INTERNATIONAL ISO/IEC
STANDARD 24707

Second edition
2018-07

™ —

Information technology -+ Compmon
Logic (CL) — A framewgork for a family
of logic-based languages

Technologies de l'information £ bogique Commune (CL}) — Cadre
pour une famille des langages Togique-basés

Reference number
ISO/IEC 24707:2018(E)

© ISO/IEC 2018

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or [SO’s member body in the country of the requester.

ISO copyright office

CP 401 ¢ Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Contents Page
FOT@WOTIT ... iv
IIETOULCEIONN ... \%
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols and abbreviated terms...
4.1
4.2
5 Requirements and design OVeIVIEW ...l b e, 5
5.1 REQUITEIMENTSooooe s e e 5
5.1.1 Common Logic should include full first-order logic withequality.....}....conen 5
5.1.2 Common Logic should provide a general-purpose syntax for
communicating logical eXpressions ... @ Lo, 5
5.1.3 Common Logic should be easy and natural for uSe;on the Web | w5
5.14 Common Logic should support open networks\6
5.1.5 Common Logic should not make arbitrary@ssumptions about semantics..... .6
5.2 A family of 1JaNgGUAZES ... e 6
6 Common Logic abstract syntax and semantics ... e....7 e
6.1 Common Logic abstract syntax................ o
6.1.1 Abstract syntax categoriesS s
6.1.2 Metamodel of the Common L.ogic abstract syntax..
6.1.3 IMPOrtation CIOSUTE ...
6.1.4 Abstract syntactic strueture of dialects..........oice
6.2 Common logic semantics
6.3 DAtAtYPES oo ettt
6.4 Satisfaction, validity and.eftailment. ...
6.5 Sequence markers, recursion and argument lists: discussion
6.6 Special cases and translations between dialects ...
7 COMFOTIMAIICE ... S
7.1 Dialect CONFOLITIANCE ...
%0 0 . 4 1 7 - OO OO OO
7.1.2 ((SEMANLICS ..o
7.1.3.* Presupposing dialects
7.2 Application conformance...
7.3 NEtWOTK CONOTIMANCEooccoieiee s
Annex A (normative) Common Logic Interchange Format (CLIF) ... o 25
AnnexB-(nermative}-Conceptual-Graphlnterchange Format {c6GHY——

Annex C (normative) eXtended Common Logic Markup Language (XCL)
Annex D (informative) Translating between dialects ...

BIDLEOZTAPIY 70

© I1SO/IEC 2018 - All rights reserved iii

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,

ISO/IECJTC 1

The procedufes used to develop this document and those intended for its further maintenarp
described in §he ISO/IEC Directives, Part 1. In particular the different approval criteria needed
different typgs of ISO documents should be noted. This document was drafted in accordance w|
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is

patent rights.
any patent rig
on the ISO list

awn to the possibility that some of the elements of this document may be the sulj
[SO shall not be held responsible for identifying any or all such patent rights. De
hts identified during the development of the document will be jn'the Introduction

of patent declarations received (see www.iso.org/patents).

Any trade nagne used in this document is information given for the contvenience of users and d¢

constitute an

For an expla
expressions T
World Trade

URL: www.is

endorsement.

elated to conformity assessment, as well as ififormation about I1SO's adherence
Drganization (WTO) principles in the Technjcal'Barriers to Trade (TBT) see the fol
.org/iso/foreword.html.

This documel
Data manager

This second
technically re

The main cha
— thelist of]
the XML {

da more ge

semantic

it was prepared by Technical Committee ISO/IEC JTC 1, Information technology,
nent and interchange.

pdition cancels and replaces,_the first edition (ISO/IEC 24707:2007), which ha
vised.

hges compared to the prfeyious edition are as follows:

syntactic errors thathave already been identified in the Defect Report has been fi3
yntax in Annex 0 has been corrected and completed;

neral appfdach to annotation of CL-texts has been made;

E has been modified to allow the existence of definitional extensions in CL;

ce are
for the
ith the

ject of
ails of
hnd /or

es not

hation on the voluntary nature of standards, thie;'meaning of ISO specific terms and

to the
owing

SC 32,

E been

ed;

support f

br.éifcular imports;

semantics of CL-module have been clarified;
clarification of the distinction between segregated and non-segregated dialects;

clarification of conformance conditions has been made.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

© ISO/IEC 2018 - All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/foreword.html
http://www.iso.org/members.html
https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Introduction

Common Logic is a logic framework intended for information exchange and transmission. The
framework allows for a variety of different syntactic forms, called dialects, all translatable by a
semantics-preserving transformation to a common XML-based syntax.

Common Logic has some novel features, chief among them being a syntax which permits “higher-
order” constructions, such as quantification over classes or relations while preserving a first-order
model theory, and a semantics which allows theories to describe intentional entities such as classes or
properties. It also has provision for the use of datatypes and for naming, importing and transmitting
content on the World Wide Web using XML.

© ISO/IEC 2018 - All rights reserved v

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

INTERNATIONAL STANDARD

ISO/IEC 24707:2018(E)

Information technology — Common Logic (CL) — A
framework for a family of logic-based languages

1 Scope

This document specifies a family of logic languages designed for use in the representation and
interchange of information and data among disparate computer systems.

The following features are essential to the design of this document.

— Languages in the family have declarative semantics. It is possible to understand t}

[S)

— Ldanguages in the family are logically comprehensive - at its most geéneral, they pi

e

— Languages in the family are translatable by a semantics-presexving transformation

X
The fo
— re
— sp
— fo
The fo
— sp
— sp

— C
nu

This d

This d
exteng
be rep
infornj

ressions in these languages without appeal to an interpreter for manipulating thos

ression of arbitrary first-order logical sentences.

L-based syntax, facilitating interchange of information ameng heterogeneous comy
lowing are within the scope of this document:

presentation of information in ontologies and knewledge bases;

ecification of expressions that are the input.or,output of inference engines;

‘mal interpretations of the symbols in thelanguage.

lowing are outside the scope of this-document:

ecification of proof theory or inference rules;

puter-based operational methods of providing relationships between symbols
iverse of discourse®and individuals in the “real world”.

bcument describes Common Logic’s syntax and semantics.

pcument defines an abstract syntax and an associated model-theoretic semanticsg
ion of first-order logic. The intent is that the content of any system using first-o
resented in this document. The purpose is to facilitate interchange of first-ordg
atien’between systems.

e meaning of
P expressions.

ovide for the

to a common
uter systems.

ecification of translators between the notations of heterogeneous computer systengs;

in the logical

for a specific
der logic can
1 logic-based

Issues relating to computability using this document (including efficiency, optimization, etc.) are not
addressed.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IE
ISO/IE
ISO/IE

©150/1

C 2382:2015, Information technology — Vocabulary
C 10646:2014, Information technology — Universal Coded Character Set (UCS)

C 14977:1996, Information technology — Syntactic metalanguage — Extended BNF

EC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

3 Terms and definitions

For the purpo

ses of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— SO Onlin

3.1
axiom

[EC Electropedia: available at http://www.electropedia.org/

e browsing platform: available at https://www.iso.org/obp

red, or

any sentence (31 '-'(), statement or text which is assumed to be true or from which others are derij

by which they

Note 1 to entry
but only used t

3.2
conceptual g
CG
graphical or t

3.3
conceptual g

form of first-¢rder logic which represents existential quantification and conjunction via the ass

of logical cor

displayed graph

3.4
CLIF
text-based fir

Note 1 to entry

Note 2 to entryj
by Mike Genes
“KIF” is not usg
are made in th
intended.

Note 3 to entry
not hold a priv
the recommen

3.5
Conceptual G

are entailed

: In a computational setting, an axiom is a sentence which is never posed as a godl|to be
b prove other sentences.

raph

bxtual display of symbols arranged according to the style of conceptual graph theor

raph theory

structs called concepts and relations which ai'e/arranged in an abstract or v|

ct-order formalism using a LISP-like list notation
: This is one of the concrete syntaxes-for Common Logic (described in Annex A).

CLIF is a KIF-based syntax that.is used for illustration purposes in this document. KIF, intr
erethl3], originated with the.Knowledge Sharing Effort sponsored by the U.S. DARPA. Th
d for this syntax in orderito distinguish it from the commonly used KIF dialects. No assur
s document with respect.to KIF semantics; in particular, no equivalence between CLIF an

r: Historically, CLIF was an acronym for Common Logic Interchange Format. However, CL
leged position-among Common Logic dialects (3.7), as the expanded name suggests. Furthet
ed interchiaiige format on the Web.

rdph'interchange Format

broved,

y (3.3)

ertion
sually

pduced
e name
\ptions
1 KIF is

[F does
, XCL is

CGIF

text version of conceptual graphs (3.2)

Note 1 to entry: Sometimes, this may refer to an example of a character string that conforms to Annex B, intended
to convey exactly the same structure and semantics as an equivalent conceptual graph.

3.6
denotation

relationship holding between a name or expression and the thing to which it refers

Note 1 to entry: Also used with “of” to mean the thing being named, i.e. the referent of a name or expression.

© ISO/IEC 2018 - All rights reserved

http://www.electropedia.org/
https://www.iso.org/obp
https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

3.7

Common Logic dialect

concrete instance of Common Logic syntax that shares (at least some of) the uniform semantics of
Common Logic

Note 1 to entry: A dialect may be textual or graphical or possibly some other form. A dialect, by definition, is also
a conforming language (see 7.1 for further details).

3.8

eXtensible Common Logic Markup Language
XCL

XML-based syntax for Common Logic

3.9
individual
<of anlinterpretation> one element of the universe of discourse (3.17) of an interpxetation (|3.12)

Note 1 o entry: The universe of discourse of an interpretation is the set of all of its;individuals.

3.10
internationalized resource identifier
IRI
string|of Unicode characters intended for use as an Internet(agtwork identifier syntpx which can
accommodate a wide variety of international character forms

3.11
inscription
structyire of symbols that may be either linear or graphic

3.12
interpretation
formal specification of the meanings of thethames in a vocabulary of a Common Logic dialect (3.7) in
terms pf a universe of reference (3.18)

Note 1| to entry: A Common Logic interpretation, in turn, determines the semantic values [of all complex
express$ions of the dialect, in particular, the truth values of its sentences (3.15), statements and texts.

Note 2 fo entry: See 6.2 for a more-precise description of how an interpretation is defined.

3.13
operator
distinguished syntactic role played by a specified component within a functional term (3.[16)

Note 1|to entry: The denotation (3.6) of a functional term in an interpretation (3.12) is detgrmined by the
functional extension of the denotation of the operator together with the denotations of the argumlents.

3.14
predicate

<Common Logic> distinguished syntactic role played by exactly one component within a simple
sentence (3.15)

Note 1 to entry: The truth value of a simple sentence in an interpretation (3.12) is determined by the relational
extension of the denotation (3.6) of the predicate together with the denotations of the arguments.

3.15
sentence
<Common Logic> expression in the syntactic form of a traditional first-order logical formula

EXAMPLE A simple sentence (see 6.1.1.15), Boolean sentence (see 6.1.1.14) or quantification (see 6.1.1.13).

© ISO/IEC 2018 - All rights reserved 3

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

3.16
term

<Common Logic> expression which denotes an individual (3.9), consisting of either a name or,
recursively, a functional term applied to a sequence of arguments, which are themselves terms

Note 1 to entry: Languages for traditional first-order logic specifically exclude predicate (3.14) quantifiers and
the use of the same name in both predicate and argument position in simple sentences (3.15), both of which are
permitted (though not required) in Common Logic. Languages for traditional first-order logic fall within the
category of presupposing CL dialect, with a discourse presupposition of “non-discourse” for all names used as
function operators (3.13) or predicates, and “discourse” for all names used as the arguments of functional terms

or simple sente

3.17

nces or as bindings.

universe of d

domain of discourse
set of all the ipdividuals (3.9) in an interpretation (3.12), i.e. the set over which the quantifiers ran

Note 1 to entry

3.18
universe of r
setof all the t

Note 1 to entry

4 Symbols and abbreviated terms
4.1 Symbols
fung mapping from UR; to functions from UD;* to'UD;

I intd

inty ma
ton

iscourse

: Required to be a subset of the universe of reference (3.18) and may be identicalto it.
eference

hings needed to define the meanings of logical expressions in.aninterpretation (3.1

: Required to be a superset of the universe of discourse (3.17).and"may be identical to it.

rpretation in the model-theoretic'sense

bping from names in a vocabulary V to URy; informally, a means of associating nam
eferents in UR;

ge

ps in V

rel mapping from UR; to subsets of UD*

seq mapping from sequence markers in V to UDy*

A lexicon, which-gonisists of a vocabulary, a set of sequence markers (Smark), and a set df
titles (Ttl)

\Y vodabulayy, which is a set of names

Smark set foc\iucul,c fratrkers

Ttl set of titles

UDy universe of discourse; a non-empty set of individuals that an interpretation I is “about” and
over which the quantifiers are understood to range

UR; universe of reference, i.e. the set of all referents of names in an interpretation /

X* set of finite sequences of the elements of X, for any set X. Thus, X* = {<x1,...Xp> | X1,...Xn € X},
for any n 2 0. Note that the empty sequence is in X*, for any X.

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

4.2 Abbreviated terms

CL
DF
EBNF
FO
KIF
OWL
RDF
RDFS
TFOL
XML

Common Logic

display form

Extended Backus-Naur Format (as in ISO/IEC 14977)
first-order

Knowledge Interchange Format

Web Onfology Language

Resource Description Framework
Resource Description Framework Schema
traditional first-order logic

eXtensible Markup Language

5 Requirements and design overview

5.1 Requirements

5.1.1

Comm
forms
Comm

5.1.2
expre

a) TH

Common Logic should include full first-order logic with equality

pn Logic abstract syntax and semanties\shall provide for the full range of first-o1

pn Logic without loss of informationcor alteration of meaning.

Common Logic should provide a general-purpose syntax for communicating
bsions

b) Cdmmon Logic languages should be able to express various commonly used “syntac

fo

" logical forms or’commonly used patterns of logical sentences.

c) The Commen Logic abstract syntax should relate to existing conventions; in particuld

Caj

pable of rendering any content expressible in RDF, RDFS or OWL.

d) THhere should be at least one human-readable presentation syntax defined which c

exXiress tha antira lanaguaagn
Te-eRtHe-r

5.1.3

'der syntactic

with their usual meanings. Any traditional first-order syntax will be directly translatable into

Jogical

ere should be a single’ XML syntax for communicating Common Logic content on the Web.

fic sugarings”

r, it should be

hn be used to

pPreoo—T T TG oo gt

Common Logic should be easy and natural for use on the Web

a) The XML syntax should be compatible with the published specifications for XML, IRI syntax, XML
Schema, Unicode and other conventions relevant to transmission of information on the Web.

b) IRIs should be usable as names in the language.

c) IRIs should be usable to title texts and label expressions, in order to facilitate Web operations such

as

©150/1

retrieval, importation and cross-reference.

EC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

5.1.4 Common Logic should support open networks

a) Transmission of content between Common Logic-aware agents should not require negotiation
about syntactic roles of symbols or translations between syntactic roles.

b) Any piece of Common Logic text should have the same meaning, and support the same entailments,
everywhere on the network. Every name should have the same logical meaning at every node of the
network.

c¢) No agent should be able to limit the ability of another agent to refer to anything or to make
assertions about anything.

d) The langyage-shewld-suppertwaystereferto-atocaluniverse-ef discourseandbe-abletorelgte it to
other such universes.

e) Users of Common Logic should be free to invent new names and use them in published Cdmmon
Logic conftent.

5.1.5 Comrpon Logic should not make arbitrary assumptions about semantics

a) Common |Logic does not make gratuitous or arbitrary assumptions.aliout logical relationships
between flifferent expressions.

b) If possiblg, Common Logic agents should express these assumptians in Common Logic directlly.

5.2 A family of languages

This subclaus
behind the de

Following thg
of languages
document as
semantics an
defined by be
having any p{
be considered

A Common Ld
this documer
separate lang

for machine pjrocessingg_the CGIF language is specified in Annex B. An exactly conformant XML Il
specified in Annex C, for the purpose of satisfying requirements 5.1.2 a) and 5.1.3 4)).

called XCL, is

e describes what is meant by a “family” of languages and gives some of the ra
velopment of Common Logic.

convention whereby any language \has a grammar, then Common Logic is a
rather than a single language. Different Common Logic languages, referred to
dialects, may differ sharply in-their surface syntax, but they have a single u
 can all be transcribed into the common abstract syntax. Membership in the fa
ing inter-translatable with ‘the other dialects while preserving meaning, rather t
irticular syntactic form.-Several existing logical notations and languages, therefo
to be Common Logic dialects.

gic dialect called-€LIF based on KIF (see Annex A) is used in giving examples thro

uage in its qwin right. Conceptual graphsll] are also a well-known form of first-ordd

6 Commonl:ogic abstract syntax and semantics

ionale

family
n this
hiform
mily is
han by
e, can

1ghout

t. CLIF can be considered an updated and simplified form of KIF 3.0[3] and hgnce a

r logic
ialect,

6.1 Common Logic abstract syntax

6.1.1 Abstract syntax categories

6.1.1.1 Terms, sequence markers, sentences, statements and texts are well-formed expressions.

6.1.1.2 A textis a text construction, domain restriction, or importation.

6.1.1.3 A text construction contains a set, list or bag of sentences, statements and/or texts. A Common
Logic text may be a sequence, a set or a bag of sentences, statements and/or texts; dialects may
specify which is intended or leave this undefined. Re-orderings and repetitions of arguments of a text

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

construction are semantically irrelevant. However, applications which transmit or re-publish Common
Logic text shall preserve the structure of text constructions, since other applications are allowed to utilize
the structure for other purposes, such as indexing. If a dialect imposes conditions on text constructions,
then these conditions shall be preserved by conforming applications. A text construction may be empty.

6.1.1.4 A domain restriction consists of a term and a text called the body text. The term indicates the
“local” universe of discourse in which the text is understood.

6.1.1.5 An importation contains a title. The intention is that the title provides an identifier to an
external Common Logic text, and that the importation re-asserts that external text in the importing text.

6.1.1.6 Anaxiomisa statement, sentence or text.

6.1.1.7 A statement is either a discourse statement or a titling.
6.1.1.8 A discourse statement is either an out-of-discourse statement or anjin-discourse(statement.
6.1.1.9 An out-of-discourse statement contains a sequence of terms,
6.1.1.10 An in-discourse statement contains a sequence of terms:

6.1.1.11 A titling contains a name and a text. The titling‘assigns a title to a text. Titles gre often IRIs,
which [identify the text as resource.

6.1.1.12 A sentence is either a quantified sentence‘or a Boolean sentence or a simple sentpnce.

6.1.1.13 A guantified sentence has (i) a type, called a quantifier, (ii) a finite, nonrepeafing sequence
of intgrpretable names called the binding’sequence, each element of which is called a binding of the
quantified sentence, and (iii) a sentencé-called the body of the quantified sentence. The apstract syntax
distinguishes the universal and the existential types of quantified sentence. A name whicH occurs in the
binding sequence is said to be bound in the body. Any name or sequence marker which i§ not bound in
the bofly is said to be free in the body.

6.1.1.14 A Boolean sentence has a type, called a connective, and a number of sentenges called the
compopents of the Boolean sentence. The number depends on the particular type. The apstract syntax
distinguishes five types of Boolean sentences: conjunctions and disjunctions, which hav¢ any number
of components, dmplications and biconditionals, which have exactly two components, gnd negations,
which have exactly one component. The two components of an implication fill different rdles; one is the
antecedent-and the other is the consequent.

e 5 - ; erms, or is an
atomlc sentence which consists of a term called the predlcate and a term sequence called the argument
sequence, the elements of which are called arguments of the atomic sentence.

6.1.1.16 A term is either a name or a functional term. A term may have an attached comment. Further,
every name is a term.

6.1.1.17 A functional term consists of a term, called the operator, and a term sequence called the
argument sequence, the elements of which are called arguments of the functional term.

6.1.1.18 A term sequence is a finite sequence of terms and/or sequence markers. Term sequences
may be empty, but a functional term with an empty argument sequence shall not be identified with
its operator, and an atomic sentence with an empty argument sequence shall not be identified with its
predicate.

© ISO/IEC 2018 - All rights reserved 7

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

6.1.1.19 A lexicon is a set of names (i.e. the vocabulary of the lexicon), a set of sequence markers, and a
set of titles.

6.1.1.20 Irregular sentences in a concrete syntax are parsed into the abstract syntax as propositions
(i.e. nullary atomic sentences) with a new name for the predicate. In this way, irregular sentences can be
nested within texts, statement and (otherwise) regular compound sentences, and the semantics of the
resulting expressions is determined as usual from Table 2.

6.1.1.21 A comment is a piece of data. Any number of comments may be attached to well-formed
expressions that are texts, statements, sentences or functional terms, but not to names, sequence markers
or other comments. No particular restrictions are placed on the nature of Common Logic comments; in

particular, a cpmment may be Common Logic text. Particular dialects may impose conditions on-the form
of comments.

6.1 completely describes the abstract syntactic structure of Common Logic. Any fully“confgrmant
Common Log}c dialect shall provide an unambiguous syntactic representation forseach of the|above
types of well-formed expressions.

Sentence types are commonly indicated by the inclusion of explicit text strings, such as “forall” for
universal sentence and “and” for conjunction. However, no conditions are ithposed on how the Jarious
syntactic catggories are represented in the surface forms of a dialect. In particular, expressions in a
dialect are nof required to consist of character strings.

6.1.2 Metamodel of the Common Logic abstract syntax

6.1.2.1 Narhes and sequence markers

The class of james and sequence markers of a Common Logic language is the classes obtainefl from
strings using fhe following operators:

— Voc:String -V

— Seqmark String — Smark

— Titling : String — Ttl

— Binder =¥ U Smark

6.1.2.2 Terms and term sequences

The class of tprms of al€ommon Logic language is the class Term that includes all names in V and all
functional terjms. The'elass of functional terms of a Common Logic language is the class FunctionglTerm
obtained by the récursive application of the operator Func to pairs made up of one term and ong term
sequence. The.¢lass of term sequences of a Common Logic language is the class TermSequenge that
includes all fifrite STUUTTICES ofternTs dlld/Ul SCTUUTIICE IITdaT kers:

— Func:Term x TermSequence — FunctionalTerm

Term=V

TSeq:(Ter

U FunctionalTerm

m U Smark) x ... x (Term U Smark) — TermSequence

6.1.2.3 Sentences

The class of sentences of a Common Logic language is the class Sentence that includes all simple
sentences (including equations, if applicable) formed by the application of the operation(s) Atomic (and
Id) from well-formed terms and term sequences and all compound sentences formed by the recursive

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

application of the set of operations Neg, Conj, Disj, Cond, BiCond, EQuant, and UQuant that satisfy the
following conditions:

— each operation is one-to-one;

— the range of the operations is pairwise disjoint and disjoint from the set of terms of A.
— Atomic:Term x TermSequence — Sentence

— Id:Term x Term — Sentence

— Neg:Sentence — Sentence

— (dnj : Sentence x ... x Sentence — Sentence

— Difj : Sentence x ... x Sentence — Sentence

— (dnd : Sentence x Sentence — Sentence

— Bifond:Sentence x Sentence — Sentence

— EQuant:Binder x ... x Binder x Sentence — Sentence, n = 0

— UQuant:Binder x ... x Binder x Sentence — Sentence, n = 0

+body Text hasAttachedComment Comment
1 0. 0.*
+eonmentedText +comment
hasBody
+domainRestrictionForBody
0“*
DomainRestriction Importation TextConstruction
0.* 0.

+domainRestriction +context

hasLocalUniverse

+locallniverse
1

Term

imports

Name +assertedContent
1

Figure 1 — Abstract syntax of texts

© ISO/IEC 2018 - All rights reserved 9

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Text
0"*
+text
hasText
+textConstruction
0.*
TextConstruction
0.* 0.*
hasSentence hasStatement
+sentence +statement
0. 0.
Comment AttachedComment Sentence Statement AttashedComment Cqmment
0.% 0.% 0.% 0.*
+commgntForSentence +commentedSentence +commentedStaterent +commentForStatement

Figure 2 — Abstract syntax of text constructions

TextCon§truction hasStatement Statement
0.* 0.*
+textConstruction +statement
/ D\ +itling
DiscourseStatement Titling 0. appliesTitle Ndme
1
. +itle
0.% entitles
+itling
1 Text
Term includes InDiscourseStatement OutOfDiscourseStatement +itledText
0.* N
term +discourseStaterment
0.* 0.* 0.*
0.* +discourseStatement +discourseStatement | +discourseStatement
+term
includes excludes
0.* 0.*
+sequenceMarker +sequenceMarker
SequenceMarker
excludes

Figure 3 — Abstract syntax of statements

10 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

SequenceMarker

Term TermOrSequenceMarker
0"*
1
soperator +argument
{ordered}
hasOperator hasArgument
0.* +termSequence
+functionalTerm 0.*
Name FunctionalTerm hasArgumentSequence TermSequence
0.1 1
+functionalTerm +argumentSequence
0“*
+commentedTerm
hasAttachedComment
+comment
0"*
Comment

Figure 4 — Abstract syntax of terms

© ISO/IEC 2018 - All rights reserved

11

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

SimpleSentence
Term
[] [
1 2
+predicate +term
hasPredicate equates
+atomicSentence +equation
0. 0.*
AtomicSentence Equation
0.1
+atomicSentence
hasArgumentSequence

+argumentSequence |1
[)
TermSequence

Figure 5 —Abstract syntax of a simple sentence

12 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Comment hasAttachedComment Sentence

0.* 0.*
+comment +commentedSentence

SimpleSentence BooleanSentence QuantifiedSentence

T T
Conjunction Negation Biconditional ExistentialQuantification UniversalQupntification
Disjunction Implication
Figure 6 — Abstract syntax of sentences
BooleanSentence

onjunction Disjunction Negation Implication Biconditipnal
0 *
0.* 0.% 0.* 0.% 0.% oo
+conjurjction +disjunction +negation +implication| +implication +biconditional
conjoin$ disjoins negates hasAntecedent hasConsequent hasContent
+conjunct +disjunct +sentence +antecedent | +consequent +content
0.* 0.* 1 1 1 2

Sentence

There are no explicit 'true’ and 'false' elements in the metamodel. These are empty
cases of Conjunction (true) and Disjunction (false). That is why a Disjunction or
Conjunction of zero sentences is allowed.

Figure 7 — Abstract syntax of Boolean sentences

© ISO/IEC 2018 - All rights reserved 13

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 247

07:2018(E)

Sentence

/AN]
+body
hasBody

6.1.2.4 Stat

The class of st
application of]

— outDiscol
— inDiscour’
— title:Ttl x
Discourse sta

— Statemen

0"*

QuantifiedSentence

Ll 10
Htantieasentence

hasBinding

Name

0.* 0.
+quantifiedSentence +binding

UniversalQuantification

ExistentialQuantification

ements

Text — Titling

fements and titlings are statements:

F = PDiscourseStatement U Titling

rse:TermSequence =-DiscourseStatement

se:TermSequence~ DiscourseStatement

Figure 8 — Abstract syntax'of a quantified sentence

atements of a Common Logic language is the class Statement obtained from the reg
operations outDiscourse, inDiscourse, and title under the following conditions:

6.1.2.5 Texts

ursive

The class of texts of a Common Logic language is the class Text that is obtained from the recursive

application of the set of operations txt, imports, and domain under the following conditions:
— txt:(Sentence U Statement U Text) x ... x (Sentence U Statement U Text) — TextConstruction

— imports:Ttl = Importation

— domain:Term x Text - DomainRestriction

Text Constructions, domain restrictions, and importations are texts:

— Text = TextConstruction U DomainRestriction U Importation

14

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Statement

SchemaOrSentence Schema hasBinding SequenceMarker

hasBody 0.* 1.*
< — +schema ;

thindis
TOTITUTITS

+body +schema

Sentence

Figure 9 — Abstract syntax of text constructions

package CL [2710 Well-formed Expressions | J

WellFormedExpression
Term % Sentence % Text

Figure 10 — Abstract syntax of well-formed expressions

6.1.2.6 Well-Formed Expressions

Terms;sequenee-markers;-senteneces;sfitatementsandtexts-are-weH-formed-expressions:
— Wfe=Term U SequenceMarker U Sentence U Statement U Text

6.1.2.7 Metamodel

Figures 1 to 9 provide a non-normative metamodel showing relationships among the syntactic
categories.

6.1.3 Importation closure

An untitled importation in a text is an occurrence of an importation expression that is not a descendant
of a titling in the abstract syntax tree as defined in 6.1.2.

© ISO/IEC 2018 - All rights reserved 15

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

A corpus is a set of texts in the Common Logic abstract syntax. A corpus may be empty, finite, or infinite.
An importation fixed-point under a title mapping ttl is a corpus C such that if G is a text in C, then
C contains every text G' derived from G by replacing one occurrence of an untitled importation with
name N by the text which is the value ttl(N) of the title mapping. The importation closure of a corpus C
under a title mapping ttl is the intersection of all importation fixed-points under ttl that contain C. The
importation closure of every non-empty corpus in a Common Logic language is non-empty.

6.1.4 Abstract syntactic structure of dialects

Dialects may, in addition, provide for other forms of sentence construction not described by this syntax,
but in order to be fully conformant such constructlons shall either be new categories defmed in terms
of these catege : kinds
of quantifier) whlch are equivalent in meanmg to a constructlon using just thls syntax, 1nterpreted
according to the Common Logic semantics; that is, they can be considered to be systematic abbrevjations
or macros, aldo known as “syntactic sugar”. The CLIF dialect (described in Annex A) and,XCL (degcribed
in Annex C) contain a number of syntactic sugared forms for quantified and atomic sentences. |(Other
types of complliance are also recognized: see Clause 7 for a full account of conformance.)

e. The
rker is

The only undefined terms in the abstract syntax clause are name, sequencé marker, and tit
only required syntactic constraint on the basic lexical categories of nanie’and sequence ma

that they sha
impose arbiti

Il be exclusive. Dialects intended for transmission of content on a network shou
ary or unnecessary restrictions on the form of namesfand shall provide for (

names to be ysed as titles of Common Logic texts. Dialects intended«for use on the Web should

International

zed Resource Identifiers to be used as names[2][4]. ommon Logic dialects should

names in terms of Unicode (ISO/IEC 10646) conventions.

There is no n
required to b|
to be partitid
sortal restric
between subq
terms in expr
of traditional
style, as in Pr
traditional fiq

A dialect may
constraints tq
treat numeral

btion of “bound variable” in the CL abstract syntax. Names that can occur bound §
e lexically distinguished from those that can’(only) occur free, nor are names re
ned into distinct classes such as relatien; function or individual names. There

fions on names. Particular Common Logic dialects may make these or other distiy
lasses of names, and impose extra-testrictions on the occurrence of types of na
essions — for example, by requirintg that names that can occur bound (i.e. the va
first-order languages) be written with a special prefix, as in KIF, or with a par
blog; or by requiring that operators be in a distinguished category of relation name
st-order syntax.

impose particular semantic conditions on some categories of names, and apply sy
limit where such~names occur in expressions. For example, the CLIF and XCL sy
s as having a fixed"denotation and prohibit their use as titles.

A dialect ma

requiressome names to be syntactic non-discourse names, which are underst

1d not
ertain

allow
define

re not
quired
are no
ctions
nes or
Fiables
ticular
5, as in

htactic
ntaxes

pbod to

never denote |entities(in the universe of discourse. This requirement may be imposed, for exa
e voeabulary or by requiring names that occur in certain syntactic positions to He non-
ialeet with syntactic non-discourse names is called segregated. In segregated dialects,
names which pre*hot non-discourse names are called discourse names.

partitioning
discourse. A

le, by

A dialect shall provide sufficient syntactic constraints to guarantee that in any syntactically legal text

of the dialect,

every name shall be classified as either discourse or as non-discourse,
no name shall be classified as both discourse and non-discourse,
no non-discourse name shall be an argument of a simple sentence or functional term, and

no non-discourse name shall be bound in a quantified sentence.

A dialect may have additional mechanisms for embedding information within CL texts that may be
deleted without affecting the parsing of the text into the abstract syntax and may be omitted during the
translation into other concrete dialects.

16

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

6.2 Common logic semantics

The semantics of Common Logic is defined in terms of a satisfaction relation between Common Logic
text and mathematical structures called interpretations.

An interpretation I of a Common Logic language L with lexicon A = (V), Smark;, Ttl;) (where V) €V,
Smarky € Smark, Ttly € Ttl) is a set URy, the universe of reference, with a distinguished subset UD, the

universe of discourse, and five mappings:

int; from names in V; to URy;

rel; from UR; to the power set of UD/*;

fu
se

at

If UD;
isaco

Intuiti
interp
that m
contai
interp

h; from UR; to total functions from UR;/* into URy;
y; from sequence markers in Smark;) to UR/*;
itle mapping ttl; from Ttl) to texts of L.

s non-empty and the range of funy is total functions from UD;* into UDj, then it can
‘e interpretation of L.

vely, UD; is the universe or domain of discourse containing all the individu
retation is “about” and over which the quantifiers range:HUR; is a potentially large
ight also contain entities which are not in the universe of discourse. In particul
h relations not in UDy to serve as the interpretation$ of the non-discourse names.
reted in the same way, whether or not they are understood to denote somethingin t

disco

of theif syntactic role. In particular, rel;(x) is in UD;¥'even when x is not in UD;. When co

classi

and o
syntax

Althoy
not de

be said that

pl things the
I set of things
ar, UR; might
All names are
he universe of

se; that is why there is only a single interpretation mapping that applies to all nan

les regardless
sidering only

I dialects, the elements of the universe ofreference which are outside the universk of discourse
may bg identified with their corresponding walues of the rel; and fun; mappings, which are then re-
interpreted to be the identity mapping. The resulting construction maps predicates direcflly to relations

erators to functions, yielding a niore traditional interpretation structure for t
of traditional first-order logic.

gh sequence markers are mapped into finite sequences in an interpretation, these
hoted by names, and so are'not required to be in the universe of reference.

The as
sente

Let S be a subset of XU Smark. An interpretation J of V is an S-variant of [if it is exactly lik
int; anfl seq; mightdiffer with int; and seq; on what they assign to the members of S. Mor
an S-variant of Nif UR; = URy, UD; = UDy, relj = rel}, funy = fun, ttly = ttl}, intj(n) = int;(n) foy
int;(n) | UDyfor names n € S, seq(s) = seqj(s) for sequence markers s € S, and seq/(s) € UD*

IfEis

signment of semantic.values to complex expressions — notably, the assignment of t
ces — requires some auxiliary definitions.

e segregated

bequences are

ruth values to

e | except that
e formally, J is

namesn & S,
j fors €S.

subset of UDy, then the restriction of I to E is an interpretation K of the same langus

ige L and over

the same universe of reference and with intg = int; and seqg = seq, but where UDg = E, relg(v) is the
restriction of relj(v) to E* and fung(v) = fun,(v) for all v in the vocabulary of L.

If s = <sq, .., sp> and t = <ty, ..., t;> are finite sequences, then s;t is the concatenated sequence <sy, ..., Sp,
t1, ..., tm>. In particular, s;<> = s for any sequence s.
Table 1 — Specification of auxiliary definitions to be used for the semantics
EeA ArgC(E)=0
E = Func (T,T4,...,.Tpy) ArgC(E) ={Ty,...Tn } U ArgC(T)
E = Atomic(T,Ty,..., Tp) ArgC(E) ={Ty,...Tn } U ArgC(T)
E = Neg(S) ArgC(E) = ArgC(S)
NOTE For any well-formed expression E, this table specifies the set ArgC(E) of argument constants of E.
© ISO/IEC 2018 - All rights reserved 17

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Table 1 (continued)

E = Conj(S1,...,Sn)

ArgC(E) = ArgC(Sy,-..,.Sn)

E = EQuant(N,S)

ArgC(E) = ArgC(S) U N

E = outDiscourse(Ty,...,Ty)

ArgC(E) = U; ArgC(Ty)

E = inDiscourse(Ty,...,T)

ArgC(E) = U; ArgC(Ty)

E = txt(E1,...,En)

ArgC(E) = ArgC(E})

E = domain(T,G)

ArgC(E) = ArgC(G) U ArgC(T)

E = title(E1,G)

ArgC(E) = ArgC(G)

E =imports(E1)

ArgC(E)=0

NOTE Forany

vell-formed expression E, this table specifies the set ArgC(E) of argument constants of E.

The value of 4

ny expression E in the interpretation / is given by following the rules in Table'2)

Table 2 — Interpretations of Common Logic expressions

E1l Nanpe N I(E) = int;(N)

E2 Seqpience marker S I(E) = seq(S)

E3 Title N I(E) = tt];(N)

E4 Terin sequence Tq ... Ty with T1 a term I(E) = <I(T1)>;I(<T2+/Tp >)

E5 Term sequence T ... T, with T1 a sequence I(E) = I(T1);/(<T2)... T >)
marfker

E6 Term with operator O and argument I(E) = fun(1{(0))(I(S))
seqience S

E7 Simple sentence which is an equation I(E) =true if I(T1) = I(T); otherwise, I(E) = falge
confaining terms Tq, T2

E8 Atomic sentence with predicate P and I(E) = true if I(S) is in rel;(I(P)); otherwise, I(E) [false
argyiiment sequence S

E9 Boolean sentence of type negation and I(E) = true if I(C) = false; otherwise, I(E) = fals¢
component C

E10 Boolean sentence of type conjunction and I(E) =trueif I(C1) = ... = I(Cp) = true; otherwisg
components C1 ... Cp I(E) = false

E11 BooJean sentence of type disjunction and I(E) = false if I(Cq) = ... = I(Cy,) = false; otherwisp,
confponents Cq ... Cp I(E) = true

E12 BooJean sentence oftype implication and I(E) = false if I(C1) = true and I(C3) = false;
conjponents C1, €2 otherwise, I(E) = true

E13 Boolean sentenice of type biconditional and I(E) = true if I(C1) = I(C3); otherwise, I(E) = falge
components.€y, Ca

E14 Qualntified’'sentence of type universal with I(E) = true if for every N-variant] of I, J(B) is trje;
bin?ﬁngs N and body B otherwise, I(E) = false r

E15 Quantified sentence of type existential with |I(E) = true if for some N-variant J of I, J(B) is true;
bindings N and body B otherwise, I(E) = false

El6 Irregular sentence S I(E) = int/(S)

E17 An out-discourse statement outDiscourse(Tq |I(E) =true if[(T;) € UD;U UD/*for 0 <i<n;
.. Tn) otherwise, I(E) = false

E18 An in-discourse statement inDiscourse(Tq ... |I(E) =trueif(T;) € UD;Y UD/*for 0 <i<n;
Tn) otherwise, I(E) = false

E19 A text construction txt(E1 ... Ep) I(E) =true if I(E1) = ... = [(Ep) = true; otherwise,

I(E) = false
18 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Table 2 (continued)

E20

A domain restriction domain(N,G)

Ji :[1 <{x| |x|e rel, (I(N))}]
and J(G) = true;
otherwise, I(E) = false

I(E) = true if there is some interpretation

E21

A text titling title(E1 ,G), where G is a text in
the sense of the abstract syntax

I(E) = true if ttl;(E1) = G; otherwise, I(E) = false

E22

An import statement imports(E1) I(E) =true

These
with o
may in

A sem
such a
to con

Table }
comm
Thus,

Nevert
transn
Comm|
name i
that cd

Titling
Dialec
named

dl T ‘L-]llC llJClbiL lusu,a} DCllldlltiL LUllditiUllD VV}IiL}l (111 l,UllfUl lllills dlalct,ta D}la}} Ddt
ccurrences of interpreted names, the interpretations are further restricted (see
1pose further semantic conditions in addition to these.

intic extension which restricts Common Logic interpretations accordingto naming
5 network identification conventions, is called external. External semgntic constra
Fentions or structures which are defined outside the model theory its¢lf.

 specifies no interpretation for comments. The interpretation.6f an expression wit
bnt is the same as the interpretation of the corresponding expression without

hdding or deleting comments does not change the truth<cenditions of any Comm
heless, comments are part of the formal syntax and dpplications should presert
pitting, editing or re-publishing Common Logic text: In‘particular, a name used to
pn Logic is understood to be mapped to an expression of the abstract syntax, so th
s used, within the same corpus, to title a text thatpdrses to a different abstract synt
rpus will be unsatisfiable (see 6.4) even if thetexts are identical except for comme

s are not required to be in 1:1 correspondence to documents, files or other units o
's or implementations may provide for,texts to be distributed across storage units,
texts to be stored in one unit. Thetitling conventions for text may be related to t

conve
namin|
identi
used a

sh

tions in use for data units, but this is not required. Texts may also be identifie
conventions, for example, by)encoding the text in documents or files which

iers; the Common Logic semantics described in 6.2 shall be applicable to all netw
text titles on a network-on-which Common Logic texts are published or transmitt

atatypes

ype is a mapping from a lexical space (which can be represented explicitly in th

sfy. For texts
b.3). A dialect

b conventions,
nts may refer

h an attached
'The comment.
pn Logic text.
re them when
title a text in
at if the same
hX expression,
nts.

data storage.
r for multiple
he addressing
d by external
have network
rk identifiers
pd.

P syntax) to a

pace (which.is arbitrary). Within the abstract syntax, elements of a datatype's lexical space are

The denotations of interpreted names of default datatypes are defined explicitly.

all be specified by the corresponding standard (e.g. XSD).

The denotations for datatyped interpreted names in cases where the datatype is standardized

For user-defined datatypes, the denotations shall be specified either by an explicit axiomatization

or definition in mathematical language, or use the mechanisms for user-defined datatypes provided
in other standards (e.g. XML Schema or Relax NG). If the name of the datatype is an IR], then that

IR

[shall dereference to a document that provides this definition.

The occurrence of any interpreted name in a Common Logic text imposes a constraint on the
interpretation of that text such that the value of int(I) for such a name is always the truth value
assigned by the datatype associated with that interpreted name. A Common Logic dialect that includes

© ISO/IEC 2018 - All rights reserved

19

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

interpreted names according to the above specifications is not classified as a semantic extension on
that basis.

6.4 Satisfaction, validity and entailment

Since the semantics of Common Logic does not assume a fixed distinction between names which are
out of discourse and names which are in discourse, texts may differ on these two sets. A discourse
supposition may be full or partial. A full discourse presupposition D is a partition of the lexicon A of
names (V) and sequence markers (Smark) into the set of names and sequence markers Ap which are
in-discourse and the complementary set of names and sequence markers Ay which are said to be out-
of-discourse. While a full discourse presupposition provides a discourse assignment for every symbol
in the lexicon izssas of the
lexicon; that i

armartial ddccai Py PEETETY bl ool ek o o atfar o neonar ool
aparctrararstoutrsCpresupposSToroT IraKes—suc—arrass e ToTapropersuaost

5,A U D U Ay is asubset of A.

TSTITITC

An interpretation I meets a discourse presupposition D iff
a)
b)
c)
d)

for any ngme N € Ap, there is int; (N) € UDj,

for any sqquence marker S € Ap, there is seq; (S) € UDy*,

for any ngme N € Ay, there is int; (N) € UDj, and

for any sgquence marker S € Ay, there is seq; (S) & UD/*.

A Common Ldgic corpus C is satisfied by an interpretation / underthe/discourse presupposition I iff

1) I(G) =true and ArgC(G) € UD; U UDr* for every G in the importation closure of C under ttl;, arld

2) ImeetsD

tisfies

A corpus Cis 4
it and meets [j
S under a dis¢
entails C unde

A corpus C is
contradictory

Common logi
irregular sen

atisfiable under a discourse presupposition'D if there is a core interpretation which s3
; otherwise, it is unsatisfiable or contradictory. If every core interpretation which sg
ourse presupposition D also satisfies C under the same discourse presupposition,
r the discourse presupposition D.

satisfiable if there is an interpretation which satisfies it; otherwise, it is unsatisfi
If every interpretation which satisfies S also satisfies C, then S entails C.

interpretations treat irregular sentences as opaque sentence variables by requirij
ences be parsed(te propositions (nullary atomic sentences) in the abstract syntg

tisfies
then S

1ble or

ng that
x. In a

dialect which ations
hdverb
which
modal
bt be a

Wever,

recognizes irrégular sentences, the above definitions are used to refer to interpret
determined by the semantics of the dialect; however, when qualified by the prefixing adjective or
“common-logic”, as in “Common-logic entails”, they shall be understood to refer to interpretationg
conform exacfly to the.Common Logic semantic conditions. For example, a dialect might support
sentences, anfl itg’semantics supports the entailment (Necessary P) entails P; but this would n
common-logi¢ ehta
the entailme

Several of the later discussions consider restricted classes of interpretations. All the above definitions
may be qualified to apply only to interpretations in a certain restricted class. Thus, S foo entails
T just when for any interpretation [in the class foo, if I satisfies S then [satisfies T. Entailment (or
unsatisfiability) with respect to a class of interpretations implies entailment (or unsatisfiability) with
respect to any subset of that class.

When describing entailment of T from S, S is referred to as the set of premises, and T the conclusion, of
the entailment.

6.5 Sequence markers, recursion and argument lists: discussion

Sequence markers take Common Logic beyond first-order expressivity. A sequence marker occurring
in an argument sequence stands for an arbitrary finite sequence of arguments. A universal sentence

20 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

binding a sequence marker has the same semantic import as the infinite conjunction of all the
expressions obtained by replacing the sequence marker by a finite sequence of names, all bound by
universal quantification.

This ability to represent infinite sets of sentences in a finite form means that Common Logic with
sequence markers is not compact, and therefore not first-order; for clearly the infinite set of sentences
corresponding in meaning to a single sentence quantifying a sequence marker is logically equivalent to
that sentence and so entails it, but no finite subset of the infinite set does. However, the intended use
of sentences containing sequence markers is to act as axiom schemata, and when they are restricted to
this use, the resulting logic is compact. This amounts to allowing sequence markers to be bound only
by universal quantifiers at the top statement level of a text and restricting these sentences to be used
only as axioms. This restriction is often appropriate for texts which are considered to be “ontologies”,
i.e. authoritative information sources representing a conceptualization of some domain.¢f application,
intendd to be applied to other data.

by ter
list, an
condit
model
in RDI
readah
extern

ided by sequence markers, by the use of explicit argument lists, represented in C

act dialect which does not support sequence markers can imitate much -of the

s built up from a list-constructing function. A sequence marker translates into
d quantification over list names replaces quantification over segquerice markers.
on on sequences then corresponds to an implicit fixed-point agsumption made on

functionality
ommon Logic
the name of a
[he finiteness
hll “standard”

5 of the list axioms. Such conventions are widely used in legic programming a

ility, the need to allow lists as entities in the domain ef discourse, and possibly t
al software to manipulate the lists. The advantage is the ability of rendering arbitr

lications and

p
" and OWL. The costs of this technique are a considerable-reduction in syntac{c clarity and

e reliance on
ary argument

sequences using only a small number of primitives and thetise of a compact base logic. Implementations

based
fail to
advant

6.6

A dialg
are op

An int
funy ay

the ddmain are the extensions of the non-discourse names. For classical dialects, onl

interp

$pecial cases and translations between dialects

on argument-list constructions are often limited“to conventional first-order exp
support all inferences involving quantification over lists. This may be considere
age or as a disadvantage.

ct in which all operators and predicates are non-discourse names and all non-dis
brators or predicates is calledd classical dialect.

brpretation [is single-universe when UD; = UR;. An interpretation [is extensional
e the identity function‘on (UR; — UDy), so that the entities in the universe of refg

J whic

I(x) by fun(I(x)) forsevery operator x and by rel[(I(x)) for every predicate x in the vo
removjing them €¥em the domain if they are present. Since all operator and predicates
dialect influence'the truth-conditions only through their associated extensions, this does
truth-yalues,\Formally, UD; = UD; - {I(v): v an operator or predicate in V}, intj(x) = int;(x)
names, int)(X) = relj(int;(x)) for predicates x and intj(x) = fun,(int;(x)) for operators x.

satisfies the same expressions of any text of the dialect as I does.] may be obtaine

ressivity and
[either as an

course names

when rel; and
rence outside
y extensional

retations need beconsidered: for any given interpretation /, there is an extensional interpretation

1 by replacing
cabulary, and
in a classical
not affect any
for discourse

Guidel

ines for specifying translations between dialects are given in Annex D.

7 Conformance

7.1 Dialect conformance

7.1.1 Syntax

A dialect is defined over some set of inscriptions, which shall be specified. Commonly, this should be
Unicode character strings (as specified in ISO/IEC 10646), but other inscriptions, e.g. diagrammatical
representations such as directed graphs or structured images, are possible. A method shall be
specified for the dialect which will unambiguously parse any inscription of text in the set, or reject it
as syntactically illegal. For Unicode character string inscriptions, a grammar in EBNF is a sufficiently

© ISO/IEC 2018 - All rights reserved 21

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

precise specification. A parsing is an assignment of each part of alegal inscription into its corresponding
CL abstract syntax category in 6.1.1, and the parsed inscription is an expression.

A dialect which provides only some types of the Common Logic expressions is said to be a syntactically
partial Common Logic dialect or syntactically partially conformant. In particular, a dialect that does
not include sequence markers, but is otherwise fully conformant, is known as a syntactically compact
dialect. See 7.1 for a description of some relationships between syntactic and semantic conformance.

A dialect is syntactically fully conformant if its parsings recognize expressions for every category of
the abstract syntax in 6.1.1. For Common Logic conformity, dialects or sub-dialects whose parsings
include other categories of sentences shall either (a) categorize them as irregular sentences or (b)
specify how these categories are mapped into the abstract syntax categories defined in 6.1.1. If a
dialect confofms as in (a), such a dialect or sub-dialect shall be referred to as semantic extensiohs (see
7.1.2). It is copformant as a syntactic sub-dialect if it recognizes at least one of the CL categories, but
any dialect shall recognize some form of sentence category. Three particular cases of syntactjc sub-
dialect are id¢ntified. A compact sub-dialect is a dialect that does not recognize sequenice markers. An
unstructured sub-dialect is a dialect that does not recognize titlings and importatien statements. A
single domain sub-dialect is a dialect that does not recognize domain restrictions.

A dialect is syntactically segregated if the parsing requires a distinction to’be’made between [lexical
categories of CL names in order to check legality of an expression in that dialect. Segregated djialects
shall specify [criteria which are sufficient to enable an application to detect the category of a name in
the dialect without performing operations on any structure other than\the name itself.

7.1.2 Semantics

Any CL dialecf shall have a model-theoretic semantics, definted'on a set of interpretations, called [dialect
interpretations, which assigns one of the two truth-values true or false to every statement, sentgnce or
text in that diplect.

A dialect is weakly semantically conformant .when, for any syntactically legal sentence (except
comment) or|text T in that dialect, there exists a mapping tr from expressions in the diaject to
expressions ih Common Logic abstract syntax and there exists a mapping mod from Commor] Logic
interpretations to dialect interpretations such that the following conformance condition is true:

— mod(]) erftails T iff I entails tr(T)foreach Common Logic interpretation I of tr(T).

A dialect is fajithfully semantically conformant when, for any syntactically legal sentence, statement
(except commnlent) or text T in fhat dialect, there exists a mapping tr from expressions in the didlect to
expressions i Common Logic abstract syntax such that the following conformance condition is true:

— atext T’ ip entaileddy-T iff tr(T’) is entailed by tr(T).

A dialect is expansively conformant iff it is weakly semantically conformant and mod is a surjective
mapping.

A dialect is sublanguage semantically conformant when, for any syntactically legal sentence,
statement (except comment) or text T in that dialect, there exists a mapping tr from expressions in the
dialect to expressions in Common Logic abstract syntax and there exists a mapping mod from Common
Logic interpretations to dialect interpretations such that the following conformance conditions are true:

— the dialect is weakly semantically conformant;
— tris aninjective mapping;
— mod is a bijective mapping.

A dialect is exactly semantically conformant when, for any syntactically legal sentence, statement
(except comment) or text T in that dialect, there exists a mapping tr from expressions in the dialect

22 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

to expressions in Common Logic abstract syntax and there exists a mapping mod from Common Logic
interpretations to dialect interpretations such that the following conformance conditions are true:

— the dialect is weakly semantically conformant;
— tris abijective mapping;
— mod is a bijective mapping.

It follows that the notions of satisfiability, contradiction and entailment corresponding to the dialect
interpretations, and to Common Logic interpretations, are identical for an exactly conforming dialect.

The simplest way to achieve exact semantic conformance is to adopt the CL. model theory as the model-
theoriic semantics for the dialect, but the definition is phrased so as to allow other ways j)f formulating
the semantic meta-theory to be used if they are preferred for mathematical or otherreadons, provided

only that satisfiability, contradiction and entailment are preserved.

A semqntic sub-dialect is a syntactic sub-dialect (see 7.1.1) and meets the semantic condit
and Tdble 2; that is, it recognizes only some parts of the full Common Logic\and its inter]
equivdlent to the restrictions of a Common Logic interpretation to those-parts.

A sem
condit
constr]
condit

lantic extension is a dialect which satisfies the first condition,*but does not satis
on. In other words, a semantic extension dialect has some part(s) whose interpre
pined than they would be by a CL interpretation. Any dialeet which imposes non-tr
ons on irregular sentences is a semantic extension in this sense.

This allows a semantic extension to apply “external’-Semantic conditions to irregular
additign to the CL semantic conditions. CLIF is an example of a semantic extension, by
semanftic conditions it imposes on numbers and queted strings.

Semantic extensions shall be referred topas” “conforming semantic extension” or
extendion”, rather than as exactly conformant or simply as “conformant”. For sentencq
and tekts of a conforming extension, contradiction and entailment with respect to the Q
semanftics implies, respectively, contradietion and entailment with respect to the dialect s
not vide versa; and satisfaction witht€spect to the dialect semantics implies satisfactior
to Common Logic semantics, but-not vice versa. This means that inference engines w
Commpn Logic inferences will’be'correct, but may be less complete, for the dialect.

No dia
namesg

lect may restrict the.range of quantification of a different dialect. Other dialects
as discourse names:

7.1.3 | Presuppaosing dialects

CL dialects may mandate a partial or full discourse presupposition as the entailment
texts. The §pecification of the discourse presupposition shall be unambiguously specified
in the ialect, but otherwise is arbitrary, e.g. it may be based on a naming convention or nj

onsin Table 1
bretations are

fy the second
ation is more
vial semantic

sentences, in
virtue of the

“conforming
s, statements
ommon Logic
emantics, but
with respect
hich perform

may treat all

Fegime for its
| for each text
ay be derived

from theusage of rarmes i the text:

Traditional first-order logic as a CL dialect is presupposing, with a discourse presupposition of “non-
discourse” for all names used as function operators or predicates, and “discourse” for all names used as
the arguments of functional terms or simple sentences or as bindings.

Single-universe CL dialects are also presupposing, with a discourse presupposition of “discourse” for
all names.

Any CL dialect may include a syntactic construct for referring to an external discourse presupposition
as the intended entailment regime for a text.

© ISO/IEC 2018 - All rights reserved 23

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

7.2 Application conformance

“Application” means any piece of computational machinery (software or hardware, or a network) which
performs any operations on CL text (even very trivial operations like storing it for later re-transmission).

Conformance of applications is defined relative to a collection of dialects called the conformance set.
Applications which are conformant for the XCL dialect may be referred to as “conformant” without

qualification.

All conformant applications shall be capable of processing all legal inscriptions of the dialects in the
conformance set. Applications which input, output or transmit CL text, even if embedded inside text
processed using other textual conventions, shall be capable of round-tripping any CL text; that is, they

shall output of transmit the exact Inscription that was Imput to them, without textual alteration.

Applications
correct wher
entailment of]

I(S) = true, theen I(T) = true]. The application is complete when, for any texts T and,S-in dialects

conformance
(Note that thi

Completenesq
which is not

I(S) =true, th

7.3 Netwo

Conformance
conformance
conformance
network iden
transmission
purposes of ¢

q

which detect entailment relationships between CL texts in the conformdice
, for any texts T and S in dialects in the conformance set, if the application/dete
T from S, then S common-logic entails T [that is, for any Common Logic,ifiterpretat

Ket, if S common-logic entails T, then the application can detect the eéntailment of T f
5 requires completeness “across” dialects in the conformance set).

does not require that the application can detect entailnient in a semantic ext]

bn the application detects the entailment of T by S.

'’k conformance

of communication networks is defined «relative to a collection of dialects call
set. A network is conformant when it‘fransmits all expressions of all dialects
set without distortion from any nodeiin the network to any other node, and provi
Lifiers which satisfy the semantic:¢onditions E17, E20 and as described in 6.2. N¢
errors or failures which are indicated as error conditions do not count as distort
bnformance of a network.

et are
cts the
on [, if
in the
rom S.

ension

common-logic entailment. If a dialect is a semantic exténsion, then an application is
dialect compllete for that dialect if, for any dialect interpretation I ofthat dialect, I(T) = true wh

enever

ed the
in the
les for
twork
jon for

24

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Annex A
(normative)

Common Logic Interchange Format (CLIF)

A.1 General

cally, the Common Logic project arose from an effort to update and rationalize
which was first proposed as a “knowledge interchange format” over a deecade
fied form, has become a de facto standard notation in many applications of 16gic. Se
mon Logic, most notably its use of sequence markers, are explicitly borrpived from

Histor
KIFI3]
simpli
of Con
the de

reviewed here.

First, 4
variet)
used f
to be ¢
rather

he goals of the languages are different. KIF was intended to be’a)common notatio
 of other languages could be translated without loss of meaning. Common Logic is
br information interchange over a network, as far as possible’' without requiring a
lone, and when it shall be done, Common Logic provides'a single common semant
than a syntactically defined interlingua.

Second, largely as a consequence of this, KIF was seemas’a “full” language, containing 1
synta¥ for a wide variety of forms of expressions, including, for example, quantifier so
definition formats and with a fully expressive meta:language. The goal was to provide a si
into which a wide variety of other languages could be directly mapped. Common Logi
has belen deliberately kept “small”. This makesiit easier to state a precise semantics and
boundk on the expressiveness of subsets ofthe language, and allows extended languages
as encpdings of axiomatic theories expressed in Common Logic.

Third,|KIF was based explicitly on LISP. KIF syntax was defined to be LISP S-expressid
based [ideas were incorporated_.into the semantics of KIF, for example, in the way that
of seqpence variables was défined. Although the CLIF surface syntax retains a supe
like apgpearance in its use of a nested unlabelled parentheses and could be readily p
S-expressions, Common.I{ogic is not LISP-based and makes no basic assumptions of any LI
The rdcommended Cemmon Logic interchange notation is based on XML, a standard W
availalple when KIF was originally designed.

, many ofthe “new” features of Common Logic have been motivated directly by thg
from new werkon languages for the semantic webl[2].

the design of
ago and, in a
veral features
KIF. However,

sign philosophy of Common Logic differs from that of KIF in variplis-ways, which is briefly

Tl’l

into which a
tended to be
1y translation
¢ framework,

epresentative
Fting, various

Ingle language

C, in contrast,
to place exact
to be defined

ns, and LISP-
he semantics
ficially LISP-
hrsed as LISP
P structures.
rhich was not

ideas arising

The ngnie’echosen for Common Logic’s KIF-like syntax is the Common Logic Interchange H
This ilom : . P : . . : :
from various other dialects of KIF that may or may not be exactly compatible.

KIF and CLIF are similar in several ways. Both languages contain as sub-dialects a synta

ormat (CLIF).
distinguish it

x for classical

first-order (FO) logic. Both languages have notation for sequence variables (called sequence markers in
this document). Both languages use exclusively a prefix notational convention and S-expression style
syntax conventions. Both use parentheses as lexical delimiters. Both indicate quantifier restrictions

similarly.

Some known differences between KIF and CLIF are as follows.

a) KIF requires ASCII encoding; CLIF uses Unicode encoding.

b) KIF has explicit notations for defining functions and relations, which CLIF does not.

c) KIF does not use the enclosed-name notation which CLIF has.

© ISO/IEC 2018 - All rights reserved

25

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

d) KIF uses the “@” symbol as a sequence variable prefix; CLIF uses the three-dot sequence for
sequence markers.

e) KIF handles comments differently than CLIF and does not have the “enclosing” construction.
f) KIF does not have the role-pair construction which CLIF has.

g) KIF does not have the irregular sentence type which CLIF has to allow for extensions of the
language.

h) KIF does not have the notions of importation, texts, statements, and domain restrictions which
CLIF has.

i) KIF distirlguishes variables from names and requires quantifiers to bind only variables; CLIF does
not make|the distinction.

j) Free varipbles in KIF are treated as universally quantified. Free names in CLIF aré simply pames,
and no qyantification is implied.

k) KIF restrjicts operators and predicates to be names; CLIF allows general.terms and also [allows
these names to be bound by quantifiers.

1) KIF does hot support the guarded quantifier construction.

A.2 CLIF syntax

A.2.1 Characters

Any CLIF expression is encoded as a sequence of Unicodg characters in accordance with ISO/IEC [10646.
Any character encoding which supports the repertoire of ISO/IEC 10646 may be used, but UTF-8§ (ISO/
IEC 10646:20[14, Annex D) is preferred. Only characters in the US-ASCII subset are reserved for $pecial
use in CLIF itdelf, so that the language can be encgded as an ASCII text string if required. This doqument
uses ASCII characters. Unicode characters outside the ASCII range are represented in CLIF ASCII text by
a character cqding sequence of the form \uhann or \Unnnnnn where n is a hexadecimal digit character.
When transfqrming an ASCII text string-to a full-repertoire character encoding, or when printing or
otherwise repdering the text for maxitium accessibility for human readers, such a sequence may be
replaced by the corresponding direct’encoding of the character or an appropriate glyph. Moreover,
these coding pequences are understood as denoting the corresponding Unicode character when they
occur in quotgd strings (see below).

The syntax is|defined in _termis of disjoint blocks of characters called lexical tokens (in accordande with
ISO/IEC 23822015, 150101 on lexical tokens). A character stream can be converted into a §tream
of lexical tokens by‘a-simple process of lexicalization which checks for a small number of dglimiter
characters, which(indicate the termination of one lexical token and possibly the beginning of the next
lexical token.|Any consecutive sequence of whitespace characters acts as a separator between [lexical
tokens (exceptwitht i ; - i special
use as the first character in a lexical item. The double-quote (U+0022) character is used to start and
end names which contain delimiter characters, the single-quote (apostrophe U+002C) character is used
to start and end quoted strings, which are also lexical items which may contain delimiter characters,
and the equality sign shall be a single lexical item when it is the first character of an item.

The backslash \ (reverse solidus U+005C) character is reserved for special use. Followed by the letter
u or U and a four- or six-digit hexadecimal code, respectively, it is used to transcribe non-ASCII Unicode
characters in an ASCII character stream, as explained above. Any string of this form in an ASCII string
rendering plays the same Common Logic syntactic role as a single ordinary character. The combination
\' (U+005C, U+002C) is used to encode a single quote inside a Common Logic quoted string, and similarly,
the combination \" (U+005C, U+0022) indicates a double quote inside a double-quoted enclosed name
string. In both cases, a backslash is indicated by two backslashes \\ (U+005C, U+005C). Any other
occurrence of the backslash character is an error. These inner-quote conventions apply in both ASCII
and full Unicode renderings.

26 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

A.2.2 Lexical syntax

A.2.2.1 General

A distinction is made between lexical and syntactic constructs for convenience in dividing up the
presentation into two parts. This subclause may help implementers in identifying logical tokens that
make up syntactic expressions, as shown in the next subclause, A.2.3. Implementations are not required
to adhere to this distinction.

A.2.2.2 White space

white[= space U+0032 | tab U+0009 | Iine U+00I10 | page U+001Z | return U+00L13];

A.2.2.3 Delimiters

Singlequote (apostrophe) is used to delimit quoted strings, and double quote to:delimit enfclosed names,
which|obey special lexicalization rules. Quoted strings and enclosed names:are the only CLIF lexical
items which can contain whitespace and parentheses. Parentheses elsewhete are self-ddlimiting; they
are copsidered to be lexical tokens in their own right. Parentheses aré the primary grouping device in
CLIF syntax.

open F '(' ;

close|l= ")"' ;

stringquote = ''' ;

nameqgpote= '"!'

backsflash= '\' ;

A.2.2.4 Characters

char is|all the remaining ASEII non-control characters, which can all be used to form lexical tokens (with
some festrictions based on the first character of the lexical token). This includes all the plphanumeric
charadters.

char f digit ANET' | PET L T | TSt | e | AT et | e e
' | |<' | '>l | o | |l Al | T_ ‘ T | '[l ‘ V]' | l’VI l,V | Al Al ‘ V/V | 'A' ‘
IB' ’ lcl ‘ IDI ‘ IEI ‘ IFI ‘ IGI ‘ IHI ‘ III ‘ IJI ‘ IKI ‘ ILI ‘ IMI ‘ Nl ‘ lol ‘
'P' ; 1 1 ; IFI ; 'S' ; ITI ; 'U' ; 1 1 ; 'V\l' ; 1 1 ; 'L' ; lzl ; 'Cl' ; bl ‘ ICI ‘
ldl ‘ lel ‘ lfl ‘ lgl ‘ lhl ‘ 'l' ‘ 'j' ‘ lkl ‘ lll ‘ lml ‘ lnl ‘ IOI ‘ lpl ‘ lql ‘
'r' ‘ 'S' ‘ 't' ‘ 'u' ‘ 'v' ‘ 'w' ‘ 'x' ‘ 'y' ‘ 'Z' ;

digit = IOI | lll | |2| | |3| | |4| | |5| | |6| | |7| | |8| | |9| ;

hexa = digit ‘ 'A' ‘ 'B' ‘ 'C' ‘ 'D' ‘ 'E' ‘ 'F' ‘ 'a' ‘ 'b' ‘ 'c' ‘ 'd' ‘ 'e' ‘ 'f' ;

A.2.2.5 Quoting within strings

Certain character sequences are used to indicate the presence of a single character. nonascii is the set of
characters or character sequences which indicates a Unicode character outside the ASCII range.

© ISO/IEC 2018 - All rights reserved 27

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

For input using a full Unicode character encoding, this production should be ignored and nonascii
should be understood instead to be the set of all non-control characters of Unicode outside the ASCII
range which are supported by the character encoding. The use of the \uxxxx and \Uxxxxxx sequences
in text encoded using a full Unicode character repertoire is deprecated.

innerstringquote is used to indicate the presence of a single-quote character inside a quoted string. A
quoted string can contain any character, including whitespace; however, a single-quote character can
occur inside a quoted string only as part of an innerstringquote, i.e. when immediately preceded by a
backslash character. The occurrence of a single-quote character in the character stream of a quoted
string marks the end of the quoted string lexical token unless it is immediately preceded by a backslash
character. Inside enclosed name strings, double quotes are treated exactly similarly. Innernamequote is
used to indicate the presence of a double-quote character inside an enclosed name.

nonascii = |\u' , hexa, hexa, hexa, hexa | '\U' , hexa, hexa, hexa, hexa, hexa, - hexal ;
innerstringquote = "\'"' ;

innernamequ¢te = '"\"'

innerbackslgsh= "\\'

numeral = digit , { digit } ;

Sequence markers are a distinctive syntactic form with a spe¢ial' meaning in Common Logic. Notg thata
bare ellipsis }ithout any text (i.e.'. . .") is itself a sequencesmarker.

segmark = '"}.."' , { char } ;

Single quotesfare delimiters for quoted strings; double quotes for enclosed names.

An enclosed nlame is simply a name which may,contain characters which would break the lexicaliation,
such as “Mrs|Norah Jones” or “Girl(interupted)”; like any other name, it may denote anything. The
surrounding double-quote marks are.not considered part of the name, which is defined to pe the
character string obtained by removing‘the enclosing double-quote marks and replacing any ifternal
occurrences ¢f an innernamequote by a single double-quote character. In the case of double-guoted
numerals, a hew symbol is assigned to this interpretable name during parsing into the albpstract

ecommended to wse the enclosed-name syntax when writing URIs, URI references and
, since these‘Web identifiers may contain characters which would otherwise break CLIF
in particular, Xpath-compliant URI references will often end in a closing parenthegis.

syntax. It is 1
IRIs as namej{
lexicalization

A quoted stri
similarly rela

hg, inseontrast, is an expression with a fixed semantic meaning: it denotes a text|string
ed tathe string inside the quotes.

A.2.2.6 Quoted strings

Quoted strings and enclosed names require a different lexicalization algorithm than other parts of CLIF
text, since parentheses and whitespace do not break a quoted text stream into lexical tokens.

When CLIF text is enclosed inside a text or document which uses character escaping conventions, the
Common Logic quoted string conventions here described are understood to apply to the text described
or indicated by the conventions in use, which should be applied first. Thus, for example, the content
of the XML element <cl- text>'a\'b<c&apos</cl-text> isthe CLIF syntax

28 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

quoted string 'a\'b<c' which denotes the five-character text string a'b<c. Considered as bare CLIF text,
however, 'a\'b<c&apos would simply be a rather long name.

quotedstring = stringquote, { white | open | close | char | nonascii | namequote |
innerstringquote | innerbackslash }, stringquote ;

enclosedname = namequote, { white | open | close | char | nonascii | stringquote |
innernamequote }, namequote

A.2.2.7 Reserved tokens

reserv
Comm

bdelement consists of the lexical tokens which are used to indicate the syntacti
pn Logic expressions. These may not be used as names in CLIF text.

" structure of

reser

= "iff! 'foraj M

'cl:imports'

'if! | |

'cl:in

redelement =" | 'and' | 'or'

'cl:outdiscourse' |

'not' 'cl:text' 'cl:ttl' | | 'cl:restrict!

'cl:comment' | 'cl:prefix'

’

exists' |

iscourse'

A.2.2.8 Name character sequence

A nam
named

bcharsequence is a lexical token which does not start with any of the special charact
harsequences may not contain whitespace or parentheses, and may not start with

ers. Note that
a quote mark
Bnces.

although they may contain them. Numerals and sequencetharkers are not namecharsequ
namecharsequence = (char , { char | stringguote | namequote | backslash
reservedelement | numeral | segmark), »

A.2.2.9 Lexical categories

The t4
lexbre
next s

sk of a lexical analyser is to parse the character stream into consecutive, no
hk and nonlexbreak strings, and'to deliver the lexical tokens it finds as a stream of

h-overlapping
tokens to the

fage of syntactic processing,‘Lexical tokens are divided into eight mutually disjoint categories:

the open and closing parentheses, numerals, quoted strings (which begin and end with|'"), sequence

markefrs (which begin with .."), enclosed names (which begin and end with "), and ngmesequences

and regerved elements.

lexbrpak = open | “elose | white , { white } ;

nonlekbreaks\=/numeral | quotedstring | segmark | reservedelement | namechafsequence |
Enclosedname ;

lexicaltoken = open | close | nonlexbreak ;

charstream = { white } , { lexicaltoken, lexbreak } ;

© ISO/IEC 2018 - All rights reserved 29

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

A.2.3 Expression syntax

A.2.3.1 Term sequence

Both terms and atomic sentences use the notion of a sequence of terms representing a vector of
arguments to a function or relation. Sequence markers are used to indicate a subsequence of a term
sequence; terms indicate single elements.

termseq = { term | segmark } ;
csegmark = seqmark | (open, 'cl:comment', quotedstring , segmark , close) ;
A.2.3.2 Name

A name is any lexical token which is understood to denote an element. The names wkich have f fixed
meaning fron] those which are given a meaning by an interpretation are distinguishéd:

interpretedrame = numeral | quotedstring | (open, 'cl:comment', quot€&dstring , (numgral |
quotedistring) , close) ;

interpretablename = namecharsequence enclosedname | (openyf “Cl:comment', quotedstying ,
interpretablename , close);

name = intefpretedname | interpretablename ;

A.2.3.3 Term

Names count ys terms, and a functional term consists of an operator, which is itself a term, togeth¢r with
a vector of arguments. Terms may also have an associated comment, represented as a quoted stifing (in
order to allow text which would otherwise hteak the lexicalization). Comment wrappers syntadtically
enclose the tefm they comment upon.

term = name|| (open, operator, termseq, close) | (open, 'cl:comment', quotedstring ,

term, ¢lose) ;

operator = ferm ;

A.2.3.4 Equption

Equations ar¢ distihguished as a special category because of their special semantic role and $pecial
handling by manhy applications The equality sign is not a name

equation = open, '=', term, term, close ;

A.2.3.5 Sentence

Like terms, sentences may have enclosing comments. Note that comments may be applied to sentences
which are subexpressions of larger sentences.

sentence = atomsent | boolsent | gquantsent | commentsent ;

A.2.3.6 Atomic sentence

Atomic sentences are similar in structure to terms, but in addition, the arguments to an atomic sentence
may be represented using role-pairs consisting of a role-name and a term. Equations are considered to

30 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

be atomic sentences, and an atomic sentence may be represented using role-pairs consisting of a role-
name and a term.

atomsent = equation | atom ;
simple sentence = (open, predicate , termseq, close) ;
predicate = term ;

A.2.3.7 Boolean sentence

n sentences require implication and biconditional to be binary, but allow corlnjunction and

Booled

disjunftion to have any number of arguments, including zero; the sentences (and) atid (of) can be used
as the fruth-values true and false, respectively.

boolsgnt = (open, ('and' | 'or') , { sentence }, close) | (opemy NM'if' | '"H4£f£") ,

entence , sentence, close) | (open, 'not' , sentence, closé ;

A.2.3.8 Quantified sentence

Quantifiers may bind any number of variables, and bound variables may be restricted [to a category
indicated by a term.
quantpent = open, ('forall' | 'exists') , Dboundiist, sentence, close ;
boundflist = open, bvar, { bvar } , close ;
bvar f interpretablename csegmark -t
(open, (interpretablename | csegmark), term, close) ;

A.2.3.9 Commented sentence

A corrInent may be applied to any sentence, so comments may be attached to senten
X

res which are

subexpressions of largersentences.
commehtsent = open, 'cl:comment', quotedstring , sentence , close ;
A.2.3.10 Titling

CLIF titling gives a text a name.

titling = open, 'cl:ttl', interpretable name , text , close ;

© ISO/IEC 2018 - All rights reserved

31

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

A.2.3.11 Discourse statement

A CLIF discourse statement is either an in-discourse statement (that specifies the set of terms which
denote elements in universe of discourse) or an out-of-discourse statement (that specifies the set of
terms which do not denote elements in the universe of discourse).

indiscourse = open, 'cl:indiscourse', term, {term} , close

7
outdiscourse = open, 'cl:outdiscourse', term, {term}

, close ;

discoursestatement = indiscourse | outdiscourse

A.2.3.12 Statement

A CLIF statenjent is either a titling or a discourse statement, optionally with a comment,

statement =|titling | discoursestatement | (open, 'cl:comment', quotedstiring , statenqent

closel) ;

A.2.3.13 Importation

A CLIF importation contains a title that provides an identifier to an external Common Logic text.

importation|= open, 'cl:imports', interpretablename , ,€lgse

’

A.2.3.14 Domain restriction

Domain restrjictions are named text segments which represent a text intended to be understood in
a “local” context, where the name indicates the damain of the quantifiers in the text. The tex{ name
shall not be afnumeral or a quoted string. Note that text and domain restriction are mutually redqursive
categories, so[that domain restrictions may he nested.

domainrestrjction = open, 'cl:restkict , term , text, close;

A.2.3.15 Tex{

CLIF text is a fext constructign;<mportation, or domain restriction.

textconstru¢tion = open, 'cl:text', { sentence | statement | text }, close

’

prefixdeclardtioh & open, 'cl:prefix', (quotedstring - 'cl'), interpretablename, close

commenttext = open, 'cl-comment', quotedstring, {prefixdeclaration}, cltext, close

’
text = textconstruction | domainrestriction | importation | commenttext

’

cltext = {text} ;

32 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

A.3 CLIF semantics

ISO/IEC 24707:2018(E)

The semantics of CLIF is equivalent to the semantics of the abstract CL syntax in 6.2.

NOTE

The interpretation of any expression of CLIF is then determined by the entries in Table A.1. The

notation <T1 ... T,> indicates a term sequence when referring to the syntax, and a sequence, i.e. an element of U*,
when referring to the semantics. The first column indicates links to rows in Table 2.

Table A.1 — CLIF semantics

IfE is an expression of the form Then I(E) =
E1l A decimal numeral The natural number denoted by the decimal numeral
E1l A quoted string ‘s’ The Unicode character string forméd,py removing
the outer single quotes and replacihg gscaped inner
substrings by their Unicode equivalenfts
E1,E2 An interpretable name I(E) = int/(E)
E3 A term sequence <T ... T,> starting with a I(E) = <I(T1)>1(<T2 ... Tp>)
term Tq
E4 A term sequence T ... T, starting with a I(E) = I[(T1); [(<T2/..-Tr>)
sequence marker T
E5 Aterm (OT1 ... Tp) I(E) = fun;(MO))(I(<T1 ... Tp>)
A name, term or sequence marker I(E) = I(T)
(cl-comment ‘string’ T)
E6 An equation (= T1 T3) I(E) = true if I(T1) = I(T); otherwise, I(E) = false
E7 An atomic sentence (P Tq ... Tj) I(E) = true if [(<Tq ... T,>) is in rel;(1(P)); otherwise,
I(E) = false
E8 A Boolean sentence (not P) I(E) = true if [(P) = false; otherwise, I([E) = false
E9 A Boolean sentence (and Pq ... Pp) I(E) = true if [(P1) =...I(Pp) = true; othdrwise,
I(E)=false
E10 A Boolean sentence (or P ... By) I(E) = false if I(P1) = ...I(P,,) = false; oftherwise,
I(E) = true
E11 A Boolean sentence (if Q) I(E) = false if [(P) = true and I(Q) = fal$e; otherwise,
I(E) =true
E12 A Boolean sentence (iff P Q) I(E) = true if [(P) = [(Q); otherwise, I(E) = false
A sentence orStatement (cl:comment I(E) =1(P)
“string” P)
E13 A quantified sentence (forall (N1 ... N;) B) I(E) = true if for every N-variant J of [,[/(B) = true;
wheréN—= {Ny, ..., Ny} is the set of bindings for |otherwise, I(E) = false
the sentence
E14 A guantified sentence (exists (N1 ... N;;) B) I(E) = true if for some N-variantJ of [, [(B) = true;
where N = {N1, ..., N,} is the set of bindings for |otherwise, I(E) = false
A well-formed expression (cl:comment I(E) = true
“string”)
E17 An importation (cl:imports N) I(E) = true
E19 A text construction (cl:text Ty ... Tj) I(E) = true if I(T1)= ... = [(Ty) = true; otherwise,
I(E) = false
E20 Atitling (cl:ttIN T) I(E) = true if tt[;(N) = T; otherwise, I(E) = false

© ISO/IEC 2018 - All rights reserved

33

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Table A.1 (continued)

If E is an expression of the form Then I(E) =

E21 An in-discourse statement I(E) =trueif I(T;) € UD; U UD/* for 1 <i < n;
(cl:indiscourse Tq ... T)) otherwise, I(E) = false

E22 An out-of-discourse statement I(E) = true if I(T;) € UD;u UD/*for 1 <i<n;
(cl:outdiscourse T1 ... Tj) otherwise, I(E) = false

E23 A domain restriction The text
cl:irestrictsN T ,
() T[T])

where T’ is the text T in which every name or
sequence marker X in the houndlist of a qn;mtifier

is replaced with (X N)

htactic
ple A.1.

Not every CL
cases is defing
The translatid

F syntactic form is covered by Table A.1. The interpretation of the remaining sy
d by mapping them to other CLIF expressions whose interpretation is defined by Tal
n is defined by Table A.2, which defines the translation T [E] of the expression E.

Table A.2 — Mapping from additional CLIF forms to core CLIF, forms

IfEis
A quantified s

Then E translates to TRE] =

The quantified sentehce

bntence

(forall (N1 T1])..)B) (forall (N1) T [(forall (...) (if (T1N1) B)]
A quantified s¢ntence The quantified sentence
(exists ((N1 T1) ...)B) (exists (N1).T [(exists (...) (and (T1 N1) B)]

The forms on
the right, whi

ons on
dialect

the left side of Table A.2 can be considered tpo be\“syntactic sugar” for their translati
ch are correspondingly referred to as their Sour syntactic equivalents, and the sub

of CLIF witho

A.4 CLIF c

A.4.1 Syntg

The correspd
left column d
conformance
interpreta
by virtue of tH
expression as

1t these expressions forms as sour CLIF,

pnformance

ctic conformity

ndence of CLIF syntax-to the CL abstract syntax is indicated by the entries
f Table A.1, which refer to the entries in Table 2, and from which the full sy
of sour CLIF can®e‘determined by inspection. Note that both interpretednamd

e mapping defined by Table A.2. Note that the CLIF comments syntax treats a comi]
identicaliin-meaning to the expression without the comment, so the comment

in the
ntactic
b s and

blenames ar€ considered to be CL names. The syntactic conformity of CLIF then follows

nented
ran be

considered to|be “attached” to the uncommented expression.

A.4.2 Semgdntic conformity

CLIF is a CL semantic extension. To show that CLIF is a CL semantic extension, it is necessary to show
thatif I is a CLIF interpretation, then a CL interpretation shall exist which gives the same truth value to
every sentence. This will be demonstrated by constructing J from [using the notation and conventions
from above when describing [and from 6.2 when describing J.

] has the same vocabulary as I: UD; = UR; = Uy, relj = rel; and fun; = fun;. The interpretation of
interpretablenames is defined in the obvious way: intj(x) = int;(x) for any interpretablename x. Since the
interpretednames of a CLIF vocabulary are classified as CL names, intj(x) shall also be defined when x is
an interpretedname, and clearly, this is done to follow the first two entries in the CLIF semantic table,
i.e. intj(x) = the integer denoted by x when x is a decimal numeral, and intj(x) = the Unicode character
string denoted by x when x is a CLIF quoted string. It is then easy to see by a comparison of cases that
J(s) = I(s) for any CLIF sentence s. If s is a text named N with an exclusion list L. and a body B, then it shall
be shown that](s) = true just when [J<L](B) = true and rel(J(N)) = UR[j<.* (since UD; = UR)). It is easy to
see that this is exactly equivalent to the truth in I of sentences in the sour translation of the body text

34 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

defined by the second table above, as described in 6.2. (A formal proof would proceed by a structural
induction on the sentences of the body text.) Hence, for any CLIF text t, J(t) = I(t).

Itis not the case thatif I is any CL interpretation of a CLIF text t, that there shall be a CLIF interpretation
] which gives t the same value; for since CLIF interpretednames are treated simply as names in CL,] may
assign them a value which does not conform to their fixed interpretation in CLIF, e.g. J(‘a string’) = 3 is
not ruled out by the common logic semantics rules. This is a general phenomenon with any dialect which
imposes predetermined, externally defined, meanings on some category of names, such as numerals or
datatyped expressions. Such dialects may support inferences which cannot be expressed as CL axioms,
and shall be classified as external CL semantic extensions. The subdialect of CLIF which does not use
numerals or quoted strings is exactly semantically conformant, as can be shown by inverting the above
construction of | from L.

© ISO/IEC 2018 - All rights reserved 35

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Annex B
(normative)

Conceptual Graph Interchange Format (CGIF)

B.1 General

B.1.1 Genejral

This clause symmarizes conceptual graphs and then describes a set of transformation, (rewrite
that will be uged with the rest of this annex to specify the description of the syntacticaules for C

The CG abstract syntax is a notation-independent specification of the expressions‘and compon
the conceptuadl graph core, which is the minimal CG subset capable of expressing, the full CL sem
The semantids of any expression x in the CG core syntax is specified by the’ function cg2cl(x),
maps x to a Iggically equivalent expression in the CL abstract syntax. The function cgZ2cl is rec

since a CG or

B.2.1 to B.2.1
CL syntax, ar
definition, a 1
and exampleg
by ISO/IEC 14

ts components may be nested inside other components.

rules
GIF.

bnts of
antics.
which
Lirsive,

977, and summarized in B.1.3. For each CGIF’syntax rule, the lexical categories

shall be assumed. In A.2.3.2, the category name includes a category enclosedname of strings er

in quotes and|
the category
shall be enclo

CGname

identifier

When CGIF is
around a nam

a category namesequence of strings that'are not enclosed. To avoid possible ambig
[Gname requires that all CLIF name sequences except those in the CGIF category idq
ced in quotes:

identifier | '"', (namesequence - identifier), '"'
| numeral | enclosedname~,} quotedstring;
= letter, {lettepr~N\Ndigit | " "};

translated to CL,any CGname shall be translated to a CLIF name by removing any
e sequence. CLIF)does not make a syntactic distinction between constants and vaf

but in CGIF, afly CGname that-is not used as a defining label or a bound label shall be called a cons

The start syn

hbol for(CGIF syntax shall be the category text, if the input is a complete text,

category CG, if thednput is a string that represents a conceptual graph.

B.1.2 Conc

1 define the abstract CG syntax, the mapping of the abstract CG syntax to the alpstract
d the corresponding concrete syntax for CGIF cere. Each subclause includes a formal
happing to CL, a syntax rule for CGIF concreteSyntax, and a comment with explanation
. The syntax rules are written in Extended Backus-Naur Form (EBNF) rules, as spgcified

A.2.2
closed
uities,
entifier

quotes
iables,
tant.

or the

pntiial sraphs
xr (=)) Y

A conceptual graph (CG) is a representation for logic as a bipartite graph with two kinds of nodes, called
concepts and conceptual relations. The Conceptual Graph Interchange Format (CGIF) is a fully conformant
dialect of Common Logic (CL) that serves as a serialized representation for conceptual graphs. This
annex specifies the CGIF syntax and its mapping to the CL semantics. A nonnormative graphical
notation, called the CG display form, is used in this document only in examples that illustrate the CG
structures. The first example, Figure B.1, shows the display form that represents the sentence John is
going to Boston by bus.

36

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

In the

relatigns. An arc with an arrowhead pointing toward a circle marks the first arguiient g
and ar

the ar
intege

The C(

the co

indivig
the type of relation: Agnt for the agent of going, Inst for the instPument, and Dest for th
The C(

destin

[Gq:
(Ad

In CGI

by par
be refé

called

Unless

follow

(e

As thi
the no
conne
corefe
variab

ISO/IEC 24707:2018(E)

Figure B.1 — CG display form for “John is going to Boston by bus”

display form, rectangles or boxes represent concepts, and circles or ovals represg

arc pointing away from a circle marks the last argument. If a relation has.only ¢
'owhead is omitted. If a relation has more than two arguments, the arséwheads aj
s 1,..,n.

in Figure B.1 has four concepts, each with a type label that represents the type of e
hcept refers: Person, Go, Boston, and Bus. Two of the coneépts have constant;
luals: John and Boston. Each of the three conceptual relations has a type label th

L as a whole indicates that the person John is the agent.@f an instance of going with
htion and a bus as the instrument. The following is the CGIF representation of Figui

*x] [Person: John] [City: Boston]
nt ?x John) (Dest ?x Boston)

[Bus:
(Inst ?x ?W

vyl

F, the concepts are represented by squate brackets and the conceptual relations ar
entheses. A character string prefixediwith an asterisk, such as *x, is a defining lah
renced by the bound label ?x, whick is prefixed with a question mark. These strir
coreference labels in CGIF, correspond to variables in Common Logic Interchange H
prefixed with the symbol @every, a defining label is translated to an existential g
ng is the equivalent CLIE xépresentation of Figure B.1:

ists
(and

((x Go) (y Busy)
(Person John)\ (city Boston)

(Agnt x Jghp) (Dest x Boston) (Inst x y)))

b example/illustrates, the differences between CGIF and CLIF result from the grg
Hes of tHe'graph have no implicit ordering, and the coreference labels such as *x of
'tions<of nodes rather than variables. Note that CGIF uses the prefixes * and ? {
rerice-labels from constants, but CLIF does not use any syntactic convention for ¢

nt conceptual
f the relation,
ne argument,
e replaced by

htity to which
that identify
at represents
e destination.
Boston as the
e B.1:

e represented
el, which may
gs, which are
ormat (CLIF).
uantifier. The

ph structure:
?x represent
o distinguish
listinguishing

les-and constants.

Figure B.1 and its representation in CGIF illustrate the extended syntax of CGIF, which adds type labels
on concepts and several other syntactic extensions to the core syntax. To convert the extensions of
the extended syntax to the core CGIF, the type labels in the concept nodes are replaced by relations

linked to the nodes. The concept [Go: *x], for example, becomes an untyped concept [*x]
conceptual relation (Go ?x).The concept [Person: John] becomes [:John]

and a

(Person John),

which may be simplified to just the relation (Person John). The following is the core CGIF and the

corres

[*x
(Go ?x)
(Agnt ?x John)

ponding CLIF:
1 [*yl

(Person John) (City Boston)
(Dest ?x Boston)

(Bus ?y)
(Inst ?x ?vy)

(exists (x V)
(and (Go x) (Person John) (City Boston) (Bus y)
(Agnt x John) (Dest x Boston) (Inst x vy)))

©150/1

EC 2018 - All rights reserved

37

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

To illustrate contexts and logical operators, Figure B.2 shows the display form for the sentence If a cat
is on a mat, then it is a happy pet. As in Figure B.1, the rectangles represent concept nodes, but the two
large rectangles contain nested conceptual graphs. Any concept that contains a nested CG is called a
context; in this example, the type labels If and Then indicate that the proposition stated by the CG in
the if-context implies the proposition stated by the CG in the then-context. The At tr relation indicates
that the cat, also called a pet, has an attribute, which is an instance of happiness.

i

Then: |

Pet Happy

If:

Figure B.2 — CG display form for “If a cat is on a mat, then it isa happy pet”

The dotted line connecting the concepts [Cat] and [Pet] is a corgference link, which indicatgs that
they both refpr to the same entity. In CGIF, the connection is shown by the defining label *x|in the
concept [Catf]: *x] and the bound label ?x in the concept [Pet& ?x]:

[If: [Cat]s *x] [Mat: *y] (On ?x ?y)
[Then:| [Pet: ?x] [Happy: *z] (Attr ?x ?2z) 1]

In core CGIF, the type labels If and Then are replaced by a negation symbol ~ in front of the opening
bracket, and the type labels are replaced by monadic relations:

~[[*x] [ffy] (Cat ?x) (Mat ?y) (On ?x_7V)
~[[*z[]] (Pet 7?x) (Happy ?z) (Att¥x ?z) 1]

CLIF:

(not (exifsts (x y) (and f(Cat x) (Mat y) (On x vy)
(not (xists (z) (and\(Pet x) (Happy z) (Attr x z)))))))

In core CGIF, the only quantifier is the existential. In extended CGIF, universal quantifiers may be used
to represent the logically equivalent sentence For every cat and every mat, if the cat is on the mat,|then it
is a happy pet|In extended CGIF, the universal quantifier is represented as @every:

[Cat: Qeviery *x] [Mat- Revery *vy]
[If: (On ?x ?y) [Then: [Pet: ?x] [Happy: *z] (Attr ?x ?z)]]

CLIF:

(forall ((x Cat) (y Mat))
(if (On x y) (and (Pet x) (exists ((z Happy)) (Attr x z)))))

In CGs, functions are represented by conceptual relations called actors. Figure B.3 is the CG display
form for the following equation written in ordinary algebraic notation:

y = (x + 7)/sqrt(7)

38 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

The three functions in this equation would be represented by three actors, which are drawn in
Figure B.3, as diamond-shaped nodes with the type labels Add, Sgrt, and Divide. The boxes represent
concept nodes, which contain the input and output values of the actors. The two empty concepts contain
the output values of Add and Sgrt.

15

2 [:::] 1

O
2

—

Sqrt I I

Figure B.3 — CL functions represented by actor nodes

In CGIF, actors are represented as relations with two kinds of arcs: a sequence of ingdut arcs and a
sequeinice of output arcs, which are separated by a vertical bar:

[Nymber: *x] [Number: *y] [Number: 7]
(Add 2?x 7 | [*u]) (Sgrt 7 | [*v]) (Divide ?u 2?v | ?vy)

In the [display form, the input arcs of Add and Divide afe numbered 1 and 2 to indicate the order in
which|the arcs are written in CGIF. The following is the-cerresponding CLIF:

(exists ((x Number) (y Number))
(and (Number 7) (= y (Divide (Add x 7) N\(Sqgrt 7)))))

No CLIF variables are needed to represent the'coreference labels *u and *v since the functjonal notation
used i CLIF shows the connections directly.

All semantic features of CL, includingthe ability to quantify over relations and functions, fire supported
by CGIF. As an example, someone @might say “Bob and Sue are related,” but not say exactly how they are
related. The following senten€es'in CGIF and CLIF state that there exists some familial relation r that
related Bob and Sue:

[Rdlation: *r] (Familial ?r) (#?r Bob Sue)

(edists ((r Relation)) (and (Familial r) (r Bob Sue)))

The cdnceptsfRelation: *r] states that there exists a relation r. The next two relatiops state that r
is famillial.and r relates Bob and Sue. In CGIF, the prefix # indicates a bound coreference lpbel used as a
type lgbel

B.1.3 EBNF Syntax Rules for CGIF

In order to describe the syntax of CGIF, the EBNF notation is used, in accordance with ISO/IEC 14977.
The specifications in this annex use only the following subset of the features specified by ISO/IEC 14977.
B.1.3 is intended as informative only, as ISO/IEC 14977 shall be considered the normative reference.

Terminal symbol. Any string enclosed in either single quotes or double quotes.
EXAMPLE

"This is a quoted string." 'and so is this'

© ISO/IEC 2018 - All rights reserved 39

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Nonterminal symbol. A name of a category in a syntax rule. For example, the following syntax rule
contains two nonterminal symbols: one terminal symbol ' " ; " ', a defining symbol "=", a concatenation
symbol ", ", and a terminator symbol " ; ".

(LI
’

(LI
’

syntaxRule expression,

Option. An expression enclosed in square brackets. It specifies zero or one occurrence of any string
specified by the enclosed expression.

EXAMPLE

[]

"This string may or may not occur."

Iteration. An

specified by the enclosed expression.
EXAMPLE
{ "This sftring may occur many times." }
Concatenatign. Two or more terms separated by commas.
"Two kiDdS of quotes: ", nvn’ " and ", l"l’ won

Exception. Ty
term, but not

not contain "q":

{digit}

Group. An ej
encloses an ej3

({digit}

Alternatives
EXAMPLE

"Cat", "d

Special sequ

expression enclosed in curly braces. It specifies zero or more occurrences-of any|

vo terms separated by a minus sign -, which Spectifies any string specified by th
the second. The following example specifies a.sequence of zero or more digits thz

",

kpression enclosed in parentheses and treated as a single term. The following
tception that specifies a sequence of one or more digits by excluding the empty tern

)

Two or more concatenations separated by vertical bars.

bg" | "eow™, "horse", "sheep" | wildAnimal

bnce. Any string enclosed by question marks. These sequences shall not affect the

string

e first
t does

group

—

syntax

specified by thesyntaxrules but they may be used tocopystringsanalysed by a syntaxrule fdr later
use by the rewrite rules specified in B.1.3.
EXAMPLE

?sgn?

Syntax rule. A nonterminal symbol followed by

following syntax rules define the syntax of the syntax rules used in Annex B.

syntaxRule = expression, ";";
expression = alternative, {"|" alternative} | term, "-", term;
alternative = term [variable], {"," term [variablel};
term = terminal | nonterminal | "[", expression, "]"

| "{", expression, "}" | " (", expression, ")" | empty;
terminal = "'", ({character - '""'} - empty), "'"

40

followed by an expression and ending with ";". The

© ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

| '"', ({character - "'"} - empty), '"';
nonterminal = identifier;
variable = "?", identifier, "?";
identifier = letter, {letter | digit | " "};
empty = 7

These rules specify a subset of the syntax rules specified in ISO/IEC 14977:1996, 8.1. The rules imply
that ", " has higher precedence than " | ", which has higher precedence than "=". Parentheses may be
used to override the precedence or to make the grouping more obvious.

B.1.4 Notation for rewrite rules

B.1.4.]

The sy
Naur K
Comm|
Englis
rules i
analys
tokens
white

B.1.4.2

Each

of one
define

| General

ntax of both core (see B.2) and extended CGIF (see B.3) is defined by rules.inrExte
orm (EBNF) rules as specified by ISO/IEC 14977. To specify the translation fronj
pn Logic, B.2 uses a combination of EBNF rules and mathematical netation suppl
. To specify the translation from extended CGIF to core CGIF, B.3‘Uses a combin
h B.1.4 and the rewrite rules defined in B.1.4.2. The syntax rules in)Annex B presuy
is stage that has subdivided the text into tokens as in ISO/IEG.2382:2015, 15.01,
); therefore, at any point where a comma occurs in an EBNF rule, zero or more
space may occur in the input text.

Transformation rules

transformation rule shall define a function that &nalyses an input string and retur
or more output strings. A transformation rule*shall have three parts: a header; a s

 in B.1.3, and zero or more rewrite rules. The first string in a header shall specify t}

functitﬁn, which shall also be the name of the nohterminal symbol defined by the syntax ru

shall

also specify a variable whose value shall be the input string to be analysed by the sy

nded Backus-

core CGIF to
bmented with
htion of EBNF
pose a lexical
01 (on lexical
characters of

hs a sequence
yntax rule as
e name of the
le. The header
htax rule, and
 analyses the
re the syntax

it shall specify a sequence of one or morewutput variables. If the syntax rule successfully
input qtring from beginning to end, the rewrite rules, if any, are executed. The following §
rules that define the syntax of the transformation rules; transRule is the start symbol.
fransRule = header, syntaxRule, {rewriteRule}, "end", ";";
Header = nonterminal, " (", variable, ")", "->",
variable, {"," variable};
fewriteRule & assignment | conditional;
dssignment = variable, "=", rewriteExpr, ";";
onditigfial = "if", condition, ({rewrite rule} - empty),
{"elif", condition, ({rewrite rule} - empty)},
["else", ({rewrite rule} - empty)], "end;"
CorrdTtTon = t—test— g —ttest—
test = rewriteTerm, ["~"], "=", rewriteTerm;
test = rewriteTerm, ["~"], "=", rewriteTerm;
rewriteExpr = rewriteTerm {"," rewriteTerm};
rewriteTerm = terminal | variable | funTerm;
funTerm = identifier, " (", [funTerm, {"," funTerm}, ")";

The following nonterminal symbols from ISO/IEC 14977 shall be defined as in

terminal, nonterminal, variable, identifier, empty.

B.1.3: syntaxRule,

The function defined by a transformation rule shall translate the input string to the sequence of values
of the output variables by copying substrings from the input and executing rewrite rules to transform
those strings. The execution shall be determined by the following procedure.

© ISO/IEC 2018 - All rights reserved

41

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Any parsing algorithm may be used to the analyse the input string according to the specifications of the
syntax rule. At the beginning of the analysis, all variables that occur in the transformation rule shall
be initialized to the empty string. Although some parsing algorithms may assign values to variables
during the parsing phase, the semantics shall not require those values to be accessible for executing
any rewrite rules until after all parsing has finished.

Any variable x in the syntax rule shall occur immediately after some term ¢ in that rule; there shall be
no comma or other symbol separating ¢ and x. The value assigned to x shall be the substring s of the
input string that was matched to the pattern specified by t. If the alternative in which ¢ occurs was not
taken or if t matched the empty string, the value of x shall be empty.

After parsing has finished, the rewrite rules following the syntax rule are executed sequentially, unless
one or more rewrite rules in the options of a conditional are skipped.

on the
string

When an assignment is executed, the values of the terminals, variables, and functional terms
right side of the rule shall be concatenated in the order in which they are written. The esulting
shall be assighed as the value of the variable on the left side of the rule.

A condition {
inequality of 1
as value. They
is not empty.

When a conditional is executed, the conditions for the if, e11if, andelse options shall be eva

sequentially.
rewrite rules
else, or end
occurs after t

When the end
function nam

variable that had not been assigned a value shall have the value of the empty string. Any output v

that has the s
input string. N

According to
rule, for exam

identity (

identity
end;

The input str
assigned to ¢,

The value ass

hat occurs in a conditional is a conjunction of one or more tests for the equality or
he values of two terms. An empty term, which is written as a blank, has the empty|string
efore, the condition (?x?= & ?y?~=) shall be true if and onlyif ?x? is empty and 2y ?

luated
hd, the
elif,
which

The condition for else shall always be true.) When, the first true condition is fou
following that condition shall be executed sequentially until the next occurrence of
for that rule is found. Then execution shall continue with the rewrite rule, if any,
he end marker for that conditional.

of the
output
hriable
pm the
o it.

marker for the transformation rule is reached, execution shall stop. Then the value
bd in the header shall be a sequence of the values of all the output variables. Any

me identifier as some variable in the syntax rule shall have the value assigned to it fr
o assignment shall change the.walue of any variable after a value has been assigned t

this specification, some_transformation rules may have no rewrite rules. The fol
ple, defines an identity function, whose output is identical to its input:

owing

?s?) —-> ?2t?;
{character} 2t7?;

ng s is parsed by the syntax rule as a string of zero or more characters. That stfring is

which'becomes the output of the function.

gned to a variable as a result of the parse is always some substring from the input. Except

for the identity function, the output values generated by the rewrite rules for any syntactic category
are often very different from any substring of the input. As an example, the transformation rule named
negation translates a negation from extended CGIF to core CGIF:

negation (?b?) -> ?ng?;

negation = "~[", [comment] ?cm?, CG ?x?, [endComment] Z?ecm?, "1";
?ng? = "~[", ?cm?, CG(?x?), 2ecm?, "I";

end;

The strings for the opening comment cm and the ending comment ecm are copied unchanged from input
to output. But the nested CG, whose input string x is in extended CGIF, is very different from the core
CGIF output of CG(x). The transformation rules for the syntactic categories of extended CGIF behave like
compilers that translate input strings for extended CGIF categories to output strings in core CGIF.

42 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

B.1.4.3 Functions used in rewrite rules

Any function defined by a transformation rule may be used in a rewrite rule. It may even be used
recursively in the same transformation rule that defines it. In addition to the functions defined by
transformation rules, the following seven functions shall be available for use in processing strings or
sequences in any rewrite rule.

— first(s) shall return the first or only element of a sequence s. If length(s)="0", first(s) shall be empty.

— gensym() shall return a string that represents a CGname that shall be different from any other
CGname in the current text. Each time gensym() is invoked, the string it returns shall also be
different from any string it had previously returned.

— length(s) shall return the length of the sequence sas a string of one or more charactersthat represent
the decimal digits of the length. If s is empty, length(s) shall be "0". If s is a single element, length(s)
shill be "1".

— mapp(fs) shall apply a function fto each element of a sequence s in order toreturn the sequence of
values of f(x) for each x in s.

— second(s) shall return the second element of a sequence s. If length(s)<"2", second(s) shall be empty.

— substitute(s,t,x) shall return the result of substituting the string's for every occurrende of the string
tip the string x. If t does not occur in x, substitute(s,t,x) shallbe x.

— thiird(s) shall return the third element of a sequence s Af length(s)<"3", third(s) shall pe empty. The
Erglish phrase “CG name” shall refer to any syntactic token of the category “CGname’}

B.2 (G core syntax and semantics

B.2.1| actor

Definition: A conceptual relation ac=(r;s), in which r shall be a reference called the type label of ac and
the ar¢ sequence s=s1,s2 shall consist-of an arc sequence s1, called the input arcs, and af single arc s,
called [the output arc.

CL: cgZcl(ac) shall be an equation eq: the first term of eq shall be the name cgZcli(s3), and the second term
of eq shall be the functional term with operator cgZcl(r) and term sequence cgZci(s1) with an optional
sequence marker sqn.

CGIF:

aclor = (™(“, [comment], ["#", "?"], CGname, arcSequence, "|", arc,
[endComment], ™)";

Like othet Luuuz:ptua} 1c:}atiuuo, aractorhodetsenclosed-in par entheses—The a_yul‘uul # shall mark a
bound coreference label that is used as a type label.

Comment: Although an actor is defined as a special case of a conceptual relation, the CG core syntax
restricts an actor to exactly one output arc so that it may be mapped to a CL function. The input arcs
may include a sequence marker at the end, but no sequence marker shall be used for the output arc. The
extended CGIF syntax allows actors to have any number of output arcs.

B.2.2 arc

Definition: A reference ar that occurs in an arc sequence of some conceptual relation.
CL: cgZcl(ar) shall be the name n without the marker of the reference ar.

CGIF:

© ISO/IEC 2018 - All rights reserved 43

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

[

arc

comment], reference;

Comment: The function cg2cl maps an arc to the name of the reference and omits any marker that

distinguishes

a bound label.

B.2.3 arcSequence

Definition: A pair as=(s,sqn) consisting of a sequence s of zero or more arcs followed by an optional
sequence marker sqn.

CL: cg2cl(as) shall be a term sequence ts=cgZcl(s) and the sequence marker sqn if present in as. The term

sequence (s sira

s to extractt

CGIF:

arcSequen|

Any sequence
concept thati
arc sequence

Comment: TH
may have a v3

e name that becomes the corresponding element of the sequence ¢

[[comment], "2",

{arc}, segmark];

marker in an arc sequence as shall be identical to the sequence marker in some exis

guence

tential

5 directly contained in a context that contains the actor or conceptual relation that has the

[1S.

e option of having a sequence marker in an arc sequenceimplies that a conceptual r
riable number of arcs.

blation

B.2.4 comrent

Definition: A|string cm, which shall have no effect on the'semantics of any CGIF expression x injwhich
s occurs.

CL: cg2cl(cm)[shall be the substring s of cm thatgzdoes not include the delimiters "/*" and "*[" of a

comment or t

he opening "; " of an end comment. The string s shall be included in a CL representation

for a comment and shall be associated with tlie’CL syntactic expression to which the CGIF expressjon x is
translated. The syntax rules for comment and end comment are identical for core CGIF and extended CGIF.
CGIF:

comment = "/*", {(charack&r:"*") | ["*", (character-"/")1}, ["*"], "*x/";

endCommenjft = ";", {character - ("]1" | ")")};
The string enflosed by.the delimiters " /*" and "* /" shall not contain a substring "* /". The stiring of
an end comment nray contain any number of ";", but it shall not contain "]" or ")".
Comment: A lcomment may occur immediately after the opening bracket of any concept, immediately

after the opening parenthesis of any actor or conceptual relation, immediately before any arc, or
intermixed with the concepts and conceptual relations of any conceptual graph. An end comment
may occur immediately before the closing bracket of any concept or immediately before the closing
parenthesis of any conceptual relation or actor. Since the syntax of comments is identical in core and
extended CGIF, no additional syntax rules for comments shall be included in B.3.

B.2.5 concept

Definition: A pair c=(R,g) where R shall be either a defining label or a set of zero or more references,
and g shall be a conceptual graph that is said to be directly contained in c.

CL: cg2cl(c) shall be the sentence s determined by one of the first three options below.

Context. If R is empty, then s=cg2cl(g). In this case, c shall be called a context.

44 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Existential. If g is blank and R is a defining label, then the sentence s shall be a quantified sentence of
type existential with a set of names {cgZcl(R)} and with a body consisting of a Boolean sentence of type
conjunction and zero components. In this case, ¢ shall be called an existential concept.

Coreference. If g is blank and R is a set of one or more references, then let r be any reference in R. The
sentence s shall be a Boolean sentence of type conjunction whose components are the set of equations
with first term cg2cl(r) and second term cgZcl(t) for every reference t in R—{r}. In this case, c shall be
called a coreference concept.

Syntactically invalid. The case in which g is nonblank and R is not empty is not permitted in core CGIF,
and no translation to CL is defined.

CGIF:
corjcept = context | existentialConcept | coreferenceConcept;
corftext = "[", [comment], CG, [endComment], "]";
existentialConcept = "[", [comment], "*", (CGname | segmark),
[endComment], "]1";
cojeferenceConcept = "[", [comment], ":", {reference}-,
[endComment], "1";
A context shall be a concept that contains a CG; if the CG is blank, the context is said to He empty, even
if it coptains one or more comments. Any comment that gccurs immediately after the opening bracket
shall be part of the concept; any other comments shall-be/part of the nested CG. A corefefence concept
shall dontain one or more constants or bound coreference labels; in EBNF, an iteration [followed by a
minus|sign with nothing after it indicates at least gne'iteration.
Comnient: A context is represented by a pairef-brackets, which serve to limit the scope|of quantifiers
of the hested CG; an empty context [] is t¥anslated to CLIF as (and), which is true by |definition. An

"as (exists
resented by a
cero Tully

existential concept is represented by a coficept such as [*x], which is translated to CLII
(x) (and)); this sentence asserts that'there exists some x. A coreference concept is rey
concepjt that contains a set of constahts or bound coreference labels, suchas [: ?x Ci
?abcd], which is translated to a conjjunction of equations in CLIF:

(arld (= x Cicero) (= x Tlly) (= x abcd))

A cor¢g
(and)

ference concept with just one reference, such as [:?x], would become an empt]
. Since it has no semantic effect, such a concept may be deleted.

y conjunction

B.2.6 | conceptual graph (CG)

Definition:A triple g=(C,R,A), where C is a set of concepts, R is a set of conceptual relations, and A is the
set of i i e conceptual
relation in R. If C and R are both empty, then A is also empty, and g is called a blank conceptual graph.

CL: Let E be the subset of C of existential concepts; and let X be the set of all concepts, conceptual
relations, and negations of g except for those in E.

Let B be a Boolean sentence of type conjunction with components consisting of all the sentences cg2cl(x)
for every x in X.

If E is empty, then cg2cl(g) is B.

If E is non-empty, then cg2cl(g) is a quantified sentence of type existential with the set of names
consisting of the CGname of the defining coreference label of every e in E and with the body B.

CGIF:

© ISO/IEC 2018 - All rights reserved 45

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

CG {concept | conceptualRelation | negation | comment};

A conceptual graph consists of an unordered set of concepts, conceptual relations, negations, and
comments. Formally, a negation is a pair consisting of a concept and a conceptual relation that are never
separated in CGIF.

Comment: According to this specification, every CG maps to either a quantified sentence of type
existential or to a Boolean sentence of type conjunction. If the conjunction has only one component,
then the sentence could be simplified to an equality, an atomic sentence, or a Boolean sentence of type
negation. If g is blank, the corresponding CLIF is (and), which is true by definition. Although there is
no required ordering of the nodes of a CG, some software that processes CGIF may run more efficiently
if the defini i i vay to

nf‘mmmm‘dmwm
ensure that cgndition is to move the existential concepts to the front of any context.

B.2.7 conceptual relation
Definition: Alpair cr=(r,s), in which r shall be a reference called the type label of cr and s shall be|an arc
sequence.
CL: cgZcl(ac) ghall be an atomic sentence whose predicate is cgZcl(r) and whoselterm sequence is cg2cl(s).
CGIF:

conceptuaflRelation = ordinaryRelation | actor;

ordinaryRelation = "(", [comment], ["#", "?"], CGRhame, arcSequence,

[endComment], ")";

An ordinary d
in two subsed
"#?" 01" M#?".

Comment: By
CL ability to ¢

onceptual relation has just one sequence.@f arcs. An actor partitions the sequence
uences. A bound coreference label that'is used as a type label shall begin with the

r allowing the type label of a conceptual relation to be a bound label, CGIF suppo
uantify over relations and functions. As an example, see the CGIF at the end of B.1

pf arcs
string

'ts the
.2 that

represents the sentence “Bob and Sue aré related.”

B.2.8 negation

Definition: A whose

type label r sh

pair ng=(c,cr),din-which c shall be a concept and cr shall be a conceptual relation
all be a constant with CGname Neg. The pair (c,cr) shall be treated as a single unit.
CL: cg2cl(ng) $hall be aBoolean sentence of type negation with the component cgZci(g).

CGIF:

negation vt contewxt:

A negation shall begin with the symbol ~. Although a negation is formally defined as a pair consisting
of a context and a conceptual relation, the two elements of the pair shall not be expressed as separate
nodes in CGIF.

Comment: A negation negates the proposition stated by the nested conceptual graph g. For examples,
see the CGIF for Figure B.2. The negation of the blank CG, written ~ [],is always false; the corresponding
CLIFis (not (and)).

B.2.9 reference
Definition: A pair r=(m,n) where n is a CG name and m is a marker that shall designate a constant or a
bound label.

46 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

CL: cg2cl(r) shall be the name n. The marker m shall be ? for a bound label and the empty string "" for
a constant.

CGIF:

reference = ["?"], CGname;

This syntax of references is identical in core CGIF and extended CGIF. Any CG name that consists of a
quoted namesequence shall be translated to a CL name by erasing the enclosing quotes; all other CG
names are identical to the corresponding CL names. Sequence markers are identical in CLIF and CGIF.

ntax rules for

G name n.

bth core and

According to this definition, a defining sequence label shall begin with the string “*..."] and a bound
sequeipce label shall begin with-'the string “?...”.

Constraints: The verb contains shall be defined as the transitive closure of the relation directly contains,
and it ghall satisfy the fellowing constraints in both core and extended CGIF.

If a coptext c directly contains a conceptual graph g, then c directly contains every node ¢f g and every
compdnent of thgse-hodes, except for those that are contained in some context of g.

If a comtext e-directly contains a context d, then c indirectly contains everything that d coptains.

The phrase "c contains x" is synonymous with "c directly or indirectly contains x".

If a concept x with a defining label with name n is directly contained in some context c, then c shall not
contain any concept other than x with a defining label with the same CG name n, and c shall be in the
scope S associated with the concept x.

If a context c is in the scope S associated with a concept x, then any context d directly contained in ¢
shall also be in the scope S, unless d directly contains a concept y with a defining label with the same CG
name as the defining label of x.

Every bound label with CG name n shall be in the scope associated with some concept with a defining
label with CG name n.

No constant with CG name n shall be in the scope associated with some concept with a defining label
with CG name n.

© ISO/IEC 2018 - All rights reserved 47

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

These constraints ensure that for every CGIF sentence s, the translation cgZcl(s) shall obey the CL
constraints on scope of quantifiers. Since the constraints on scope are identical in core and extended
CGIF, no additional constraints shall be included in B.3.

B.2.11 text
Definition: A context c that is not contained directly or indirectly in any context.

CL: cgZ2cl(c) shall be text consisting of the sentence cg2cl(g), where g is the conceptual graph directly
contained in c. If a CG name n occurs immediately before g in the CGIF specification of the context c,
then n shall be the name of the CL text.

CGIF:

text

= |"[", [comment],

[endComment],

"Proposition",

"]".
’

nwen
4

[CGname], CG,

Since a text is|not contained in any context, it shall also be called the outermost context.

Comment: This syntax rule uses the syntax of extended CGIF, which allows a-context to haveja type
label and a C@name. Since core CGIF syntax is a subset of extended CGIF syntaX, text in core CGIF|can be
used by any pirocessor that accepts extended CGIF. Context brackets may be' used to group the copncepts
and relations of a text into units that correspond to CLIF sentences. Thatgrouping is a convenienge that
has no effect ¢n the semantics.

B.3 Extengled CGIF syntax

B.3.1 Genefal

Extended CGI
syntactically
expression on

[is a superset of core CGIF, and every.syntactically correct sentence of core CGIF
correct extended CGIF. Its most prominent feature is the option of a type label or
the left side of any concept. In addition to types, extended CGIF adds the following fe

is also

a type
atures

to core CGIF:

more optlons in concepts, including.universal quantifiers;

Boolean dontexts for representing the operators or, if, and iff;

the option of allowing cangept nodes to be placed in the arc sequence of conceptual relations;

4

the ability to importtext into a text.

These extensjons aresdesigned to make sentences more concise, more readable, and more suitable as
a target langyage\for translations from natural languages and from other CL dialects, including CLIF.
None of them{ however, extend the expressive power of CGIF beyond the CG core, since the semantics
of every extended feature is defined by its translation to core CGIF, whose semantics is defined by its
translation to CL.

B.3 defines the concrete syntax of extended CGIF and the translation of each extended feature to
core CGIF. This translation has the effect of specifying a function CG, which translates any sentence
s of extended CGIF to a semantically equivalent sentence CG(s) of core CGIF. The combined functions
cg2cl(CG(s)) translate s to a logically equivalent sentence in the CL abstract syntax.

The function CG and other functions for the other CGIF categories are defined by transformation rules
whose notation is specified in B.1.4.1. Two categories, comment and reference, have identical
syntax in core and extended CGIF; for any comment cm in extended CGIF, comment(cm)=cm; and for
any reference r in extended CGIF, reference(r)=r. For any other category X of core CGIF, the strings of
category X are a proper subset of the extended CGIF strings of the same category.

48 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Since the definitions in B.2 specified the conceptual graph abstract syntax and its mapping to the
abstract syntax of Common Logic, they used notation-independent constructs, such as sets. The
definitions below specify the mapping from the concrete syntax of extended CGIF to the concrete syntax
of core CGIF. Therefore, they are defined in terms of strings and functions that transform strings.

B.3.2 actor

Definition: A string ac that shall contain a comment c¢cm, a reference r called the type label, an arc
sequence s1 called the input arcs, an arc sequence sy called the output arcs, and an optional end comment
ecm. The output arcs sz shall not contain a sequence marker.

Translation: A conceptual graph g.

acflor (?ac?) -> ?2g7?;
actor = "(", [comment] ?cm?,
arcSequence ?sl?, "|"

(["#", "?"], CGname) ?2r?,
7
first (arcSequence (?s1?))
)

{arc} ?s2?, [endComment] ?ecm?, ') 's

?z1? = ;
?z27? = first (arcSequence (?s2?));
?sgqn? = third(arcsequence (?sl?));
if (length(?s2?)="0")

?cr? = "(", ?cm?, ?r?, ?2z1?, ?sqgn?, ?ecm?, ";O-outputlag¢tor", ")";
elif (length(?s27?)="1")

?cr? = "(", ?cm?, ?r?, ?z1?, ?sqn?, "|", ?z27?, ?ecm%, ")";
else ?cr? = "(", 2cm?, ?r?, ?z1?, ?sqn?, "/*|*/", 2z2?, ?ecm?, ")";
end;
?g? = second(arcSequence (?sl?)), second(arcSegydence (?s2?)), ?cr?;
end;

If s2 h3s no output arcs, cr shall be an ordinary conceptual relation, as defined in B.3.7; bult to show that
cr wag derived from an actor, an end comment "0-eutput actor” is inserted. If s2 has one|output arc, cr
shall He an actor, but cr differs from ac because“the arcs are translated to core CGIF. If 52 has two or
more gutput arcs, cr shall be an ordinary ceneeptual relation, but the comment "/* | *}" is inserted
to distlinguish the input arcs from the output arcs. The final rewrite rule puts cr after ahy conceptual
graphg derived from the arc sequences.

Commnjent: As an example, the combined effect of the transformation rules for actprs, arcs, arc
sequerces, and concepts would rahslate the following actor node:

(IntegerDivide [Integer: *x] [Integer: 7] | *u *v)

to a six-node conceptual graph consisting of three concepts and three conceptual relation

4

[*4] (Integé€r=?x) (Integer 7) [*u] [*V]
(IrftegerDivide ?x 7 /*|*/ 2u ?v)

The cqmiwent /* | */ has no semantic effect in core CGIF or CL, but if preserved, it wpuld enable a
mapping back to extended CGIF to distinguish the input arcs from the output arcs. If the distinction
is important for some application, axioms may be used to state the functional dependencies of the
outputs on the inputs. For example, the CL relation that results from the translation of an actor of type
IntegerDivide would satisfy the following constraint stated in CLIF:

(exists (Quotient Remainder) (forall (x1 x2 x3 x4)
(1ff (IntegerDivide x1 x2 x3 x4)
(and (= x3 (Quotient x1 x2)) (= x4 (Remainder x1 x2))))))

This sentence asserts that there exist functions Quotient and Remainder that determine the values
of the third and fourth arguments of the relation IntegerDivide. The translation rules would not
generate that axiom automatically, but it could be stated by a CGIF sentence that would be translated to
the CLIF sentence:

© ISO/IEC 2018 - All rights reserved 49

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

[*Quotient] [*Remainder]
[[@every*x1l] [@every*x2] [@every*x3] [@every*x4]
[Equiv: [Iff: (IntegerDivide ?x1 ?x2 | ?x3 ?x4)]
[Iff: (#?Quotient ?x1 ?x2 | ?x3) (#?Remainder ?x1 ?x2 | ?x4)]1]]

To show that the existential quantifiers for [*Quotient] and [*Remainder] take precedence
over the universal quantifiers for the four arguments, a pair of context brackets is used to enclose the
concept nodes with universal quantifiers.

B.3.3 arc
Definition: A string ar that shall contain an optional comment ¢m and either a reference r, a defining
label with CGname n, or a concept c.
Translation:|A pair (x,g) consisting of an arc x and a conceptual graph g.
arc(?ar?)| -> ?x?, 2g7?;
arc = [copjment] ?cm?, (reference ?r? | "*", CGname ?n? | concept ?2c?)
if (?r?p=) ?2x? = Rar; ?2g? = ;
elif (?n?h=) 2x? = 2cm?, "?", ?n?; 2g? = "[*", ?n?, "]";
else ?x? = ?cm?, first(concept(?c?));
?g? = third(concept(?c?));
end; end;

If aris a refer
theresultof r
¢, x shall be th

Comment: As
name, such as
and the conce

ence, x shall be ar unchanged, and g shall be blank. Ifarcontains a defining label, x s
bplacing the marker * in ar with ?, and g shall be the)concept [*n]. If ar containsac
e result of replacing the concept c in ar with a réference r, and g shall be third(conc¢

g00023, and arc([Integer]) would:be“the pair consisting of the reference ?g
(Integer\?g00023).

hall be
pncept

ept(c).

an example, if the arcaris [Integer], thewalue of concept([Integer]) would he a CG

P0023

ptual graph [*g00023]

B.3.4 arcSg¢quence
Definition: A string as that shall containla sequence s of zero or more arcs followed by an optional
sequence marker sqn.
Translation:|A triple (rs,g,sqn) consisting of a sequence of references rs, a conceptual graph g, and the
sequence marfker sqn.

arcSequenfce (?as?) —->¢2rg?, ?2g?, ?sqgn?;

arcSequence = {a¥ey}' ?s?, [[comment], "?", segmark] ?sqgn?;

?rs? = map (first,map tarc, ?s?));

));

?g? = map|
end;

(secondymap (arc, ?s?

’

Comment: The function map (arc, ?s?) applies arc to each arc of s to generate a sequence of pairs
consisting of a reference and a concept. Then map (first, map (arc, ?s?)) extracts the sequence of
references from the first element of each pair. Finally, map (second, map (arc, ?s?)) extracts the
sequence of concepts from the second element of each pair. The option of having a sequence marker in
an arc sequence implies that a conceptual relation may have a variable number of arcs. An actor may
have a variable number of input arcs, but the number of output arcs shall be fixed; therefore, the output
arcs shall not have a sequence marker.

B.3.5 boolean

Definition: A string b that shall contain a context bc, which shall not directly contain a reference or a
defining label. The context bc shall have either a prefix "~" and no type label or no prefix and one of the
following constants as type label: Ei ther, Equiv, Equivalence, If, Iff, Then.

50 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Translation: A negation ng that shall be negation(b), eitherOr(b), if Then(b), or equiv(b).

boolean = negation | eitherOr | ifThen | equiv;

negation (?b?) -> ?ng?;

negation = "~[", [comment] ?cm?, CG ?x?, [endComment] ?ecm?, "]";
?ng? = "~[", ?cm?, CG(?x?), 2ecm?, "]";

end;

ifThen (?b?) -> ?ng?;

ifThen = "[", [comment] ?cml?, "If", [":"], CG ?ante?,
"[", [comment] ?cm2?, "Then", [":"], CG ?conse?,
[endComment] ?ecml?, "]", [endComment] ?ecm2?, "]";
?ng? = "~[", ?2cml?, CG(?ante?),
"~[™, ?2cm2?, CG(?conse?), 2ecml?, "]", 2ecmz2?, "|";
end;
eqyiv (?b?) -> ?ng?;
eqyiv = "[", [comment] ?cml?, ("Equiv" | "Equivalence"), [":"],
"[", [comment] ?cm2?, "Iff", [":"], CG 2gl-?,
[endComment] ?ecm2? "]",
"[", [comment] ?cm3?, "Iff", [":"], CG 2g2?,
[endComment] ?ecm3? "]", [endComment] ?ecml? "1";
?nd? = "[", ?cml?, "~[", ?cm2?, CG(2gl?),
",v[u’ CG(?gZ”), "]n, ?ecmZ?, u]u’
?cm2?, "~[", ?2cm3?, CG(?g2?),
"~[", CG(?gl?), "1™, 2ecm3?, "]", \ecml?, "1";
end;

eifherOr (?b?) -> ?ng?;

eiflherOr = "[", [comment] ?cm?, "Either", ["{7]Y
{[comment], nestedOrs} ?0rs2, '[endComment] ?ecm?, "]";
?nd? = "~[", ?cm?, nestedOrs(?ors?), ?<€emf, "1";
end;
nedtedOrs (?ors?) -> ?2g°?;
nedtedOrs = ("[", [comment] ?cm2,\"Or" ?first?, [":"], CG ?ng?,
[endComment] ?ecm?, "]", nestedOrs ?more?
[)7
if | (?first?=) ?2g? = ;
elde 2g? = "~[", ?cm?, CG(zhg?), ?ecm?, "]", nestedOrs(?more?);

end; end;

The ryle for nestedOrs recursively processes a sequence of zero or more Boolean conteXts of type Or.
Ifb c[()Jntains zero nested Ors, eitherOr (b) shall be ~[], which is false; the corregponding CLIF
senterice (or) is defined to be false.

Comnient: Thescope of quantifiers in any of the Boolean contexts shall be determined by|the nesting of
their tfanslations to core CGIF. Any defining label in a context of type If shall have the nested context
of typ¢ Then within its scope. For any two contexts directly contained in a context of fype Either,
Equival€nce, or Equiv, neither one shall have the other within its scope.

B.3.6 concept

Definition: A string c consisting of four substrings, any or all of which may be omitted: an opening
comment cm, a type field, a referent field, and an end comment ecm.

The referent field of c may contain a defining sequence label with sequence marker sqn. If so, the type
field of ¢ shall be empty, the defining sequence label may be preceded by "@every", and there shall not
be any references or any conceptual graph in the referent field of c.

non

If no sqn, the type field of c shall contain either a type expression tx and a colon ":" or an optional
reference ty called a type label and an optional colon ":". If no sqn, the referent field of ¢ shall contain
an optional defining label with CG name df (which may be preceded by "@every"), a sequence of zero
or more references rf, and a conceptual graph g, which may be blank. If all the options are omitted, the

concept c shall be the string " []".

© ISO/IEC 2018 - All rights reserved 51

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Translation: A triple (r,q,g) consisting of a reference or a bound sequence label r, a quantifier g, which
shall be "@every" or the empty string, and a conceptual graph g, which shall contain at least one concept.

concept = "[", [comment] ?cm?,
((typeExpression ?tx?, ":"
| [["#" , "2"], CGname] 2ty?, [":"1),
[["@every"] 2g?, "*", CGname ?df?], {reference} ?rf?, CG ?x?
| ["@every"] 2g?, "*", segmark ?sgn?
), [endComment] ?ecm?, "1";
if (?sgn?~=) ?r? = "?", ?sgn?; ?2gl? = "[", 2cm?, "*", ?sgn?, ?ecm?];
elif (?df?~=) ?2r2? = "?", 2df?; 2gl? = "[", 2cm?, "*", 2df?, ?ecm?];
if (?rf?~=) 2g2?2 = "[", ":", ?r?, ?rf?, "]"; end;
elif (?rf?~=) ?2r? = first(?rf?);
2922 = "[", ?2cm?, ":", ?rf?, ?ecm?, "1";
else ?df? = gensym(); ?r? = "?", 2df?;
?gl? = "[", ?cm?, "*", ?2df?, ?ecm?, "1]";
end;
1f (?tx?~F) ?b? = first (typeExpression (?tx?));
?gx? = second(typeExpression (?2tx?));
?g3? = substitute(?r?,?b?,?2gx?);
elif (2tyl2~=) 2g32 = " (", ?2ty?, 2r?, ")"; end;
if (2x?~F) ?2gd4? = "[", CG(?x?), "1";
end;
?g? = 2glf?, 2g2?, 293?, 2947?;
end;

Four options
with "#", a c(
The rewrite r
conceptual gr
by gensym()

occur in ¢; g3
a type expres
placed in the

Comment: Td
extended CGI

(On [@*x

To generate t
references ar

following is the resulting«<ore CGIF:

[: Yojol
[*g00238]

hre permitted in the type field: a type expression tx, &bound coreference label pi
nstant, or the empty string; a colon is required afteritx, but optional after the other

aph g: g1 is an existential concept with the defining label from c or with a label ge
f no defining label or reference occurs in cj‘gZ is a coreference concept if any refe
is either a conceptual relation with a typg&label ty or a conceptual graph generate
sion tx; and g4 is a context containing,any nonblank CG x. Any comments cm and e
irst nonblank concept, which shall be‘either g1 or g2.

F with two concept nodes inthe"arc sequence of a conceptual relation:

(Pet ?x) (Cat ?x): Yo&joU [Mat])

he equivalent core 'CGIF, the concepts are removed from the arc sequence. In their
b left to link them to the concepts, which are expanded by the above rewrite rulg

(Pet YJJo) (Cat Yojo)
(Mats?g00238) (On Yojo 2g00238)

liles move features from the concept c to four strings, which are concatenated to f(r)I‘

efixed
three.
m the
erated
rences
d from
Cm are

illustrate the translation, the sentence A pet cat Yojo is on a mat could be represented in

place,
s. The

The CG name YoJo 1s the reference for the Iirst concept, and the CG name gUU0Z38 for the mat is
generated by gensym(). See B.3.9 for a discussion of the type expression and its translation. The
translation by cg2cl would translate the core CGIF to the abstract syntax, which would be expressed by
the following CLIF:

(exists (g00238) (and

(Mat 2g00238)

(= Yojo Yojo) (Pet Yojo)
(On Yojo 2g00238)))

(Cat Yojo)

A coreference concept with only one reference, such as [: Yojo], has no effect on the truth or falsity
of the sentence. It could be deleted by an optimizing compiler, unless it is needed as a container for
comments.

52 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

B.3.7 conceptual graph (CG)

Definition: A string cg consisting of an unordered sequence of substrings that represent concepts,
conceptual relations, booleans, and comments.

Translation: A conceptual graph g.

CG(?cg?) —-> 2g°?;

CG = {concept | conceptualRelation | boolean | comment};
if (first (sortCG(?cg?)~=)
?2g? = "~", "[", first(sortCG(?cg?)),
|l~|l, n[n’ SeCOnd(SOrtCG(?Cg?), n]n’ ll}ll;
else 7?2g? = second(sortCG(?cg?));

enqgsy cud,

sortC((cg) shall be the pair (g1,92), where g1 is the conceptual graph derived from.all the universally
quant(ilElied concepts in c¢g and g2 is the conceptual graph derived from all othen concepts, conceptual
relations, and comments in cg.

soydtCG(?cg?) -> 2gl?,?g2?;

sodtCG = ((concept ?c? | conceptualRelation ?x?

| boolean ?x? | comment ?x?), sortCG ?rem?

[)7

if|(?2c?=) ?2cg2? = CG(?x7?));
elilf (second(concept(?c?)) = "Qevery")

?cgl? = third(concept (?c?));
elde ?cg2? = third(concept (?2c?));
end;
?2gll? = 2cgl?, first(sortCG(?rem?)); ?g2? = 2cg2, second(sortCG(?rem?));
end;

Comnient: If there are no concepts containing.universal quantifiers in the input string, the result shall
be a single string in core CGIF that concatenates the results of translating each node independently of
any other node. But if the input string contains any universal concepts, the output string $hall be a nest
of two|negations. The outer context shall contain the translations of all the universal confepts, and the
inner ¢ontext shall contain the translations of all other nodes in the input.

B.3.8 | conceptual relation

Definition: A string cr thatrepresents an ordinary conceptual relation or an actor.

Trans]ation: A congeptual graph g, which shall be either ordinaryRelation(cr) or actor (cr).
corjceptualRedation = ordinaryRelation | actor;
ordinapyRelation (?cr?) -> ?2g?;
opdiwaryRelation = " (", [comment] ?cm?, (["#", "?"], CGname) ?r?,
arcSequence ?s?, [endComment] ?ecm?, ")";
?g? = second(arcSequence(?s?)),

"(", 2cm?, ?r?, first(arcSequence(?s?)),
third (arcSequence (?s?)), ?2ecm?, ")";
end;

The first line of the rewrite rule extracts a conceptual graph from the arc sequence s. The second line
adds the opening comment, type label, and arc sequence of a conceptual relation. The third line adds
the sequence marker, if any, the end comment, and the closing parenthesis of the conceptual relation.

Comment: As an example, the conceptual relation (On [Cat: Yojo] [Mat]) would be translated
by the rules for conceptual relations, arcs, arc sequences, and concepts to generate a conceptual graph
expressed in core CGIF, such as the following:

[: Yojo] (Cat Yojo) [*g00719] (Mat 2g00719) (On Yojo 2g00719)

© ISO/IEC 2018 - All rights reserved 53

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

B.3.9 text

Definition: A

context ¢ that is not contained directly or indirectly in any context.

Translation: A context cx.
text (?c?) -> ?2cx?;
text = "[", [comment] ?cm?, "Proposition", ":", [CGname] ?n?,
CG ?g?, [endComment] ?ecm?, "]";
?cx? = "[", ?cm?, "Proposition", ":", ?n?, CG(?g?), ?ecm?, "]";
end;

Comment: CGHdoesmotprovideamrexphicitsytax for moduteststead;any €t modutestattHirst be

translated to
shall be trans

B.3.10 type

Definition: A

Translation:|A pair (b,g), consisting of a bound label b and a conceptual graph g.
typeExprelssion (?tx?) -> ?b?,?g?;
typeExprejssion = "@", "*", CGname ?n?, CG ?g?;
?b? = ", 2n2;
end;

If a concept ¢
substitutd

Comment: A ty

formal parani
type expressi
every occurrg

B.4 CGIF ¢

This annex h
concrete synt
are fully conf
equivalent sel
to a semantic
semantics of ¢
semantics of

h text in core CLIF according to the specification in A.3. Then the result of that tran
ated to a text in extended CGIF according to the function cl2cg, which is defined in

pXpression

string tx containing a CG name n and a conceptual graph g.

contains a type expression, the rewrite rules that specify concept(c) use the fy
(?r?,?b?,?2g?) to substitute some reference r for every occurrence of b in g.

eter, and the conceptual graph g is-the body of the expression. If a concept ¢ con
pn, the transformation rules thatprocess c shall substitute a reference derived fro
nce of the bound label ?n that.gccurs in g.

onformance

s specified the syfhitax of three CL dialects: an abstract syntax for conceptual gr
ax for core CGIF+and a concrete syntax for extended CGIF. All three of these lan
rmant CL dialects in the sense that every CL sentence can be translated to a semar]
itence in each'of them, and every sentence in any of these three dialects can be trar
hlly equivalent sentence in CL. The semantic equivalence is established by definiti
bvery. sentence in extended CGIF is defined by a translation to a sentence in core C(
bvery sentence in core CGIF is defined by a translation to a sentence in the absty

slation
B.4.

nction

pe expression corresponds to a lambda expression in which the CG name n speciffies the

rains a
m c for

phs, a
puages
tically
slated
bn: the
IF, the
act CG

syntax, and t

he.semantics of every abstract CG sentence is defined by its translation to the alpstract

syntax of CL.

To demonstrate full conformance, B.4 specifies the function clZcg, which shall translate any sentence
s in CL to a sentence cl2cg(s) in extended CGIF, which shall have the same truth value as s under every
interpretation for CL. For most CL expressions, the mapping to some expression in extended CGIF
is straightforward. The translation of functional terms from CL to CGIF, however, requires more than
one step. Any CL function application can be translated to an actor that represents the function plus a
reference to some concept whose referent is the value of that function. In order to translate a sequence of
CL terms to an arc sequence in extended CGIF, the actor node shall be enclosed inside the concept node.

As an example, let (F X1 X2) be a CLIF term with an operator F applied to arguments X1 and X2, where
the names X1 and X2 are bound by quantifiers, but F is not. When that term is translated by cl2cg,
the gensym() function shall be used to generate a CG name, such as g00592. When prefixed with "?",
that name becomes a bound coreference label, which shall be used as the output arc of an actor that

54 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

represents the function F. The result of translating the original CLIF term by clZcg shall be (F 7X1 7X2
| 7g00592). The defining label *g00592 shall be placed in a concept, such as [*g00592], and the actor
shall be placed inside that concept as a nested conceptual graph: [*g00592 (F X1 X2 | ?g00592)]. This
concept shall be the result of cIl2cg when applied to the functional term. It may appear as an arc in an arc
sequence of some actor or conceptual relation.

Since the predicate of a CL relation or the operator of a CL function may be a functional term, the same
transformation shall be used to translate the predicate or the operator to a concept. As an example,
let ((F X1 X2) Y1 Y2) be a CLIF atomic sentence whose predicate is the same functional term that
appeared in the previous example. Therefore, the bound label "?g00592", which represents the value
of the function, shall be the type label of the corresponding conceptual relation. If both Y1 and Y2 are

bound
a sing
that req

contai

For every CL expression E, Table B.1 specifies the extended CGIF expression that defing

order

b

uantifiers in CL, the conceptual relation shall be (#?g00592 ?Y1 ?Y2
syntactic unit as the value of cl2cg, this conceptual relation shall be placed insid
presents the functional term, immediately before "]": [*g00592 (F X1 X2 | ?g0059
?Y1 ?Y[2)]. This concept shall be the result of cl2cg when applied to the original atémic se
appeafr as a node of a conceptual graph that results from the translation of a-larger CL
hs the original atomic sentence.

[0 ensure that the CL constraints on quantifier scope are preserved in the translat

. In order to generate

e the concept
2) (#7g00592

htence. [t may

sentence that

s cl2cg(E). In
ions by cl2cg,

context brackets, "[" and "]", are used to enclose the translations foreéxpressions of type E
ases, these brackets are unnecessary, and they may be ignored.

some ¢

The fiq
and cd
with t

st column of Table B.1 indicates links to rows in Table 2.(Fhe second column uses the
nventions used to define the CL abstract syntax.FPhe third column mixes that
he notation used for rewrite rules in B.1.4.2. That/combination defines a functio

translates any sentence s of core CGIF to a logically eguivalent sentence cgZcl(x) of CommI

Table B.1 — Mapping from CL abstract syntax to extended CGIF syntax

13 and E14. In

metalanguage
netalanguage

cg2cl, which
n Logic.

IfE is a CL expression of the form Then cl2cg(E) =
E1 A numeral 'n’ The numeral 'n'
E1l A quoted string ‘s’ The quoted string 's'
E1l A interpretable name 'n' The name 'n' shall be enclosed in qu¢tes if it is not
a CG identifier. If it occurs in the quaptifier of some
CL sentence, it shall be prefixed with "*". If it is
bound by a quantifier, it shall be prefixed with "?".
E2 Sequence marker S S
E3 A term sequence <T1 ... Tn> starting with a term |An arc sequence: cl2¢cg(T1) ... cl2cg(Tn)
T1
E4 A term/sequence T1 ... Tn starting with a An arc sequence: cl2cg(T2), ..., cl2cg{Tn), cl2cg(T1)
sequence marker T1
E5 Aterm (O T1 ... Tn) A concept with a generated name 'n'{that contains
il “"'?’t:":‘"":"'?’u"" :'[:"l:u:l"’n"l‘l" ”("’ "‘12"3()’ CIZCg(Tl; o
Tn)l)I |I ?ln))1]
A term (cl:comment ‘string’ T) An arc with a comment: "/*", 'string’, "*/", cg2cl(T)

© ISO/IEC 2018 - All rights reserved

55

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

ISO/IEC 24707:2018(E)

Table B.1 (continued)

If E is a CL expression of the form Then cl2cg(E) =

E6 An equation (= T1 T2) A CG consisting of one, two, or three concepts

If both T1 and T2 are names, one concept: "[:",
cl2cg(T1), cl2cg(T2),"]"

If both T1 and T2 are functional terms, three
concepts: cg2cl(T1), cg2cl(T2),"[","?", 'n1', "?",
'n2',"]" where 'n1' is the name generated for T1
and 'n2'is the name generated for T2

If Ti is a functional term (where i=1 or i=2) and the
other term Tj is a name, two concepts: cIZcg| Ti),
"[","?", 'ni', cl2cg(Tj), "]" where 'ni' is thesnaipe
generated for Ti

E7 An gtomic sentence (P T1 ... Tn) A CG consisting of either a conceptualrelatipn or
a concept

If P is a name, a conceptual #elation: "(", cl2cy(P),
cl2cg(T1..Tn),")"

If P is a functional terniya concept: cl2cg(P) ps
modified by inserting'the following conceptpal

relation immediately before the closing "]": [(", 'n,
cl2¢cg(T1 ... Tn).")" where 'n' is the name generated

for cl2cg(P)
E8 A Bgolean sentence (not P) A negation: "~", "[", cl2cg(P), "1"
E9 A Bgolean sentence (and P1 ... Pn) A CG: cl2cg(P1), ..., cl2cg(Pn)
E10 A Boolean sentence (or P1 ... Pn) ACG: "[", "Either", "[", "Or", cl2cg(P1), "1", ..., [[")
C[ZCg(Pn), II]H’ ll]ll
E11 A Boolean sentence (if P Q) A CG: "[","If", cl2cg(P), "[", "Then", cl2cg(Q), 1", "1"
E12 A Bgolean sentence (iff P Q) A CG: "[","Equiv", ™", "[", "Iff", cl2cg(P), "1™, "|",
llIff”’ CIZCg(Q)‘ ll]ll’ ll]ll
A s¢ntence (cl:comment ‘string’ P) A comment and a CG: "/*", 'string’, "*/", cl2cg|(P)
E13 A quantified sentence (forall (N1.:/Nn) B) ACG:"[""[", "@every", "*", cl2cg(N1), "]", ..., [[","@
whdre N1 to Nn are names or seguence markers |every","*", cl2cg(Nn), "", cl2cg(B), "]"
E14 A qyantified sentence (exists (N1 ... Nn) B) ACG: "[""[","*", cl2cg(N1), "1", ..., "[", "*",
whdre N1 to Nn are names or sequence markers |clZ2cg(Nn),"]", cl2cg(B), "]"
A sthtement (cl:comment “string”) A comment: "/*", 'string’, "*/"
E17 A stptement (cldmports N) A concept: "[", "cg_Imports", cl2cg(N), "]"
E18 A mpdule with'name N, exclusion list N1 ... Nn, If M is the translation to core CL specified in A.3,
and|text T then a text: "[", "Proposition”, ":", cl2cg(M), "|"
E19 A stptément (cl:text T1 ... Tn) A text: "[", "Proposition”, cl2¢g(T1 ... Tn), "]"
E20 (cl:textN-Tt+—=Tm Atext— S Proposition, = tiZcg N, tg2ett Tl ...
Tn)’ ll]ll

To specify the translation from extended CGIF to core CGIF, B.3 uses a combination of EBNF syntax rules
plus the rewrite rules specified in B.1.4.2 to define a function ex2cor, which translates any sentence s of
extended CGIF to a logically equivalent sentence CG(s) of core CGIF.

56 © ISO/IEC 2018 - All rights reserved

https://iecnorm.com/api/?name=23242f104ce541a63e5c5f4b1b1b13dd

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	4.1 Symbols
	4.2 Abbreviated terms
	5 Requirements and design overview
	5.1 Requirements
	5.1.1 Common Logic should include full first-order logic with equality
	5.1.2 Common Logic should provide a general-purpose syntax for communicating logical expressions
	5.1.3 Common Logic should be easy and natural for use on the Web
	5.1.4 Common Logic should support open networks
	5.1.5 Common Logic should not make arbitrary assumptions about semantics
	5.2 A family of languages
	6 Common Logic abstract syntax and semantics
	6.1 Common Logic abstract syntax
	6.1.1 Abstract syntax categories
	6.1.2 Metamodel of the Common Logic abstract syntax
	6.1.3 Importation closure
	6.1.4 Abstract syntactic structure of dialects
	6.2 Common logic semantics
	6.3 Datatypes
	6.4 Satisfaction, validity and entailment
	6.5 Sequence markers, recursion and argument lists: discussion
	6.6 Special cases and translations between dialects
	7 Conformance
	7.1 Dialect conformance
	7.1.1 Syntax
	7.1.2 Semantics
	7.1.3 Presupposing dialects
	7.2 Application conformance
	7.3 Network conformance
	Annex A (normative) Common Logic Interchange Format (CLIF)
	Annex B (normative) Conceptual Graph Interchange Format (CGIF)
	Annex C (normative) eXtended Common Logic Markup Language (XCL)
	Annex D (informative) Translating between dialects
	Bibliography

