specification is a format clause, then it contains a control code. If the control code is a conversion
clause, then an io list element is taken from the io /ist and the conversion function selected by the conversion code,
conversion qualifiers and clause width is applied to it (see 7.5.5). If the control code is an editing clause or an io
clause, then the editing or io function selected by the editing code or io code and clause width is applied to the text

argument without reference to the io list (see 7.5.6 and 7.5.7).
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If the clause width is variable, then a value is taken from the list, which denotes the width parameter of the
conversion or editing control function.

If the format specification is a parenthesized clause, then the format control string that is contained in it is scanned.

The interpretation of the format control string terminates when the end of the string delivered by format control string
has been reached.

The io list elements of the io list are scanned in the order that they are specified.

static conditions: If the fext argument is a string location, its mode must be a varying string mode.

An index expression may not be specified if the text argument is not a text location or if it is and its access mode has no
index mode and must be specified if the access mode has an index mode; the class of the value delivered by index
expression must be compatible with that index mode.

A text argun|
A string locd

dynamic ¢

string;

during
scanned
codes 0

an io cl

a formg
string W

Any excepti
function is e

OI
the string value delivered by the format argument cannot be derived as a terminal production of the f«

an atterpipt to assign to the actual index a value which is less than 0 or greater(than text length is made

ent in a WRITETEXT built-in routine call must be a location.
tion in a text argument must be referable.

ditions: The TEXTFAIL exception occurs if:

T

he interpretation, the end of the format control string has been. reached and the io /list is no
, or no more elements can be taken from the io list and the foriat control string contains mor
I variable clause widths; or

huse is encountered and the text argument is not a text docation; or

t text is encountered in READTEXT and the text récord does not contain at the actual indg¢
hich is equal to the string delivered by format text:

pn defined for the READRECORD and WRITERECORD built-in routine call can occur if a
kecuted and any one of the dynamic conditions defined is violated.

rmat control
or

t completely
e conversion

X position a

h i/o control

examples:
26.18 WRITETEXT (output,"%B%/}10) 1.2)
7.5.4 Format control string
syntax:
<format controlstring> ::= (1)
[(<format text> ]| { <format specification> [ <format text> | }* 1.1)
<format fext> ::= (2)
{ <nom-percent character> | <percent> }* 2.1)
<percent> ::= (3)
95 9% (3.1)
<format specification> ::= (4)
% [ <repetition factor> ] <format element> (4.1)
<repetition factor> ::= (5)
{ <digit>}+ (5.1)
<format element> ::= (6)
<format clause> (6.1)
| <parenthesized clause> (6.2)
<format clause> ::= (7)
<control code> [ % . | (7.1)
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<control code> ::= (8)
<conversion clause> (8.1)

| <editing clause> (8.2)

| <io clause> (8.3)
<parenthesized clause> ::= 9)
( <format control string> %) 9.1)

NOTE — A format specification is terminated by the first character that cannot be part of the format element. Spaces and format
effectors may not be used within format elements. A period (.) may be used to terminate a format clause. It belongs to the format
clause and it has only a delimiting effect. To represent the character percent (%) within a format text, it has to be written twice (%%).

semantics: A format control string specifies the external form of the values being transferred and the layout of data
within the records. A format control string is composed of format text occurrences, which denote fixed parts of the
records and of format specification occurrences, which denote the external representations of CHILL values, allowing
the editing of the text record or controlling the actual i/0 operations.

If a format specification contains a repetition factor and a format clause, then it is equivalent to as many_identical format
specification] occurrences of the format clause as the number delivered by repetition factor. A repefition fadtor can be 0,
in which casp the format specification is not considered. E.g. "%3C4" is equivalent to "%C4%C4%C4".

The decimal|notation is assumed for the digits in a repetition factor.

A format coptrol string in a parenthesized clause is repeatedly scanned according towthe repetition factdr. If none is
specified, / 1s assumed by default.

examples:

26.20 site = %C%/ 1.1)

7.5.5 Cqnversion

syntax:

<¢onversion clause> ::= (1)
<conversion code> { <conversion qualifier> }*
[ <clause width> ] 1.1)

<¢onversion code> ::= )
B|OIH|C|F 2.1)

<¢onversion qualifier>~3= 3)
L | E | P scharacter> 3.1)

<¢lause width>~= 4)
{i<digit> }* | V'} [ <fractional width>] [ <exponent width> ] 4.1)

<fractional width> ::= 5
. { <digit> )}t 5.1)

<exponent width> ::= (6)
 { <digit> } T (6.1)

derived syntax: A conversion clause in which a clause width is not present is derived syntax for a conversion clause in
which a clause width that is 0 is specified.

semantics: A conversion in a READTEXT built-in routine call transforms a string which is an external representation into
a CHILL value. A conversion in a WRITETEXT built-in routine call performs the opposite transformation. The
conversion code together with the conversion qualifier specify the type of the conversion and the details of the requested
operation such as justification, overflow handling and padding.

The external representation is a string whose length usually depends on the value being converted. That string may

contain the minimum number of characters that are necessary to represent the CHILL value (free format) or may have a
given length (fixed format).
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In the fixed format a slice of width size starting from the actual index position is read from or written into the text
record according to the justification and padding selected by conversion qualifiers, as follows:

in READTEXT: all padding characters (to the left or to the right according to the justification), if any, are removed.

However, when characters or fixed character strings are being read, the maximum number N of padding characters
that are removed is width —L , where L is 1 or string length, respectively. No characters are removed if N < 0. The
remaining characters are taken as the external representation;

in WRITETEXT: if the length of the external representation is less than or equal to width, then the characters are

justified to the left or to the right in the slice (according to the justification). The unused string elements, if any, are
filled with the padding character. Otherwise the string is truncated (on the left if the justification to the right is
selected, otherwise on the right), or width "overflow" indicator characters (*) are transferred, if the qualifier £ is
present. The truncation is applied to the external representation, including the minus sign, the period (.) and the £
(scientific representation), if any.

In the free fdg

in REA
and the|
charact
as defin

in WRI]

In WRITETH
actual lengt|
the actual l¢

A clause wid
If the width
If the width

In a READ]
argument.

In a WRITE
M-derived ¢

Conversion

Conversion

B: i

oC

rmat the following holds:

DTEXT: padding characters, if any, are skipped except when a character or a characterstring
conversion qualifier P is not specified. Then, the external representation is taken(as.the lon
brs that starts at the actual index and is made of all the subsequent characters that. may lexically
ed below.

[ETEXT: the string delivered by the conversion is inserted starting from theetual index positio

CXT the string which is the external representation is transferred.te"the text record without
h. After the transfer, the actual index is automatically advanced ‘to the next available character|
ngth is set to the maximum value between the actual index and'the (old) actual length.

th is constant if it is made of digits. The decimal notation is assumed. Otherwise it is variable.
is zero, then the free format is chosen, otherwise the'width is the length of the fixed format.
is too small to contain the string, the appropriate action is taken depending on the conversion qu

[EXT the external representation thatis applied is the one defined below for the mode of

'EXT the external representation that is applied is the one defined below for the mode M of th
ass of the value delivered by the value argument.

codes

odes are repeesented as single letters. The following conversion codes are defined:

ary representation.

al‘tépresentation.

s being read
gest slice of
/ belong to it

[

regard to its
position and

alifier.

the location

b M-value or

0]
H:
C

hexadecimal representation.

value being converted (see below).

F:

The external

Conversion

representation depends on the conversion code and the mode of the value being converted.

qualifiers

Conversion qualifiers are represented as single letters. The following conversion qualifiers are defined:

L:
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truncation is performed. In READTEXT or in the free format this qualifier has no effect.

overflow evidence. In WRITETEXT the overflow indication is selected; if the qualifier is not present, then

padding. The character that follows the qualifier specifies the padding character. If P is not present, then the

padding character is assumed to be space by default. In READTEXT if the free format is selected, then spaces
and HT (Horizontal Tabulation) are considered as the same character for skipping purposes, either when
specified after the qualifier or when applied by default.

External representation

The external

a)

representation of CHILL values is defined as follows:

integers

Integer values are lexically represented as one or more digits in a decimal default base without leading zeros and

with a

READT]
decima
convers

b) floating
Floating

fix]
sci

In the fi
(integer
by a pe

In the {
lexicall

exponent is lexically represented by an £ followed by a possible sign and a sequence of one or more dig

15&&;115 Disll lf llUéatiVU. Ulldcl}lllc \,halqutc1o, a 1cadius P}ub Disll aud lcadiué ZUIUS adiv
EXT. The following conversion codes are available: B, O, C and H. The conversion code

representation. The digits that may belong to the representation are only those that atre-sell
ion code.

point

b point values can be represented in two ways:

ed point representation (selected by C conversion code);

entific representation (selected by F conversion code).

xed point representation, the floating point value is lexically-fepresented by a sequence of one o
part) followed by an optional sequence of one or more digits (fractional part) separated from th

iod (.). A leading minus sign is present if the value is niegative.

cientific representation, the floating point value s represented by mantissa and exponent. Th
y represented as a fixed point value with the integer part consisting of only one digit, greater th

discarded in
[ selects the
ected by the

r more digits
e integer part

e mantissa is
an zero. The
rits. For both

actional part
pf digits that

r of digits to
imed.

er case (e.g.
- the special

represeftations a leading plus sign and zeros aré-discarded in READTEXT.
If fractional width is present, the value delivered by digits contained in it indicates the length of the fi
extendgd with trailing zeros if necessary;.otherwise the fractional part contains the minimum number
are nec¢ssary to represent it.
If expogent width is present, thewvalue delivered by digits contained in it indicates the minimum numbg
use to rgpresent the exponentyincluding leading zeros if necessary, otherwise a default value of 3 is asst
The following conversion.codes are available: C, F.
c) booleans
Boolean values*are lexically represented as simple name string, that are TRUE and FALSE [in upp
TRUE)|otdower case (e.g. true) depending on the representation chosen by the implementation fo
simple TarIe bhiugb]. The fuﬂuwiug Tonversion code Tsavaitabte €
d) characters
Character values are lexically represented as strings of length /. The following conversion code is available: C.
e) sets
Set mode values are lexically represented as simple name strings, that are the set literals. The following conversion
code is available: C.
f) ranges

Range values have the same representation as the values of their root mode. However, only the representations of
those values defined by the discrete range mode or floating point range mode belong to the set of external
representations associated to the discrete range mode or floating point range mode.
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character strings

Character string values are lexically represented as strings of characters of length L. In WRITETEXT L is the actual
length. In READTEXT L is the string length if the string is a fixed string, otherwise it is a varying string and L is
the string length, unless there are less characters available in the (slice of) text record at the actual index position,
in which case L is the number of available characters. The following conversion code is available: C.

ISO/IEC 94
g
h)  bit strings

Bit string values are lexically represented as strings of binary digits. The same rules as for character strings apply to

determi

ne the number of digits. The following conversion code is available: C.

dynamic properties: A clause width has a width, which is the value delivered by digits or by a value from the io list if
the clause width is variable, otherwise it is zero if none is specified.

dynamic co

nditions: The TEXTFAIL exception occurs if:

in REA]
skippin
the moq
text red

in WRI]
to the td

in REAJ
of the 1

the sam|

a varia
class orf

a claus{
not hav

examples:

26.21 C

7.5.6 Ed

syntax:

<d

<

DTEXT, the text record does not contain a string slice starting at the actual index that (afteryth
b of padding characters, see above) can be interpreted as an external representation ofrone of
e of the current location argument (including an attempt to read a non-empty externahrepresen
ord when actual index = actual length); or

'ETEXT, a string slice that is the external representation of the current value @rgument can not b
xt record starting at the actual index; or

DTEXT a conversion code is encountered and the current element in‘the“o list is not a location,
cation has the read-only property; or

e conversion qualifier is specified more than once; or

ble clause width is encountered and the corresponding 16 /ist element in the io list does not ha
it is less than 0;

width has a fractional width or an exponent width and the corresponding io list element in th
b a floating point class, or it has an exponent width and the conversion code is not F.

L6

iting

diting clause> ¢;=
<editing code> [ <clause width> ]

diting code> ::=
X|<|>|T

e removal or
he values of
ation from a

e transferred

or the mode

e an integer

e jo list does

1.1)

(1)
1.1)

2)
2.1)

derived syn

aAX. AT editing clanse T Wiich a clanse widri 1S TIot present 1S derived Symmtax for am edinng ¢

a clause width that is I is specified if the editing code is not T, otherwise 0, respectively.

semantics: The following editing functions are defined:

X
> ski
< ski
T:

space: width space characters are inserted or skipped.

p right: the actual index is moved rightward for width positions.

p left: the actual index is moved leftward for width positions.

tabulation: the actual index is moved to the position width.

use in which

In WRITETEXT, if the actual index is moved to a position which is greater than the actual length, then a string of N
space characters, where N is the difference between the actual index and the (old) actual length is appended to the text
record. The actual length is set to the maximum value between the actual index and the (old) actual length.
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dynamic conditions: The TEXTFAIL exception occurs if:

the actual index is moved to a position which is less than 0 or greater than text length; or

in READTEXT the actual index is moved to a position which is greater than the actual length; or

is not present in the text record at the actual index position.

in READTEXT the editing code X is specified and a string of width space or HT (Horizontal Tabulation) characters

examples:
26.22 X (1.1)
7.5.7 1/O control
syntax:
<o clause> ::= (1)
<io code> 1.1)
<fo code> ::= (2)
HN=1+1?|'= 2.1)

semantics: 1
of the text

WRITETEX]
initial positi
record is pr
text record)

The carriagg
(x, v, z) cong

'he i/0 control functions (except %=) perform an i/o operation. They allow precise control ove

[, the text record and the appropriate representation of the carriage control information are trai
n of the carriage at the time the text location is connected is such-that the first character of
nted at the beginning of the first unoccupied line (regardless of any positioning information at

idering columns as being numbered from zero starting'at the left margin, and lines from zero §

carriage is moved w lines downward, at the begihning of the line (new position: (0, (y + w) md
b, where p is the number of lines per page));

carriage is moved w pages downward at'the beginning of the line (new position: (0, 0, z + w)).

g control functions are provided:
ord: the record is printed on the next line (nl(1), print record, nl(0));
pe: the record is printed ‘on the top of the next page (np(1), print record, nl(0));

line: the record isprinted on the current line (print record, nl(0));

carriage'control is performed (print record);

e: defihes the positioning of the next record, if any, to be at the top of the next page (this

I the transfer

record. In READTEXT, all the functions have the same effect, to read. th¢ next record from the file. In

isferred. The
the first text
tached to the

placement is described by means of the following abstfact*operations on the current column, line and page

tarting at the

dp,z+(y+

the record is printed on the next line. The carriage is left at the end of the line (nl(1), print recoid);

verrides the

top margin.
nl(w):  the
w)/j
np(w): the
The followiy
/i next reg
+: next pa;
—  current
?:  prompt
l: emit: n
=: end pag
positior]

ihg\performed before the printing of the record). It does not cause any i/o operation.

The I/0 transfer is performed as follows:

in READTEXT, the semantics are as if a READRECORD (A4, I, R), where A is the access sub-location of the text

location, I is the index expression (if any) and R denotes the text record, were executed. After the I/O transfer
actual index is set to 0 and actual length to the string length of the string value that was read;

in WRITETEXT, the semantics are as if a WRITERECORD (4, I, R), where A is the access sub-location of the text

location, I is the index expression (if any) and R denotes the text record, were executed. The associated positioning
information is also transferred. If the record mode of the access is not dynamic, then the text record is filled at the
end with space characters and its actual length is set to text length before the transfer takes place. After the I/0O

transfer
examples:

26.21 /

actual index and actual length are set to 0.
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7.5.8

syntax:

Accessing the attributes of a text location

<gettext built-in routine call> ::=

GETTEXTRECORD ( <text location>")
GETTEXTINDEX ( <text location>)
GETTEXTACCESS ( <text location>)
EOLN ( <text location>)

<settext built-in routine call> ::=

SETTEXTRECORD ( <text location> , <character string location>)
SETTEXTINDEX ( <text location> , <integer expression>)
SETTEXTACCESS ( <text location> , <access location>)

semantics: GETTEXTRECORD returns the text record reference of text location.

(1)
(1.1)
(1.2)
(1.3)
(1.4)

2)
2.1)
(2.2)
2.3)

GETTEXTIN
GETTEXTA

EOLN deliv
length).

SETTEXTRH
reference of

SETTEXTIN|
width delive

SETTEXTAC
location.

static prope
record mod

The class of’

The class of]
location.

The class of
A GETTEX]

static condi
with the text

The mode o
text location

The locatio
location.

[DEX returns the actual index of fext location.
CCESS returns the access reference of fext location.

ers TRUE if no more characters are available in the text record (i.e. if the actualindex equa

CORD stores a reference to the location delivered by character string™ocation into the
the text location.

PDEX has the same semantics as an editing clause in WRITETEXT-in which editing code is
s the same value as integer expression, applied to the text recordidenoted by text location.

CESS stores a reference to the location delivered by access¢/ocation into the access referend

rties: The class of the GETTEXTRECORD built-inaoutine call is the M-reference class, where
b of the text location.

the GETTEXTINDEX built-in routine call is_the"&/NT-derived class.

the GETTEXTACCESS built-in routine call is the M-reference class, where M is the access mo

the FOLN built-in routine call.isthe BOOL-derived class.
[RECORD or GETTEXTACGESS built-in routine call has the same regionality as the text locati

ions: The mode of the'character string location argument of SETTEXTRECORD must be read
record mode of the\text location.

p argument in SETTEXTRECORD and SETTEXTACCESS must have the same regionality

Is the actual

text record

" and clause

e of the text

M is the text

le of the text

n.

-compatible

the access ldeation argument of SETTEXTACCESS must be read-compatible with the access| mode of the

as the text

dynamic conditions: The TEXTFAIL exception occurs if the integer expression argument of SETTEXTINDEX delivers a

value that is

less than 0 or greater than the text length of the text location.

examples:
26.23 GETTEXTINDEX (output)
8 Exception handling

8.1

General

(1.2)

An exception is either a language defined exception, in which case it has a language defined exception name, a user
defined exception, or an implementation defined exception. A language defined exception will be caused by the dynamic
violation of a dynamic condition. Any exception can be caused by the execution of a cause action.
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When an exception is caused, it may be handled, i.e. an action statement list of an appropriate handler will be executed.

Exception handling is defined such that at any statement it is statically known which exceptions might occur (i.e. it is
statically known which exceptions cannot occur) and for which exceptions an appropriate handler can be found or which
exceptions may be passed to the calling point of a procedure. If an exception occurs and no handler for it can be found,

the program

is in error.

When an exception occurs at an action statement or a declaration statement, the execution of the statement is performed
up to an unspecified extent, unless stated otherwise in the appropriate section.

8.2

syntax:

Handlers

<handler> ::=

(1)

semantics: 4
list in an on
and the corrg

When the e
appended ar

static condit

dynamic co
cannot be sa

examples:
10.47 ON
(ALLOCATEFAIL): CAUSE overflow;
END
8.3 Handler identification

When an ex(
an appropria
calling point

For any acti
EatAorD

ON { <on-alternative> ;™ | ELSKE <action statement [ist> | END

n-alternative> ::=
(<exception list>) : <action statement list>

A handler is entered if it is appropriate for an exception E according to 8.3. If E is\mentioned in
alternative in the handler, the corresponding action statement list is entered; otherwise ELSH
sponding action statement list is entered.

nd of the chosen action statement list is reached, the handler and.the) construct to which th
b terminated.

ions: All the exception names in all the exception list occurrences must be different.

hditions: The SPACEFAIL exception occurs if an actiofystatement list is entered and storage
isfied.

eption E occurs at an‘action or module A, or a data statement or region D, the exception may bj
te handler; i.e. anlaction statement list in the handler will be executed or the exception may be
of a procedure; \or, if neither is possible, the program is in error.

n or module’A, or data statement or region D, it can be statically determined whether for a giy
in appropriate handler can be found or whether the exception may be passed to the calling point

ite.hdandler for A or D with respect to an exception with exception name E is determined as follo

1.1)

2)
2.1)

an exception

is specified

e handler is

requirements

1.1)

¢ handled by
bassed to the

en exception

IWS:

if a handler which mentions E in an exception list or which specifies ELSE is appended to or included in A or D,

and E occurs in the reach directly enclosing the handler, then that handler is the appropriate one with respect to E;

present) is the appropriate handler for the bracketed action, module or region with respect to E;

An appropri
1y
2)
3) otherwi

se, if A or D is placed in the reach of a procedure definition then:

then that handler is the appropriate handler;

point;

be

appropriate (see 13.5);
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otherwise, if A or D is directly enclosed by a bracketed action, a module or a region, the appropriate handler (if

if a handler which mentions E in an exception list or specifies ELSE is appended to the procedure definition,

otherwise, if E is mentioned in the exception list of the procedure definition, then E is caused at the calling

otherwise there is no user-defined handler; however, in this situation an implementation defined handler may
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4) otherwi

se, if A or D is placed in the reach of a process definition, then:

that handler is the appropriate handler;

be
5)

appropriate (see 13.5);

if a handler which mentions E in an exception list or specifies ELSE is appended to the process definition, then

otherwise there is no user-defined handler; however, in this situation an implementation defined handler may

otherwise, if A is an action of an action statement list in a handler, then the appropriate handler is the appropriate

handler for the action A' or data statement or region D' with respect to E which the handler is appended to or
included in but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, local storage
will be released when exiting from the block.

9

9.1 G

It is assume
properties of
9.2

The concept
time interrup

A process bg
a process to
become timg

9.3

syntax:

semantics: 4
may expire

cyclic timin
supervisions

A time inter
The occurret

Time supervision

bneral

| that a concept of time exists externally to a CHILL program (system). CHILL-dees not specif
time, but provides mechanisms to enable a program to interact with the external world's view o

Timeoutable processes

of a timeoutable process exists in order to identify the precise‘points during program execu
t may occur, that is, when a time supervision may interfere with the normal execution of a procg

comes timeoutable when it reaches a well-defined pointin‘the execution of certain actions. C}
become timeoutable during the execution of specifictactions; an implementation may define
outable during the execution of further actions.

Timing actions

iming action> ::=
<relative timing actiop>
| <absolute timing action>
| <cyclic timing action>

\ timing action specifies time supervisions of the executing process. A time supervision may b
nd it may cease to-exist. Several time supervisions may be associated with a single process b
b action andbecause a timing action can itself contain other actions whose execution can

=

Fupt 0ccurs when a process is timeoutable and at least one of its associated time supervisions
cé.Of a time interrupt implies that the first expired time supervision ceases to exist; furthermo

ly the precise
 time.

tion where a
SS.

HILL defines
a process to

(1)
1.1)
1.2)
1.3)

e initiated, it
tcause of the
initiate time

has expired.
e, it leads to

the transfer

£f eont accaeciatad uath

ral ath tha cumariz
T—coRtror—asSoctatea—witn—tia

£ tina caamaruicang 1 tho carmaricad mencace T tho ncad
t—HHRe—SHperHSion——ne—SHperHSea—procesS——tne—SHpervisSea

process was

delayed, it becomes re-activated.

Time supervisions also cease to exist when control leaves the timing action that initiated them.

NOTE - If the transfer of control causes the process to leave a region, the region will be released (see 11.2.1).

9.3.1

syntax:

Relative timing action

<relative timing action> ::=

AFTER <duration primitive value> [ DELAY | IN
<action statement list> <timing handler> END

<timing handler> ::=
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semantics: The duration primitive value is evaluated, a time supervision is initiated, and then the action statement list is
entered.

If DELAY is specified, the time supervision is initiated when the executing process becomes timeoutable at the point of
execution specified by the action statement in the action statement list, otherwise it is initiated before the action

statement list is entered.

If DELAY is specified, the time supervision ceases to exist if it has been initiated and the executing process ceases to be
timeoutable.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since initiation.
The transfer of control associated with the time supervision is to the action statement list of the timing handler.

static conditions: If DELAY is specified the action statement list must consist of precisely one action statement that
may itself cause the executing process to become timeoutable.

dynamic cqnditions: The TIMERFAIL exception occurs if the initiation of the time superyision [fails for an
implementatjon defined reason.

9.3.2 Absolute timing action

syntax:
<gbsolute timing action> ::= (1)
AT <absolute time primitive value> IN
<action statement list> <timing handler> END 1.1)

semantics: The absolute time primitive value is evaluated, a time supervision is initiated, and then the actipn statement
list is enteredl.

The time sugervision expires if it has not ceased to exist at (or@fter) the specified point in time.
The transfer jof control associated with the time supervision is to the action statement list of the timing handlgr.

dynamic cq¢ndition: The TIMERFAIL exception occurs if the initiation of the time supervision [fails for an
implementatjon defined reason.

9.3.3 Cyclic timing action

syntax:
<gyclic timing action> ::= (1)
CYELE <duration primitive value> IN
<action statement list> END 1.1)

semantics: The,¢yclic timing action is intended to ensure that the executing process enters the action stafement list at
precise interpals without cumulated drifts (this implies that the execution time for the action statement lit on average
should be lessthan the speciticd duration vatuc). 1 he duration primilive vaiie i3 evaluated, a retative time supervision is
initiated, and then the action statement list is entered.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since initiation.
Indivisibly with the expiration a new time supervision with the same duration value is initiated.

The transfer of control associated with the time supervision is to the beginning of the action statement list.
Note that the cyclic timing action can only terminate by a transfer of control out of it.

dynamic properties: The executing process becomes timeoutable if and when control reaches the end of the action
statement list.

dynamic conditions: The TIMERFAIL exception occurs if any initiation of a time supervision fails for an
implementation defined reason.
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9.4 Built-in routines for time

syntax:

<time value built-in routine call> ::=

<duration built-in routine call>
| <absolute time built-in routine call>

(1)
(1.1)
(1.2)

semantics: Implementations are likely to have quite different requirements and capabilities in terms of precision and
range of time values. The built-in routines defined below are intended to accommodate these differences in a portable

manner.

94.1 Duration built-in routines

syntax:

<

semantics: 4
precision (i,
approximati
HOURS and

static prope

dynamic copditions: The RANGEFAIL exception occurs if the implementation cannot deliver a duration v{

the indicated

9.4.2 Al

syntax:

uration built-in routine call> ::=
MILLISECS ( <integer expression>)
| SECS ( <integer expression>)
| MINUTES ( <integer expression>)
| HOURS ( <integer expression>)
| DAYS ( <integer expression>)

A duration built-in routine call delivers a duration value with implementation defined and pos
. MILLISECS (1000) and SECS (1) may deliver different duration’ values); this value i
n in the chosen precision to the indicated period of time. The argument of MILLISECS, SECS
DAYS indicate a point in time expressed in milliseconds, seconds,'minutes, hours and days resp

rties: The class of a duration built-in routine call is the DURATION-derived class.

period of time.

solute time built-in routine

(1)
1.1)
1.2)
1.3)
1.4)
1.5)

ibly varying
the closest

, MINUTES,

pctively.

lue denoting

<gbsolute time built-in routine callx : = (1)
ABSTIME ([ [ [ [ [ [ <Year expression> , | <month expression> , |
<day expression> ] shour expression> , |
<minute expression> , | <second expression>]) 1.1)
<year expression> ;= (2)
<integer expression> 2.1)
<month expresSion> ::= (3)
<integer expression> 3.1)
<day expression> ::= (4)
integer expression 4. ])
<hour expression> ::= (5)
<integer expression> (5.1)
<minute expression> ::= (6)
<integer expression> (6.1)
<second expression> ::= (7)
<integer expression> (7.1)

semantics: The ABSTIMFE built-in routine call delivers an absolute time value denoting the point in time in the Gregorian
calendar indicated in the parameter list. The parameters indicate the components of time in the following order: the year,
the month, the day, the hour, the minute and the second. When higher order parameters are omitted, the point in time
indicated is the next one that matches the low order parameters present (e.g. ABSTIME (15,12,00,00) denotes noon on the
15th in this or the next month).
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When no parameters are specified, an absolute time value denoting the present point in time is delivered.

static properties: The class of the absolute time built-in routine call is the TIME-derived class.

dynamic conditions: The RANGEFAIL exception is caused if the implementation cannot deliver an absolute time value

denoting the indicated point in time.
9.4.3 Timing built-in routine call
syntax:
<timing simple built-in routine call> ::= (1)
WAIT () (1.1)
| EXPIRED () (1.2)
| INTTIME (<absolute time primitive value> , [ [ [ [ <vear location>
<month location> , | <day location> , |
<hour location> , | <minute location> , |
<second location>) 1.3)
<year location> ::= (2)
<integer location> 2.1)
<month location> ::= (3)
<integer location> 3.1)
<{lay location> ::= (4)
<integer location> 4.1)
<kour location> ::= (5)
<integer location> 5.1)
<minute location> ::= (6)
<integer location> 6.1)
<§econd location> ::= (7)
<integer location> 7.1)
semantics: §AIT unconditionally makes the-executing process timeoutable: its execution can only termingte by a time
interrupt. (Npte that the process remains,active in the CHILL sense.)
EXPIRED nfakes the executing prodess timeoutable if one of its associated time supervisions has expired] otherwise it
has no effect.
INTTIME agsigns to the specified integer locations an integer representation of the point in time in the Gregorian
calendar specified by the’absolute time primitive value. The locations passed as arguments receive the cqgmponents of
time in the fpllowing order: the year, the month, the day, the hour, the minute and the second.
static conditions:~All specified integer locations must be referable and their modes may not have tle read-only
property.

dynamic properties: WAIT makes the executing process timeoutable.

EXPIRED makes the executing process timeoutable if there is an expired time supervision associated with it.

10

10.1

Program Structure

General

The if action, case action, do action, delay case action, begin-end block, module, region, spec module, spec region,
context, receive case action, procedure definition and process definition determine the program structure; i.e. they

determine th

e scope of names and the lifetime of locations created in them.
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A group inflpences the scope of €ach name created in its reach. Names are created by defining occurrences:

126

The word block is used to denote:

—  the action statement list in a do action including any loop counter and while control,
—  the action statement list in a then clause in an if action;

—  the action statement list in a case alternative in a case action;

—  the action statement list in a delay alternative in a delay case action;

—  abegin-end block;

— a procedure definition excluding the result spec and parameter spec of all formal parameters of the formal
parameter list,

— aprocess definition excluding the parameter spec of all formal parameters of the formal parameter list,

—  thqacrion sTarerment 11T I @ bujfer receive alternarive or 1 a SIgnal Tecelve alternarnve, Ictudinglany defining
ocurrences in a defining occurrence list after IN;

—  thq action statement list after ELSE in an if action or case action or a receive case action o1 handler;
—  thq on-alternative in a handler;

—  thq action statement list in a relative timing action, an absolute timing action, a cyclic timing dction or in a
timying handler.

The wold modulion is used to denote:

—  anodule or region, excluding the context list and defining occurrence, if any;
—  aspec module or spec region, excluding the context list, if any;

- a dontext,

—  thq specification together with the corresponding body of a moreta mode;

—  atpmplate together with the corresponding body.

The wold group denotes either a block or a modulion.

The wqrd reach or reach of a group denotes’that part of the group that is not surrounded (see 10.2) by an inner
group. If BM is a moreta mode and DM isa direct successor of BM then BMp -BM¢p O DMp form ofe reach. For
the visipility of the internal compgnents of moreta modes the reach of a successor is nested immediately in the
specifidation part of its direct predec€ssor; this nesting occurs at the end of the specification part.

A definling occurrence\ivr the defining occurrence list of a declaration, mode definition or synonym |definition or
appearifpg in a sighal definition creates a name in the reach where the declaration, mode definitipn, synonym
definitign or sigual definition, respectively, is placed.

A definjngroecurrence in a set mode creates a name in the reach directly enclosing the set mode.

A defining occurrence appcaring in INC defining occurrence 1St I a jormal parameler 1137 creates @ name in the
reach of the associated procedure definition or process definition.

A defining occurrence in front of a colon followed by an action, region, procedure definition, or process definition
creates a name in the reach where the action, region, procedure definition, process definition, respectively, is
placed.

A (virtual) defining occurrence introduced by a with part or in a loop counter creates a name in the reach of the
block of the associated do action.

A defining occurrence in the defining occurrence list of a buffer receive alternative or a signal receive alternative
creates a name in the reach of the block of the associated buffer receive alternative or signal receive alternative,
respectively.

A (virtual) defining occurrence for a language predefined or an implementation defined name creates a name in the
reach of the imaginary outermost process (see 10.8).
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The places where a name is used are called applied occurrences of the name. The name binding rules associate a defining
occurrence with each applied occurrence of the name (see 12.2.2).

A name has a certain scope, i.e. that part of the program where its definition or declarations can be seen and, as a
consequence, where it may be freely used. The name is said to be visible in that part. Locations and procedures have a
certain lifetime, i.e. that part of the program where they exist. Blocks determine both visibility of names and the lifetime
of the locations created in them. Modulions determine only visibility; the lifetime of locations created in the reach of a
modulion will be the same as if they were created in the reach of the first surrounding block. Modulions allow for
restricting the visibility of names. For instance, a name created in the reach of a module will not automatically be visible
in inner or outer modules, although the lifetime might allow for it.

10.2 Reaches and nesting

syntax:
<begin-end body> ::= (1)
<data statement list> <action statement list> 1.1)
<proc body> ::= (2)
<data statement list> <action statement list> 2.1)
<process body> ::= (3)
<data statement list> <action statement list> 3.1)
<module body> ::= (4)
{ <data statement> | <visibility statement> | <region> |
<spec region> }* <action statement list> 4.1)
<gegion body> ::= (5)
{ <data statement> | <visibility statement> }* 5.1)
<ypec module body> ::= (6)
{ <quasi data statement> | <visibility statéement> |
<spec module> | <spec region> }* 6.1)
<ypec region body> ::= (7)
{ <quasi data statement> | <visibility statement> }* 7.1)
<gontext body> ::= 8)
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }* 8.1)
<gction statement list>-3= )
{ <actionwstatement> }* 9.1)
<data statementdist> ::= (10)
{<ddata statement> }* (10.1)
<data statement> ::= (11)
<declaration statement> (11.1)
| definition statement ail.2)
<definition statement> ::= (12)
<synmode definition statement> (12.1)
| <newmode definition statement> (12.2)
<synonym definition statement> 12.3
ynony
| <procedure definition statement> (12.4)
| <process definition statement> (12.5)
| <signal definition statement> (12.6)
| <template> (12.7)
| <empty>; (12.8)

semantics: When a reach of a block is entered, all the lifetime-bound initializations of the locations created when
entering the block are performed. Subsequently, the reach-bound initializations in the block reach, the possibly dynamic
evaluations in the loc-identity declarations, the reach-bound initializations in the regions and the actions are performed in
the order they are textually specified.
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When a reach of a modulion is entered, the reach-bound initializations, the possibly dynamic evaluations in the loc-

identity declarations, the reach-bound initializations in the regions and the actions (if the modulion is a module) that are
in the modulion reach are performed in the order they are textually specified.

A data statement, action, module or region, is terminated either by completing it, or by terminating a handler appended to
it.

When a group G is to be terminated first all TASK and REGION locations (RTL), which depend on G (see 12.2.6), are
closed. The termination of G is finished when all those RTL are completed (see 11.6).

When a reach-bound initialization, loc-identity declaration, action, module, region, procedure or process is terminated,

execution is resumed as follows, depending on the statement or the kind of termination:

if the statement is terminated by completing the execution of a handler, then the execution is resumed with the

subsequ

otherwi
that act

otherwi

otherwi
(see 11

otherwi
static prope

If the rd
enclose
respecti

If the rdg
if actior
timing |

If the r
Stateme
enclose
in that g

If the rd
which i
handlen

If the rdg
it is dirg

cntstaterment;

se, if it is an action that implies a transfer of control, the execution is resumed with the statemer
on (see 6.5, 6.6, 6.8 and 6.9);

se, if it is a procedure, control is returned to the calling point (see 10.4);

ke, if it is a process, the execution of that process (or the program, if<4t iS the outermost p
1) and execution is (possibly) resumed with another process;

se control will be given to the subsequent statement.

rties: Any reach is directly enclosed in zero or more groups-as-follows:

ach is the reach of a do action, begin-end block, procedure definition, process definition, then|
 in the group in whose reach the do action, begin=end block, procedure definition or proce.
vely, is placed, and only in that group.

ach is the action statement list of a timing-action or timing handler, or one of the action statemd
, case action or delay case action, thenit-is directly enclosed in the group in whose reach the #
andler, if action, case action or delay'case action is placed, and only in that group.

pach is the action statement lsty-or a buffer receive alternative, or signal receive alternative,

pt list following ELSE in‘\aJreceive buffer case action or receive signal case action, then

1 in the group in whoseweach the receive buffer case action or receive signal case action is plaq
roup.

ach is the action statement list in an on-alternative or the action statement list following ELSE|
E not appended\to a group, then it is directly enclosed in the group in whose reach the statement

is appended is placed, and only in that group.

ach 1s.an on-alternative or action statement list after ELSE of a handler which is appended to

t defined for

rocess) ends

it is directly
s definition,

nt lists of an
ming action,

br the action
it is directly
ed, and only

in a handler
to which the

h group, then

ctly“enclosed in the group to which the handler is appended, and only in that group.

If the reach is a module, region, spec module or spec region, then it is directly enclosed in the group in whose reach

it is placed, and also directly enclosed in the context directly in front of the module, region, spec module or spec

region,

if any. This is the only case where a reach has more than one directly enclosing group.

has no directly enclosing group.

If the reach is a context, then it is directly enclosed in the context directly in front of it. If there is no such confext, it

A reach has directly enclosing reaches that are the reaches of the directly enclosing groups. A statement has a unique
directly enclosing group, namely, the group in which the statement is placed. A reach is said to directly enclose a group
(reach) if and only if the reach is a directly enclosing reach of the group (reach).

A statement (reach) is said to be surrounded by a group if and only if either the group is the directly enclosing group of
the statement (reach) or a directly enclosing reach is surrounded by the group.
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A reach is said to be entered when:

transfer

s control to a label name defined inside the module).

Begin-end reach: the begin-end block is executed as an action.

is called).

Process

part.

Procedure reach: the procedure is entered via a procedure call.

reach: the process is activated via the evaluation of a start expression.

496:2003(E)

Module reach: the module is executed as an action (e.g. the module is not said to be entered when a goto action

Region reach: the region is encountered (e.g. the region is not said to be entered when one of its critical procedures

Do reach: the do action is executed as an action after the evaluation of the expressions or locations in the control

Buffer-
value o

On-alte

Other b

An action st
the action st

Areachis a

A defining o
. it is sur]
it is sur]
it is nof
and it |
Stateme

otherwise it

10.3 Be¢

syntax:

semantics:
visibility of

TCCIVE allernative Teaci, Signat Teceive altermative Teaci: he allernative 15 cXecuted on recepll
signal.

native reach: the on-alternative is executed on the cause of an exception.

ock reaches: the action statement list is entered.

itement list is said to be entered when and only when its first action, if presefit, receives control
tement list.

quasi reach if it is the one of a spec module, spec region or context, othetwise it is a real reach.
Ccurrence is a quasi defining occurrence if:

rounded by a context and not by a module or region; or

rounded by a simple spec module or a simple spec region; or

surrounded by one of the above-mentioned groups and it is surrounded by a module spec or §
s contained in a quasi declaration, a quasi procedure definition statement or a quasi proce
o1,

s a real defining occurrence.

gin-end blocks

egin-end block> ::%
BEGIN <begin-end body> END

\ begin-end block is an action, possibly containing local declarations and definitions. It det
ocally created names and the lifetimes of locally created locations (see 10.9 and 12.2).

dynamic co

ditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

n of a buffer

from outside

region spec
ss definition

(1)
1.1)

trmines both

examples: see 15.73-15.90

104

syntax:

Procedure specifications and definitions

<procedure definition statement> ::=

<defining occurrence> : <procedure definition>
[ <handler>] [ <simple name string> 1] ;
<generic procedure instantiation>

<procedure definition> ::=

PROC ([ <formal parameter list> ] ) [ <result spec> |
[ EXCEPTIONS ( <exception list>) | <procedure attribute list> ;
<proc body> END

ITU-T Rec. Z.200
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2.1)
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<formal parameter list> ::=

<formal parameter> { , <formal parameter> }*

<formal parameter> ::=

<defining occurrence list> <parameter spec>

<procedure attribute list> ::=

[ <generality> ]

<generality> ::=

GENERAL
| SIMPLE
| INLINE

uarded procedure signature statement> ;.=

3)
(3.1)

4)
(4.1)

(5)
(5.1)

(6)
(6.1)
(6.2)
(6.3)

)

<4

<4

<4

<4

<1

<

<defining occurrence> :
<guarded procedure signature > [ <simple name string> | ;

buarded procedure signature > ::=
PROC ([ < parameter list> ] ) [ < result spec> ]
[EXCEPTIONS ( <exception list> )] <guarded procedure attribute list>)END

buarded procedure definition statement> ::=
<defining occurrence> : <guarded procedure definition>
[ [ <handler>] [ <simple name string> | ;

yuarded procedure definition> ::=
PROC ( [<formal parameter list>] ) [<result spec=]
[EXCEPTIONS ( <exception list> )] <guarded procedure attribute list> ;
<proc body> END

buarded procedure attribute list> ::=
[ GENERAL ]
| [ SIMPLE ][ <simple componen@procedure attribute list> ] <assertion part>
| [ INLINE ] [ <inline component procedure attribute list> |

imple component procedure attyibute list> ::=
<inline component procedure attribute list>
| DESTR
| INCOMPLETE
| [ REIMPLEMENT ][ FINAL ]

nline component'procedure attribute list> ::=
CONSTR
| <FINAL

ssertion part> ::=

7.1)
8)
8.1)
©)

9.1)

(10)

do.1)

(11)
L1)
12)
13)

N

(12)
2.1)
2.2)
2.3)
2.4)

SN

(13)
31)
3.2

N

(14)

derived syntax: A formal parameter, where defining occurrence list consists of more than one defining occurrence, is
derived from several formal parameter occurrences, separated by commas, one for each defining occurrence and each

[PRE (<hoaolean expression>)1
L AN T 7

[ POST ( <boolean expression>) |

with the same parameter spec. For example, i, j INT LOC is derived from i INT LOC, j INT LOC.

semantics: A procedure definition statement defines a (possibly) parameterized sequence of actions that may be called
from different places in the program. The procedure is terminated and control is returned to the calling point either by
executing a return action or by reaching the end of the proc body or by terminating a handler appended to the procedure
definition (falling through). Different degrees of complexity of procedures may be specified as follows:

a) simple procedures (SIMPLE) are procedures that cannot be manipulated dynamically. They are not treated as
values, i.e. they cannot be stored in a procedure location nor can they be passed as parameters to or returned as

result from a procedure call;
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b) general procedures (GENERAL) do not have the restrictions of simple procedures and may be treated as procedure
values;

c) inline procedures (INLINE) have the same restrictions as simple procedures and they are not recursive. They have
the same semantics as normal procedures, but the compiler may insert the generated object code at the point of
invocation rather than generating code for actually calling the procedure.

Only simple and general procedures are recursive.

A guarded procedure definition statement defines a (possibly) parameterized sequence of actions that may be called from
different places in the program. The procedure is terminated and control is returned to the calling point either by
executing a return action or by reaching the end of the proc body or by terminating a handler appended to the procedure
definition (falling through).

When the procedure is defined in a moreta mode, it is called a component procedure. Different kinds of simple and
inline comp Tt procedures detined 1T IToTetd Modes Ay e Speciiied as f0110ws:

a) a consfr component procedure (CONSTR) is a constructor which can be used to initialize~morgta locations
automatically when they are created statically or dynamically;

b) adestr component procedure (DESTR) is a destructor which can be used to finalize moréta-locations when they are
destroygd statically or dynamically;

¢) anincomplete component procedure (INCOMPLETE) has only a signature but«id body;
d) areimglement component procedure (REIMPLEMENT) which is given ahew body and possibly new assertions;

e) a final gomponent procedure (FINAL) is a procedure which cannot be reimplented in a derived moreta [mode.

Different kirjds of assertion part may be specified for simple component procedures:

a) a pre gssertion part (PRE) which is checked automatically before the body of the corresponding [procedure is
execute(d;

b) a post pssertion part (POST) which is checked automatically after the body of the corresponding pfocedure has
been executed and before the return to the calling point.

Only simplg (except for component procedures, with the attributes constr or destr or with public visibility in a region
mode) and general procedures are recursive:

A procedure|may return a value or it may, return a location (indicated by the LOC attribute in the result spec).
The defining occurrence in front,efithe procedure definition defines the name of the procedure.
parameter passing

There are bgsically two\parameter passing mechanisms: the "pass by value" (IN, OUT and INOUT) and [the "pass by
location" (LDC).

pass by valye

In pass by value parameter passing, a value is passed as a parameter to the procedure and stored in a local location of the
specified parameter mode. The effect is as if, at the beginning of the procedure call, the location declaration:

DCL <defining occurrence> <mode> := <actual parameter>;

were encountered for the defining occurrences of the formal parameter. However, the procedure is entered after the
actual parameters have been evaluated. Optionally, the keyword IN may be specified to indicate pass by value explicitly.

If the attribute INOUT is specified, the actual parameter value is obtained from a location and just before returning the
current value of the formal parameter is restored in the actual location.

The effect of OUT is the same as for INOUT with the exception that the initial value of the actual location is not copied

into the formal parameter location upon procedure entry; therefore, the formal parameter has an undefined initial value.
The store-back operation need not be performed if the procedure causes an exception at the calling point.
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pass by location
In pass by location parameter passing, a (possibly dynamic mode) location is passed as a parameter to the procedure
body. Only referable locations can be passed in this way. The effect is as if at the entry point of the procedure the loc-
identity declaration statement:

DCL <defining occurrence> <mode>

LOC [ DYNAMIC | := <actual parameter>

were encountered for the defining occurrences of the formal parameter. However, the procedure is entered after the
actual parameters have been evaluated.

If a value is specified that is not a location, a location containing the specified value will be implicitly created and passed
at the point of the call. The lifetime of the created location is the procedure call. The mode of the created location is
dynamic if the value has a dynamic class.

result transmission

Both a valug
in the latter
referable. T|
procedure w|
an undefine
value proced

static prope

A procedur
procedure 1

A procedur

It has o
each pal

It has p

Ithasa

p

It has 3
GENE]
the pro
moreta

It has 4
(see 11

A com
general

and a location may be returned from the procedure. In the first case, a value is speéified in any
case, a location (see 6.8). If the attribute NONREF is not given in the resulf)spec, the loca
he returned value or location is determined by the most recently executed result action before r

 location. In this case the procedure call may not be used as a locatien\procedure call (see 4.2
ure call (see 5.2.13), but only as a call action (see 6.7).

rties: A defining occurrence in a procedure definition statement'defines a procedure name.

e name has a procedure definition attached that is the{rocedure definition in the statement
lame is defined.

e name has the following properties attached, as defined by its procedure definition:

list of parameter specs that are defined bysthe parameter spec occurrences in the formal pq
Fameter consisting of a mode and possibly< parameter attribute.

hssibly a result spec, consisting of a.mode and an optional result attribute.
possibly empty list of exception-names, which are the names mentioned in exception list.

generality that is, if generality is specified, either general or simple or inline, depending
RAL, SIMPLE or INLINE is specified; otherwise an implementation default specifies general
cedure name is defined inside a block or a region, its generality is simple. If a procedure is
node and has_public visibility, its generality is simple or inline.

recursivity, 'which is recursive. However, if the generality is inline or if the procedure nar
D.1) the-¥ecursivity is non-recursive.

ponent procedure has the generality inline if the attribute INLINE is specified. Otherwis

Fesult action,
fion must be
eturning. If a

th a result spec returns without having executed a result action, the procedute returns an undefined value or

Jdl)norasa

n which the

rameter list,

on whether
or simple. If
defined in a

ne is critical

e it has the

ty SIMFPLE by detault.

A procedure name that is general is a general procedure name. A general procedure name has a procedure mode

attached, for

med as:
PROC ([ <parameter list>]) [ <result spec> |

[ EXCEPTIONS ( <exception list>) ]

where <result spec>, if present, and <exception list> are the same as in its procedure definition and parameter list is the
sequence of <parameter spec> occurrences in the formal parameter list, separated by commas.

A name defined in a defining occurrence list in the formal parameter is a location name if and only if the parameter
spec in the formal parameter does not contain the LOC attribute. If it does contain the LOC attribute, it is a loc-identity
name. Any such a location name or loc-identity name is referable.
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A moreta mode component procedure of a moreta mode M has a complete postcondition CPM which is defined as

follows:
a)
b)

if M has no immediate base mode then CPM = post part;

if M has the immediate base mode B then CPM = CPB [ post part, where CPB is the complete postcondition of B.

static conditions: If a procedure name is intra-regional (see 11.2.2) or is a public procedure of a moreta mode, its
procedure definition must not specify GENERAL.

If a procedure name is critical (see 11.2.1), its definition may not specify GENERAL.

If a simple component procedure has any assertion part, the name of the procedure must have public visibility.

If a simple or inline guarded component procedure has the attribute FINAL, the name of the procedure must not have
private visibility.

The defining
constr comp

The defining
component

If specified,
definition.

Only if LOQ
All exceptio

IfP1 and P2

a) Pland
b) Pland
¢) the forn
d)

If P is a com|

a) Ppgmat
b) the excq
c) the attri

Two procedy

occurrence of a constr component procedure must be the same as that of its attached mor
onent procedure must not specify a result spec and must be non-recursive.

occurrence of a destr component procedure must be the same as that of its attachedimereta m
rocedure must neither specify a formal parameter list nor a result spec and must be-non-recurs

the simple name string must be equal to the name string of the defining occurrence in front of t

is specified in the parameter spec or result spec may the mode in ithave the non-value propej
h names mentioned in exception list must be different.
are component procedures or component processes then P4 matches P2 if and only if:
P2 are of the same kind; and
P2 have the same simple name string; and

nal parameter lists of P1 and P2 are syntactically’and semantically equivalent; and

the resullt specs of P1 and P2 are syntactically andéemantically equivalent.

ponent procedure or a component process then Pg corresponds to Pg if and only if:
hes Pg; and
ption lists of Pg and Py are syntactically and semantically equivalent; and

bute lists of Pg and Pp are syntactically and semantically equivalent.

ires P1 and P2 eoriform to each other if and only if:

pta mode. A
ode. A destr
ve.

he procedure

ty.

a) they both have the sdme number of parameters and the names of the modes of corresponding parameters conform to
each other; and
b) (they bothhave the a result mode and the names of those result modes conform to each other or they poth have no
result njode).
examples:
1.4 add:
PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+y;
END add; (1.1)
put :
PROC(p RANGE(1:10)) PRE((p > 0) AND (p < 11));
END put; (10.1)
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10.5 Process specifications and definitions

syntax:
<process definition statement> ::= (1)
<defining occurrence> : <process definition>
[ <handler> ][ <simple name string> ] ; (1.1)
| <generic process instantiation> ; (1.2)
<process definition> ::= (2)
PROCESS ( [ <formal parameter list> ] ) <process body> END (2.1)

semantics: A process definition statement defines a possibly parameterized sequence of actions that may be started for
concurrent execution from different places in the program (see clause 11).

static properties: A defining occurrence in a process definition statement defines a process name.

A process name has the following property attached, as defined by its process definition:

e It has a list of parameter specs that are defined by the parameter spec occurrences in the.formal pqrameter list,
each pafameter consisting of a mode and possibly a parameter attribute.

static condifions: If specified, the simple name string must be equal to the name string- of-the defining occurrence in
front of the process definition.

A process dfinition statement must not be surrounded by a region or by a block~other than the imaginafy outermost
process definition (see 10.8).

The parametr attributes in the formal parameter list must not be INOUT norOUT.

Only if LOC is specified in the parameter spec in a formal parametér_in the formal parameter list may the mode in it
have the nor-value property.

examples:
14.13 PROCESS ();
ait:
PROC (x INT);
*some wait action™/
END wait;
DO FOR EVER;
ait(10 /* seconds */ );
CONTINUE operator_is_ready;
DD
ERND (2.1)

10.6 Modules
syntax:

<module> ::= (1)
[ <context list> | [ <defining occurrence> : |
MODULE [ BODY | <module body> END

[ <handler>] [ <simple name string> 1] ; (1.1)
| <remote modulion> (1.2)
| <generic module instantiation> (1.3)

semantics: A module is an action statement possibly containing local declarations and definitions. A module is a means
of restricting the visibility of name strings; it does not influence the lifetime of the locally declared locations.

134 ITU-T Rec. Z.200 (1999 E)


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The detailed visibility rules for modules are given in 12.2.

static properties: A defining occurrence in a module defines a module name as well as a label name. The name has the
module (seen as a modulion, i.e. excluding the context list and defining occurrence, if any) attached.

A module is developed piecewisely if and only if a context list is specified.

A module is a module body if and only if BODY is specified.

static conditions: If specified, the simple name string must be equal to the name string of the defining occurrence.
A remote modulion in a module must refer to a module.

examples:

7.48 MODULE

SEIZFE convert:

DCL n INTINIT:= 1979,

DCL rn CHARS (20) INIT:= (20)" ",
GRANT n,rn;

convert();

ASSERT rn = "MDCCCCLXXVILI"//(6)" ",

END 1.1)

10.7 Régions
syntax:

<fegion> ::= (1)
[ <conmtext list> ] [ <defining occurrence> : |
REGION [ BODY ] <region body> END

[ <handler>] [ <simple name string> 1] ; 1.1)
| <remote modulion> 1.2)
| <generic region instantiation> 1.3)

semantics: A region is a means of providing mutually exclusive access to its locally declared data objjects for the
concurrent ekecutions of processes (see clause 1 1), It determines visibility of locally created names in the sgme way as a
module.

static propdrties: A defining occurrence in~a region defines a region name. It has the region (seen as a npodulion, i.e.
excluding thg context list and defining occtirrence, if any) attached.

A region is developed piecewisely ifand only if a context list is specified.
A region is 4 region body if.and only if BODY is specified.
static conditions: If speeified, the simple name string must be equal to the name string of the defining occurfence.

A region must not-b¢ surrounded by a block other than the imaginary outermost process definition.

A remote mddulion in a region must refer to a region.

examples: see 13.1-13.28

10.8 Program
syntax:

<program> ::= (1)
{ <module> | <spec module> | <region> | <spec region>
| <moreta declaration statement>
| <moreta synmode definition statement>
| <moreta newmode definition statement>
| <template>}+ (1.1)

semantics: A program consists of a list of program units (as given in the syntax rule) surrounded by an imaginary
outermost process definition.
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The definitions of the CHILL pre-defined names (see 111.2) and the implementation defined built-in routines and integer
modes are considered, for lifetime purposes, to be defined in the reach of the imaginary outermost process definition. For
their visibility, see 12.2.

10.9

Storage allocation and lifetime

The time during which a location or procedure exists within its program is its lifetime.

A location is created by a declaration or by the execution of a GETSTACK or an ALLOCATE built-in routine call.

The lifetime of a location declared in the reach of a block is the time during which control lies in that block or in a
procedure whose call originated from that block, unless it is declared with the attribute STATIC. The lifetime of a
location declared in the reach of a modulion is the same as if it were declared in the reach of the closest surrounding
block of the modulion. The lifetime of a location declared with the attribute STATIC is the same as if it were declared in
the reach of the imaginary outermost process definition. This implies that for a location declaration with the attribute

STATIC st
declaration 4
activations.

The lifetime
terminates.

The lifetime
until the tim
TERMINATI

The lifetimg
declaration.

The lifetime

static prope

A locat|
than thd

A string
start elé

An arr(

An arr(
and slid

A struc

A locat,

10.10

Modules an

rage allocation 1s made only once, namely, when starting the imaginary outermost proce
ppears inside a procedure definition or process definition, only one location will exist for @ll-i

of a location created by executing a GETSTACK built-in routine call ends when thedirectly en

of a location created by an ALLOCATE built-in routine call is the time starting from the AL
e that the location cannot be accessed anymore by any CHILL prograniy The latter is always
 built-in routine is applied to an allocated reference value that refererices the location.

of an access created in a loc-identity declaration is the ditectly enclosing block of the

of a procedure is the directly enclosing block of the proe€dure definition.

rties: A location is said to be static if and only if itds a static mode location of one of the follow

fon name that is declared with the attribute STATFFC or whose definition is not surrounded by
imaginary outermost process definition.

s. If such a
vocations or

losing block

OCATE call
the case if a

loc-identity

ing kinds:
h block other

b element or string slice where the stringdocation is static and either the lefi element and right element, or

ment and slice size are constant.
v element where the array location-is static and the expression is constant.

1y slice where the array location is static and either the lower element and upper element or the
e size are constant.

ure field where the §tructure location is static.

on conversion whete the location occurring in it is static.

Constructs-for piecewise programming

l fogions are the elementary units (pieces) in which a complete CHILL program that

first element

s developed
HILL defines

piecewisely

ah be subdivided. The text of such pieces is indicated by remote constructs (see 10.10.1). CH

the syntax and semantics of complete programs, in which all occurrences of remote pieces have been virtually replaced
by the referred text.

10.10.1 Remote pieces

syntax:

<remote modulion> ::=

[ <simple name string>: ] REMOTE <piece designator>

<remote spec> ::=

[ <simple name string> : ] SPEC REMOTE <piece designator> ;

<remote context> ::=

136
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<context module> ::= (4)
CONTEXT MODULE REMOTE <piece designator> ; (4.1)

<piece designator> ::= )
<character string literal> 5.1)

| <text reference name> (5.2)

| <empiy> (5.3)
<remote program unit> ::= (6)
[ <simple name string>: ]| REMOTE <piece designator> (6.1)

derived syntax: The notation:

CONTEXT MODULE REMOTE <piece designator>

is derived syntax for:

NOTE — This

semantics: ]
represent thd

A piece desi

Ifthe p

If the p
text.

If the p
defined

A program
replacing ea
piece design

A program
CHILL text
last occurren

If the desigt
equivalent p

Although th
substitution.

static condi
remote prog

CONTEXT REMOTE <piece designator> FOR
MODULE SEIZE ALL; END;

construct is redundant but can be used for consistence checking.

Remote modulions, remote specs, remote contexts, context modules, and remeote program units
source text of a program as a set of (interconnected) files.

bnator refers in an implementation defined way to a description of a piece of CHILL source text
ece designator is empty, the source text is retrieved from a place ‘determined by the structure of

fece designator contains a character string literal, the characéter string literal is used to retriey

fece designator contains a fext reference name, the text reference name is interpreted in an im|
way to retrieve the source text.

with 1. remote modulions, 2. remote specs, 3. remote program units is equivalent to the prog
h 1. remote modulion, 2. remote spec, 3.#emote program unit by the piece of CHILL text refe
tor.

vith remote contexts is equivalent to the program built by replacing each remote context by
referred to by its piece designatépin which the context body has been virtually inserted immedi3
ce of context body in the coutext list referred to by the piece designator.

nated piece is not available as CHILL text, then the piece designator in it is considered t
ece of CHILL text.which is introduced virtually.

b
C

semantics ef)a ‘remote piece is defined in terms of replacement, CHILL does not imply]

ions;-The piece designator in a 1. remote modulion, 2. remote spec, 3. remote context, 4. conte,
Fam it must refer to a description of a piece of source text which is a terminal production of a

are means to

as follows:
the program.

re the source

plementation

ram built by
rred to by its

the piece of
tely after the

refer to an

any textual

Kt module, 5.
1. module or
list which is

region that i

b 110t a remote modulion, 2. spec module or spec region that is not a remote spec, 3., 4. context]

not a remote

context, 5. a program unit which is not remote.

When the source text referred to by the piece designator in a remote modulion starts with a defining occurrence, then the
remote modulion must start with a simple name string which is the name string of that defining occurrence.

When the source text referred to by the piece designator in a remote spec starts with a simple name string, then the
remote spec must start with the same simple name string.

When the source text referred to by the piece designator in a remote program unit starts with a simple name string, then
the first defining occurrence in the remote program unit must be the same simple name string.

examples:
25.9

25.9

stack: REMOTE "example 27 or 28";

"example 27 or 28"
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10.10.2 Spec modules, spec regions and contexts

syntax:

<spec module> ::= (1)
<simple spec module> (1.1)
| <module spec> (1.2)
| <remote spec> (1.3)
<simple spec module> ::= (2)
[ <context list> | [ <simple name string>: ] SPEC MODULE
<spec module body> END [ <simple name string> ] ; (2.1)
<module spec> ::= (3)
[ <context list> ] <simple name string>: MODULE SPEC
<spec module body> END [ <simple name string>1] ; 3.1)
<ypec region> ::= 4)
<simple spec region> 4.1)
| <region spec> 4.2)
| <remote spec> 4.3)
<yimple spec region> ::= (5)
[ <conmtext list> ] [ <simple name string> : | SPEC REGION
<spec region body> END [ <simple name string> ] ; 5.1)
<gegion spec> ::= (6)
[ <conmtext list> ] <simple name string> : REGION SPEC
<spec region body> END [ <simple name string> ]. 6.1)
<gontext list> ::= (7)
<context> { <context> }* 7.1)
| <remote context> 7.2)
<gontext> ::= S8)
CONTEXT <context body> FOR 8.1)

semantics:
may be redu

Simple namé
rules.

1. spec mod,
piecewisely
indicated by
region that i

For each na
defining occ

fimple spec modules, simple spec regions and contexts are used to specify static properties of
ndant but they can be used for piecewise programming.

strings in spec modules and spec regions are not names, they are not bound, and they have

les, 2. spec regious_in a real reach indicate the properties of one or more 1. modules, 2. reg

compiled and that.are considered to be enclosed in that reach. The texts of such 1. modules, 2
occurrences.Of-xemote modulions. A context list indicates the surrounding reaches (note that a
developed.piccewisely always has a context list in front of it).

me string OP ! NS visible in the reach of a 1. module spec, 2. region spec and linked there
hrfence and that is granted into a real reach as NP ! NS, a (virtual) grant statement with the sa

names. They

no visibility

ions that are
. regions are
module or a

to a quasi s
me old name

g 1. module

body, 2. region body.

static conditions: In a spec module or a spec region, the optional simple name string following END may only be
present if the optional simple name string before SPEC is present. When both are present, they must have equal name

strings.

A context which has no directly enclosing group may not contain visibility statements.

A real reach that contains a 1. spec module, 2. spec region must also contain at least a remote modulion and vice versa.

If a real r reach contains a 1. module which is a module body, 2. region which is a region body, then it must contain
also a 1. module spec, 2. region spec such that the simple name strings in front of them have equal name strings. The
1. module spec, 2. region spec is said to have a corresponding 1. module body, 2. region body.

A remote spec in a 1. spec module, 2. spec region must refer to a 1. spec module, 2. spec region.

138

ITU-T Rec. Z.200

(1999 E)


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

A spec module or a spec region may not be surrounded by a block other than the imaginary outermost process definition.

examples:

23.2

letter _count:
SPEC MODULE
SEIZE max;
count: PROC (input ROW CHARS (max) IN,
output ARRAY ('4':'Z") INT OUT) END;

GRANT count;
END letter count; (1.1)
10.10.3 Qumsistatenrents
syntax:
<quasi data statement> ::= (1)
<quasi declaration statement> 1.1)
| <quasi definition statement> 1.2)
<quasi declaration statement> ::= (2)
DCL <quasi declaration> { , <quasi declaration> }* ; 2.1)
<quasi declaration> ::= (3)
<quasi location declaration> 3.1)
| <quasi loc-identity declaration> 3.2)
<quasi location declaration> ::= (4)
<defining occurrence list> <mode> 4.1)
<quasi loc-identity declaration> ::= (5)
<defining occurrence list> <mode>
LOC [ NONREF ][ DYNAMIC ] 5.1)
<quasi definition statement> ::= (6)
<synmode definition statement> 6.1)
| <newmode definition statement> 6.2)
| <synonym definition statement> 6.3)
| <quasi synonym definjtion statement> 6.4)
| <quasi procedure definition statement> 6.5)
| <quasi process.definition statement> 6.6)
| <quasi signal)definition statement> 6.7)
| <signal definition statement> 6.8)
| <emptz; 6.9)
<quasi syngnym definition statement> ::= (7)
SYN <quasi synonym definition> { , <quasi synonym definition> }* ; 7.1)
<quasisynonym definition> ::= (8)
defiming occurrence Hist>—<mode>—" <constanm vaiue>"t1
[ <mode> | = <literal expression> } 8.1)
<quasi procedure definition statement> ::= 9)
<defining occurrence> : PROC ([ <quasi formal parameter list>])
[ <result spec> ][ EXCEPTIONS ( <exception list>) |
<procedure attribute list> [ END [ <simple name string> 1] ; 9.1)
<quasi formal parameter list> ::= (10)
<quasi formal parameter> { , <quasi formal parameter> }* (10.1)
<quasi formal parameter> ::= (11)
<simple name string> { , <simple name string> }* <parameter spec> (11.1)
<quasi process definition statement> ::= (12)
<defining occurrence> : PROCESS ( [ <quasi formal parameter list> ] )
[ END [ <simple name string> 1] ; (12.1)
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<quasi signal definition statement> ::= (13)
SIGNAL <quasi signal definition> { , <quasi signal definition> }* ; (13.1)
<quasi signal definition> ::= (14)
<defining occurrence> [ = (<mode> { , <mode> }*) ][ TO ] (14.1)

semantics: Quasi statements are used in spec modules, spec regions and contexts to specify static properties of names.
Spec modules, spec regions and contexts may contain quasi statements and real statements. Quasi statements may be

redundant, b

ut are used for piecewise programming.

An implementation that can not guarantee the equality of the values between quasi constant synonym names and the
corresponding real ones may disallow the indication of the constant value.

Note that in

static propg
properties.

The name dd

static condi
conditions.

A quasi syn
spec moduld
definition st4

10.104 M

Two definin

If they
must beg
quasi is|

If they

If they
both no|

If they
not be
positior

If they
matchir]

If they

same nymber-0f modes, and corresponding modes must be alike.

If two struct

CHILL no quasi defining occurrences exist for label names.

fined by a defining occurrence in a quasi loc-identity declaration is referable if NONREF‘is n

fions: Quasi statements are restricted forms of the corresponding statements and\are subject t

nym definition statement or a quasi signal definition statement may only(be directly enclose
simple spec region or context. A synonym definition statement or a(signal definition stateme]
tement may only be directly enclosed in a module spec or region spec:;

htching between quasi defining occurrences and defining occurrences
r occurrences are said to match if they have identical sefnantic categories and:

are synonym names, then they must have the sami¢.regionality and value, the root mode of
alike, they must both have an M-value, M-derived, M-reference, null or all class, and if the
literal, then so the other one must be.

ire newmode names or synmode names;. then their modes must be alike.

hre location names or loc-identity,iaimes, then they must have the same regionality, they bot]
I be referable, and their modes must be alike.

hire procedure names, then(they must have the same regionality and generality, they both mu
critical, they must satisfy.the same conditions of alikeness as procedure modes, and correq
) simple name stringsinsthe formal parameter list and quasi formal parameter list must be the s

are process names, then the parameters of their process definitions must satisfy the same ¢
g and alikeness.as the parameters of procedure names.

are signal names, then they must both specify or both not specify TO, their lists of modes 1

same static

t specified.

o their static

| in a simple
pit in a quasi

their classes

bne which is

h must be or

st be or both
ponding (by
ame.

onditions of

ust have the

esinR.

ireunodes are novelty bound in a reach R, then they must have the same set of visible field nanj

The following rules apply:

If a name string in a reach that is not the reach of a spec module, spec region or context is bound to a quasi defining

occurrence, then it must also be bound to a defining occurrence which is not a quasi defining occurrence, and

further:

occurrence RD in reach R, then:

1)

QD and RD must match as defined above; and

Let a name string be bound to a quasi defining occurrence QD and be bound also to a real defining

2) RD and QD must both be enclosed in an enclosed group of R or both not be enclosed in the group of R or,
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—  If a name string in a real reach R is bound to a quasi defining occurrence that is enclosed in the group of R
(i.e. surrounded by a spec modulion), then it must also be bound to a real defining occurrence that is
surrounded by the group of a module or region that are indicated by a remote modulion directly enclosed in R
(informally, if the interface grants, so must the implementation). If the quasi defining occurrence is enclosed in
the group of a module spec or a region spec, then the real one must be enclosed in the group of the
corresponding modulion.

—  For each name string in the reach Q of a spec module or spec region directly enclosed in a real reach R that is
bound to a defining occurrence not surrounded by Q, there must be an identical name string in the reach of a
module or region that is indicated by a remote modulion directly enclosed in R that is bound to the same
defining occurrence (informally, if the interface seizes, so must the implementation).

e If two name strings are bound to the same 1. real, 2. quasi defining occurrence in a reach, then both name strings
must be bound to the same 1. quasi, 2. real defining occurrence, or both not be further bound.

. A real novelty may not be novelty bound to two quasi novelties in any reach.

Let a qgiasi novelty QN and a real novelty RN be novelty bound to each other in a reach R; then RINand QN must
both be enclosed in an enclosed group of R or both not be enclosed in the group of R, or if\R)is the reach of a
module|or region which is a module body or region body, then RN must be enclosed in the group ¢f R and QN
must bd enclosed in the group of the corresponding module spec or region spec.

10.11  Gg¢nericity

Many algorithms solve problems on similarly structured data items whose compenent modes are different. Genericity
provides a njeans to implement such algorithms as program schemes which are\nstantiated by substituting [formal mode
definitions bly actual ones.

syntax:

<femplate> ::= (1)
<generic module template> 1.1)

| <generic region template> 1.2)

| <generic procedure template> 1.3)

| <generic process template> 1.4)

| <generic module mode templaté> 1.5)

| <generic region mode template> 1.6)

| <generic task mode template> 1.7)

| <generic interface mode’template> 1.8)

| <remote program unit> 1.9)
<generic module templdte>"::= (2)

[ <contextlist> | [ <defining occurrence> : |
<generic part> MODULE [ BODY | <module body> END
[<bandler> ] [ <simple name string> 1] ; 2.1)

<generic region template> ::= (3)
[ <context list> | [ <defining occurrence> : |
3 ODY | <region bodi= END

[ <handler>] [ <simple name string> 1] ; (3.1)
<generic procedure template> ::= (4)

<defining occurrence> : <generic part> <procedure definition>

[ <handler> ][ <simple name string> 1] ; (4.1)
<generic process template> ::= )

<defining occurrence> : <generic part> <process definition>

[ <handler> ][ <simple name string> 1] ; (5.1)
<generic module mode template> ::= (6)

<generic part> <module mode specification> (6.1)
<generic region mode template> ::= (7)

<generic part> <region mode specification> (7.1)
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<generic task mode template> ::=
<generic part> <task mode specification>

<generic interface mode template> ::=
<generic part> <interface mode>

<generic part> ::=
GENERIC { <seize statement> }* <formal generic parameter list>

<formal generic parameter list> ::=
{ <formal generic parameter> }*

<formal generic parameter> ::=
SYN <formal generic synonym list> ;
| MODE <formal generic mode list> ;
| PROC <formal generic procedure spec>

8)
8.1)

9)
9.1)

(10)
(10.1)

(11)
(11.1)

(12)
(12.1)
(12.2)
(12.3)

<formal generic synonym list> ::=
<formal generic synonym> { ,<formal generic synonym> }*

<formal generic mode list> ::=
<formal generic mode> { ,<formal generic mode> }*

<formal generic synonym> ::=
<defining occurrence list> =
{<mode>| ANY_DISCRETE | ANY_INT | ANY_REAL }

<formal generic mode> ::=
<defining occurrence list> = <formal generic mode indication>

<formal generic mode indication> ::=
ANY

| ANY_ASSIGN

| ANY_DISCRETE

| ANY_INT

| ANY_REAL

| <moreta mode name>

<formal generic procedure spec> ::=
<simple name string> ([ <formal parameter list>]) [ <result spec> ]
[ EXCEPTIONS ( <exception list>) ]

<generic module instantiation> ;=

<simple name string>: MODULE = NEW <generic module name>
{ <seize statement> } *

<actual generic parameter list> END [ <simple name string> | ;

<generic regiominstantiation> ::=

<simiple name string> : REGION = NEW <generic region name>
{\<eize statement> } *

<actual generic parameter list> END [ <simple name string> ] ;

<generic procedure instantiation> ::=

(13)
3.1

(14)

(15)

As.1)
(16)

(17)
7.1)
7.2)
7.3)
7.4)
7.5)
7.6)

(18)
(18.1)
(19)

ettt

19.1)
(20)

(20.1)
1)

<simple name string> : PROC = NEW <generic procedure name>
{ <seize statement> } *
<actual generic parameter list> END [ <simple name string> | ;

<generic process instantiation> ::=
<simple name string> : PROCESS = NEW <generic process name>
{ <seize statement> }*
<actual generic parameter list> END [ <simple name string> | ;

<generic moreta mode instantiation> ::=
NEW <generic moreta mode name>
{ <seize statement> }*
<actual generic parameter list> END [ <simple name string> ] ;

<actual generic parameter list> ::=
<actual generic parameter> { <actual generic parameter> }*

ITU-T Rec. Z.200 (1999 E)
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<actual generic parameter> ::=

<synonym definition statement>
| <symmode definition statement>
| <newmode definition statement>
| <actual generic procedure>

<actual generic procedure> ::=

PROC <defining occurrence list> = <procedure name> ;

ISO/IEC 9

496:2003(E)

(25)

(25.1)
(25.2)
(25.3)

(25.4)

semantics: The word unit means either a module, a region, a procedure, a process, or a moreta mode.

A generic unit is a unit which contains a generic part.

(26)

(26.1)

A generic unit is a template from which nongeneric units may be obtained by a process called generic instantiation.

A generic unit may contain formal generic parameters. During generic instantiation a copy of the generic unit is made

and the fornfal generic parameters arc replaced by the actual generic parameters throughout the whole ui
the generic part is deleted and thus a nongeneric unit is obtained.

replacement
static prope,

a) the prof

b) the properties which a corresponding actual generic parameter must have to be accepted:

my

AN

de:

\Y_DISCRETE:

rties: The formal generic synonyms are characterized by two properties:

erties which a formal generic parameter has inside the generic unit;

formal prop:

act prop:
formal prop:

act prop:

properties of the given mode whiechvmust not have the
non-value property.

value of the actual generi¢ parameter must be a value o
operations available? =, relational, PRED, SUCC, NUN

value of the actudl‘generic parameter must be a value
mode.

it. After this

" the mode.
1, SIZE.

of a discrete

pf an integer

K *9/°

ue of a real

a parameter;

ANY _INT: formal prop: ANY DISCRETE and +, —, *, /, mod, abs, rem.
act prop: value of the actual generic parameter must be a value
meode.
ANY_REAL: formal prop: operations available: ANY ASSIGN and relational, +,
act prop: value of the actual generic parameter must be a val
mode.
The formal generic modes are charagterized by two properties:
a) the properties which a formal generic parameter has inside the generic unit;
b) the properties which a &erresponding actual generic parameter must have to be accepted:
ANY: formal prop: SIZE; cannot be used as the mode of a location or of
(can be used as a referenced mode).
actual prop: any mode acceptable.
ANY_ASSIGN: format prop: operations avaitapie: =, comparison, SIZE-

ANY_DISCRETE:

ANY_INT:

ANY_REAL:

moreta mode name:

act prop:
formal prop:
act prop:
formal prop:
act prop:
formal prop:
act prop:
formal prop:

act prop:

mode must posses formal prop.

operations available: :=, relational, PRED, SUCC, NUM, SIZE.

mode must posses formal prop.
ANY _ DISCRETE and +, —, *, /, mod, abs, rem.

mode must posses formal prop.

operations available: ANY _ASSIGN and relational, +, —, *, /.

mode must posses formal prop.
those of the mode.

same mode or any Successor.
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The formal generic procedures are characterized by two properties:

a) the properties which a formal generic parameter has inside the generic unit;

b) the properties which a corresponding actual generic parameter must have to be accepted:
formal prop: according to the given formal generic procedure spec.

act prop: the given formal generic procedure spec must be compatible with the class of the actual
generic parameter.

static conditions: For derivation involving generic moreta mode templates the following restrictions apply: if the base is
a template then any derived entity must also be a template. If the base is not a template a derived entity may be a
template.

In a generic instantiation there must be exactly one actual generic parameter for each formal generic parameter of the
generic unit being instantiated.

The restrictipns on nesting of groups are given in the following table. It applies to plain groups, gen€ri¢ groups and
generic instantions.

infier
grqup MODULE REGION PROC PROCESS Module Region Task Interface
outer Mode Mede Mode Mode
group

Begin-End Yes No Yes No Yes No No Yes
PROC Yes No Yes No Yes No No Yes
PROCESS Yes No Yes No Yes No No Yes
MODULE] Yes Yes Yes Yes Yes Yes Yes Yes
REGION Yes No Yes No Yes No No Yes
Module Modle No No Yes Yes No No No No
Region Mode No No Yes No No No No No
Task Modg No No Yes No No No No No
Interface Mofde No No No No No No No No
Program Yes Yes Yes No Yes Yes Yes Yes

The table is pased on the following correspéndence between templates and entities of CHILL. For a templgte in the left
column the restrictions of the corresponding entity in the right column apply:

geheric module template procedure definition statement
generic region template region

gefheric procedurestemplate procedure definition statement
geferic process template process definition statement
geferic module mode template  procedure definition statement
genericregion mode template region

genefic fask mode template process definition statement

e rgade 1ot 1ot 1 ot et -
gC TCTIUTIMICT TACTTITOUTC ICTIPTATT PTIOCTUUTTUCTITITIUITUIT S TATTTITCTIU

11 Concurrent execution

11.1 Processes, tasks, threads and their definitions

A thread is either a process or a task. A process is the sequential execution of a series of statements. It may be executed
concurrently with other threads. The behaviour of a process is described by a process definition (see 10.5), that describes
the objects local to a process and the series of action statements to be executed sequentially.

A process is created by the evaluation of a start expression (see 5.2.15). It becomes active (i.e. under execution) and is
considered to be executed concurrently with other threads. The created process is an activation of the definition indicated
by the process name of the process definition. An unspecified number of processes with the same definition may be
created and may be executed concurrently. Each process is uniquely identified by an instance value, yielded as the result
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of the start expression or the evaluation of the THIS operator. The creation of a process causes the creation of its locally
declared locations, except those declared with the attribute STATIC (see 10.9), and of locally defined values and
procedures. The locally declared locations, values and procedures are said to have the same activation as the created
process to which they belong. The imaginary outermost process (see 10.8), which is the whole CHILL program under
execution, is considered to be created by a start expression executed by the system under whose control the program is
executing. At the creation of a process, its formal parameters, if present, denote the values and locations as delivered by
the corresponding actual parameters in the start expression.

A process is terminated by the execution of a stop action, by reaching the end of the process body or by terminating a
handler specified at the end of the process definition (falling through). If the imaginary outermost process executes a stop
action or falls through, the termination will be completed when and only when all other threads in the program are
terminated.

A task is a sequential execution of a series of statements. It may be executed concurrently with other threads. The

behaviour of a task is described by a task mode definition.

A task is crd
task mode 1
programmin
transition frd
activation off

11.2 M

11.2.1 Ge

Regions (seq
access to lo
(see 11.2.2)
inside a regi
the region of
NOTE - The

when the regi
said to denote

A compone
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only if contr
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location itse

to enter
A critig
A proce
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ated as part of the creation and initialization of a task mode location (see 4.1). It is called to-h
cation. A task is terminated if its task mode location is destroyed (see 10.2).A thread\is) a
b level, always in one of two states: it is either active (i.e. under execution) or delayed (se
m active to delayed is called the delaying of the thread; the transition from delayed-ta active is
the thread.

utual exclusion and regions

neral

10.7) and region locations (see 3.15) are a means of providifig'threads with mutually excly
cations declared inside the regions or region locations by granted procedures. Static contes
are made such that accesses by a thread other than the-maginary outermost process to locati
bn can be made only by calling procedures that are defined inside the region or region mode an
region mode.

bnly situation when the locations declared inside a, region or region location can be directly accessed by
n or the region location is entered and its reach-botnd initializations (if any) are performed by T. A proc
a critical procedure (and it is a critical procedure name) if it is defined inside a region and granted by thd

nt procedure name is said to denote-a critical component procedure (and it is a critical
ame) if it is defined inside a regionxmode and granted by the region mode. A region is said to |
bl lies in none of its critical procedures or in the region itself performing reach-bound initializat

htion is said to be free if and.only if control lies in none of its critical component procedures or
f performing reach-bound initializations. The region will be locked (to prevent concurrent execy

The reglion is entered (note that because regions are not surrounded by a block, no concurrent attempts

the region).
al procedure/of the region is called.

ss, delayed in the region, is re-activated.

cation will be locked (to prevent concurrent execution) if:

elong to this

the CHILL
e 11.3). The
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sive indirect
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ons declared
d granted by

a thread T is
bdure name is
region.

component
e free if and
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tion) if:

can be made

The region location is entered.
A critical component procedure of the region location is called.

A thread, which is delayed in the region location, is re-activated.

The region will be released, becoming free again, if:

The reg

ion is left after having its reach-bound initializations performed.

A critical procedure returns.

of dynamically nested critical procedure calls, only the latest locked region will be released.

the regions locked by the process will be released.
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The region location will be released, becoming free again, if:
*  The region location is left after having its reach-bound initializations performed.
e A critical component procedure returns.

e A critical component procedure executes an action that causes the executing thread to become delayed (see 11.3). In
the case of dynamically nested critical procedure calls, only the latest locked region will be released.

* A thread executing a critical component procedure terminates. In the case of dynamically nested critical component
procedure calls, all the region locations locked by the thread will be released. If, while the region is locked, a thread
attempts to call one of its critical procedures or a thread delayed in the region is re-activated, the thread is
suspended until the region is released (note that the thread remains active in the CHILL sense).

If, while the region location is locked, a thread attempts to call one of its critical component procedures or a thread
delayed in the rPginn location is re-activated the thread is Q]]QpPh(‘]Pd until the rPginn location is released (note that the
thread remains active in the CHILL sense).When a region is released and more than one thread has beep suspended
while attempting to call one of its critical procedures or to be re-activated in one of its critical procedur¢s, only one
thread will be selected to lock the region according to an implementation defined scheduling algorithm.

When a regjon location is released and more than one thread has been suspended while attempting to call one of its
critical component procedures or to be re-activated in one of its critical component procedures, only one thread will be
selected to 1¢ck the region location according to an implementation defined scheduling algotithm.

11.2.2  Rdgionality

To allow for|checking statically that a location declared in a region can only be\accessed by calling critical procedures or
by entering the region for performing reach-bound initializations, the following static context conditions are pnforced:

* the regjonality requirements mentioned in the appropriate sectiens (assignment action, procedure call{ send action,
result a¢tion, etc.);

e intra-r¢gional procedures are not general (see 10.4);

e critical|procedures are neither general nor recursive'(see 10.4).

To allow for| checking statically that a component-location declared in a region location can only be accessdd by calling
critical conmpponent procedures or by entering~the region location for performing reach-bound initializations, the
following stgtic context conditions are enforced:

* the regipnality requirements mentioned in the appropriate sections (assignment action, procedure call,{send action,
result agtion, etc.);

*  intra-regional component\procedures are not general (see 10.4);
e critical pomponent procedures are neither general nor recursive (see 10.4).

*  critical pomponent procedures are also not inline (see 3.15).

A location and\procedure call have a regionality which is intra-regional or extra-regional. A value has 3 regionality
which is intra-regional or extra-regional or nil. These properties are defined as follows:

1) Location

A location is intra-regional if and only if any of the following conditions are fulfilled:

. It is an access name that is either:

—  alocation name declared textually inside a region or spec region and not defined in a formal parameter of
a critical procedure,

—  a location name declared textually inside a region mode and not defined in a formal parameter of a
critical component procedure,

—  a loc-identity name, where the location in its declaration is intra-regional or that is defined in a formal
parameter of an intra-regional procedure,
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a loc-identity name, where the location in its declaration is intra-regional or that is defined in a formal

parameter of an intra-regional component procedure,

a location enumeration name, where the array location or string location in the associated
intra-regional,

do action is

a location do-with name, where the structure location in the associated do action is intra-regional.

It is a dereferenced bound reference, where the bound reference primitive value in it is intra-regional.

It is a dereferenced free reference, where the free reference primitive value in it is intra-regional.

It is a dereferenced row, where the row primitive value in it is intra-regional.

It is an array element or array slice, where the array location in it is intra-regional.

It is a string element or string slice, where the string location in it is intra-regional.

It j
It

infra-regional.

It
re

It 1

If
If
If

If
(it
If
If

—

reldwherel ocestioninitiod onak

s a location procedure call, where in the location procedure call a procedure name is,specil

s a location built-in routine call, that the CHILL definition or the implementation-specifies
rional.

s a location conversion, where the static mode location in it is intra-regional,

on which is not intra-regional is extra-regional.

has a regionality depending on its class. If it has the M-deriyed ¢lass or the all class or the nul
onality nil. Otherwise it has the M-value class or the M-reference class and it has a regionali
hode M as follows:

se the value is an operand—7 (and has the referencing property) or a conditional expression:
primitive value then:
t is a location contents that is a location, then it is that of the location.
t is a component location contents that is a component location, then it is that of the component
t is a value name, then:
if it is a synonym name thenit is that of the constant value in its definition;
if it is a value do-with\name then it is that of the structure primitive value in the associated do
if it is a value receive name then it is extra-regional.

t is a tuple thenif one of the value occurrences in it has regionality not nil, then it is that
does not matter which choice is made, see 5.2.5 static conditions); otherwise it is nil.

t is a vahie array element or a value array slice then it is that of the array primitive value in it.

tiS@walue structure field then it is that of the structure primitive value in it.

ied which is

to be intra-

class then it
y depending

alue has the M-value class and M does not have the"referencing property then the regionality is nil;

Vocation.

action;

bf that value

If it is an expression conversion then it is that of the expression in it.

If it is a value procedure call then it is that of the procedure call in it.

If it is a value component procedure call then it is that of the component procedure call in it.

If it is a value built-in routine call that the CHILL definition or the implementation specifies to be intra-
regional or extra-regional.

If it is a referenced location then it is that of the location in it.

If it is a conditional expression, then if one of the sub expression occurrences in it has regionality not nil, then it is
that of that sub expression (it does not matter which choice is made, see 5.3.2 static conditions); otherwise it is nil.

Procedure name

A procedure name is intra-regional if and only if it is defined inside a region or spec region and it is not critical
(i.e. not granted by the region). Otherwise it is extra-regional.
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A component procedure name is intra-regional if and only if it is defined inside a region mode and it is not critical

(i.e. not
4)

granted by the region mode). Otherwise it is extra-regional.

Procedure call

A procedure call is intra-regional if it contains a procedure name which is intra-regional; otherwise it is extra-
regional.

A component procedure call is intra-regional if it contains a component procedure name which is intra-regional;
otherwise it is extra-regional.

A value is regionally safe for a non-terminal (used only for location, procedure call and procedure name) if and only if:

the non-
the non-

the non-

terminal is extra-regional and the value is not intra-regional,
terminal is intra-regional and the value is not extra-regional,

terminal has regionality nil.

11.3 D¢

An active th

delay a

delay c

receive

receive

call act

call act
6.7 (seq

When a thre
associated r
attempts to 1

114 Rg
A delayed th
become re-a

continu

send sig

receive

release

at the b

send bufffer action (see 6.18.3);

send bufffer action (see 6,18.3);

laying of a thread

ead may become delayed by executing one of the following actions:
tion (see 6.16);

se action (see 6.17);

signal case action (see 6.19.2);

buffer case action (see 6.19.3);

on to a component procedure of a region location (see 3.15.3);

on to a component procedure of a task location in casethere is not enough storage to perform|
3.15.4).

hd becomes delayed while its control lies within axritical procedure or a critical component p
peion is released. The dynamic context of theé\thread is retained until it is re-activated. The
bck the region or the region location again, which may cause it to be suspended.

-activation of a thread

read may become re-activated if it is time supervised and a time interrupt occurs (see clause 9
tivated if another thread exécutes one of the following actions:

e action (see 6.15);

nal action (see 6.18.2)}

buffer case.action (see 6.19.3);
pf a region location (see 3.15.3);

pginfhing of the execution of an externally called component procedure of a task location (see 3.1

step ¢) 2) in

rocedure, the
thread then

. It may also

5.4).

When a thread, while having locked a region or region location, re-activates another thread, it remains active, i.e. it will
not release the region or region location at that point.

11.5

syntax:

Signal definition statements

<signal definition statement> ::=

SIGNAL <signal definition> { , <signal definition> }* ;

<signal definition> ::=

<defining occurrence> [ = (<mode> { , <mode> }*) | [ TO <process name> |

(1)
(1.1)
2)
2.1)

semantics: A signal definition defines a composing and decomposing function for values to be transmitted between
processes. If a signal is sent, the specified list of values is transmitted. If no process is waiting for the signal in a receive
case action, the values are kept until a process receives the values.
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static properties: A defining occurrence in a signal definition defines a signal name.

A signal name has the following properties:

It has an optional list of modes attached, that are the modes mentioned in the signal definition.

It has an optional process name attached that is the process name specified after TO.

static conditions: No mode in a signal definition may have the non-value property.

examples:

15.27

SIGNAL initiate = (INSTANCE),

terminate;

11.6

Completion of Region and Task locations

(1.1)

Both a REG
procedure of

After creatid
REGION ob

An RTL (RH
at the corres

A closed RT]
onL (see 12

A completeq
destroyed.

12 G

12.1 M

12.11  Pr

12.1.1.1 Rdad-only property

Informal

A mode has
a read-only

Definition

A mode has

an array

a struct

[ON location L and a TASK location L contain waiting queues which contain threads waiting
L.

n L is open, i.e. calls which cannot be executed immediately are put into a waiting-qtieue o
ect the calling thread is also blocked.

GION or TASK location) can be closed. If it is closed no calls are queued but instead an except
ponding call action.

L L is executed until all its queues are empty. Then L is put into the state empty. If all RTLs W
2.6) are completed then L itself is completed.

n "
>

| RTL may be destroyed. If an RTL is in one of the states “epen", "closed" or "empty" it

eneral semantic properties

pde rules

pperties of modes and classes

the read-only property\if it is a read-only mode or contains a component or a sub-component,
mode.

the read-enly property if and only if it is:

mode With an element mode that has the read-only property;

to execute a

L. If Lisa

jon is caused

hich depend

may not be

etc. which is

with an

12.1.1.2 Pa

Informal

hir¢node where at least one of its field modes has the read-only property, where the field is n

a read-only mode.

rameterizable modes

A mode is parameterizable if it can be parameterized.

Definition

A mode is parameterizable if and only if it is:

*  astring

mode;

an array mode;

a parameterizable variant structure mode.
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12.1.1.3 Referencing property
Informal

A mode has the referencing property if it is a reference mode or contains a component or a sub-component, etc. which
is a reference mode.

Definition

A mode has the referencing property if and only if it is:

e areference mode;

e an array mode with an element mode that has the referencing property;

e astructure mode where at least one of its field modes has the referencing property.

12.1.1.4 Tagged parameterized property

Informal

A mode ha$ the tagged parameterized property if it is a tagged parameterized structure.mede ofr contains a
component dr a sub-component etc. which is a tagged parameterized structure mode.

Definition
A mode has fhe tagged parameterized property if and only if it is:

e anarray mode with an element mode which has the tagged parameterized property;

e astructire mode where at least one of its field modes has the tagged parameterized property;

e ataggefl parameterized structure mode.

12.1.1.5 Ndn-value property
Informal
A mode has fhe non-value property if no expression or prifnitive value denotation exists for the mode.
Definition
A mode has fhe non-value property if and only ifit is:

e anevent mode, a buffer mode, an access\mode, an association mode or a text mode;
e an array mode with an element mode that has the non-value property;

e astructire mode where at least‘one of its field modes has the non-value property;
e a not_a[signable moreta mode;

e an abstract moreta mode;

* amoreth mode where at least one of its components has the non-value property.

12.1.1.6 Rdot mode

Any mode M has a root mode defined as:

e if M is not a discrete range mode nor a floating point range mode;

e the parent mode of M, if M is a discrete range mode or a floating point range mode.

Any M-value class or M-derived class has a root mode which is the root mode of M.

12.1.1.7 Resulting class

Given two compatible classes (see 12.1.2.16), where the first one is either the all class, an M-value class or an
M-derived class, where M and N are either a discrete mode, a floating point mode, a powerset mode or a string mode, the
resulting class is defined as:

* the resulting class of the M-value class and the N-value class is the R-value class;
¢ the resulting class of the M-value class and the N-derived class or the all class is the P-value class;

e the resulting class of the M-derived class and the N-derived class is the R-derived class;
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the resulting class of the M-derived class and the all class is the P-derived class;

the resulting class of the all class and the all class is the all class,

where R is the resulting mode of M and N, and P is the root mode of M.

Given two similar modes M and N, the resulting mode R is defined as:

496:2003(E)

if the root mode of one is a fixed string mode and the other one is a varying string mode, then it is the root mode of

the one (between M and N) whose root mode is a varying string mode;
e otherwise itis P.
Given a list C; of pairwise compatible classes (i = 1, ..., n), the resulting class of the list of classes is recursively

defined as the resulting class of the resulting class of the list C; (i = 1,..., n — 1) and the class C,, if n > 1; otherwise as
the resulting class of C; and Cj.

12.1.2

12.1.21 G

In the follow
and classes.
conditions.

The compati
above-menti

12.1.2.2 Eq
Informal

The followin

Two m
L]

Two m

Two m
or minij

Two m
specifig

Two m
modes

Two mi
Definition

In the follow
full equivalg

Rdlations on modes and classes

neral

ing subclauses, the compatibility relations are defined between modes, between classes, and be
These relations are used throughout this Recommendation | International)Standard to

bility relations themselves are defined in terms of other relations which-are-mainly used in this ¢
bned purpose.

uivalence relations on modes

g equivalence relations play a role in the formulation ef.the compatibility relations:
des are similar if they are of the same kind; i.e. they have the same hereditary properties.
des are v-equivalent (value-equivalent) if they-are similar and also have the same novelty.

des are equivalent if they are v-equivalent and also possible differences in value representati
num storage size are taken into account.

odes are l-equivalent (location<equivalent) if they are equivalent and also have the sam
ation.

des are alike if they are indistinguishable; i.e. if all operations that can be applied to objects
an be applied to the other one as well, provided that novelty is not taken into account.

des are novelty bound if they are alike and have equal novelty specification.

ing subelauses, the equivalence relations on modes are given in the form of a (partial) set of r

ween modes
define static

lause for the

bn in storage

e read-only

bf one of the

tlations. The

hce algorithms are obtained by taking the symmetric, reflexive and transitive closure of this sef

The modes

mentioned in the relations may be virtually introduced or dynamic. In the latter case,

of relations.
e complete

equivalence check can only be performed at run time. Check failure of the dynamic part will result in the RANGEFAIL or
TAGFAIL exception (see appropriate subclauses).

Checking two recursive modes for any equivalence requires the checking of associated modes in the corresponding paths
of the set of recursive modes by which they are defined. Equivalence between the modes holds if no contradiction is
found. (As a consequence, a path of the checking algorithm stops successfully if two modes which have been compared
before, are compared.)

12.1.2.3 The relation similar

Two modes are similar if and only if:

they are integer modes;

they are floating point modes;

they are boolean modes;
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e they are character modes;
e they are set modes such that:
1) they define the same number of values;

2) for each set element name defined by one mode there is a set element name defined by the other mode which
has the same name string and the same representation value;

3) they both are numbered set modes or both are unnumbered set modes;
» they are discrete range modes with similar parent modes;
» they are floating point range modes;
*  one is a discrete range mode or a floating point range mode whose parent mode is similar to the other mode;

* they are powerset modes such that their member modes are equivalent;

e they arq bound reference modes such that their referenced modes are equivalent;
* they arq free reference modes;

*  they ard row modes such that their referenced origin modes are equivalent;

*  they arq procedure modes such that:

1) thqy have the same number of parameter specs and corresponding (by position) parametey specs have
l-eguivalent modes and the same parameter attributes, if present;

2) thqy both have or both do not have a result spec. If present, the result specs must have l-equivalent modes
an(l the same attributes, if present;

3) thdy have the same list of exception names;
4) thdy have the same recursivity;
* they arq instance modes;
e they arq event modes such that they both have no eventlength or both have the same event length;
* they arq buffer modes such that:
1) thdy both have no buffer length or both havethe same buffer length;
2) thdy have l-equivalent buffer element.modes;
»  they arq association modes;
*  they arq access modes such that:
1) thdy both have no index~mode or both have index modes which are equivalent;

2) at [least one has no record mode, or both have record modes that are l-equivalent and that arg both static
re¢ord modes or:both dynamic record modes;

-

* they arq text mades)such that:

1) thgy have the same text length;

2) thqdy have l-equivalent text record modes;

3) they have l-equivalent access modes;
e they are duration modes;
e they are absolute time modes;
e they are string modes such that their element modes are equivalent;
e they are array modes such that:
1) their index modes are v-equivalent;
2) their element modes are equivalent;
3) their element layouts are equivalent;

4) they have the same number of elements. This check is dynamic if one or both modes is (are) dynamic. Check
failure will result in the RANGEFAIL exception;
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they are structure modes which are not parameterized structure modes such that:

they are parameterized structure modes such that:

their origin variant structure modes are similar;

dynamic. Check failure will result in the TAGFAIL exception;

they are moreta modes whose mode names are synonymous.

12.1.2.4 The relation v-equivalent

Two modes

12.1.2.5 Th

Two modes

if one 1
and bot

if one i
must be

if one 1
length.
RANGH

if one 1

string length. This check is dynamic in the case that one ot ‘both modes is (are) dynamic. Check failyj

in the R

12.1.2.6 Th

Two modes
read-only nj
* ifthey 4
e ifthey 4
if they

if they
strict sy
must bg

12.1.2.7 Th

e relation equivalent

hire equivalent if and only if they are v-equivalent and:

h lower bounds must be equal;

equal and both lower bounds must be equal and they must have the same precision;

5 a fixed string mode, the other one must also be a fixed string imode, and they must have the
This check is dynamic in the case that one or both modes is, (are) dynamic. Check failure will
FAIL exception;

5 a varying string mode, the other one must also be a varying string mode, and they must h:
UNGEFAIL exception.

e relation l-equivalent

nre l1-equivalent if and only if they are-equivalent and if one is a read-only mode, the other m
ode, and:

re bound reference modes, their veferenced modes must be l-equivalent;
re row modes, their refereneed origin modes must be l-equivalent;
re array modes, their-element modes must be l-equivalent;

re structure modes.which are not parameterized structure modes, corresponding (by position

l-equivalent.

e relations equivalent and l-equivalent for fields

in the strict syntax, they have the same number of fields and corresponding (by position) fields are equivalent;

if they are both parameterizable variant structure modes, their lists of classes must be compatible;

their corresponding (by position) values are the same. This check is dynamic if one or both modes is (are)

a discrete range mode, the other must also be a discrete range mode and both upper bounds must be equal

b a floating point range mode, the other must also be a floating point range’mode and both upper bounds

same string
result in the

\ve the same
re will result

ust also be a

fields in the

ntax must be d~equivalent; if they are parameterized structure modes, their origin variant strjicture modes

Two fields (1

only if both

fields are fixed fi elds which are 1. equlvalent 2. 1- equlvalent or both are alternatzve fields Wthh are 1. equivalent, 2.
l-equivalent.

The relations equivalent and l-equivalent are recursively defined for corresponding fixed fields, variant fields,
alternative fields and variant alternatives, respectively, in the following way:

Fixed fi

elds and variant fields

1) Both fixed fields or variant fields must have equivalent field layout.

2) Both field modes must be 1. equivalent, 2. l-equivalent.

1)

Alternative fields

Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must have the

same number of tag field names and corresponding (by position) tag field names must denote corresponding
fixed fields.
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2)

3)

Both must have the same number of variant alternatives and corresponding (by position) variant alternatives
must be 1. equivalent, 2. l-equivalent.

Both must have no ELSE specified or both must have ELSE specified. In the latter case, the same number of
variant fields must follow and corresponding (by position) variant fields must be 1. equivalent, 2.
l-equivalent.

. Variant alternatives

1)

2)

12.1.2.8

In the rest off the subclause, it will be assumed that each pos is of the form:

and that eacl step is of the form:

Subclause 3|13.5 gives the appropriate rules to bring pos or step in the required form.

e Field ldyout

Both variant alternatives must have the same number of case label lists and corresponding (by position) case
label lists must either be both irrelevant, or both define the same set of values.

Both variant alternatives must have the same number of variant fields and corresponding (by position) variant

fields must be 1. equivalent, 2. l-equivalent.

The relation ivalent for layout

PQS (<number> , <start bit> , <length>)

STEP (<pos> , <step size>)

Two fidld layouts are equivalent if they are both NOPACK, or-both PACK, or both pos. In the latter|case the one

pos must be equivalent to the other one (see below).

e FElemen} layout

Two el¢ment layouts are equivalent if they are both NOPACK, both PACK, or both step. In the latter case the pos
in the ohe step must be equivalent to the pos in th¢-other one (see below) and step size must deliver the same values

for the {wo element layouts.

. Pos

A pos {s equivalent to another pgs if*and only if both word occurrences deliver the same value, Qoth start bit

occurrehces deliver the same value and both length occurrences deliver the same value.

12.1.2.9

The relation alike

Two modes pre alike if and-only if they both are or both are not read-only modes and they both have novelty nil or both

have the sanje novelty-and:
e they arq integermodes;

e they arq bodlean modes;

e they are character modes;

e they are similar set modes;

e they are discrete range modes with equal upper bounds and equal lower bounds;

¢ they are floating point range modes with equal upper bounds, equal lower bounds and equal precision;

*  they are powerset modes such that their member modes are alike;

e they are bound reference modes such that their referenced modes are alike;

e they are free reference modes;

e they are row modes such that their referenced origin modes are alike;
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e they are procedure modes such that:

1) they have the same number of parameter specs and corresponding (by position) parameter specs have alike
modes and the same parameter attributes, if present;

2) they both have or both do not have a result spec. If present, the result specs must have alike modes and the
same attributes, if present;

3) they have the same list of exception names;
4) they have the same recursivity;
* they are instance modes;
» they are event modes such that they both have no event length or both have the same event length;

* they are buffer modes such that:

1) thdy both have no buffer Tength or both have the same buffer length;
2) thqy have buffer element modes which are alike;

» they arq association modes;

» they arq access modes such that:
1) thqy both have no index mode or both have index modes that are alike;

2) at |least one has no record mode or both have record modes that are alike and that are both static record
mqdes or both dynamic record modes;

-

*  they arq text modes such that:
1) thdy have the same text length,;
2) thdir text record modes are alike;
3) thdir access modes are alike;
e they arq duration modes;
* they arq absolute time modes;
* they arq string modes such that:
1) thdir element modes are alike;
2) thgy have the same string length’;
3) thqy both are fixed stringsmodes or both are varying string modes;
* they arq array modes such that:
1) thdir index modgs:are alike;
2) thdir element.modes are alike;

3) thdir element layouts are equivalent;

4) they-have-thesamenumber-of-elements:

e they are structure modes that are not parameterized structure modes such that:
1) in the strict syntax they have the same number of fields and corresponding (by position) fields are alike;
2) if they are both parameterizable variant structure modes, their lists of classes must be compatible;

»  they are parameterized structure modes such that:
1) their origin variant structure modes are alike;

2) their corresponding (by position) values are the same.

12.1.2.10 The relation alike for fields

Two fields (both fields in the context of two given structure modes) are alike if and only if both fields are fixed fields
which are alike or both are alternative fields which are alike.
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The relation alike is recursively defined for corresponding fixed fields, variant fields, alternative fields and variant

alternatives,

respectively, in the following way:

Fixed fields and variant fields

1) Both fixed fields or variant fields must have equivalent field layout.

2) Both field modes must be alike.

3) Both fixed fields or variant fields must have the same name string attached.
e Alternative fields
1) Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must have the
same number of tag field names and corresponding (by position) tag field names must denote corresponding
fixed fields.
2) Both must have the same number of variant alternatives and corresponding (by position) varignt alternatives
myst be alike.
3) Bdth must have no ELSE specified or both must have ELSE specified. In the latter case,the sanje number of
vatiant fields must follow and corresponding (by position) variant fields must be alike.
*  Varianialternatives
1) Baqth variant alternatives must have the same number of case label lists and corresponding (by ppsition) case
label lists must either be both irrelevant, or both define the same set of valuest
2) Bdth variant alternatives must have the same number of variant fieldssand/corresponding (by position) variant
fiefds must be alike.
12.1.2.11 The relation novelty bound
Informal

In a program, each quasi newmode must represent at most one-Feal newmode. This is established as foll

name string
novelty bou

Definition

The relation

real and a qRasi defining occurrence:

hd if they g
if they 2

if they 2
inR;

if they g
if they g

is bound to both a real and a quasi defining o¢citrrence all the newmodes involved are paired.
nd is then established between novelties.

novelty paired applies between two-modes and a reach. For each name string bound in a reac

re synonym names, then the-root modes of their classes are novelty paired in R;
re location or loc-identity names, then their location modes are novelty paired in R;

re procedure names, then the modes of the parameter specs and result spec, if present, are no

re process hames, then the modes of the parameter specs are novelty paired in R;

re signal names, then the modes in the list of modes are novelty paired in R.

bws: when a
The relation

h R to both a

velty paired

If two modesare movelty paired ma Teach R them:

if
R;
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if they are powerset modes, their member modes are novelty paired in R;
if they are bound reference modes, their referenced modes are novelty paired in R;

if they are row modes, their referenced origin modes are novelty paired in R;

if they are buffer modes, their buffer element modes are novelty paired in R;

if they are text modes, their index modes, if present, are novelty paired in R;

if they are array modes, their index modes and element modes are novelty paired in R;
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classes are novelty paired in R;

otherwise if they are structure modes, their field modes are novelty paired in R.

if they are parameterized structure modes, their origin variant structure modes are novelty paired in R;

if they are parameterizable variant structure modes, their field modes and the modes of the classes in their list of

If two modes are novelty paired in a reach R and their novelties are not equal, then the real and quasi novelties of the
modes are novelty bound to each other in R.

Two novelties are considered the same if they are:

12.1.2.12

the same real novelty, or

a real novelty and a quasi novelty that are novelty bound.

The relation read-compatible

Informal

The relation
N if it or its
modes, refer

Example:
READ REF
Definition

A mode M
equivalent 4

if M an
of N;

if M ar
mode o

if M an
if M an

compafible with the corresponding field mode of N. If M and N are parameterized structure mode

variant

12.1.2.13
Informal

The relation

read-compatible is relevant for equivalent modes. A mode M is said to be read-compatible
possible (sub-)components have equal or more restrictive read-only specifications@nd, if they
to l-equivalent locations. This relation is therefore non-symmetric.

READ CHAR is read-compatible with REF READ CHAR

is said to be read-compatible with a mode N (a non-syidmetric relation) if and only if N
nd, if N is a read-only mode, then M must also be a readsonly mode and further:

1 N are bound reference modes, the referenced mode.of M must be l-equivalent with the refer

d N are row modes, the referenced origin mode of M must be l-equivalent with the referg
FN;

] N are array modes, the element mode of M must be read-compatible with the element mode

N are structure modes which ar¢.not parameterized structure modes, any field mode of M 1y
structure mode of M must be read-compatible with the origin variant structure mode of N.

The relations dynamic equivalent and read-compatible

5 1. dynamic eéquivalent, 2. dynamic read-compatible, are relevant only for modes that can

i.e. string, a
dynamic r
which is 1.

eeFld-compatible with a (possibly dynamic) mode N, if there exists a dynamically parameterized

uivalent, 2. read-compatible with N.

with a mode
hre reference

1 and N are
enced mode
nced origin
of N;

ust be read-
s, the origin

be dynamic,

[ray and\variant structure modes. A parameterizable mode M is said to be 1. dynamic equivalent, 2.

version of M

Definition

A mode M is 1. dynamic equivalent to a mode N, 2. dynamic read-compatible with a mode N (a non-symmetric
relation) if and only if one of the following holds:

M and N are string modes such that M(p) is 1. equivalent, 2. read-compatible with N, where p is the (possibly

dynamic) length of N. The value p must not be greater than the string length of M. This check is dynamic if N is a
dynamic mode. Check failure will result in a RANGEFAIL exception;

M and N are array modes such that M(p) is 1. equivalent, 2. read-compatible with N, where p is such that NUM

(p) — LOWER (M) + 1 is the (possibly dynamic) number of elements of N. The value p must not be greater than the
upper bound of M. This check is dynamic if N is a dynamic mode. Check failure will result in a RANGEFAIL
exception;

1. equivalent, 2. read-compatible with N, where py, ..., p,, denote the list of values of N.
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M is a parameterizable variant structure mode and N is a parameterized structure mode such that M(py, ..., p,) is
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12.1.2.14 The relation restrictable
Informal

The relation restrictable is relevant for equivalent modes with the referencing property. A mode M is said to be
restrictable to a mode N if it or its possible (sub-)components refer to locations with equal or more restrictive read-only
specification than those referenced by N. This relation is therefore non-symmetric.

Example:

REF READ /NT is restrictable to REF INT
STRUCT (P REF READ BOOL) is restrictable to STRUCT (Q REF BOOL)

Definition

A mode M is restrictable to a mode N (a non-symmetric relation) if and only if M and N are equivalent and further:

e if M and N are bound reference modes, the referenced mode of M must be read-compatible with th¢ referenced
mode of N;

* if M anfl N are row modes, the referenced origin mode of M must be read-compatible with the refergnced origin
mode of N;

. if M andl N are array modes, the element mode of M must be restrictable to the elementymnode of N;

* if M anfl N are structure modes, each field mode of M must be restrictable to thecCotresponding field mode of N.

12.1.2.15 Compatibility between a mode and a class
*  Any mqdde M is compatible with the all class.

e A mod¢ M is compatible with the null class if and only if M is\d reference mode or a procedurel mode or an
instanc¢ mode.

* A modg¢ M is compatible with the N-reference class if and only if M is a reference mode and one of the following
conditigns is fulfilled:

1) N |s a static non-moreta mode and M is a bound<reference mode whose referenced mode is read-compatible
with N;

2) N |s a static moreta mode and M is a boundteference mode REF MM and MM and N are on the sgme path;
3) N s a static mode and M is a free referenice mode;
4) Mjis a row mode whose referenced’origin mode is dynamic read-compatible with N.
* A modq M is compatible with the N-derived class if and only if M and N are similar.
* A modq M is compatible with'the N-value class if and only if one of the following holds:
1) if M does not have the‘referencing property, M and N must be v-equivalent;

2) if M does have/the referencing property, M must be restrictable to N.

12.1.2.16 Comnipatibility between classes

e Any clgssli§ eompatible with itself.

e The all class is compatible with any other class.
e The null class is compatible with any M-reference class.

e The null class is compatible with the M-derived class or M-value class if and only if M is a reference mode,
procedure mode or instance mode.

e The M-reference class is compatible with the N-reference class if and only if M and N are equivalent. If M and/or
N is (are) a dynamic mode, the dynamic part of the equivalence check is ignored, i.e. no exceptions can occur.

e The M-reference class is compatible with the N-value class if and only if N is a reference mode and one of the
following conditions is fulfilled:

1) Mis a static mode and N is a bound reference mode whose referenced mode is equivalent to M.
2) Mis a static mode and N is a free reference mode.

3) Nisarow mode whose referenced origin mode is dynamic equivalent with M.
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e  The M-derived class is compatible with the N-derived class or N-value class if and only if M and N are similar.
*  The M-value class is compatible with the N-value class if and only if M and N are v-equivalent.

Two lists of classes are compatible if and only if both lists have the same number of classes and corresponding (by
position) classes are compatible.

12.1.2.17 Conformance of mode names

Two mode names A and B conform to each other if and only if:

. either they both denote modes of the kind "REF MM", where MM is a moreta mode, and A and B are on the same
path;

e orAsynB.

12.1.3  Definitions for moreta modes

If M is a moteta mode, then:

Mg = the specification part of M (also the set of components in this part);
Mg = the body part of M (also the set of components in this part);
M, = the set of public components of Mg defined directly in Mg;
Mp, = the set of all public components of Mg (including the inherited ones);
M, = the set of internal components of Mg;
My = the set of all internal components of Mg (including theinherited ones);
Mp = the set of private components of Mg;
Mgy = the set of all private components of Mg (including the inherited ones);
Mcep = the set of constructors and destructors of Wis;
M,y = the invariant of Mg;
Mo = the set of components (logically).contained in a location of mode M.

If P is a component procedure of a moreta mode, then:

PS = the signature part of P;
PD = the (complete) definition of P;
PPre = the precondition-of P;
PPost = the postcondition of P;
PE = the set\of exceptions specified in PS.

If X is a pro¢edure or a moretamode, then:

attqX, A) = X contains the attribute A: e.g. attr(P, INLINE);
prog(X, P) = X has the property P: e.g. prop(P, assignable);
GRANTed” = explicitly exported,;
granted—= GRANTed-Himpthieitty exported:

12.1.3.1 Qualified names of components of moreta modes and moreta locations

If M is the simple name string of a moreta mode, L is the simple name string of a moreta location, and C is the simple
name of a component of M or of a public component of L then the name M.C or L.C can be used as a unique name for C
in order to distinguish C from components with the same simple name string. If necessary the qualified name is assumed.

12.1.3.2 Successor and predecessor relations for moreta mode names

A moreta mode name DM is a direct successor (dsucc) of a moreta mode name BM if and only if there exist moreta
mode names D and B: (B syn BM) (D syn DM) U(B is mentioned in the inheritance clause of D).

A moreta mode name DM is a successor (succ) of a moreta mode name BM if and only if either DM syn BM or (LMM:
(DM succ MM) (MM dsucc BM)).

The relation "predecessor” is the inverse of "successor".
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Two moreta mode names A and B are on the same path if and only if (A succ B) [J(B succ A).

These relations hold isomorphically for modes of the kind "REF MM", where MM is a moreta mode.

12.1.3.3 Matching between procedure signatures and procedure definitions

A guarded procedure signature S matches a guarded procedure definition D if and only if:
S.<parameter list> matches D.<formal parameter list> [
S.<result spec> and D.<result spec> differ at most in the occurrence of RESULT [J
S.<exception list> = D.<exception list> [

S.<guarded procedure attribute list> = D.<guarded procedure attribute list>

A parameter[list P matches a Tormal parameter [1st F with strict syntax I iI and only 11
P|=[F'| O

all corresporjding elements of P and F' have the same mode and the same parameter attributes.

12.2 Visibility and name binding
The definitign of visibility and name binding is based on the following terminology:
*  name sfing: denotes a terminal string that has attached a canonical namé:string (see 2.7) and visibility properties;

* name: denotes a simple name string associated with the defining occufrence that has created it (see 10.1

*  name: denotes an applied occurrence of a name (with a possibly prefixed name string).

12.2.1 Ddgrees of visibility

The binding|rules are based on the visibility of name strings in the reaches of a program. Within a reacl, each name
string has orle of the following degrees of visibility:

Table-1/Z.200 — Degrees of visibility

Visibility Properties (informal)
directly visible Name string is visible by creation, granting or seizing or inheritance from
spec to body
inflirectly visible Name string is predefined or inherited via block nesting
publicly visible Name string is name of a public component of a moreta mode and is use

in a moreta component name, or name string is name of a component of
moreta mode M and is used in a moreta component name which occurs
inside M or any successor of M

privately visible Name string is name of a guarded procedure definition statement P
contained in a moreta mode body B and the moreta mode specification of
B does not contain a corresponding guarded procedure signature statement

invisible Name string may not be applied

A name string is said to be visible in a reach if it is either directly visible or indirectly visible in that reach. Otherwise
the name string is said to be invisible in that reach. The program structuring statements and visibility statements
determine uniquely to which visibility class each name string belongs.

When a name string is visible in a reach, it can be directly linked to another name string in another reach, or directly

linked to a defining occurrence in the program. The rules for direct linkage are in 12.2.3. Notice that any application of
a rule introduces a new direct linkage for a name string.
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Based on direct linkage, the notion of (not necessarily direct) linkage is defined as follows:

A name string N1, visible in reach R, is said to be linked to name string Ny in reach Ry or to defining occurrence D, if
and only if one of the following conditions holds:

Nj in R; is directly linked to N, in R, or to D. However, if N; is directly linked to more than one defining

occurrence in Ry, then all but one of these defining occurrences are superfluous, and Ny is linked to an arbitrary
one of them in R;. This does not apply if N; is the name string of a simple guarded procedure signature statement in

a moret

12.2.2 Vi

a mode specification.

Nj in Ry is directly linked to some N in some R, and N in R is linked to N, in R or to D.

sibility conditions and name binding

In each reach of a program, the following conditions must be satisfied:

If a naif
real de
guardeq
occurre
occurrd
modes
one or
linkage

A name strin
rules:

If NS i

If it is ound both to a quasi defining occurrence and a real defiuing occurrence, then the quasi one

and dog
linked 1
which 1
procedy
signatuf
M.

Otherw

static condi

binding of names: A name N with attached name string NS in a reach R is bound to the defining occurren

NS is bound
12.2.3 Vi
12.2.3.1 Gg

A name strii

ining occurrence and one quasi defining occurrence, or to exactly one real defining occurepc
procedure signature statement in a mode M which is not an interface mode and exactly.one
hce in a corresponding simple guarded procedure definition statement and possibly. several
ices in a simple guarded procedure signature statement in one or more interfadeymodes wh
f M, or to possibly several real defining occurrences in a simple guarded procedure signature
more interface modes which are base modes of a moreta mode M and wher€ the name string
in M.

visible in R, NS is bound to the defining occurrences to which it is linked in R (as a visible 1

s not participate further to visibility and name binding(i.e. it is not seized, granted nor inhej
0 exactly one real defining occurrence in a simple\guarded procedure signature statement i

re definition statement and to possibly several“real defining occurrences in a simple guard
e statement in one or more interface modes. which are base modes of M then it is bound to the

se NS is not bound in R.

ion: The name string attached to_each name directly enclosed in a reach must be bound in that 1

in R.
sibility in reaches

neral

¢ is dipectly visible in a reach according to the following rules:

the nani

e String is seized into the reach (see 12 2 3 5);

e string 1s visible 1 a reach and has more than one direct linkage, then 1t must be linked. td

exactly one
b in a simple
real defining
real defining
ich are base
statement in
has no direct

2 NS, visible in reach R, is said to be bound in R to several defining oecurrences according to the following

bame string).
is redundant
ited). If it is
h a mode M

s not an interface mode and to exactly one real defining occurrence in a corresponding simpple guarded

bd procedure
ccurrence in

each.

ces to which

the name string is granted into the reach (see 12.2.3.4);

there is a defining occurrence with that name string in the reach. In that case, the name string in the reach is

directly linked to the defining occurrence. (Note that the name string may be directly linked to several defining

occurre,

nces in the reach);

inside a constructor or destructor CD of a moreta mode M, the name string of M is not hidden by the defining

occurrence of the same name string in the definition of CD (but it may still be hidden by other defining occurrences
of the same name string);

denotes

either M or CD depending on the context;

at a place inside a constructor or destructor CD of a moreta mode M, where the name string S of M is not hidden, S

the reach is a 1. module body, 2. region body and the name string is directly visible in the reach of a corresponding

1. module spec, 2. region spec. The name string is directly linked to the name string in the corresponding reach.
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A name string which is not directly visible in a reach is indirectly visible in it according to the following rules:

*  The reach is a block, and the name string is visible in the directly enclosing reach. The name string is said to be
inherited by the block, and is directly linked to the same name string in the directly enclosing reach.

*  The reach is not a block in which the name string is inherited and the name string is a language (see II1.2) or
implementation defined name string. The name string is considered to be directly linked to a defining occurrence
in the reach of the imaginary outermost process definition for its predefined meaning.

12.2.3.2 Visibility statements

syntax:
<visibility statement> ::= (1)
<grant statement> (1.1)
| <seize statement> (1.2)

semantics: Visibility statements are only allowed in modulion reaches and moreta mode reaches{ and control the
visibility of the name strings mentioned in them.

static propdrties: A visibility statement has one or two origin reaches (see 10.2) and one or'two destingtion reaches
attached, deffined as follows:

» If the Visibility statement is a seize statement, its destination reach is the r€ach” directly enclosipg the seize
statemepit, and its origin reaches are the reaches directly enclosing that reach.

o If the Yisibility statement is a grant statement, then its origin reach, is\the reach directly enclosing the grant
statemept, and its destination reaches are the reaches directly enclosingthat reach.

o If the Visibility statement is a grant statement in a moreta mod€ Specification, then its origin reach|is the reach
directlylenclosing the grant statement, and its destination reaches/are not the reaches directly enclosing [that reach.

12.2.3.3 Prefix rename clause

syntax:

<prefix rename clause> ::= (1)
( <old prefix> —> <new prefix> ) | <postfix> 1.1)

<¢ld prefix> ::= 2)
<prefix> 2.1)

| <empty> 2.2)

<pew prefix> ::= 3)
<prefix> 3.1)

| <empgyz 3.2)
<postfix> = 4)
<seize postfix> { , <seize postfix> } * 4.1)

[ <grant postfix> { , <grant postfix> }* 4.2)

derived syntax: A prefix rename clause where the postfix consists of more than one seize postfix (grant postfix) is
derived syntax for several prefix rename clauses, one for each seize postfix (grant postfix), separated by commas, with
the same old prefix and new prefix.
For example:

GRANT p—>¢q)!a,b;
is derived syntax for

GRANT p—>¢q)!a,(p—>¢q)!b;
semantics: Prefix rename clauses are used in visibility statements to express change of prefix in prefixed name strings

that are granted or seized. (Since prefix rename clauses can be used without prefix changes — when both the old prefix
and the new prefix are empty — they are taken as the semantic base for visibility statements.)
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static properties: A prefix rename clause has one or two origin reaches attached, which are the origin reaches of the
visibility statement in which it is written.

A prefix rename clause has one or two destination reaches attached, which are the destination reaches of the visibility
statement in which it is written.

A postfix has a set of name strings attached, which is the set of name strings attached to its seize postfix or the set of
name strings attached to its grant postfix. These name strings are the postfix name strings of the prefix rename clause.

A prefix rename clause has a set of old name strings and a set of new name strings attached. Each postfix name string
attached to the prefix rename clause gives both an old name string and a new name string attached to the prefix rename
clause, as follows: the new name string is obtained by prefixing the postfix name string with the new prefix; the old
name string is obtained by prefixing the postfix name string with the old prefix.

When a new name string and an old name string are obtained from the same postfix name string, the old name string is
said to be the source of the new name string

visibility rules: The new name strings attached to a prefix rename clause are visible in their destination'regches and are
directly linked in those reaches to their sources in the origin reaches. If the prefix rename clause-s pdrt of a seize
statement (glant statement), those name strings are seized (granted) in their destination reach (redehes).

A name string NS is said to be seizable by modulion M directly enclosed in reach R if and only'if it is visibJe in R and it
is neither linked in R to any name string in the reach of M nor directly linked to the defining occurrence of|a predefined
name string.

A name strigg NS is said to be grantable by modulion M directly enclosed in reaeh R if and only if it is yisible in the
reach of M gnd it is neither linked in it to any name string in R nor directly dinked in it to the defining oc¢urrence of a
predefined npime string.

static conditions: If a prefix rename clause is in a seize statement directly enclosed in the reach of modylion M then
each of its old name strings must be:

*  bound {o several defining occurrences in the reach directly enclosing the reach of M; and
*  seizabl¢ by M.

If a prefix rgname clause is in a grant statement diréctly enclosed in the reach of modulion M then each oflits old name
strings must|be:

*  bound fo several defining occurrences inlthe reach of M; and

*  grantable by M.

A prefix rengme clause that occursiin‘a grant statement (seize statement) must have a postfix that is a grant postfix (seize
postfix).

examples:

25.35 (stack ! int —>)stack) ! ALL 1.1)

12.2.3.4 Gnanft statement

syntax:

<grant statement> ::= (1)
GRANT <prefix rename clause> { , <prefix rename clause> }* ; (1.1)

| GRANT <grant window> [ <prefix clause> | [ <friend clause> ] ; (1.2)

<grant window> ::= (2)
<grant postfix> { , <grant postfix> }* (2.1)

<grant postfix> ::= 3)
<name string> [ ( < parameter list>) [ [RETURNS] ( <result spec>)] ] (3.1)

| <newmode name string> <forbid clause> (3.2)

| [ <prefix>!] ALL (3.3)
<prefix clause> ::= (4)
PREFIXED [ <prefix> | (4.1)
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<forbid clause> ::= (5)
FORBID { <forbid name list> | ALL } 5.1)

<forbid name list> ::= (6)
( <field name> { , <field name> }*) (6.1)

<friend clause> ::= (7)
TO <friend name list> (7.1)

<friend name list> ::= (8)
<friend name> {, <friend name>}* (8.1)

<friend name> ::= 9)
<modulion or moreta mode name> [ | <friend procedure or process name> | 9.1)
<modulion or moreta mode name> ::= (10)
modilioneae H0.1)

| <umoreta mode name> 610.2)

riend procedure or process name> ::= (11)
<procedure name> [ ( <parameter list>) [[ RETURNS ] (<result spec>) ] 11.1)

| <process name> 11.2)

semantics:
enclosing re
locations an

The followin]

If the ¢
clause(}

If the ¢
rename
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If a pre
form:

where

jrant statements are a means of extending the visibility of name strings in & modulion reach int
hches. FORBID can be specified only for newmode names which arg ‘structure modes. It m
| values of that mode have fields which may be selected only inside the granting modulion, not

g visibility rules apply:

rant statement contains prefix rename clause(s), the graumd statement has the effect of its p
) (see 12.2.3.3).

rant statement contains grant windows, it is shorthand notation for a set of grant statement.
clauses constructed as follows:

each grant postfix in the grant window, therg,is a corresponding grant statement;
old prefix in their prefix rename clause\is empty;

new prefix in their prefix rename clause is the prefix attached to the prefix clause in the grant
5 empty if there is no prefix clayse-in the original grant statement;

postfix in the prefix rename.clause is the corresponding postfix in the grant window.

fation FORBID ALE-is shorthand notation for forbidding all the field names of the new
D.5).

fix rename clause in a grant statement has a grant postfix which contains a prefix and ALL, thg

(OP—>NP) | P | ALL
DP.dnd NP are the possibly empty old prefix and new prefix, respectively, and P is the prefix

a olor

the directly
eans that all
utside.

efix rename

with prefix

statement, or

mode name

tn it is of the
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postfix. Tk
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(OP | P->NP | P) | ALL

mentioned in the friend name list.

static properties: A prefix clause has a prefix attached, defined as follows:

If the prefix clause contains a prefix, then that prefix is attached.

Otherwise the attached prefix is a simple prefix whose name string is determined as follows:

the module name or region name of that modulion.

string in front of SPEC.
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A grant postfix has a set of name strings attached, defined as follows:

Ifitisa

name string, or contains a newmode name string, then the set containing only that name string.

Otherwise, let OP be the (possibly empty) old prefix of the prefix rename clause in which the grant postfix is

placed, the set contains all name strings of the form OP ! N (i.e. obtained by prefixing N with OP) for any name
string N such that OP ! N is visible in the reach of the modulion in which the grant postfix is placed and grantable
by this modulion.

static conditions: The newmode name string with forbid clause must be visible in the reach R of the modulion in which
the grant statement is placed. The newmode name string must be bound in R to the defining occurrence of a newmode
which must be a structure mode, and each field name in the forbid name list must be a field name of that mode. The
newmode defining occurrence must be directly enclosed in R. All field names in a forbid name list must have different

name strings

If the grant

tatement is placed in the reach of a region or spec region, it must not grant a name string which is bound in

that reach to

o aloca

a synorl
The prefix rd

If a grant st
not be a con

if its di
occurrg

A name N ¢
must be defi

If the grant §
examples:

25.7 G

6.44 g
12.2.3.5 Se

syntax:

tr:[
a loc-i

if its digectly enclosing modulion is a spec module or a speé¥egion, then it must be headed by a simple

the defining occurrence of:

n name; or

ntity name, where the /ocation in its declaration is intra-regional; or
ym name whose value is intra-regional.

name clause in a grant statement must have a grant postfix.

tement contains a prefix clause which does not contain a prefix, then its directly enclosing m
ext and:

ectly enclosing modulion is a module or region, then it must'be named (i.e. it must be headed
ice followed by a colon);

bntained in a friend name list of a grant statemient, which is placed immediately in the reach d
hed immediately in the reach of the group directly surrounding G.

tatement occurs immediately inside a nioreta specification then no prefixing must occur.

RANT (— stack ! char) ! ALL;

egorian_date, julian~day number

ze statement

eize(statement> ::=
SEIZE <prefix rename clause> { , <prefix rename clause> }* ;

bdulion must

by a defining

hame string.

f a group G,

1.1)

2.1)

(1)
1.1)

f<k nh 4o 4 nl - LI L Lo 7 1
[ ST CIZeWIndow="1 ~pProjix Tiduse=1",

<seize window> ::=

<seize postfix> { , <seize postfix> }*

<seize postfix> ::=

<name string> [ ( <formal parameter list>) [ [RETURNS] ( <result spec>)] ]
| [ <prefix>!] ALL

1.2)

2)
2.1)

3)
(3.1)
(3.2)

semantics: Seize statements are a means of extending the visibility of name strings in group reaches into the reaches of
directly enclosed modulions.

The following visibility rules apply:

clause(s) (see 12.2.3.3).
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(1999 E)

If the seize statement contains prefix rename clause(s), the seize statement has the effect of its prefix rename

165


https://iecnorm.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

rename

clauses constructed as follows:

for each seize postfix in the seize window, there is a corresponding seize statement;

empty if there is no prefix clause in the original seize statement;

form:

where (
postfix.

static prope]

If the s4

Else, if
seize pd

Of

it i

— it
static condi

If a seize st
not be a con

if its di
occurre
L]

examples:

25.35 S]

12.24 Vi

A set elemen

the new prefix in their prefix rename clause is empty;

the postfix in their prefix rename clause is the corresponding postfix of the seize window.

(OP—>NP) | P | ALL

an arc the possibly empty old prejix and new prejix, tespectively, an
The prefix rename clause is then shorthand notation for a clause of the form:

1S the preji

(OP ! P—>NP ! P) ! ALL
fties: A seize postfix has a set of name strings attached, defined as follows:
ize postfix is a name string, the set containing only the name string.

the seize postfix is ALL, let OP be the (possibly empty) old prefix of the\prefix rename clause
stfix is part, the set contains all name strings of the form OP ! S, for@ayname string S, such thal

IS is visible in the reach directly enclosing the modulion in whigh'the seize statement is placed;
5 seizable by this modulion; and

5 bound to a quasi defining occurrence if this modulion has a context in front of it.
ions: The prefix rename clause in a seize statement must have a seize postfix.

tement contains a prefix clause which doesnot contain a prefix, then its directly enclosing m
ext, and:

ectly enclosing modulion is a module)or region, then it must be named (i.e. it must be headed
hice followed by a colon);

if its difectly enclosing modulion is(a spec module or a spec region, then it must be headed by a simple

LIZE (stack ! int £>)stack) | ALL;

sibility of set'element names

t name may occur only in the context of a set literal.

If the seize statement contains a seize window, it is shorthand notation for a set of seize statements with prefix

the old prefix in their prefix rename clause is the prefix attached to the prefix clause in the seize statement, or is

If a prefix rename clause in a seize statement has a seize postfix which contains a prefix and ALL, then it is of the

in the seize

of which the
[

and

dulion must

by a defining

rame string.

1.1)

If a set mod

e name is specified in the set literal, then the name string of a set element name can be bound to a set

element nam

e defining occurrence in the mode of the class of the set literal.

Otherwise, a set mode name is not specified, and then the name string can be bound to a set element name defining
occurrence only if it is not visible in the reach in which the set literal is placed.

12.2.5

Field names

Visibility of field names

may occur only in the following contexts:

structure fields and value structure fields,
labelled structure tuples,

forbid clauses in grant statements.

Note that a field name may not occur in a grant postfix or in a seize postfix.
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In each of these cases, the name string of the field name can be bound to a field name defining occurrence in the mode
M or in the defining mode of M, obtained as follows:

forbid ¢

M is the mode of the structure location or (strong) structure primitive value;

M is the mode of the structure tuple;

lause is placed.

M is the mode of the defining occurrence to which the newmode name string is bound in the reach in which the

However, if the novelty of M is a defining occurrence that defines a newmode name that has been granted by a grant
statement in a modulion as a grant postfix with a forbid clause, then the field names mentioned in the forbid name list are

only visible:

in the group of the granting modulion;

enclosed;

if the novelty of M is novelty bound to a quasi novelty N, then in the group of the reach in which N is directly

if the m)

Outside thes

12.2.6 De

An instance
created LI.

example:
S
S
E]
D

The current
execution of]

Dependence
L. There are

a)
b)

the mod

the mod
the rele

A location I

12.3

syntax:

odulion is a module spec or region spec, then in the reach of the corresponding modulion.

e reaches the field names mentioned in the forbid name list are invisible and cannot be used

pendence of locations

LI of a directly declared location L depends on that execution of its immediately surrounding

'NMODE TM = TASK SPEC ...
'NMODE MM = MODULE SPEC
DCL T1 TM;

ND MM;

CL M1 MM;

instance M1-I of M1 contains an instance M1-kT1 of MM.T1. M1-1.T1 has been create
"DCL M1 MM;". Therefore M1-1.T1 depends on@M1-I.

of heap locations: GETSTACK and ALLOCATE create a new location L and deliver a referenc
two cases:

e of R is known to be RM. In this case L depends on the creator of the relevant instance of RM;

vant instance of LM, where LM.is the mode of L.

c which is a subcomponent of a location L depends on L.

Case selection

ase label specification> ::=
<case label list> { , <case label list> }*

ase label list> ::=

%

group which

1 during the

e value R for

e of R is not known (IF ALLOGATE(...) = ALLOCATE( ... ) .....). In this case L depends on the creator of

(1)
1.1)

)

) I'e I I R NG| AN
CUs>C [4UEl 1y CWCIUUC— ¢ )

L
{
| <irrelevant>

<case label> ::=

<i

<discrete literal expression>
| <literal range>
| <discrete mode name>
| ELSE

rrelevant> ::=

(*)

2.1)
2.2)

3)
(3.1)
(3.2)
(3.3)
(3.4)

4
(4.1)

semantics: Case selection is a means of selecting an alternative from a list of alternatives. The selection is based upon a
specified list of selector values. Case selection may be applied to:

alternative fields (see 3.13.4), in which case a list of variant fields is selected;

labelled array tuples (see 5.2.5), in which case an array element value is selected;
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conditional expressions (see 5.3.2), in which case an expression is selected;

case action (see 6.4), in which case an action statement list is selected.

In the first, third and fourth situations, each alternative is labelled with a case label specification; in the labelled array
tuple, each value is labelled with a case label list. For ease of description, the case label list in the labelled array tuple
will be considered in this section as a case label specification with only one case label list occurrence.

Case selection selects that alternative which is labelled by the case label specification which matches the list of selector
values. (The number of selector values will always be the same as the number of case label list occurrences in the case
label specification.) A list of values is said to match a case label specification if and only if each value matches the
corresponding (by position) case label list in the case label specification.

A value is said to match a case label list if and only if:

*  the casg-labe conststs-of-easetabels—and-the—va e of the case
labels or implicitly indicated in the case of ELSE;

»  the casq label list consists of irrelevant.

The values gxplicitly indicated by a case label are the values delivered by any discrete literal\éxpression, ¢r defined by

the literal rqnge or discrete mode name. The values implicitly indicated by ELSE are all-the possible selector values

which are nqt explicitly indicated by any associated case label list (i.e. belonging to the sarhe selector value]) in any case

label specifi

static prope

An alte
has a li
alterna

A case
express,
range;

it is EL

A case
the clas|

A case

A list o
constru

A list of caj
specification
the context 4

ation.

Irties:

native fields with case label specification, a labelled array tuple] a conditional expression, or
t of case label specifications attached, formed by taking thescase label specification in front of]
ive, value or case alternative, respectively.

label has a class attached, which is, if it is a dis¢rete literal expression, the class of the dif
on; if it is a literal range, the resulting class ofthe classes of each discrete literal expression
f it is a discrete mode name, the resulting class.of the M-value class where M is the discrete n
SE, the all class.

ses of each case label.
abel specification has a list ofelasses attached, which are the classes of the case label lists.

[ case label specifications has a resulting list of classes attached. This resulting list of classes
ting, for each positien‘in the list, the resulting class of all the classes that have that position.

ke label specifications is complete if, and only if, for all lists of possible selector values,
is present, which matches the list of selector values. The set of all possible selector values is d
s follows;

dgged variant structure mode it is the set of values defined by the mode of the corresponding tag

class (ths class is never the all class, see 3.13.4).

h case action
each variant

crete literal
in the literal
ode name; if

Jabel list has a class attached, which is;if it is irrelevant, then the all class, otherwise the resulting class of

is formed by

a case label
ptermined by

 field.

For an array tuple, it is the set of values defined by the index mode of the mode of the array tuple.

ng resulting

For a case action with a range list, it is the set of values defined by the corresponding discrete mode in the range list.

For a case action without a range list, or a conditional expression, it is the set of values defined by M where the

class of the corresponding selector is the M-value class or the M-derived class.
static conditions: For each case label specification the number of case label list occurrences must be equal.
For any two case label specification occurrences, their lists of classes must be compatible.
The list of case label specification occurrences must be consistent, i.c. each list of possible selector values matches at

most one case label specification.
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If the root mode of the class of a case label list is an integer mode, there must exist a predefined integer mode that
contains all the values delivered by each case label.

examples:

11.9 (0

ccupied)

11.58 (rook),(*)
8.26 (ELSE)

124 Definition and summary of semantic categories

2.1)
(1.1)
2.1)

This subclause gives a summary of all semantic categories which are indicated in the syntax description by means of an
underlined part. If these categories are not defined in the appropriate subclauses, the definition is given here, otherwise

the appropriate subclause will be referenced.

12.4.1  Nqmes

Mode name

absolute tim

mode name:

access modé|
array mode
association
boolean mod

bound referd

name:
hame:

yiode name:
e name:

nce mode name:

buffer mode

character m
discrete mod

discrete rang

ame:
bde name:
e name:

re mode name:

duration mo
event mode 1

floating poin

e name:
ame:

t mode name:

floating poin

t range mode name:

free referend

e mode name:

generic mor

ta mode name:

interface mo

instance mo(

e name;

Je namé:

a name defined to be an absolute time mode.
a name defined to be an access mode.

a name defined to be an array mode.

a name defined to be an association/mode.

a name defined to be a booléan ‘mode.

a name defined to be a.bgund reference mode.
a name defined to be a buffer mode.

a name defined to'be a character mode.

a name de¢fined to be a discrete mode.

a name-defined to be a discrete range mode.
a name defined to be a duration mode.

a name defined to be an event mode.

a name defined to be a floating point mode.

a name defined to be a floating point range mode.

a name defined to be a free reference mode.
a name defined to be a generic moreta mode.
a name defined to be an interface mode.

a name defined to be an instance mode.

definad ta bha an

P an 1ntagar pando
re-aetpeato-ve-aptegermeoae:

integer modé-wéine

mode name:

module mode name:

modulion or moreta mode name:

moreta mode name:

parameterized array mode name:

parameterized string mode name:

parameterized structure mode name:

powerset mode name:
procedure mode name:

see 3.2.1.

a name defined to be a module mode.

a name defined to be a modulion mode or a moreta mode.

a name defined to be a moreta mode.

a name defined to be a parameterized array mode.
a name defined to be a parameterized string mode.

a name defined to be a parameterized structure mode.

a name defined to be a powerset mode.

a name defined to be a procedure mode.
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region mode name:

row mode name:

set mode name:
string mode name:
structure mode name:
task mode name:

text mode name:

variant structure mode name:

Access names

a name defined to be a region mode.

a name defined to be a row mode.

a name defined to be a set mode.

a name defined to be a string mode.

a name defined to be a structure mode.
a name defined to be a task mode.

a name defined to be a text mode.

a name defined to be a variant structure mode.

location nan
location do-

location enu

e:
ith name:

Ineration name:

loc-identity

Value namejs

boolean litel

emptiness lif
synonym na

value do-wit

value enumé|

ame:

al name:
bral name:
he:

h name:

yation name:

value receiv

b name:

Miscellaneojus names

see 4.1.2.
see 6.5.4.
see 6.5.2.
see 4.1.3.

see 5.2.4.4.

see 5.2.4.7.

see 5.1.

see 6.5.4.

see 6.5.2.

see 6.19.26:19.3.

built-in routine name: any CHILL or implementation defined name denoting a bujlt-in routine.
friend proceflure or process name: see 12.2.3.4.

general prodedure name: a procedure name whose generality is general.

generic modyle name: see 10.11.

generic prodedure name: see 10.11.

generic prodess name: see 10.11.

generic regipn name. see 10.11.

label name: see 6.1, 10.6.

modulion name: see 12.2.3.4.

newmode name string: a name string bound to the defining occurrence of a newmode name.

non-reserved name: a name which is none of the reserved names mentioned in

Appendix III.
procedure name: see 10.4.
process name: see 10.5.
set element name: see 3.4.5.
signal name: see 11.5.
tag field name: see 3.13.4.
undefined synonym name: see 5.1.
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12.4.2

Locations

access location:

array location:

association location:

buffer location:

character string location:

discrete location:

event location:

ISO/TEC 9496:2003(E)

a location with an access mode.

a location with an array mode.

a location with an association mode.

a location with a buffer mode.

a location with a character string mode.
a location with a discrete mode.

a location with an event mode.

floating poin
instance locd
integer locaf
moreta locat
static mode |
string locati
structure log
text location

12.4.3

absolute tim

array expres
array primit
boolean exp

bound referd

¢ location:
ytion:

jon:

ion:
ocation:
n:

ation:

Expressions and values

b primitive value:

sion:
ve value:
ession.

nce moreta location

primitive val

bound referd

character sty

constant val,

e

nce primitive value:

ing expression:

ei

a location with a floating point mode.
a location with an instance mode.

a location with an integer mode.

a location with a moreta mode.

a location with a static mode.

a location with a string mode.

a location with a structufe mode.

a location with a text mode.

a primitive-value whose class is compatible with an absolu
mode.

an expression whose class is compatible with an array moq

te time

le.

a primitive value whose class is compatible with an array node.

an expression whose class is compatible with a boolean m

see 6.7.

a primitive value whose class is compatible with a boul
mode.

an expression whose class is compatible with a character

a value which is constant.

bde.

nd reference

string mode.

discrete expression:

discrete literal expression:

duration primitive value:

floating point expression:

floating point literal expression:

free reference primitive value:

instance primitive value:

integer expression:

integer literal expression:

an expression whose class 1s compatible with a discrete mode.

a discrete expression which is literal.

a primitive value whose class is compatible with a duration mode.

an expression whose class is compatible with a floating po

a floating point expression which is literal.

int mode.

a primitive value whose class is compatible with a free reference

mode.

a primitive value whose class is compatible with an instance mode.

an expression whose class is compatible with an integer m

an integer expression which is literal.
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literal expression:

powerset expression:

procedure primitive value:

reference primitive value:

row primitive value:

String expression:

string primitive value:

an expression which is literal.

an expression whose class is compatible with a powerset mode.

a primitive value whose class is compatible with a procedure mode.

a primitive value whose class is compatible with either a bound

reference mode, a free reference mode or a row mode.
a primitive value whose class is compatible with a row mo

an expression whose class is compatible with a string mod

de.

c.

a primitive value whose class is compatible with a string mode.

Structure pri

1244 M
array mode:
constructor

discrete mod

inline guard
Statement:

location buil
location pro

moreta com

mitive value:

ctual parameter list:
e:

bd procedure definition

t-in routine call:
edure call:

onent procedure call:

moreta declq
moreta newn
moreta synm
non-percent
non-reserved

non-reserveq

non-special

ration statement:

hode definition statement:
ode definition statement:
character:

/ character:

| wide character:

character:

scellaneous semantic categories

a primitive value whose class is compatible with a structur

a mode in which the composite mode is an array mode.
see 4.1.2.

a mode in which the non-composite/mode is a discrete mod)

see 10.4.
see 6.7.
see 6.7.
see 2.7s
see3.15.
see 3.15.
see 3.15.

a character which is not a percent (%).

a character which is neither a quote (") nor a circumflex (*).

a wide character which is neither a quote (") nor a circumfl

a character which is neither a circumflex (") nor an open

£ mode.

ex (M).

simple guarded procedure definition

Statement:

simple guarded procedure signature

Statement:

string mode:

value built-in routine call:

value procedure call:

variant structure mode:
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a mode in which the composite mode is a string mode.
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Implementation options

Implementation defined built-in routines

semantics: An implementation may provide for a set of implementation defined built-in routines in addition to the set of
language defined built-in routines.

The parameter passing mechanism is implementation defined.

predefined names: The name of an implementation defined built-in routine is predefined as a built-in routine name.

static properties: A built-in routine name may have a set of implementation defined exception names attached. A built-
in routine call is a value (location) built-in routine call if and only if the implementation specifies that for a given choice

of static pro

erties of the parameters and the given static context of the call, the built-in routine call delivers a value

(location).

The implem

13.2

An impleme
integer mod;
modes must
names, simi
modes of ap]

13.3

An impleme
limit, the pn
the ones def]

defined floafing point mode names. These names arg\¢onsidered to be newmode names, similar to FLOAT|

ranges, lowq
modes of ap}

13.4

An impleme
not specified
any context.

13.5

Implementation defined integer modes

Implementation defined floating point modes

Implementation defined process names

Implementation defined handlers

ntation specifies also the regionality of the value (location).

htation defines the upper bound and lower bound of the integer mode I¥{,»An implementatio
s other than the ones defined by INT; e.g. short integers, long integess, unsigned integers. 1
be denoted by implementation defined integer mode names. Thesé-names are considered to |

bropriate classes.

ntation defines the upper bound and the lowerthbound, the negative upper limit and the p¢
ecision of the floating point mode FLOAT. Anjimplementation may define floating point mod
ned by FLOAT; e.g. short float, long float.These floating point modes must be denoted by im

r limits and precision are implementation defined. These floating point modes may be def]
bropriate classes.

ntation may define @ set of implementation defined process names; i.e. process names whose
in CHILL. The definition is considered to be placed in the reach of the imaginary outermost
Processes of this'name may be started and instance values denoting such processes may be man

An impleme

h may define
hese integer
be newmode

Jar to /NT. Their value ranges are implementation defined. Thése“integer modes may be defined as root

sitive lower
ts other than
blementation
Their value
ined as root

definition is
process or in
pulated.

htation mav Qppr‘ifv that an implpmenmﬁnn defined handler is apppndpd to a process or prnr‘Pdn

¢ definition;

such a handler may handle any exception.

13.6

Implementation defined exception names

An implementation may define a set of exception names.

13.7

case of

Other implementation defined features
Static check of dynamic conditions (see 2.1.2)

implementation directive (see 2.6)

special simple name strings
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174

text reference name (see 2.7 and 10.10.1)

default generality (see 10.4)

set of values of duration modes (see 3.12.2)

set of values of absolute time modes (see 3.12.3)

default element layout (see 3.13.3)

comparison of tag-less variant structure values (see 3.13.4)
number of bits in a word (see 3.13.5)

minimum bit occupancy (see 3.13.5)

additional referable (sub-)locations (see 4.2.1)

semantics of a location do-with name and value do-with name which is a variant field-ofla tag-

structurg location (see 4.2.2 and 5.2.3)

semantics of variant fields of tag-less variant structures (see 4.2.10, 5.2.14 and 6.2)
semantics of location conversion (see 4.2.13)

semantics of expression conversion and additional conditions (see 5.2.11)
additional actual parameters in a start expression (see 5.2.15)

ranges ¢f values for literal and constant expressions (see 5.3.1)
schedulling algorithm (see 6.15, 6.18.2, 6.18.3, 6.19.2, 6.19.3'and 11.2.1)
releasing of storage in TERMINATE (see 6.20.4)

denotatfon for files (see 7.1)

operatigns on associations (see 7.1 and 7.2.1)

non-exdlusive associations (see 7.1)

additional attributes of assoetation values (see 7.2.2)

semantics of associate parameters (see 7.4.2)

ASSOCVATEFAIL &xception (see 7.4.2)

semantics of\mbdify parameters (see 7.4.5)

CREATEFAIL, DELETEFAIL and MODIFYFAIL exception (see 7.4.5)

CONNECTFAIL exception (see 7.4.6)

semantics of reading of records that are not legal values according to the record mode (see 7.4.9)
additional timeoutable actions (see 9.2)

TIMERFAIL exception (see 9.3.1, 9.3.2 and 9.3.3)

precision of duration values (see 9.4.1 and 9.4.2)

indication of constant value in quasi synonym definitions (see 10.10.3)

regionality of built-in routines (see 11.2.2).
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Character set for CHILL

Appendix I

ISO/TEC 9496:2003(E)

The character set of CHILL is an extension of the CCITT Alphabet No. 5, International Reference Version,
Recommendation V3. For the values whose representations are greater than 127, no graphical representation is defined.

The integer representation is the binary number formed by bits bg to by, where b; is the least significant bit.

bbgbs 000 001 010 011 100 101 110 111
bybsboH; 0 1 2 3 4 5 6 7
0000 0 NUL TC, Sp 0 @ p ' p
(DLE)
0001 1 TC, DC, ! 1 A 0 a q
(SOH)
0010 2 TC, DC, " 2 B R b r
(STX)
0011 3 TC, DC; # 3 C S c s
(ETX)
0100 4 TC,4 DC, $ 4 D T d t
(EOT)
0101 5 TCs TCy % 5 E U e u
(ENQ) (NAK)
0110 6 TC, TC, & 6 F v f v
(ACK) (SYN)
0111 7 BEL TCho ' 7 G w g W
(ETB)
1000 8 FEy CAN ( 8 H X h X
(BS)
1001 9 FE, EM ) 9 I Y i y
(HT)
1010 10 FE, SUB * J z i z
(LF)
1011 1 FE;, ESC + : K [ k {
v
1100 12 FE, 1S, , < L \ 1 |
(FF) (FS)
1101 13 FE; IS, - = M ] m )
(CR) (GS)
1110 14 SO IS, > N A n -
(RS)
1111 15 SI IS, / ? O _ 0 DEL
(Us)
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ISO/IEC 9496:2003(E)

Appendix 11

Special symbols

Name Use

; semicolon terminator for statements etc.

, comma separator in various constructs

( left parenthesis opening parenthesis of various constructs

) right parenthesis closing parenthesis of various constructs

[ left 4quare bracket opening bracket of a tuple

] righf square bracket closing bracket of a tuple

6 left tuple bracket opening bracket of a tuple

) righf tuple bracket closing bracket of a tuple

colon label indicator, range indicator
dot field selection symbol

= assignment symbol assignment, initialization

< less than relational operator

<= less than or equal relational operator

= equall relational operator, assignment, initialization;-definition indicator
/= not dqual relational operator

>= greafer than or equal relational operator

> greafer than relational operator

+ plus addition operator
- minys subtraction operator

* astenjisk multiplication opérator, undefined value, unnamed value, irrelevant symbol
/ solidus division operator

/l douljle solidus concatenation operator
—> arroy referenciiig and dereferencing, prefix renaming
< dianjond start or end of a directive clause

/* comment opening bracket start of a comment

*/ comfnent closing bracket end of a comment

! start or end symbol in various literals

# location and expression conversion

" start or end symbol in character string literals
! prefixing of names

B’ | binary base for literal

b' literal qualification binary base for literal

D' literal qualification decimal base for literal

d' literal qualification decimal base for literal

H' literal qualification hexadecimal base for literal

h' literal qualification hexadecimal base for literal

o' literal qualification octal base for literal

o' literal qualification octal base for literal

w literal qualification wide character or character string literal

w' literal qualification wide character or character string literal
—— line end line end delimiter of in-line comments
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