INTERNATIONAL ISO/IEC
STANDARD 23360-3

First edition
2006-12-15

Linux Standard Base (LSB) core
specification 3.1 —

Part 3:
Specification for IA64 architecture

Spécifications 3.1 relativesiau noyau de base normalisé Lipux (LSB) —

Partie 3: Spécifications{our I'architecture I1A64

Reference number
ISO/IEC 23360-3:2006(E)

I1SO|IEC
it ° © ISO/IEC 2006

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Linux Standard Base Core Specification for IA64 3.1
ISO/IEC 23360-3:2006(E)
Copyright © 2006 ISO/IEC

This standard includes material that has been provided by the Free Standards Group under the GNU Free
Documentation License Version 1.1 published by the Free Software Foundation.

Portions of the text are copyrighted by the following parties:
« The Regents of the University of California

« Free Software Foundation

» Jan F. Darwin

- Paul Vixie

- BSDI (now Wind River)

» Andrew G Morgan

» Jean-loup Gailly and Mark Adler

« Massachusetts Institute of Technology

These excerpts are being used in accordance with their respective licenses.

Linux is the registered trademark of Linus Torvalds in the U.S. and other couritries.

UNIX is a registered trademark of The Open Group.

[SB is a trademark of the Free Standards Group in the United States and©ther countries.

IAMD is a trademark of Advanced Micro Devices, Inc.

[ntel and Itanium are registered trademarks and Intel386 is a trademark of Intel Corporation.
PowerPC is a registered trademark and PowerPC Architecture is‘a trademark of the IBM Corporation.
5/390 is a registered trademark of the IBM Corporation.

OpenGL is a registered trademark of Silicon Graphics, Inc.

© ISO/IEC 2006 — Al rights reserved iii

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Contents

Foreword vii
Introduction viii
I Introductory Elements 0
T SCOPE....ciiiiiiic s 1

1.1 General. ... 1

1.2 Module Specific SCOPE.......cccovrrrrrirreueriiiiiinerenieeenerereeeereresesaeaenen 1

2 REfEIEICES ...cuevviiieiiieieierte ettt ettt bbbt 2

2.1 Normative Referencesc.cocveeerereeneienneerneieeneeeneeneeneeneenees 2

2.2 Informative References/Bibliography 4

3 REQUITEIMENLEScviiiiiiiiiciieic e 7

3.1 Relevant LIDIariescccocveerireirinieeininienieiecneiceneeecseeeeeseeneneneas 7

3.2 LSB Implementation Conformanceccoeveeueueueucmcccnerrrere o 7

3.3 LSB Application Conformance............coeeeevverecerereenierccnunneesme s e 8

4 DEfINItIONS .vveuieeviiietiiriete ettt se e s ey e 10

5 TerminoloZyc.ccererirerineriereieeeeiirereseeeeeereieeeneeeseseenenenenenesefo I o 11

6 Documentation Conventionsc.coeeeeerereereneeneneeressoneeecbonnnrennenenes 13

II Executable and Linking Format (ELF) 14
7 INErOAUCHON....covveviiiiiiicciici e o et 15

8 Low Level System Information...........c.coceeueeeoee Gy T, 16

8.1 Machine Interface.........cccoovueerreennevne St 16

8.2 Function Calling Sequence...............sye.5urueirinerieuerercceeinrerreennes 20

8.3 Operating System Interface 0 i 21

8.4 Process Initialization................. 5o 22

8.5 Coding EXamplesccccep e Ml leiiiiiiiiiccce e 24

8.6 CStack Framecccevivieu i ettt 25

8.7 Debug Information..... X7 e 25

9 Object Format.........cocovvuiee i 26

9.1 Introduction ... e i 26

9.2 ELF HEAET ..ottt 26

9.3 SECLIONS ... ;e 5ottt ettt ettt ea e 27

9.4 Symbol TabIeccoiiiiiiiii e 29

9.5 REIOCATION.....covertiieiiiiiciirietcrce ettt 29

10 Program Loading and Dynamic Linkingc.ceceeeeueueeveconennnneenenes 30
TOATATOAUCEION ...ttt 30
10:2Program Header ... 30

10.3 Program Loadingcccccovviviinniiiiiiiiiiicccccccies 30

10.4 Dynamic LInKing......c.cccccoeoiririrnirieeieeiiicnnrseeeeeeeeeseseseseennes 30

III Base Libraries 32
T1 LIDTATIES wvcveuvvevineeetienieietntetteeiet ettt ettt et s st sae b e se s aenenes 33

11.1 Program Interpreter/ Dynamic Linkerccccccccoeiiiiinnnnnnes 33

T2 dmterfaces for ibe 33

11.3 Data Definitions for liDCcccveeueirreinneinrececeseeeeeeens 47

11.4 Interfaces fOr lIDMcccovueinirieinineininciccc e 59

11.5 Data Definitions for Iibmi..........cccoceevenveinnecennccnnecneccneeenees 63

11.6 Interface Definitions for libm ..., 64

11.7 Interfaces for libpthread..........cocoeveveueiiinnnnccccccrrres 65

11.8 Data Definitions for libpthread.c.ccceevvreiecccccnnnnnnnes 67

11.9 Interfaces for libECC_s ..o 68

11.10 Data Definitions for libgcc_s.........ccccviiinvniiiciiiiiiiirnes 69

11.11 Interface Definitions for libgcc_s.........ooovicuevvnniicceiiiiniiaes 70

11.12 Interfaces for Libdlc.coceoerieiniiinncieceeeeeees 74

11.13 Data Definitions for libdlcccccvveinnecnncrnnecniccnnccnens 75

11.14 Interfaces for IbCrypt........coovvvviviiiiiiiiiiniccccccces 75

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

IV Utility Libraries 77
T2 LADTATIOS 1ottt ettt et e ettt ae et e e enaeereeeteesaeenteeneeens 78
12.1 Interfaces fOr IDZ......c.ooviiveiieeeeee et 78
12.2 Data Definitions for LiDZcc.coieviveieiicicicececeeceeeve e 78
12.3 Interfaces for IDNCUISES..........covveviiiiieieeiecieeeeeeeeeeee e 78
12.4 Data Definitions for lIbncurses...........ccooveeveeevievveeieceeeeeeeeee e 79
12.5 Interfaces for Hbutil.........cccooveviieeiiieiiiieceeecrececeeeee e 79
V Package Format and Installation 81
13 Software INStallationc.ocovievvieeeeiiiieeece et e 82
13.1 Package Dependenciesccocucueuiuiinininneniciccecccnrreeenes 82
13.2 Package Architecture Considerationso.oeeevveerviiiiiereieiiieneen, 8
A Alphabetical Listing of Interfaces 83
AT HDECC S iy e 83
g NN 1 o) o 4 WSRO S 83

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

List of Figures

8-1 Structure Smaller Than A WOTdccoveueieeiiiinnnrreececccceeeeeeienenes 18
8-2INO Padding......cucueueiiiiiririreieciccctc ettt 18
8-3 Internal and Tail Padding..........cccccovonniiiiiiiiirreccccccceeeeeennes 19
8-4 Bit-Field RaNGESccoviriiiiiiiiiiiiiiiiiccccccr e 19

Vi © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and rfon-governmental, in liaison with ISO and IEC, also take part in the work. In the field ¢f information
technplogy, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The fnain task of the joint technical committee is to prepare International Standards. Draft| International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a votd.

Attention is drawn to the possibility that some of the elements of this.doeiment may be the subjject of patent
rights| ISO and IEC shall not be held responsible for identifying anyerall such patent rights.

International Standard ISO/IEC 23360-3 was prepared by the Free Standards Group and was adlopted, under
the PIAS procedure, by Joint Technical Committee ISO/IEC JTC 1, Information technology, $ubcommittee
SC 22, Programming languages, their environments and system software interfaces.

ISO/IEC 23360 consists of the following parts, under the general title Linux Standard Bas¢ (LSB) core
specification 3.1:

— Rart 1: Generic specification

— Rart 2: Specification for IA32 architecture
— Rart 3: Specification for IA64 architecture
— Rart 4: Specification for AMD64 architecture
— Rart 5: Specification-for PPC32 architecture
— Rart 6: Specification for PPC64 architecture

— Rart 7.:Specification for S390 architecture

— Rart'8: Specification for S390X architecture

© ISO/IEC 2006 — Al rights reserved Vii

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Introduction

The LSB defines a binary interface for application programs that are compiled
and packaged for LSB-conforming implementations on many different hardware
architectures. Since a binary specification includes information specific to
the computer processor architecture for which it is intended, it is not possible for
a single document to specify the interface for all possible LSB-conforming
implementations. Therefore, the LSB is a family of specifications, rather than a
single one.

This document should be used in conjunction with the documents it references.
This document enumerates the system components it includes, but descriptions
of those components may be included entirely or partly in this document, partly
in other documents, or entirely in other reference documents. For example, the
section that describes system service routines includes a list of the system
routines supported in this interface, formal declarations of the data strietures
they use that are visible to applications, and a pointer to the underlying
referenced specification for information about the syntax and semaftics of each
call. Only those routines not described in standards referenced by this document,
or extensions to those standards, are described in detail. Information
referenced in this way is as much a part of this document.as is the information
explicitly included here.

The specification carries a version number of either the-form x.y or x.y.z. This
version number carries the following meaning;:

+ The first number (x) is the major version ndmber. All versions with the same
major version number should share birlary” compatibility. Any addition or
deletion of a new library results in a, new version number. Interfaces marked
as deprecated may be removed from the specification at a major version
change.

 The second number (y) is thé minor version number. Individual interfaces
may be added if all certified implementations already had that (previously
undocumented) interface; Interfaces may be marked as deprecated at a minor
version change. Other miinor changes may be permitted at the discretion of the
LSB workgroup.

+ The third numbert (z), if present, is the editorial level. Only editorial changes
should be included in such versions.

Since thi§ specification is a descriptive Application Binary Interface, and not a
sourcelevel API specification, it is not possible to make a guarantee of 100%
backiward compatibility between major releases. However, it is the intent that
those parts of the binary interface that are visible in the source level API will
remain backward compatible from version to version, except where a feature
marked as deprecated in one release may be removed from a future release.

Implementors are strongly encouraged to make use of symbol versioning to
permit simultaneous support of applications conforming to different releases of
this specification.

This is version 3.1 of the Linux Standard Base Core Specification. This
specification is part of a family of specifications under the general title "Linux
Standard Base (LSB) core specification 3.1". Developers of applications or
implementations interested in using the LSB trademark should see the Free
Standards Group Certification Policy for details.

viii © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

| Introductory Elements

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

INTERNATIONAL STANDARD ISO/IEC 23360-3:2006(E)

Linux Standard Base (LSB) core specification 3.1 —

Part 3:
Specification for IA64 architecture

1 Scope

1.1 General

The Linux Standard Base (LSB) defines a system interface for cemnipiled
applications and a minimal environment for support of installation S¢ripts. Itg
purpose is to enable a uniform industry standard environment for- high-volums
applications conforming to the LSB.

These specifications are composed of two basic parts: A common specification
("LSB-generic" or "generic LSB"), ISO/IEC 23360-1, describing those parts of the
interface that remain constant across all implementations of the LSB, and an
architecture-specific part ("LSB-arch" or "archLSB}) describing the parts of the
interface that vary by processor architecture. Together, the LSB-generic and the
relevant architecture-specific part of ISO/IEC)23360 for a single hardware
architecture provide a complete interface specification for compiled application
programs on systems that share a common‘hardware architecture.

ISO/IEC 23360-1, the LSB-generic document, should be used in conjunction with
an architecture-specific part. Whenever a section of the LSB-generic specification
is supplemented by architecturésspecific information, the LSB-generic document
includes a reference to thelarchitecture part. Architecture-specific parts of
ISO/IEC 23360 may also contain additional information that is not referenced in
the LSB-generic document.

The LSB contains\both a set of Application Program Interfaces (APIs) and
Application Binary Interfaces (ABIs). APIs may appear in the source code of
portable applications, while the compiled binary of that application may use the
larger set 6f ABIs. A conforming implementation provides all of the ABIs listed|
here. The\compilation system may replace (e.g. by macro definition) certain APl
with calls to one or more of the underlying binary interfaces, and may insert calls
tosbinary interfaces as needed.

JFhe LSB is primarily a binary interface definition. Not all of the source level APIs
available to applications may be contained in this specification.

1.2’Module Specific Scope

This is the Itanium™ architecture specific Core part of the Linux Standard Base
(LSB). This part supplements the generic LSB Core module with those interfaces
that differ between architectures.

Interfaces described in this part of ISO/IEC 23360 are mandatory except where
explicitly listed otherwise. Core interfaces may be supplemented by other
modules; all modules are built upon the core.

© 2006 ISO/IEC — All rights reserved 1

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

2 References

2.1 Normative References

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any

amendments) applies.

Note: Where copies of a document are available on the World Wide Web, a Uniform
Resource Locator (URL) is given for informative purposes only. This may point to a
more recent copy of the referenced specification, or may be out of date. Reference

Table 2-1 Normative References

copies of specifications at the revision level indicated may be found at the Fred
Standards Group's Reference Specifications (http:/ /refspecs.freestandards.org)(site:

Name

Title

URL

ISO/IEC 23360-1

ISO/IEC 23360-1:2006,
Linux Standard Base
(LSB) core specification
3.1 —Part 1. Generic
Specification

http?/y/ www linuxbase.

org/spec/

Information technology —
Portable Operating
System Interface

(POSIX) — Part 1: Base
Definitions

ISO/IEC 9945-2:2003,
Information technology —
Portable Operating

Q\llctpm Interface

Filesystem Hierarchy Filesystem Hierarchy http:/ /www.pathname
Standard Standard (FHS)-2.3 .com/fhs/
Intel® Itanium™ Intel® Itanium™ http:/ /refspecs.freestan
Processor-specific Processor-specific dards.org/elf/IA64-Sys
Application Binary Application Binary V-psABLpdf
Interface Interface
ISO C (1999) 1SO/IEC 9899: 1999,

Programming

Languages — C
ISO POSIX (2003) ISO/1EC 9945-1:2003, http:/ /www.unix.org/

version3/

(POSIX) — Part 2
System Interfaces

ISO/IEC 9945-3:2003,
Information technology —
Portable Operating
System Interface

(POSIX) — Part 3: Shell
and Utilities

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Name

Title

URL

ISO/IEC 9945-4:2003,
Information technology —
Portable Operating
System Interface

(POSIX) — Part 4:
Rationale

Itanium™ Architecture
Software Developer's

Itanium™ Architecture
Software Developer's

http:/ /refspecs.freestan
dards.org/IA64-softdev

At 1XZ1 4
Ividiludl VvV O1UIIc 1

IVIdl ludl ‘VYUI UITc 1 .
Application
Architecture

14 1L
IIall=vOll.pdl

Itanium™ Architecture
Software Developer's
Manual Volume 2

Itanium™ Architecture
Software Developer's
Manual Volume 2:
System Architecture

http:/ /refspecs,freestan
dards.org/IA64-softdev
man-vol2.pdf

Itanium™ Architecture
Software Developer's
Manual Volume 3

Itanium™ Architecture
Software Developer's
Manual Volume 3:
Instruction Set
Reference

http:/ /refspecs.freestan
dards.org/IA64-softdev
man-vol3.pdf

Itanium™ Architecture
Software Developer's
Manual Volume 4

IA-64 Processor
ReferencesIntel®
Itanium™/Processor
Referénce Manual for
Software Development

http:/ /refspecs.freestan
dards.org/IA64-softdev
man-vol4.pdf

Itanium™ Software

Ttanium™ Software

http:/ /refspecs.freestan

Conventions and Conventions and dards.org/IA64convent
Runtime Guide Runtime Architecture ions.pdf
Guide, September 2000
Large File Support Large File Support http:/ / www.UNIX-syst
ems.org/version2/wha
tsnew /1fs20mar.html
SUSv2 CAE Specification, http:/ /www.opengrou
January 1997, System p-org/ publications/ cat
Interfaces and Headers | alog/un.htm
(XSH), Issue 5 (ISBN:
1-85912-181-0, C606)
SVID Issue 3 American Telephone

and Telegraph
Company, System V
Interface Definition,
Issue 3; Morristown,
NJ, UNIX Press,

1989. (ISBN 0201566524)

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Name Title URL

SVID Issue 4 System V Interface
Definition, Fourth
Edition

System V ABI System V Application http:/ /www.caldera.co
Binary Interface, m/developers/devspec
Edition 4.1 s/ gabidl.pdf

System V ABI Update System V Application http:/ /www.caldera.co
Binary Interface - m/ developers/gabi/20
DRAFT - 17 December 03-12-17/ contents.html
2003

X/Open Curses CAE Specification, May | http://www.opengrou

1996, X/Open Curses, p-org/ publications)cat
Issue 4, Version 2 (ISBN: | alog/un.htm
1-85912-171-3, C610),
plus Corrigendum U018

2.2 Informative References/Bibliography

In addition, the specifications listed below -jprovide essential background
information to implementors of this specification. These references are included
for information only.

Table 2-2 Other References

Name Title URL
DWARF Debugging DWAREF Debugging http:/ /refspecs.freestan
Information Format, Information Format, dards.org/dwarf/dwar
Revision 2.0.0 Revision 2.0.0 (July 27, | £-2.0.0.pdf

1993)
DWARF Debugging DWARF Debugging http:/ /refspecs.freestan
Information Format, Information Format, dards.org/dwarf/
Revision:3:0.0 (Draft) Revision 3.0.0 (Draft)
IEC(60559/1EEE 754 IEC 60559:1989, http:/ /www .ieee.org/
Floating Point Binary floating-point

arithmetic for
microprocessor systems

ISO/IEC TR 14652 ISO/IEC TR 14652:2004,
Information technology —
Specification method

for cultural conventions

4 © 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Name Title URL

ITU-T V.42 International http:/ /www.itu.int/rec
Telecommunication /recommendation.asp?t
Union ype=folders&lang=e&p

Recommendation V.42
(2002): Error-correcting
procedures for DCEs
using asynchronous-to-
synchronous conversion
ITUV

arent=T-REC-V .42

Li18nux Globalization

LITI8NUX 2000

http:/ /www.lil8nux.or

Specification

Globalization
Specification, Version
1.0 with Amendment 4

g/docs/html/LI18NUX
-2000-amd4.htm

Linux Allocated Device | LINUX ALLOCATED http:/ /www(lahana.or
Registry DEVICES g/ docs/ device-list/ dev
ices.txt
PAM Open Software http:/)/ www.opengrou
Foundation, Request prorg/tech/rfc/mirror-
For Comments: 86.0, rfc/rfc86.0.txt
October 1995, V. Samar.
& R. Schemers (SunSoft)
RFC 1321: The MD5 IETF RFC 1321: The http:/ /www ietf.org/rf
Message-Digest MD?5 Message-Digest c/rfc1321.txt
Algorithm Algorithm
RFC1831/1832 RPC & | IETE-RFC 1831 & 1832 | http://www ietf.org/
XDR
RFC 1833: Binding {ETF RFC 1833: Binding | http://www.ietf.org/rf
Protocols for ONC RPC | Protocols for ONC RPC | ¢/rfc1833.txt
Version 2 Version 2

RFC 1950: ZLIB

IETF RFC 1950: ZLIB

http:/ /www ietf.org/rf

Compressed Data Compressed Data ¢/ rfc1950.txt
Format Specication Format Specification
RFC 1951: DEFLATE IETF RFC 1951: http:/ /www ietf.org/rf
Conipressed Data DEFLATE Compressed | c/rfc1951.txt
Format Specification Data Format

Specification version 1.3
RFC 1952: GZIP File IETF REC 1952: GZIP http:/ /www ietf.org/rf
Format Specification file format specification | ¢/rfc1952 txt

version 4.3
RFC 2440: OpenPGP IETF RFC 2440: http:/ /www ietf.org/rf
Message Format OpenPGP Message c/rfc2440.txt

Format

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Name Title URL
RFC 2821: Simple Mail | IETF RFC 2821: Simple | http://www.ietf.org/rf
Transfer Protocol Mail Transfer Protocol c/rfc2821.txt
RFC 2822: Internet IETF RFC 2822: Internet | http:/ /www.ietf.org/rf
Message Format Message Format c/1fc2822.txt
RFC 791: Internet IETF RFC 791: Internet | http://www.ietf.org/rf
Protocol Protocol Specification c/rfc791.txt
RPM Package Format RPM Package Format http:/ /www.rpm.org/
V3.0 max-rpm/sl-rpm-file-f
ormat-rpm-file-format.h
tml
SUSv2 Commands and | The Single UNIX http:/ /www.opengrou
Utilities Specification (SUS) p-org/publications/ cat
Version 2, Commands
and Utilities (XCU), alog/un.htmn
Issue 5 (ISBN:
1-85912-191-8, C604)
zlib Manual zlib 1.2 Manual http:/ /www.gzip.org/
zlib/

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

3 Requirements

3.1 Relevant Libraries

ISO/IEC 23360-3:2006(E)

The libraries listed in Table 3-1 shall be available on I1A64 Linux Standard Base
systems, with the specified runtime names. These names override or supplement
the names specified in the generic LSB (ISO/IEC 23360-1) specification. The
specified program interpreter, referred to as proginterp in this table, shall be
used to load the shared libraries specified by DT_NEEDED entries at run time.

Table 3-1 Standard Library Names

Library Runtime Name
libm libm.so.6.1
libdl libdl.so.2
liberypt liberypt.so.1
libz libz.so.1
libncurses libncurses.so.5
libutil libutil.so.1

libc libc.so0.6.1
libpthread libpthread.so.0
proginterp /1ib/1d-1sb-ia64.50.3
libgce_s libgce_s.so.1

These libraries will be in .an”implementation-defined directory which the
dynamic linker shall searehi’by default.
3.2 LSB Implementation:Conformance

A conforming implementation is necessarily architecture specific, and must
provide the interfaces specified by both the generic LSB Core specification
(ISO/IEC 23360-1) and the relevant architecture specific part of ISO/IEC 23360.

Rationale: An implementation must provide at least the interfaces specified in thesd
specifications. It may also provide additional interfaces.

A conforming implementation shall satisfy the following requirements:

« A processor architecture represents a family of related processors which may

not have identical feature sets. The architecture specific parts of ISO/IEQ

alaXaVaral

£LJIJ0U lL} lai. Dul,)l)}tll LS 8 lll ‘L} lib bPCLifiLﬂlliUI L [Ul d Biv CI1 i.dl SC'L l,)l ULC55UIL
architecture describe a minimum acceptable processor. The implementation
shall provide all features of this processor, whether in hardware or through
emulation transparent to the application.

The implementation shall be capable of executing compiled applications
having the format and using the system interfaces described in this document.

The implementation shall provide libraries containing the interfaces specified
by this document, and shall provide a dynamic linking mechanism that allows

© 2006 ISO/IEC — All rights reserved 7

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

these interfaces to be attached to applications at runtime. All the interfaces
shall behave as specified in this document.

The map of virtual memory provided by the implementation shall conform to
the requirements of this document.

The implementation's low-level behavior with respect to function call linkage,
system traps, signals, and other such activities shall conform to the formats
described in this document.

The implementation shall provide all of the mandatory interfaces in their
entirety.

The implementation may provide one or more of the optional interfaces. Each
nph’nna] interface that is prnvir]pd shall be prnvidpd in its entirety The

3.3 LSB Application Conforgnance

A conforming application is necessarily architecture specific, and must conform
to both the genericiLSB Core specification (ISO/IEC 23360-1)and the relevant
architecture specifi¢ part of ISO/IEC 23360.

A conforming application shall satisfy the following requirements:

product documentation shall state which optional interfaces are provided,

The implementation shall provide all files and utilities specified as paztefthis
document in the format defined here and in other referenced documents. All
commands and utilities shall behave as required by this document. The
implementation shall also provide all mandatory components of an|
application's runtime environment that are included or aeferenced in thig
document.

The implementation, when provided with standard dataformats and values af
a named interface, shall provide the behavior defined for those values and
data formats at that interface. However, a conforming implementation may
consist of components which are separately. packaged and/or sold. Foi
example, a vendor of a conforming implementation might sell the hardware
operating system, and windowing system/as separately packaged items.

The implementation may provide additional interfaces with different names
It may also provide additional behavior corresponding to data values outsidg
the standard ranges, for standard named interfaces.

Its executable files shall be either shell scripts or object files in the format
defined for the Object File Format system interface.

Its*object files shall participate in dynamic linking as defined in the Program
Loading and Linking System interface.

It shall employ only the instructions, traps, and other low-level facilitieg
defined in the Low-Level System interface as being for use by applications.

it requiresamy optiomat-interface defimed i this document imorder to b
installed or to execute successfully, the requirement for that optional interface
shall be stated in the application's documentation.

It shall not use any interface or data format that is not required to be provided
by a conforming implementation, unless:

« If such an interface or data format is supplied by another application
through direct invocation of that application during execution, that
application shall be in turn an LSB conforming application.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

. The use of that interface or data format, as well as its source, shall be
identified in the documentation of the application.

« It shall not use any values for a named interface that are reserved for vendor
extensions.

A strictly conforming application shall not require or use any interface, facility,
or implementation-defined extension that is not defined in this document in
order to be installed or to execute successfully.

© 2006 ISO/IEC — All rights reserved 9

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

4 Definitions

For the purposes of this document, the following definitions, as specified in the
ISO/IEC Directives, Part 2, 2004, 5th Edition, apply:

can

be able to; there is a possibility of; it is possible to

cannot

be unable to; there is no possibilty of; it is not possible to

may

is permitted; is allowed; is permissible
need not

it is not required that; no...is required

shall

is to; is required to; it is required that; has to; ohly<.is permitted; it is
necessary

shall not

is not allowed [permitted] [acceptable] [permissible]; is required to be not; ig
required that...be not; is not to be

should

it is recommended that; ought;to

should not

it is not recommended-that; ought not to

10

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

5 Terminology

For the purposes of this document, the following terms apply:

archL.SB

The architectural part of the LSB Specification which describes the specific
parts of the interface that are platform specific. The archLSB is
complementary to the gLSB.

Binary Standard

The total set of interfaces that are available to be used in the compiled binary
code of a conforming application.

gLSB

The common part of the LSB Specification that describes those parts of the
interface that remain constant across all hardware implementations of the
LSB.

implementation-defined

Describes a value or behavior that is not defined\by this document but is
selected by an implementor. The value or bebavior may vary among
implementations that conform to this document’ An application should nof
rely on the existence of the value or behavior. An application that relies on
such a value or behavior cannot be assuréd to be portable across conforming
implementations. The implementor“shall document such a value of
behavior so that it can be used correctly by an application.

Shell Script

A file that is read by anyinterpreter (e.g., awk). The first line of the shell
script includes a reference to its interpreter binary.

Source Standard

The set of interfaces that are available to be used in the source code of a
conforming application.

undefined

Describes the nature of a value or behavior not defined by this document
which results from use of an invalid program construct or invalid data inpuf.
The value or behavior may vary among implementations that conform to
this document. An application should not rely on the existence or validity of
the value or behavior. An application that relies on any particular value o1
behavior cannot be assured to be portable across conforming

H 1 S
Rprementations:

unspecified

Describes the nature of a value or behavior not specified by this document
which results from use of a valid program construct or valid data input. The
value or behavior may vary among implementations that conform to this
document. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or
behavior cannot be assured to be portable across conforming
implementations.

© 2006 ISO/IEC — All rights reserved 11

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Other terms and definitions used in this document shall have the same meaning
as defined in Chapter 3 of the Base Definitions volume of ISO POSIX (2003).

12 © 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

6 Documentation Conventions
Throughout this document, the following typographic conventions are used:

function()

the name of a function

command

the name of a command or utility

CONSTANT

a constant value

parameter

a parameter

variable
a variable
Throughout this specification, several tables of interfaces-are presented. Each
entry in these tables has the following format:
name

the name of the interface

(symver)

An optional symbol version identifier, if required.

[refno]

A reference number indexing the table of referenced specifications thaf
follows this table.

For example,

forkpty (GLIBC:2.0) [SUSV3]

refers to.the'interface named forkpty() with symbol version GLIBC_2.0 that ig
defined:in the SUSv3 reference.

Note: Symbol versions are defined in the architecture specific parts of ISO/IEQ
23360 only.

© 2006 ISO/IEC — All rights reserved 13

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

Il Executable and Linking Format (ELF)

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

7 Introduction

Executable and Linking Format (ELF) defines the object format for compiled
applications. This specification supplements the information found in System V
ABI Update and Intel® Itanium™ Processor-specific Application Binary
Interface, and is intended to document additions made since the publication of
that document.

© 2006 ISO/IEC — All rights reserved 15

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

8 Low Level System Information

8.1 Machine Interface

8.1.1 Processor Architecture
The Itanium™ Architecture is specified by the following documents

o Jtanium™ Architecture Software Developer's Manual Volume 1

o Ttanium™ Architecture Software Developer's Manual Volume 2

o Jtanium™ Architecture Software Developer's Manual Volume 3

o Jtanium™ Architecture Software Developer's Manual Volume 4

o Jtanium™ Software Conventions and Runtime Guide

o Intel® Itanium™ Processor-specific Application Binary Interface

Only the features of the Itanium™ processor instruction set may berassumed to
be present. An application should determine if any additional ‘instruction sef
features are available before using those additional features(Ifa feature is nof
present, then the application may not use it.

Conforming applications may use only instructions,'which do not requirg
elevated privileges.

Conforming applications shall not invoke thé, implementations underlying
system call interface directly. The interfacesdn the implementation base librarieq
shall be used instead.

Rationale: Implementation-supplied.base libraries may use the system call interface
but applications must not assume any particular operating system or kernel version
is present.

There are some features of the Ttanium™ processor architecture that need not be
supported by a conforming implementation. These are described in this chapter
A conforming application shall not rely on these features.

Applications conforming to this specification must provide feedback to the useq
if a feature that'is-required for correct execution of the application is not present
Applications conforming to this specification should attempt to execute in a
diminished\capacity if a required feature is not present.

This §pecfication does not provide any performance guarantees of a conforming]
system. A system conforming to this specification may be implemented in either
hardware or software.

This specification describes only LP64 (i.e. 32-bit integers, 64-bit longs and|
pointers) based implementations. Implementations may also provide ILP32
(32-bit integers, longs, and pointers), but conforming applications shall not rely]

16

on support for ILP32. See section 1.2 of the Intel® Itanium™ Processor-specific
Application Binary Interface for further information.

8.1.2 Data Representation

The following sections, in conjunction with section 4 of Itanium™ Software
Conventions and Runtime Guide, define the size, alignment requirements, and
hardware representation of the standard C data types.

Within this specification, the term byte refers to an 8-bit object, the term
halfword refers to a 16-bit object, the term word refers to a 32-bit object, the term

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

doubleword refers to a 64-bit object, and the term quadword refers to a 128-bit
object.

8.1.2.1 Byte Ordering

LSB-conforming applications shall wuse little-endian byte ordering.
LSB-conforming implementations may support big-endian applications.

8.1.2.2 Fundamental Types

Table 8-1 describes how fundemental C language data types shall be
represented:

Table 8-1 Scalar Types

© 2006 ISO/IEC — All rights reserved

Type C sizeof Alignment Hardware
(bytes) Representa-
tion
_Bool 1 1 byte (sign
unspecified)
char 1 1 signed byte
signed char
unsigned signed byte
char
short signed half-
2 2
word
signed short
unsigned unsigned
short halfword
int 4 4 signed word
Integral signed'int
unsigned int unsigned
word
long 3 3 signed dou-
bleword
signed long
unsigned unsigned
long doubleword
long long o Q signed dou-
- - bleword
signed long
long
unsigned unsigned
long long doubleword
Pointer any-type * 3 3 unsigned
doubleword

17

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Type C sizeof Alignment Hardware
(bytes) Representa-
tion
any-type
™MO
float 4 4 IEEE Sin-
gle-precision
Float- double 8 8 IEEE Dou-
ing-Point ble-precision
long double | 16 16 IEEE Dou-

ble-extended

A null pointer (for all types) shall have the value zero.

8.1.2.3 Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignhment of thein
most strictly aligned component. The size of any object, including aggregateq
and unions, shall always be a multiple of the object's alighment. An array useg
the same alignment as its elements. Structure and union’ objects may require
padding to meet size and element constraints. The ¢ontents of such padding is
undefined.

+ An entire structure or union object shall be aligned on the same boundary as
its most strictly alighed member.

« Each member shall be assigned to “the lowest available offset with the
appropriate alignment. This may,cequire internal padding, depending on thd
previous member.

+ A structure's size shall be increased, if necessary, to make it a multiple of the
alignment. This may require tail padding, depending on the last member.

A conforming application shall not read padding.

struct {
char c;
b

Byte aligned, sizeofis1

Offset Byte O

0 c°

Figure 8-1 Structure Smaller Than A Word

18

struct {
char c;
char d;
short s;
int i;
long 1I;
b

Doubleword Aligned, sizeof is 16

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

Offset Byte 3 Byte 2 Byte 1 Byte 0
0 s d' c
4 i
8 1°
12

Figure 8-2 No Padding

struct {
char c;
long 1I;
int i;
short s;

Doubleword Aligned, sizeof is 24

Offset Byte 3 Byte 2 Byte 1 Byte O

0 pad’ c

4 pad}

8 10
12

16 i°

20 pad? s’

Figure 8-3 Internal and Tail Padding
8.1.2.4 Bit Fields

C struct and unioen.definitions may have bit-fields, which define integral objects
with a specifiedntnber of bits.

Bit fields that are declared with neither signed nor unsigned specifier shall
always be-treated as unsigned. Bit fields obey the same size and alignment ruleg
as othek.structure and union members, with the following additional properties:

« Bit-fields are allocated from right to left (least to most significant).

<. A bit-field must entirely reside in a storage unit for its appropriate type. A bif
field shall never cross its unit boundary.

« Bit-fields may share a storage unit with other struct/union members
inr]nr‘]ing members that are not bit fields Such other structZuniaon member

shall occupy different parts of the storage unit.

« The type of unnamed bit-fields shall not affect the alignment of a structure or
union, although individual bit-field member offsets shall obey the alignment

constraints.

Bit-field Type Width w Range
signed char -2"1 to 2**-1
char 1to8 0 to 2"-1
unsigned char 0 to 2"-1

© 2006 ISO/IEC — All rights reserved 19

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

8.2 Function Calling Sequence

Bit-field Type Width w Range
signed short -2"1 to 2"*'-1
short 0 to 2"-1
unsigned short ltol6 0 to 2"-1
signed int -2"1 to 2¥*-1
int 0 to 2"-1
unsigned int 1to32 0 to 2"-1
signed long -2"1 to 2"'-1
long L L 0 to 2"-1
unsigned long LR 0 to 2"-1

Figure 8-4 Bit-Field Ranges

LSB-conforming applications shall use the procedure linkage and function
calling sequence as defined in Chapter 84 of the ‘ltanium™ Softwarg
Conventions and Runtime Guide.

8.2.1 Registers

The CPU general and other registers are as defined in the Itanium™ Architecturg
Software Developer's Manual Volume 1 Séction 3.1.

8.2.2 Floating Point Registers

The floating point registers areéZas defined in the Itanium™ Architecture
Software Developer's Manual Volume 1 Section 3.1.

8.2.3 Stack Frame

The stackframe layotit-is as described in the Itanium™ Software Conventiong
and Runtime Guide Chapter 8 .4.

8.2.4 Argunrents

8.2.4 X Introduction

The\procedure parameter passing mechanism is as described in the Itanium™
Software Conventions and Runtime Guide Chapter 8.5. The following
subsections provide additional information.

8.2.4.2 Integral/Pointer

20

Q Ty - TG e ~— P 1R P PR i | . Q-
OCC 1lAdIITUIIT DOIWATE LOTIVEITUOLIS Al NUTTUITE L UTUE A PLET 6.9.

8.2.4.3 Floating Point

See Itanium™ Software Conventions and Runtime Guide Chapter 8.5.

8.2.4.4 Struct and Union Point

See Itanium™ Software Conventions and Runtime Guide Chapter 8.5.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

8.2.4.5 Variable Arguments

See Itanium™ Software Conventions and Runtime Guide Chapter 8.5.4.

8.2.5 Return Values

8.2.5.1 Introduction

Values are returned from functions as described in Itanium™ Software
Conventions and Runtime Guide Chapter 8.6, and as further described here.

8.2.5.2 Void

Functions that return no value (void functions) are not required to put any

PRl 1 1 . 1 .t
PCU. ucularl vdluc 11T dl l_y SCI ICdl I Cglb LCI.

8.2.5.3 Integral/Pointer

See Itanium™ Software Conventions and Runtime Guide Chapter 8.6.

8.2.5.4 Floating Point

See Itanium™ Software Conventions and Runtime Guide Chapter 8.6.

8.2.5.5 Struct and Union

See Itanium™ Software Conventions and Runtime Guide Chapter 8.6 (aggregate
return values). Depending on the size (including ‘any padding), aggregate data
types may be passed in one or more general registers, or in memory.

8.3 Operating System Interface

LSB-conforming applications shall .tise the Operating System Interfaces as
defined in Chapter 3 of the Intel® Itanium™ Processor-specific Application

Binary Interface.

8.3.1 Processor Execution Mode
Applications must aséume that they will execute in the least privileged user

mode (i.e. level 3). @ther privilege levels are reserved for the Operating System.

8.3.2 Exception Interface

8.3.2.knfroduction

LSB-cenforming implementations shall support the exception interface as
specified in Intel® Itanium™ Processor-specific Application Binary Interface
section 3.3.1.

8.3.2.2 Hardware Exception Types

See Intel® Itanium™™ pvnrnccnr-cppr‘iﬁr App]innﬁnn Binary T‘nfernr‘p, sectia

3.3.1.

8.3.2.3 Software Trap Types

See Intel® Itanium™ Processor-specific Application Binary Interface, section
3.3.1.

© 2006 ISO/IEC — All rights reserved 21

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

8.3.3 Signal Delivery

LSB-conforming systems shall deliver signals as specified in Intel® Itanium™
Processor-specific Application Binary Interface, section 3.3.2.

8.3.3.1 Signal Handler Interface

The signal handler interface shall be as specified in Intel® Itanium™
Processor-specific Application Binary Interface, section 3.3.3.

8.3.4 Debugging Support
The LSB does not specify debugging information.

8.4 Process Initialization

0.5.0 Frocess startup

LSB-conforming systems shall initialize processes as specified in_{ntel®
Itanium™ Processor-specific Application Binary Interface, section 3.3.5.

LSB-conforming applications shall use the Process Startup as defined in Section
3.3.5 of the Intel® Itanium™ Processor-specific Applicatiod Binary Interface.

8.4.1 Special Registers

Intel® Itanium™ Processor-specific Application Binary Interface, section 3.3.5
defines required register initializations for process startup.

8.4.2 Process Stack (on entry)

As defined in Intel® Itanium™ Processor-specific Application Binary Interface
section 3.3.5, the return pointer register (rp) shall contain a valid return address
such that if the application program returns from the main entry routine, the
implementation shall cause the application to exit normally, using the returned
value as the exit status. ‘Fdrther, the unwind information for this "bottom of
stack" routine in the implementation shall provide a mechanism for recognizing
the bottom of the stack'during a stack unwind.

8.4.3 Auxiliary Vector

The auxiliary vector conveys information from the operating system to the
application. Only the terminating null auxiliary vector entry is required, but if
any dther entries are present, they shall be interpreted as follows. This vector ifg
an.array of the following structures.

typedef struct

22

long int a_type; /* Entry type */
union
t
long int a_val; /* Integer value */
void *a_ptr; /* Pointer value */
void (*a_fcn) (void); /* Function pointer value */
} a un;
} auxv_t;

The application shall interpret the a_un value according to the a_type. Other
auxiliary vector types are reserved.

The a_type field shall contain one of the following values:

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

AT_NULL
The last entry in the array has type AT_NULL. The value in a_un is undefined.

AT_IGNORE

The value in a_un is undefined, and should be ignored.

AT_EXECFD

File descriptor of program

AT _PHDR

Program headers for program

AT _PHENT

Size of program header entry

AT _PHNUM

Number of program headers
AT_PAGESZ

System page size
AT_BASE

Base address of interpreter
AT_FLAGS

Flags
AT_ENTRY

Entry point of program

AT_NOTELF
Program is not ELF

AT _UID
Realaid

AT _EUID
Effective uid

AT_GID
Real gid

AT_EGID
Effective gid

AT_CLKTCK

Frequency of times()

AT_PLATFORM
String identifying platform.

© 2006 ISO/IEC — All rights reserved 23

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

AT _HWCAP

Machine dependent hints about processor capabilities.

AT_FPUCW
Used FPU control word

AT _DCACHEBSIZE

Data cache block size

AT _ICACHEBSIZE

Instruction cache block size

8.5 Coding Examples

AT _UCACHEBSIZE

Unified cache block size

Note: The auxiliary vector is intended for passing information fromthé operating
system to the program interpreter.

8.4.4 Environment

Although a pointer to the environment vector shouldbe available as a third
argument to the main() entry point, conforming “applications should use
getenv() to access the environment. (See ISO POSIEX)(2003), Section exec()).

8.5.1 Introduction

LSB-conforming applications may inmiplement fundamental operations using the
Coding Examples as shown belowx

Sample code sequences and\coding conventions can be found in Itanium”
Software Conventions and Runtime Guide, Chapter 9.

8.5.2 Code Model.©verview/Architecture Constraints

As defined in Intel® Itanium™ Processor-specific Application Binary Interface
relocatable files, ‘executable files, and shared object files that are supplied as part
of an application shall use Position Independent Code, as described in [tanium”

Software Conventions and Runtime Guide, Chapter 12.

8.5:3 Position-Independent Function Prologue

See Itanium™ Software Conventions and Runtime Guide, Chapter 8.4.

8.5.4 Data Objects

Tatal® T

24

(el L 3 M 1. 1L A 13 L R Tantal Ch L
OCCIITCT TCATITOUTTT T TOCTCSSOUT=SPCCITIC 7 Y P PTIC AtTOTT DAl y It CT Iat G CITa PteT

5.3.4, and Itanium™ Software Conventions and Runtime Guide, Chapter 12.3.

8.5.4.1 Absolute Load & Store

Conforming applications shall not use absolute addressing.

8.5.4.2 Position Relative Load & Store

See Intel® Itanium™ Processor-specific Application Binary Interface, Chapter
5.3.4.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

8.5.5 Function Calls

See Itanium™ Software Conventions and Runtime Guide, Chapter 8.4.

Four types of procedure call are defined in Itanium™ Software Conventions and
Runtime Guide, Chapter 8.3. Although special calling conventions are permitted,
provided that the compiler and runtime library agree on these conventions, none
are defined for this standard. Consequently, no application shall depend on a
type of procedure call other than Direct Calls, Direct Dynamically Linked Calls,
or Indirect Calls, as defined in Itanium™ Software Conventions and Runtime
Guide, Chapter 8.3.

8.5.5.1 Absolute Direct Function Call

Conforming applications shall not use absolute addressing.

8.5.5.2 Absolute Indirect Function Call

Conforming applications shall not use absolute addressing.

8.5.5.3 Position-Independent Direct Function Call

See [tanium™ Software Conventions and Runtime Guide, Chapter 8.4.1.

8.5.5.4 Position-Independent Indirect Function ‘Call

See Itanium™ Software Conventions and RuntimeGuide, Chapter 8.4.2.

8.5.6 Branching

Branching is described in Itanium™ Architecture Software Developer's Manual
Volume 4, Chapter 4.5.

8.5.6.1 Branch Instruction

See [tanium™ Architecture Software Developer's Manual Volume 4, Chapter 4.5

8.5.6.2 Absolute switch() code

Conforming applicatierns shall not use absolute addressing.

8.5.6.3 Position-Independent switch() code

Where there are several possible targets for a branch, the compiler may use 4
number~of different code generation strategies. See Itanium™ Software
Conventions and Runtime Guide, Chapter 9.1.7.

8.6 C Stack Frame
8.6.1 Variable Argument List

See Itanium™ Software Conventions and Runtime Guide, Chapter 8.5.2, and|
8.5.4.

8.6.2 Dynamic Allocation of Stack Space

The C library alloca() function should be used to dynamically allocate stack
space.

8.7 Debug Information

The LSB does not currently specify the format of Debug information.

© 2006 ISO/IEC — All rights reserved 25

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

9 Object Format

9.1 Introduction

LSB-conforming implementations shall support an object file , called Executable
and Linking Format (ELF) as defined by the System V _ABI, Intel® Itanium™
Processor-specific Application Binary Interface and as supplemented by the
Linux Standard Base Specification and this document.

9.2 ELF Header

9.2.1 Machine Information

LSB-conforming applications shall use the Machine Information as definedyir
Intel® Itanium™ Processor-specific Application Binary Interface, Chapter 4
Implementations shall support the LP64 model. It is unspecified whether or not
the ILP32 model shall also be supported.

9.2.1.1 File Class

For LP64 relocatable objects, the file class value in e_ident[E1_CLASS] may be
either ELFCLASS32 or ELFCLASS64, and a conforming‘linker must be able tg
process either or both classes.

9.2.1.2 Data Encoding

Implementations shall support 2's complement, little endian data encoding. The
data encoding value in e_ident[El_DATA] shall contain the value ELFDATA2LSB
9.2.1.3 OS Identification

The OS Identification field ;e~¥dent[ElI_0SABI] shall contain the valud
ELFOSABI1_NONE.

9.2.1.4 Processor Identification

The processor identification value held in e_machine shall contain the valug
EM_IA_64.

9.2.1.5 Processor Specific Flags

The flags field e_flags shall be as described in Intel® Itanium™
Procéssor-specific Application Binary Interface, Chapter 4.1.1.6.

The'tollowing additional processor-specific flags are defined:

Table 9-1 Additional Processor-Specific Flags

Name Value

26

EF_JA_64_LINUX_EXECUTABLE_S | 0x00000001
TACK

EF_TA_64_LINUX_EXECUTABLE_STACK

The stack and heap sections are executable. If this flag is not set, code can
not be executed from the stack or heap.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

9.3 Sections

ISO/IEC 23360-3:2006(E)

The Itanium™ architecture defines two processor-specific section types, as
described in Intel® Itanium™ Processor-specific Application Binary Interface,

Chapter 4.

9.3.1 Special Sections

The following sections are defined in the Intel® Itanium™ Processor-specific
Application Binary Interface.

Table 9-2 ELF Special Sections

Name

Attributes

Typp

.got

SHT_PROGBITS

SHF_ALLOC+SHF_WR
ITE+SHF_IA_64_SHOR
T

JA_64.archext

SHT_IA_64_EXT

0

JA_64.pltoff

SHT_PROGBITS

SHF_ALLOC+SHF_WR
ITE#SHF_IA_64 SHOR
L

JA_64.unwind

SHT_IA_64_UNWIND

SHF_ALLOC+SHF_LIN
K_ORDER

JA_64.unwind_info

SHT_PROGBITS

SHF_ALLOC

plt SHT_PROGBITS SHF_ALLOC+SHF_EX
ECINSTR

.sbss SHT_INOBITS SHF_ALLOC+SHF_WR
ITE+SHF_IA_64_SHOR
T

.sdata SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE+SHF_IA_64_SHOR
T

.sdatal SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE+SHF_IA_64_SHOR
T

20t

This section holds the Global Offset Table. See *Coding Examples' in
Chapter 3, “Special Sections' in Chapter 4, and “Global Offset Table' in
Chapter 5 of the processor supplement for more information.

JA_64.archext

This section holds product-specific extension bits. The link editor will
perform a logical "or" of the extension bits of each object when creating an
executable so that it creates only a single .IA_64.archext section in the

executable.

JA_64.pltoff

This section holds local function descriptor entries.

© 2006 ISO/IEC — All rights reserved

27

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

JA_64.unwind
This section holds the unwind function table. The contents are described in
the Intel (r) Itanium (tm) Processor Specific ABL

JA_64.unwind_info

This section holds stack unwind and and exception handling information.
The exception handling information is programming language specific, and
is unspecified.

plt
This section holds the Procedure Linkage Table.

.sbss

This section holds uninitialized data that contribute to the program's
memory image. Data objects contained in this section are recommended to
be eight bytes or less in size. The system initializes the data(with zeroes
when the program begins to run. The section occupies no-file space, as
indicated by the section type SHT_NOBITS. The .sbss segtion is placed so if
may be accessed using short direct addressing (22 bit offset from gp).

.sdata

This section and the .sdatal section hold initialized data that contribute to
the program's memory image. Data objects contained in this section are
recommended to be eight bytes or less in size. The .sdata and .sdatall
sections are placed so they may be accessed using short direct addressing
(22 bit offset from gp).

.sdatal
See .sdata.
9.3.2 Linux Special Settions

The following Linux ¥A“64 specific sections are defined here.

Table 9-3 Additional Special Sections

Name Type Attributes
.opd SHT_PROGBITS SHF_ALLOC
aela:dyn SHT_RELA SHF_ALLOC
.rela.]A_64.pltoff SHT_RELA SHF_ALLOC

.opd

Ihis section holds function descriptors

rela.dyn

This section holds relocation information, as described in “Relocation'. These
relocations are applied to the .dyn section.

-rela.]A_64.pltoff

This section holds relocation information, as described in “Relocation'. These
relocations are applied to the .IA_64.pltoff section.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

9.3.3 Section Types

Section Types are described in the Intel® Itanium™ Processor-specific
Application Binary Interface, Chapter 4.2. LSB conforming implementations are
not required to use any sections in the range from SHT_IA_64_LOPSREG to
SHT_IA_64_HIPSREG. Additionally, LSB conforming implementations are not
required to support the SHT_IA_64_PRIORITY_INIT section, beyond the gABI
requirements for the handling of unrecognized section types, linking them into a
contiguous section in the object file created by the static linker.

9.3.4 Section Attribute Flags

LSB-conforming implementations shall support the section attribute flags

Speciffed I IMte® Tramum ™ PTocess0r-speciiic Appiication binary interface
Chapter 4.2.2.

9.3.5 Special Section Types

The special section types SHT_1A64_EXT and SHT_1A64_UNWIND are defined in
Intel® Itanium™ Processor-specific Application Binary Interface, Chapter 4.2.1.

0.4 Symbol Table

If an executable file contains a reference to a function defined in one of itg
associated shared objects, the symbol table sectionfor’ that file shall contain an
entry for that symbol. The st_shndx member of that symbol table entry containg
SHN_UNDEF. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file itself. If that symbol has been|
allocated a procedure linkage table entry.in the executable file, and the st_value
member for that symbol table entry\is non-zero, the value shall contain the
virtual address of the first instruction of that procedure linkage table entry
Otherwise, the st_value member’contains zero. This procedure linkage table
entry address is used by the dynamic linker in resolving references to thg
address of the function.

0.5 Relocation

9.5.1 Relocatjon Types

LSB-conforming systems shall support the relocation types described in Intel®
Itanium™Processor-specific Application Binary Interface, Chapter 4.3.

© 2006 ISO/IEC — All rights reserved 29

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

10 Program Loading and Dynamic Linking

10.1 Introduction

LSB-conforming implementations shall support the object file information and
system actions that create running programs as specified in the System V_ABI,
Intel® Itanium™ Processor-specific Application Binary Interface and as
supplemented by the Linux Standard Base Specification and this document.

10.2 Program Header

The program header shall be as defined in the Intel® Itanium™

10.3 Program Loading

10.4 Dynamic Linking

Processor-specific Application Binary Interface, Chapter 5.

10.2.1 Types

See Intel® Itanium™ Processor-specific Application Binary Interface,~Chapter
5.1.

10.2.2 Flags

See Intel® Itanium™ Processor-specific Application Bihary Interface, Chapter
5.1.

See Intel® Itanium™ Processor-specific Application Binary Interface, Chapter
5.2.

See Intel® Itanium™ Processot-specific Application Binary Interface, Chapter
5.3.

10.4.1 Dynamic Entries
10.4.1.1 ELF Dynamic Entries

The following) dynamic entries are defined in the Intel® Itanium™
Processor-specific Application Binary Interface, Chapter 5.3.2.

DT_RLTGOT

This entry's d_ptr member gives the address of the first byte in the
procedure linkage table

10.4.1.2 Additional Dynamic Entries

The following dynamic entries are defined here.

30

DT_RELACOUNT

The number of relative relocations in .rela.dyn

10.4.2 Global Offset Table

See Intel® Itanium™ Processor-specific Application Binary Interface, Chapter
5.3.4.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

10.4.3 Shared Object Dependencies

See Intel® [tanium™ Processor-specific Application Binary Interface, Chapter
5.3.3.

10.4.4 Function Addresses

See Intel® Itanium™ Processor-specific Application Binary Interface, Chapter
5.3.5.

10.4.5 Procedure Linkage Table

See Intel® Itanium™ Processor-specific Application Binary Interface, Chapter
5.3.6.

10.4.6 Initialization and Termination Functions

See Intel® Itanium™ Processor-specific Application Binary Interface, Chapter
5.3.7.

© 2006 ISO/IEC — All rights reserved 31

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

Il Base Libraries

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

11 Libraries

An LSB-conforming implementation shall support base libraries which provide
interfaces for accessing the operating system, processor and other hardware in
the system.

Only those interfaces that are unique to the Itanium™ platform are defined here.
This section should be used in conjunction with the corresponding section in the
Linux Standard Base Specification.

11.1 Program Interpreter/Dynamic Linker

1a64--<co--2
oo —S0—S~

ThaProaram-Intarnratar chall bha ZBabh /14 Bch
THETTO ghchrterprete—Sricroe/ o/ Tro—1Se

11.2 Interfaces for libc
Table 11-1 defines the library name and shared object name for the lib¢ library

Table 11-1 libc Definition

libc
libc.so.6.1

Library:

SONAME:

The behavior of the interfaces in this library is specified by the following speci-
fications:

[LFS] Large File Support
[LSB] ISO/IEC 23360-1
[SUSv2] SUSv2

[SUSv3] ISO POSIX (2003)
[SVID.3] SVID Issue 3
[SVID.4] SVID Issue 4

11.2.1 RPC

11.2.1.1 Interfaces for RPC

An LSB conférming implementation shall provide the architecture specifid
functions for RPC specified in Table 11-2, with the full mandatory functionality
as described in the referenced underlying specification.

Table-11-2 libc - RPC Function Interfaces

authnone_create(
GLIBC_2.2)
[SVID 4]

cInt_create(GLIB
C_2.2) [SVID 4]

clnt_pcreateerror
(GLIBC_2.2)
[SVID.4]

cInt_perrno(GLI
BC_2.2) [SVID.4]

cnt verror(CLIB
—IF \

C_2.2) [SVID 4]

cnt spcreateerro
—

r(GLIBC_2.2)
[SVID 4]

cnt sverrna(CLT
— \

BC_2.2) [SVID 4]

cnt sverror(CLL
— \

BC_2.2) [SVID 4]

key_decryptsessi
on(GLIBC_2.2)
[SVID.3]

pmap_getport(G
LIBC_2.2) [LSB]

pmap_set(GLIBC

_2.2) [LSB]

pmap_unset(GLI
BC_2.2) [LSB]

svc_getreqset(GL

IBC_2.2) [SVID.3]

svc_register(GLI
BC_2.2) [LSB]

sve_run(GLIBC_
2.2) [LSB]

svc_sendreply (G
LIBC_2.2) [LSB]

© 2006 ISO/IEC — All rights reserved

33

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

svcerr_auth(GLI
BC_2.2) [SVID.3]

svcerr_decode(G
LIBC_2.2)
[SVID.3]

sveerr_noproc(G
LIBC_2.2)
[SVID.3]

svcerr_noprog(G
LIBC_2.2)
[SVID.3]

svcerr_progvers(
GLIBC_2.2)
[SVID.3]

svcerr_systemerr
(GLIBC_Z.Z)
[SVID.3]

svecerr_weakauth
(GLIBC_2.2)
[SVID.3]

svctcp_create(GL
IBC_2.2) [LSB]

svcudp_create(G
LIBC_2.2) [LSB]

xdr_accepted_re
ply(GLIBC_2.2)
[SVID.3]

xdr_array(GLIBC
_2.2)[SVID.3]

xdr_bool(GLIBC
_2.2)[SVID.3]

xdr_bytes(GLIBC

xdr_callhdr(GLI

xdr_callmsg(GLI

xdr_char(GLIBC

—22Y[SVID=3}

BC— 22y {SVID3}

BC— 22y {SVID-3}

—22Y{SVID=3}

xdr_double(GLIB
C_2.2) [SVID.3]

xdr_enum(GLIB
C_2.2) [SVID.3]

xdr_float(GLIBC
_2.2) [SVID.3]

xdr_free(GLIBEX
2.2) [SVID.3]

xdr_int(GLIBC_2
2) [SVID.3]

xdr_long(GLIBC

_2.2)[SVID.3]

xdr_opaque(GLI
BC_2.2) [SVID.3]

xdr_opaque_aut
h(GLIBC_2.2)
[SVID.3]

xdr_pointer(GLI

xdr_reference(G

xdr_rejected_repl

xdr_replymsg(G

BC_2.2) [SVID.3] | LIBC_2.2) y(GLIBC_2.2) LIBC_2.2)

[SVID.3] [SVID.3] [SVID.3]
xdr_short(GLIBC | xdr_string(GLIB | xdr_u_¢har(GLIB | xdr_u_int(GLIBC
_2.2) [SVID.3] C_2.2) [SVID.3] C_2.2)sVID.3] _2.2) [LSB]

xdr_u_long(GLIB
C_2.2) [SVID.3]

xdr_u_short(GLI
BC_2.2) [SVID.3]

xdr_union(GLIB
C_2.2) [SVID.3]

xdr_vector(GLIB
C_2.2) [SVID.3]

xdr_void(GLIBC
_2.2)[SVID.3]

xdr_wrapstring(
GLIBC_2:2)
[SVID.3]

xdrmem_create(
GLIBC_2.2)
[SVID.3]

xdrrec_create(GL
IBC_2.2) [SVID.3]

xdrrec_eof(GLIB
C_2.2) [SVID.3]

11.2.2 System Calls

11.2.2 1dinterfaces for System Calls

Table 11-3 libc - System Calls Function Interfaces

An LSB conforming implementation shall provide the architecture specifig
functions for System Calls specified in Table 11-3, with the full mandatory]
ftinctionality as described in the referenced underlying specification.

34

fxstat(GLIBC getpgid(GLIB Ixstat(GLIBC 2 xmknod(GLIB
2.2) [LSB] C_2.2) [LSB] .2) [LSB] C_2.2) [LSB]
_ xstat(GLIBC_2. | access(GLIBC_2. | acct(GLIBC_2.2) | alarm(GLIBC_2.2
2) [LSB] 2) [SUSV3] [LSB]) [SUSV3]
brk(GLIBC_2.2) | chdir(GLIBC_2.2) | chmod(GLIBC_2. | chown(GLIBC_2.
[SUSV2] [SUSV3] 2) [SUSV3] 2) [SUSV3]
chroot(GLIBC_2. | clock(GLIBC_2.2) | close(GLIBC_2.2) | closedir(GLIBC_

2) [SUSv2]

[SUSV3]

[SUSV3]

2.2) [SUSV3]

© 2006 ISO/IEC —

All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

creat(GLIBC_2.2)
[SUSV3]

dup(GLIBC_2.2)
[SUSV3]

dup2(GLIBC_2.2)
[SUSV3]

execl(GLIBC_2.2)
[SUSV3]

execle(GLIBC_2.

execlp(GLIBC_2.

execv(GLIBC_2.2

execve(GLIBC_2.

2) [SUSV3] 2) [SUSV3]) [SUSV3] 2) [SUSV3]
execvp(GLIBC_2. | exit(GLIBC_2.2) [fchdir(GLIBC_2.2 | fchmod(GLIBC_2
2) [SUSV3] [SUSV3]) [SUSV3] 2) [SUSV3]
fchown(GLIBC_2 | fentl(GLIBC_2.2) | fdatasync(GLIBC | flock(GLIBC_2.2)
2) [SUSV3] [LSB] _2.2) [SUSv3] [LSB]
fork(GLIBC_2.2) | fstatvfs(GLIBC_2 | fsync(GLIBC_2.2 | ftime(GLIBC_2.2)
[SUSv3] 2) [SUSv3]) [SUSv3] [SUSv3]

ftruncate(GLIBC | getcontext(GLIB | getegid(GLIBC_2 | geteuid(GLIBC>2
_2.2) [SUSv3] C_2.2) [SUSV3] .2) [SUSV3] .2) [SUSV3]
getgid(GLIBC_2. | getgroups(GLIB | getitimer(GLIBC | getloadavg(GLIB
2) [SUSv3] C_2.2) [SUSV3] _2.2) [SUSv3] C_2.2),[LSB]
getpagesize(GLI | getpgid(GLIBC_ | getpgrp(GLIBC_ | @etpid(GLIBC_2.
BC_2.2) [SUSv2] | 2.2) [SUSV3] 2.2) [SUSV3] 2) [SUSV3]
getppid(GLIBC_ | getpriority(GLIB | getrlimit(GLIBE” | getrusage(GLIBC
2.2) [SUSv3] C_2.2) [SUSV3] 2.2) [SUSy3] _2.2) [SUSv3]
getsid(GLIBC_2. | getuid(GLIBC_2. | getwd(GLIBC_2. | initgroups(GLIB
2) [SUSv3] 2) [SUSv3] 2) {SUSv3] C_2.2) [LSB]
ioctl(GLIBC_2.2) | kill(GLIBC_2.2) killpg(GLIBC_2.2 | Ichown(GLIBC_2
[LSB] [LSB]) [SUSV3] .2) [SUSV3]
link(GLIBC_2.2) [lockf(GLIBCZ2.2) | lseek(GLIBC_2.2) | mkdir(GLIBC_2.
[LSB] [SUSV3] [SUSV3] 2) [SUSV3]
mkfifo(GLIBC_2. | mlock(GLIBC_2. | mlockall(GLIBC_ | mmap(GLIBC_2.
2) [SUSv3] 2).JSUSv3] 2.2) [SUSv3] 2) [SUSv3]
mprotect(GLIBC “~-msync(GLIBC_2. | munlock(GLIBC_ | munlockall(GLIB
_2.2) [SUSv3] 2) [SUSV3] 2.2) [SUSV3] C_2.2) [SUSV3]
munmap(GLIBC | nanosleep(GLIB | nice(GLIBC_2.2) | open(GLIBC_2.2)
_2.2) [SUSV3] C_2.2) [SUSV3] [SUSV3] [SUSvV3]
opendir(GLIBC_ | pathconf(GLIBC_ | pause(GLIBC_2.2 | pipe(GLIBC_2.2)
2:2) [SUSv3] 2.2) [SUSv3]) [SUSV3] [SUSV3]
poll(GLIBC_2.2) read(GLIBC_2.2) | readdir(GLIBC_2 | readdir_r(GLIBC
[SUSV3] [SUSV3] .2) [SUSv3] _2.2) [SUSV3]
readlink(GLIBC | readv(GLIBC 2.2 | rename(GLIBC 2 | rmdir(GLIBC 2.2
2.2) [SUSv3]) [SUSV3] .2) [SUSV3]) [SUSV3]
sbrk(GLIBC_2.2) [sched_get_priorit | sched_get_priorit | sched_getparam(
[SUSv2] y_max(GLIBC_2. | y_min(GLIBC_2. | GLIBC_2.2)

2) [SUSV3] 2) [SUSV3] [SUSV3]

sched_getschedu

sched_rr_get_int

sched_setparam(

sched_setschedul

ler(GLIBC_2.2) erval(GLIBC_2.2) | GLIBC_2.2) er(GLIBC_2.2)
[SUSv3] [SUSvV3] [SUSv3] [SUSv3]
sched_yield(GLI | select(GLIBC_2.2 | setcontext(GLIB [setegid(GLIBC_2.

© 2006 ISO/IEC — All rights reserved

35

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

BC_2.2) [SUSv3] |[)[SUSV3] C_2.2) [SUSV3] 2) [SUSV3]
seteuid(GLIBC_2 | setgid(GLIBC_2. | setitimer(GLIBC_ | setpgid(GLIBC_2
.2) [SUSV3] 2) [SUSV3] 2.2) [SUSv3] .2) [SUSV3]
setpgrp(GLIBC_2 | setpriority(GLIB | setregid(GLIBC_ | setreuid(GLIBC_
.2) [SUSV3] C_2.2) [SUSV3] 2.2) [SUSv3] 2.2) [SUSv3]
setrlimit(GLIBC_ | setrlimit64(GLIB | setsid(GLIBC_2.2 | setuid(GLIBC_2.
2.2) [SUSv3] C_2.2) [LFS]) [SUSV3] 2) [SUSV3]
sleep(GLIBC_2.2) | statvfs(GLIBC_2. | stime(GLIBC_2.2 | symlink(GLIBC_
[SUSv3] 2) [SUSv3]) [LSB] 2.2) [SUSv3]
synctGHEBE22)sysconf{GHBE 2T thme(GHBE22)thmestGHBE22
[SUSV3] .2) [SUSV3] [SUSV3]) [SUSV3]
truncate(GLIBC_ | ulimit(GLIBC_2. | umask(GLIBC_2. | uname(GLIBC 2.
2.2) [SUSv3] 2) [SUSV3] 2) [SUSV3] 2) [SUSv3]
unlink(GLIBC_2. | utime(GLIBC_2.2 [utimes(GLIBC_2. | vfonk(GLIBC_2.2
2) [LSB]) [SUSV3] 2) [SUSv3] KSUSv3]
wait(GLIBC_2.2) | wait4(GLIBC_2.2 | waitpid(GLIBC. \})write(GLIBC_2.2)
[SUSV3]) [LSB] 2.2) [LSB] [SUSV3]

writev(GLIBC_2.
2) [SUSV3]

11.2.3 Standard 1/O

11.2.3.1 Interfaces for Standard /O

An LSB conforming implementation shall provide the architecture specifig
functions for Standard I/O specified in Table 11-4, with the full mandatory
functionality as described in’the referenced underlying specification.

Table 11-4 libc - Standard I/O Function Interfaces

_IO_feof(GLIBC

_IO_getc(GLIBC

_IO_putc(GLIBC

_1O_puts(GLIBC

36

2.2) [LSB] _2.2) [LSB] _2.2) [LSB] _2.2) [LSB]
asprintf(GRIBC_ [clearerr(GLIBC_2 | ctermid(GLIBC_ | fclose(GLIBC_2.2
2.2) [IISB] .2) [SUSV3] 2.2) [SUSv3]) [SUSV3]
fdopen(GLIBC_2. | feof(GLIBC_2.2) | ferror(GLIBC_2.2 | fflush(GLIBC_2.2
2)'[SUSv3] [SUSvV3]) [SUSV3]) [SUSV3]
fflush_unlocked([fgetc(GLIBC_2.2) | fgetpos(GLIBC_2 | fgets(GLIBC_2.2)
GLIBC_2.2) [LSB] | [SUSv3] .2) [SUSV3] [SUSvV3]
foetwe_umntocked | filenmo(GEIBC 22T flockfite(GEIBC T foper(GEIBC 22
(GLIBC_2.2)) [SUSV3] 2.2) [SUSv3]) [SUSV3]

[LSB]

fprintf(GLIBC_2. | fputc(GLIBC_2.2) | fputs(GLIBC_2.2) | fread(GLIBC_2.2)
2) [SUSv3] [SUSvV3] [SUSV3] [SUSvV3]
freopen(GLIBC_2 | fscanf(GLIBC_2.2 | fseek(GLIBC_2.2) | fseeko(GLIBC_2.
.2) [SUSV3]) [LSB] [SUSV3] 2) [SUSv3]

fsetpos(GLIBC_2.

ftell(GLIBC_2.2)

ftello(GLIBC_2.2)

fwrite(GLIBC_2.2

© 2006 ISO/IEC —

All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

2) [SUSv3] [SUSV3] [SUSV3]) [SUSV3]
getc(GLIBC_2.2) | getc_unlocked(G | getchar(GLIBC_2 | getchar_unlocke
[SUSV3] LIBC_2.2) .2) [SUSv3] d(GLIBC_2.2)
[SUSv3] [SUSv3]
getw(GLIBC_2.2) | pclose(GLIBC_2. | popen(GLIBC_2. | printf(GLIBC_2.2
[SUSV2] 2) [SUSv3] 2) [SUSV3]) [SUSV3]
putc(GLIBC_2.2) | putc_unlocked(G | putchar(GLIBC_ | putchar_unlocke

[SUSV3] LIBC_2.2) 2.2) [SUSV3] d(GLIBC_2.2)
[SUSV3] [SUSV3]
puts(GLIBC_2.2) | putw(GLIBC 2.2 | remove(GLIBC 2 | rewind(GLIBC 2
[SUSV3]) [SUSV2] .2) [SUSV3] .2) [SUSV3]
rewinddir(GLIB | scanf(GLIBC_2.2) | seekdir(GLIBC_2 | setbuf(GLIBE 2
C_2.2) [SUSV3] [LSB] .2) [SUSV3] 2) [SUSv3]
setbuffer(GLIBC | setvbuf(GLIBC_2 | snprintf(GLIBC_ | sprintf(GLIBC_2.
_2.2) [LSB] .2) [SUSV3] 2.2) [SUSv3] 2){SUSV3]
sscanf(GLIBC_2. | telldir(GLIBC_2. | tempnam(GLIBCA| uhgetc(GLIBC_2.
2) [LSB] 2) [SUSv3] _2.2) [SUSv3] 2) [SUSv3]
vasprintf(GLIBC | vdprintf(GLIBC_ | vfprintf(GLIBC_ | vprintf(GLIBC_2.
_2.2) [LSB] 2.2) [LSB] 2.2) [SUSv3] 2) [SUSv3]
vsnprintf(GLIBC | vsprintf(GLIBC_
_2.2) [SUSv3] 2.2) [SUSv3]

An LSB conforming implementation.shall provide the architecture specific data
interfaces for Standard I/O specified in Table 11-5, with the full mandatory
functionality as described in the'referenced underlying specification.

Table 11-5 libc - Standard /O Data Interfaces

stderr(GLIBC_2.2
) [SUSV3]

stdin(GLIBC_2.2)
[SUSV3]

stdout(GLIBC_2.
2) [SUSV3]

11.2.4 Signal Handling

11.2 40 Interfaces for Signal Handling

An\LSB conforming implementation shall provide the architecture specifig
furictions for Signal Handling specified in Table 11-6, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-6 libc - Signal Handling Function Interfaces

__libc_current_si
grtmax(GLIBC_2
.2) [LSB]

__libc_current_si
grtmin(GLIBC_2.
2) [LSB]

__sigsetjmp(GLI
BC_2.2) [LSB]

__sysv_signal(G
LIBC_2.2) [LSB]

© 2006 ISO/IEC — All rights reserved

bsd_signal(GLIB | psignal(GLIBC_2 | raise(GLIBC_2.2) | sigaction(GLIBC
C_2.2) [SUSV3] .2) [LSB] [SUSv3] _2.2) [SUSv3]
sigaddset(GLIBC | sigaltstack(GLIB | sigandset(GLIBC | sigdelset(GLIBC_
_2.2) [SUSv3] C_2.2) [SUSV3] _2.2) [LSB] 2.2) [SUSv3]
sigemptyset(GLI | sigfillset(GLIBC_ [sighold(GLIBC_2 | sigignore(GLIBC
37

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

BC_2.2) [SUSv3] | 2.2) [SUSv3] .2) [SUSV3] _2.2) [SUSv3]
siginterrupt(GLI | sigisemptyset(GL | sigismember(GLI | siglongjmp(GLIB
BC_2.2) [SUSv3] [IBC_2.2) [LSB] BC_2.2) [SUSv3] | C_2.2) [SUSv3]
signal(GLIBC_2.2 | sigorset(GLIBC_ | sigpause(GLIBC_ | sigpending(GLIB
) [SUSV3] 2.2) [LSB] 2.2) [SUSv3] C_2.2) [SUSV3]
sigprocmask(GLI | sigqueue(GLIBC | sigrelse(GLIBC_2 | sigreturn(GLIBC
BC_2.2) [SUSv3] | _2.2) [SUSv3] 2) [SUSV3] _2.2) [LSB]
sigset(GLIBC_2.2 | sigsuspend(GLIB | sigtimedwait(GL | sigwait(GLIBC_2
) [SUSV3] C_2.2) [SUSV3] IBC_2.2) [SUSV3] | .2) [SUSv3]

. e L (OOT IO
DLBVVCMLIIILU\\JLAU

C_2.2) [SUSV3]

An LSB conforming implementation shall provide the architecture specific data
interfaces for Signal Handling specified in Table 11-7, with the full’thandatoryj]
functionality as described in the referenced underlying specification!

Table 11-7 libc - Signal Handling Data Interfaces

_sys_siglist(GLIB

C_2.3.3) [LSB]

11.2.5 Localization Functions

11.2.5.1 Interfaces for Localization-Functions

An LSB conforming implementatjonsshall provide the architecture specifig
functions for Localization Functions specified in Table 11-8, with the full
mandatory functionality as descfibed in the referenced underlying specification.

Table 11-8 libc - Localization Functions Function Interfaces

38

bind_textdomain [.bindtextdomain(| catclose(GLIBC_ | catgets(GLIBC_2.
codeset(GLIBC+|.GLIBC_2.2) [LSB] | 2.2) [SUSv3] 2) [SUSV3]

2.2) [LSB]

catopen(GLIBC_ | dcgettext(GLIBC | dengettext(GLIB | dgettext(GLIBC_
2.2) [SUSy3] _2.2) [LSB] C_2.2) [LSB] 2.2) [LSB]
dngettext(GLIBC | gettext(GLIBC_2. | iconv(GLIBC_2.2 [iconv_close(GLIB
52.2) [LSB] 2) [LSB]) [SUSV3] C_2.2) [SUSV3]
iconv_open(GLI [localeconv(GLIB | ngettext(GLIBC_ [nl_langinfo(GLIB
BC_2.2) [SUSv3] | C_2.2) [SUSv3] 2.2) [LSB] C_2.2) [SUSV3]
setlocale(GLIBC_ | textdomain(GLIB

2.2) [SUSv3] C_2.2) [LSB]

An LSB conforming implementation shall provide the architecture specific data
interfaces for Localization Functions specified in Table 11-9, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-9 libc - Localization Functions Data Interfaces

_nl_msg_cat_cntr
(GLIBC_2.2)

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

| [LSB]

11.2.6 Socket Interface

11.2.6.1 Interfaces for Socket Interface

An LSB conforming implementation shall provide the architecture specific
functions for Socket Interface specified in Table 11-10, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-10 libc - Socket Interface Function Interfaces

__h _errno_locati

accept(GLIBC_2.

bind(GLIBC_2.2)

bindresvport(GL

2) [SUSV3]

C_2:2){susv3]

OoN(GLIBC_22) 2y [SUSV3] [SUSV3] TBC_Z.2) [LSB]
[LSB]
connect(GLIBC_2 | gethostid(GLIBC | gethostname(GLI | getpeername(GL
.2) [SUSV3] _2.2) [SUSv3] BC_2.2) [SUSv3] [IBC_2.2),[SUSv3]
getsockname(GL | getsockopt(GLIB | if freenameindex | if_indextoname(
IBC_2.2) [SUSv3] | C_2.2) [LSB] (GLIBC_2.2) GLIBC_2.2)

[SUSV3] [SUSV3]
if nameindex(GL | if_nametoindex(| listen(GLIBC\2:2" | recv(GLIBC_2.2)
IBC_2.2) [SUSv3] | GLIBC_2.2)) [SUSV3] [SUSV3]

[SUSv3]
recvfrom(GLIBC | recvmsg(GLIBC_ | send(GLIBC_2.2) | sendmsg(GLIBC
_2.2) [SUSv3] 2.2) [SUSv3] [SUSv3] _2.2) [SUSv3]
sendto(GLIBC_2. | setsockopt(GLIB\} shutdown(GLIB | sockatmark(GLI
2) [SUSV3] C_2.2) [LSB] C_2.2) [SUSV3] BC_2.2.4)
[SUSv3]

socket(GLIBC_2. | socketpair(GLIB

11.2.7 Wide Characters

11.2.7.1 Interfaces for Wide Characters

An LSBconforming implementation shall provide the architecture specifig
functiens/for Wide Characters specified in Table 11-11, with the full mandatory]
fungctionality as described in the referenced underlying specification.

Table 11-11 libc - Wide Characters Function Interfaces

__wecstod_intern
al(GLIBC_2.2)

__wecstof_interna
1(GLIBC_2.2)

__wecstol_interna
1(GLIBC_2.2)

__wecstold_intern
al(GLIBC_2.2)

[CSB] [CSB] [CSB] [CSB]
__westoul_intern | btowc(GLIBC_2. | fgetwc(GLIBC_2. | fgetws(GLIBC_2.
al(GLIBC_2.2) 2) [SUSV3] 2) [SUSV3] 2) [SUSV3]

[LSB]

fputwc(GLIBC_2. | fputws(GLIBC_2. | fwide(GLIBC_2.2 | fwprintf(GLIBC_

2) [SUSV3] 2) [SUSV3]) [SUSV3] 2.2) [SUSvV3]
fwscanf(GLIBC_ | getwc(GLIBC_2.2 | getwchar(GLIBC | mblen(GLIBC_2.
2.2) [LSB]) [SUSV3] _2.2) [SUSV3] 2) [SUSV3]

© 2006 ISO/IEC — All rights reserved

39

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

40

mbrlen(GLIBC_2 | mbrtowc(GLIBC | mbsinit(GLIBC_2 | mbsnrtowcs(GLI
.2) [SUSv3] _2.2) [SUSV3] .2) [SUSv3] BC_2.2) [LSB]
mbsrtowcs(GLIB | mbstowes(GLIB | mbtowc(GLIBC_ | putwe(GLIBC_2.
C_2.2) [SUSV3] C_2.2) [SUSV3] 2.2) [SUSV3] 2) [SUSV3]
putwchar(GLIBC | swprintf(GLIBC_ | swscanf(GLIBC_ | towctrans(GLIBC
_2.2) [SUSV3] 2.2) [SUSv3] 2.2) [LSB] _2.2) [SUSV3]
towlower(GLIBC | towupper(GLIBC | ungetwc(GLIBC_ | viwprintf(GLIBC
_2.2) [SUSV3] _2.2) [SUSV3] 2.2) [SUSV3] _2.2) [SUSV3]
viwscanf(GLIBC | vswprintf(GLIBC | vswscanf(GLIBC | vwprintf(GLIBC
2.2) [1SR] 2.2) [SUSv3] 2.2) [1SR] 2.2) [SUSv3]
vwscanf(GLIBC_ | wepcpy(GLIBC_ | wepnepy(GLIBC | wertomb(GLIBE
2.2) [LSB] 2.2) [LSB] _2.2) [LSB] _2.2) [SUSv3]
wcescasecmp(GLI | wescat(GLIBC_2. | weschr(GLIBC_2. | wesemp(GLIBC_
BC_2.2) [LSB] 2) [SUSv3] 2) [SUSv3] 2.2) [SUSV3]
wescoll(GLIBC_2 | wescpy(GLIBC_2 | wesespn(GLIBC_ | yesdup(GLIBC_
.2) [SUSv3] .2) [SUSv3] 2.2) [SUSv3] 2.2) [LSB]
wesftime(GLIBC | weslen(GLIBC_2. | wesncasecmp(GL | wesncat(GLIBC
_2.2) [SUSV3] 2) [SUSv3] IBC_2.2) [LSB] 2.2) [SUSv3]
wesnemp(GLIBC | wesnepy(GLIBC_ | wesnlen(GLIBC_ | wesnrtombs(GLI
_2.2) [SUSV3] 2.2) [SUSV3] 2.2) [LSB] BC_2.2) [LSB]
wespbrk(GLIBC_ | wesrchr(GLIBC_ - {\wsrtombs(GLIB | wesspn(GLIBC_2
2.2) [SUSV3] 2.2) [SUSV3] C_2.2) [SUSV3] .2) [SUSv3]
wesstr(GLIBC_2. | westod(GLIBG_2 | westof(GLIBC_2. | westoimax(GLIB
2) [SUSv3] .2) [SUSv3] 2) [SUSv3] C_2.2) [SUSV3]
westok(GLIBC_2. | westol(GLIBC_2. | westold(GLIBC_ | westoll(GLIBC_2.
2) [SUSv3] 2).JSUSv3] 2.2) [SUSV3] 2) [SUSv3]
wcstombs(GLIB westoq(GLIBC_2. | westoul(GLIBC_ | westoull(GLIBC_
C_2.2) [SUSV3] 2) [LSB] 2.2) [SUSV3] 2.2) [SUSV3]
westoumax(GLIB | westouq(GLIBC_ | weswes(GLIBC_2 | weswidth(GLIBC
C_2.2){SUSv3] 2.2) [LSB] .2) [SUSV3] _2.2) [SUSV3]
wesxfrm(GLIBC_ | wetob(GLIBC_2. | wetomb(GLIBC_ | wctrans(GLIBC_
2:2)' [SUSv3] 2) [SUSv3] 2.2) [SUSV3] 2.2) [SUSV3]
wetype(GLIBC_2 | wewidth(GLIBC | wmemchr(GLIB | wmemcmp(GLIB
.2) [SUSv3] _2.2) [SUSV3] C_2.2) [SUSV3] C_2.2) [SUSV3]
wmemcpy(GLIB | wmemmove(GLI | wmemset(GLIBC | wprintf(GLIBC 2
C_2.2) [SUSV3] BC_2.2) [SUSv3] | _2.2) [SUSV3] .2) [SUSV3]

wscanf(GLIBC_2.
2) [LSB]

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

11.2.8 String Functions

ISO/IEC 23360-3:2006(E)

11.2.8.1 Interfaces for String Functions

An LSB conforming implementation shall provide the architecture specific
functions for String Functions specified in Table 11-12, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-12 libc - String Functions Function Interfaces

__mempcpy(GLI | __rawmemchr(G | __stpcpy(GLIBC | __strdup(GLIBC
BC_2.2) [LSB] LIBC_2.2) [LSB] [_2.2) [LSB] _2.2) [LSB]

strtod_internal strtof _internal(strtok r(GLIB strtol_internal(
(GLIBC_2.2) GLIBC_2.2) [LSB] | C_2.2) [LSB] GLIBC_2.2) [LSB]
[LSB]

strtold_interna

strtoll_internal

__strtoul_interna

strtoullLintern

) [LSB]

2) [SUSV3]

I(GLIBC_2.2) (GLIBC_2.2) I(GLIBC_2.2) al(GLIBC2.2)
[LSB] [LSB] [LSB] [LSB]
bemp(GLIBC_2.2 | bcopy(GLIBC_2. | bzero(GLIBC_2.2 | ffs(GLIBC_2.2)

) [SUSV3] 2) [SUSv3]) [SUSV3] [SUSV3]
index(GLIBC_2.2 | memccpy(GLIBC | memchr(GEIBC_ | memcmp(GLIBC
) [SUSV3] _2.2) [SUSv3] 2.2) [SUSH3] _2.2) [SUSv3]
memcpy(GLIBC_ | memmove(GLIB | memrchr(GLIBC | memset(GLIBC_
2.2) [SUSv3] C_2.2) [SUSV3] _2.2) [LSB] 2.2) [SUSV3]
rindex(GLIBC_2. | stpcpy(GLIBC_2.. [“stpncpy(GLIBC_ | strcasecmp(GLIB
2) [SUSv3] 2) [LSB] 2.2) [LSB] C_2.2) [SUSV3]
strcasestr(GLIBC | strcat(GLIBC=2.2 | strchr(GLIBC_2.2 | stremp(GLIBC_2.
_2.2) [LSB]) [SUSV3]) [SUSV3] 2) [SUSv3]
strcol(GLIBC_2. | strcpy(GLIBC_2. | strespn(GLIBC_2 | strdup(GLIBC_2.
2) [SUSv3] 2y {SUSv3] .2) [SUSV3] 2) [SUSv3]
strerror(GLIBC_2 || strerror_r(GLIBC | strfmon(GLIBC_ | strftime(GLIBC_
.2) [SUSV3] _2.2) [LSB] 2.2) [SUSv3] 2.2) [SUSv3]
strlen(GLIBC_2.2 | strncasecmp(GLI | strncat(GLIBC_2. | strncmp(GLIBC_
) [SUSV3] BC_2.2) [SUSv3] | 2) [SUSv3] 2.2) [SUSv3]
sttncpy(GLIBC_2 | strndup(GLIBC_ | strnlen(GLIBC_2. | strpbrk(GLIBC_2
12) [SUSV3] 2.2) [LSB] 2) [LSB] .2) [SUSv3]
strptime(GLIBC_ | strrchr(GLIBC_2. | strsep(GLIBC_2.2 | strsignal(GLIBC_
2.2) [LSB] 2) [SUSv3]) [LSB] 2.2) [LSB]
strspr{GHBC 22— strot{GHBC 22 strtef{GHBC 22 strteima{GHBC
2) [SUSv3] [SUSV3]) [SUSV3] _2.2) [SUSv3]
strtok(GLIBC_2.2 | strtok_r(GLIBC_ | strtold(GLIBC_2. | strtoll(GLIBC_2.2
) [SUSV3] 2.2) [SUSv3] 2) [SUSv3]) [SUSV3]
strtoq(GLIBC_2.2 | strtoull(GLIBC_2 | strtoumax(GLIB | strtouq(GLIBC_2

C_2.2) [SUSV3]

2) [LSB]

strxfrm(GLIBC_2
.2) [SUSv3]

swab(GLIBC_2.2)
[SUSV3]

© 2006 ISO/IEC — All rights reserved

41

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

11.2.9 IPC Functions

11.2.9.1 Interfaces for IPC Functions

An LSB conforming implementation shall provide the architecture specific
functions for IPC Functions specified in Table 11-13, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-13 libc - IPC Functions Function Interfaces

ftok(GLIBC_2.2)

msgctl(GLIBC_2.

msgget(GLIBC_2

msgrcv(GLIBC_2

[SUSv3] 2) [SUSv3] .2) [SUSv3] .2) [SUSv3]
msgsnd(GLIBC semctl(GLIBC 2. [semget(GLIBC 2. | semop(GLIBC 2.
2.2) [SUSV3] 2) [SUSv3] 2) [SUSv3] 2) [SUSv3]
shmat(GLIBC_2. | shmctl(GLIBC_2. | shmdt(GLIBC_2. | shmget(GLIBC 2
2) [SUSV3] 2) [SUSV3] 2) [SUSV3] .2) [SUSw3]

11.2.10 Regular Expressions

11.2.10.1 Interfaces for Regular Expressions

An LSB conforming implementation shall provide the”architecture specifig
functions for Regular Expressions specified in_ Table 11-14, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-14 libc - Regular Expressions Function Interfaces

regcomp(GLIBC_
2.2) [SUSV3]

regerror(GLIBC_
2.2) [SUSv3]

regexec(GLIBC_2
.3.4) [LSB]

regfree(GLIBC_2.
2) [SUSV3]

11.2.11 Character Type Functions

11.2.11.1 Interfaces for‘Character Type Functions

An LSB conforming, @mplementation shall provide the architecture specifig
functions for Chardcter Type Functions specified in Table 11-15, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-18§ libc - Character Type Functions Function Interfaces

42

__ctype/get_ mb_ | _tolower(GLIBC | _toupper(GLIBC | isalnum(GLIBC_
cur_max(GLIBC_ | _2.2) [SUSv3] _2.2) [SUSV3] 2.2) [SUSV3]
2:2) [LSB]
isalpha(GLIBC_2 | isascii(GLIBC_2.2 | iscntrl(GLIBC_2. | isdigit(GLIBC_2.
.2) [SUSv3]) [SUSV3] 2) [SUSV3] 2) [SUSV3]
1sorapnh(CIIRC 2 1slovwer(CLIBC 2 1snrint(CILIBC 2 ispunctCLIBC 2
Rkt daN = X — P AN — P £ —
.2) [SUSvV3] .2) [SUSvV3] 2) [SUSv3] .2) [SUSvV3]
isspace(GLIBC_2. | isupper(GLIBC_2 | iswalnum(GLIBC | iswalpha(GLIBC
2) [SUSV3] .2) [SUSvV3] _2.2) [SUSV3] _2.2) [SUSV3]
iswblank(GLIBC | iswentrl(GLIBC_ | iswctype(GLIBC | iswdigit(GLIBC_
_2.2) [SUSV3] 2.2) [SUSV3] _2.2) [SUSV3] 2.2) [SUSV3]
iswgraph(GLIBC | iswlower(GLIBC | iswprint(GLIBC_ | iswpunct(GLIBC
_2.2) [SUSV3] _2.2) [SUSV3] 2.2) [SUSV3] _2.2) [SUSV3]

© 2006 ISO/IEC —

All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

iswspace(GLIBC [iswupper(GLIBC | iswxdigit(GLIBC | isxdigit(GLIBC_2
_2.2) [SUSv3] _2.2) [SUSv3] _2.2) [SUSv3] .2) [SUSV3]
toascii(GLIBC_2. | tolower(GLIBC_ | toupper(GLIBC_

2) [SUSV3] 2.2) [SUSV3] 2.2) [SUSV3]

11.2.12 Time Manipulation

11.2.12.1 Interfaces for Time Manipulation

An LSB conforming implementation shall provide the architecture specific
functions for Time Manipulation specified in Table 11-16, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-16 libc - Time Manipulation Function Interfaces

adjtime(GLIBC_2

asctime(GLIBC_2

asctime_r(GLIBC

ctime(GIABC¢ 2.2

_2.2) [SUSV3]

C_2.2) [SUSV3]

.2) [LSB] .2) [SUSV3] _2.2) [SUSv3]) [SUS¥3]
ctime_r(GLIBC_2 | difftime(GLIBC_ | gmtime(GLIBC_ | gmtime_r(GLIBC
.2) [SUSv3] 2.2) [SUSV3] 2.2) [SUSV3] _2:2) [SUSV3]
localtime(GLIBC | localtime_r(GLIB | mktime(GLIBG, | tzset(GLIBC_2.2)

2.2) [SUSV3]

[SUSV3]

ualarm(GLIBC_2
.2) [SUSV3]

An LSB conforming implementation shall ‘provide the architecture specific data
interfaces for Time Manipulation specified in Table 11-17, with the full
mandatory functionality as described\in the referenced underlying specification.

Table 11-17 libc - Time Manipulation Data Interfaces

__daylight(GLIB | __timézone(GLIB | __tzname(GLIBC | daylight(GLIBC_
C_2.2) [LSB] C-22) [LSB] _2.2) [LSB] 2.2) [SUSvV3]
timezone(GLIBC~|-tzname(GLIBC_2

_2.2) [SUSv3] .2) [SUSV3]

11.2.13sFerminal Interface Functions

11.2:43.1 Interfaces for Terminal Interface Functions

An' LSB conforming implementation shall provide the architecture specifid
functions for Terminal Interface Functions specified in Table 11-18, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-18 libc - Terminal Interface Functions Function Interfaces

cfgetispeed(GLIB | cfgetospeed(GLI | cfmakeraw(GLIB | cfsetispeed(GLIB
C_2.2) [SUSV3] BC_2.2) [SUSv3] [C_2.2)[LSB] C_2.2) [SUSV3]
cfsetospeed(GLI | cfsetspeed(GLIB | tcdrain(GLIBC_2. | tcflow(GLIBC_2.
BC_2.2) [SUSv3] [C_2.2) [LSB] 2) [SUSV3] 2) [SUSV3]
teflush(GLIBC_2. | tcgetattr(GLIBC_ | tcgetpgrp(GLIBC | tcgetsid(GLIBC_
2) [SUSv3] 2.2) [SUSv3] _2.2) [SUSv3] 2.2) [SUSv3]
tcsendbreak(GLI | tcsetattr(GLIBC_ | tcsetpgrp(GLIBC

© 2006 ISO/IEC — All rights reserved

43

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

[BC22)[SUSV3] [22)[SUSV3]

| _2.2) [SUSV3]

11.2.14 System Database Interface

11.2.14.1 Interfaces for System Database Interface

An LSB conforming implementation shall provide the architecture specific
functions for System Database Interface specified in Table 11-19, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-19 libc - System Database Interface Function Interfaces

endgrent(GLIBC | endprotoent(GLI | endpwent(GLIB | endservent(GLIB
—Z2)[SUSV3] BC_Z 2y [SUSV3] | C_Z2) [SUSV3] T 22y [SUSV3]
endutent(GLIBC | endutxent(GLIB | getgrent(GLIBC_ | getgrgid(GLIBE.
_2.2) [LSB] C_2.2) [SUSV3] 2.2) [SUSv3] 2.2) [SUSy3]
getgrgid_r(GLIB | getgrnam(GLIBC | getgrnam_r(GLI | getgrouplist(GLI
C_2.2) [SUSV3] _2.2) [SUSV3] BC_2.2) [SUSv3] | BC72:2.4) [LSB]
gethostbyaddr(G | gethostbyname(| getprotobyname(.| getprotobynumb
LIBC_2.2) GLIBC_2.2) GLIBC_2.2) er(GLIBC_2.2)
[SUSV3] [SUSV3] [SUSV3] [SUSV3]
getprotoent(GLI | getpwent(GLIBC | getpwnam(GLIB | getpwnam_r(GLI
BC_2.2) [SUSv3] | _2.2) [SUSv3] C_2.2){SUSv3] BC_2.2) [SUSv3]
getpwuid(GLIBC | getpwuid_r(GLI | getservbyname(| getservbyport(G
_2.2) [SUSv3] BC_2.2) [SUSv3] {.GLIBC_2.2) LIBC_2.2)
[SUSV3] [SUSV3]
getservent(GLIB | getutent(GLIBC_ | getutent_r(GLIB | getutxent(GLIBC
C_2.2) [SUSV3] 2.2) [LSB] C_2.2) [LSB] _2.2) [SUSV3]
getutxid(GLIBC_ | getutkline(GLIB | pututxline(GLIB | setgrent(GLIBC_
2.2) [SUSv3] C_2:2) [SUSV3] C_2.2) [SUSV3] 2.2) [SUSvV3]
setgroups(GLIBC:\|-setprotoent(GLIB | setpwent(GLIBC | setservent(GLIB
_2.2) [LSB] C_2.2) [SUSV3] _2.2) [SUSv3] C_2.2) [SUSV3]
setutent(GLIBC_ | setutxent(GLIBC | utmpname(GLIB
2.2) [LSB] _2.2) [SUSV3] C_2.2) [LSB]

11.:2:15 Language Support

11.2.15.1 Interfaces for Language Support

An LSB conforming implementation shall provide the architecture specifig
functions for Language Support specified in Table 11-20, with the full mandatory

44

functionality as described in the referenced underlying specification.

Table 11-20 libc - Language Support Function Interfaces

__libc_start mai
n(GLIBC_2.2)
[LSB]

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

11.2.16 Large File Support

ISO/IEC 23360-3:2006(E)

11.2.16.1 Interfaces for Large File Support

An LSB conforming implementation shall provide the architecture specific
functions for Large File Support specified in Table 11-21, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-21 libc - Large File Support Function Interfaces

__ fxstat64(GLIB __Ixstat64(GLIBC | __xstat64(GLIBC | creat64(GLIBC_2.
C_2.2) [LSB] _2.2) [LSB] _2.2) [LSB] 2) [LFS]
fgetpos64(GLIBC | fopen64(GLIBC freopen64(GLIBC | fseeko64(GLIBC
_2.2) [LES] 2.2) [LFS] _2.2) [LES] 2.2) [LFS]
fsetpos64(GLIBC | fstatvfs64(GLIBC | ftello64(GLIBC_2 | ftruncate64(GDIB
_2.2) [LFS] _2.2) [LFS] 2) [LFS] C_2.2) [LES]
ftw64(GLIBC_2.2 | getrlimit64(GLIB | lockf64(GLIBC_2 | mkstemp64(GLI
) [LFS] C_2.2) [LFS] .2) [LFS] BE_2.2) [LFS]
mmap64(GLIBC_ | nftw64(GLIBC_2. | readdir64(GLIBC|,statvfs64(GLIBC_
2.2) [LFS] 3.3) [LFS] _2.2) [LES] 2.2) [LFS]
tmpfile64(GLIBC | truncate64(GLIB

_2.2) [LFS] C_2.2) [LFS]

11.2.17 Standard Library

11.2.17.1 Interfaces for Standard-Library

An LSB conforming implementation shall provide the architecture specifig
functions for Standard Library-specified in Table 11-22, with the full mandatoryj]
functionality as described in the referenced underlying specification.

Table 11-22 libc - Standard Library Function Interfaces

_Exit(GLIBC_2.2)
[SUSV3]

-_assert_fail(GLI
BC_2.2) [LSB]

__cxa_atexit(GLI
BC_2.2) [LSB]

__errno_location(
GLIBC_2.2) [LSB]

__fpending(GLIB | __getpagesize(G | __isinf(GLIBC_2. | __isinff(GLIBC_2
C_2.2){LSB] LIBC_2.2) [LSB] | 2) [LSB] .2) [LSB]
_disinfl(GLIBC_2 | __isnan(GLIBC_2 | __isnanf(GLIBC_ | __isnanl(GLIBC_
.2)'[LSB] 2) [LSB] 2.2) [LSB] 2.2) [LSB]

_ sysconf(GLIBC | _exit(GLIBC_2.2) | _longjmp(GLIBC | _setjmp(GLIBC_
_2.2) [LSB] [SUSv3] _2.2) [SUSv3] 2.2) [SUSv3]

a641(GLIBC 2.2)

abort(GLIBC 2.2)

abs(GILIBC 2.2)

atof(GLIBC 2.2)

[SUSV3]

[SUSV3]

[SUSV3]

[SUSV3]

atoi(GLIBC_2.2)
[SUSV3]

atol(GLIBC_2.2)
[SUSV3]

atoll(GLIBC_2.2)
[SUSV3]

basename(GLIBC
_2.2) [SUSv3]

bsearch(GLIBC_2 | calloc(GLIBC_2.2 | closelog(GLIBC_ | confstr(GLIBC_2.
.2) [SUSv3]) [SUSV3] 2.2) [SUSv3] 2) [SUSv3]
cuserid(GLIBC_2 | daemon(GLIBC_ | dirname(GLIBC_ | div(GLIBC_2.2)
.2) [SUSV2] 2.2) [LSB] 2.2) [SUSv3] [SUSv3]

© 2006 ISO/IEC — All rights reserved

45

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

drand48(GLIBC_
2.2) [SUSV3]

ecvt(GLIBC_2.2)
[SUSV3]

erand48(GLIBC_
2.2) [SUSV3]

err(GLIBC_2.2)
[LSB]

error(GLIBC_2.2)

errx(GLIBC_2.2)

fcvt(GLIBC_2.2)

fmtmsg(GLIBC_2

[LSB] [LSB] [SUSV3] .2) [SUSV3]
fnmatch(GLIBC_ | fpathconf(GLIBC | free(GLIBC_2.2) | freeaddrinfo(GLI
2.2.3) [SUSv3] _2.2) [SUSv3] [SUSV3] BC_2.2) [SUSv3]
ftrylockfile(GLIB | ftw(GLIBC_2.2) | funlockfile(GLIB | gai_strerror(GLI

C_2.2) [SUSV3]

[SUSV3]

C_2.2) [SUSV3]

BC_2.2) [SUSV3]

gcvt(GLIBC_2.2)
[SUSv3]

getaddrinfo(GLI
BC_22) [SUSv3]

getcwd(GLIBC_2
2) [SUSv3]

getdate(GLIBC_2
2) [SUSv3]

46

getenv(GLIBC_2. | getlogin(GLIBC_ | getlogin_r(GLIB | getnameinfo(GLl
2) [SUSv3] 2.2) [SUSv3] C_2.2) [SUSV3] BC_2.2) [SUSV3]
getopt(GLIBC_2. | getopt_long(GLI | getopt_long onl | getsubopt(GLIBC
2) [LSB] BC_2.2) [LSB] y(GLIBC_2.2) _2.2)[SUSv3]
[LSB]
gettimeofday(GL | glob(GLIBC_2.2) | glob64(GLIBC_2.(|,globfree(GLIBC_
IBC_2.2) [SUSv3] | [SUSV3] 2) [LSB] 2.2) [SUSv3]
globfree64(GLIB | grantpt(GLIBC_2 | hcreate(GLIBC_2 | hdestroy(GLIBC
C_2.2) [LSB] .2) [SUSV3] .2) [SUSV3] _2.2) [SUSv3]
hsearch(GLIBC_2 | htonl(GLIBC_2.2) | htens(GLIBC_2.2 | imaxabs(GLIBC_
.2) [SUSV3] [SUSV3] JNSUSv3] 2.2) [SUSv3]
imaxdiv(GLIBC_ | inet_addr(GLIBE\} inet_ntoa(GLIBC | inet_ntop(GLIBC
2.2) [SUSv3] _2.2) [sUSv3] _2.2) [SUSv3] _2.2) [SUSv3]
inet_pton(GLIBC | initstate(GLIBC_ | insque(GLIBC_2. | isatty(GLIBC_2.2
_2.2) [SUSv3] 2.2) [SUSV3] 2) [SUSv3]) [SUSV3]
isblank(GLIBC_2 | jrand48(GLIBC_2 | 164a(GLIBC_2.2) | labs(GLIBC_2.2)
.2) [SUSV3] 2y [SUSv3] [SUSV3] [SUSV3]
lcong48(GLIBC. | 1div(GLIBC_2.2) | lfind(GLIBC_2.2) | llabs(GLIBC_2.2)
2.2) [SUSv3] [SUSv3] [SUSv3] [SUSv3]
ldiv(GRIBC_2.2) [longjmp(GLIBC_ | Irand48(GLIBC_2 | Isearch(GLIBC_2.
[SUSV3] 2.2) [SUSv3] .2) [SUSV3] 2) [SUSv3]
makecontext(GLI | malloc(GLIBC_2. | memmem(GLIB | mkstemp(GLIBC
BC_2.2) [SUSv3] |[2) [SUSv3] C_2.2) [LSB] _2.2) [SUSv3]
mktemp(GLIBC_ | mrand48(GLIBC | nftw(GLIBC_2.3. | nrand48(GLIBC_
2.2) [SUSv3] _2.2) [SUSv3] 3) [SUSV3] 2.2) [SUSv3]
ntohl(GLIBC_2.2) | ntohs(GLIBC_2.2 | openlog(GLIBC_ | perror(GLIBC_2.
[SUSV3]) [SUSV3] 2.2) [SUSv3] 2) [SUSv3]
posix_memalign(| posix_openpt(GL | ptsname(GLIBC_ | putenv(GLIBC_2.
GLIBC_2.2) IBC_2.2.1) 2.2) [SUSv3] 2) [SUSv3]
[SUSv3] [SUSv3]
gsort(GLIBC_2.2) | rand(GLIBC_2.2) [rand_r(GLIBC_2. | random(GLIBC_
[SUSV3] [SUSV3] 2) [SUSv3] 2.2) [SUSv3]

realloc(GLIBC_2.

realpath(GLIBC_

remque(GLIBC_2

seed48(GLIBC_2.

© 2006 ISO/IEC —

All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

2) [SUSV3] 2.3) [SUSV3] .2) [SUSV3] 2) [SUSV3]
setenv(GLIBC_2. | sethostname(GLI | setlogmask(GLIB | setstate(GLIBC_2
2) [SUSV3] BC_2.2) [LSB] C_2.2) [SUSV3] .2) [SUSV3]
srand(GLIBC_2.2 | srand48(GLIBC_ | srandom(GLIBC | strtod(GLIBC_2.2
) [SUSV3] 2.2) [SUSv3] _2.2) [SUSv3]) [SUSV3]
strtol(GLIBC_2.2) | strtoul(GLIBC_2. | swapcontext(GLI | syslog(GLIBC_2.
[SUSV3] 2) [SUSV3] BC_2.2) [SUSv3] | 2) [SUSv3]
system(GLIBC_2. | tdelete(GLIBC_2. | tfind(GLIBC_2.2) | tmpfile(GLIBC_2
2) [LSB] 2) [SUSv3] [SUSv3] .2) [SUSV3]

‘ y7anh i & » Vaul
UITPTIAITT OGO LIDGC

2.2) [SUSV3]

‘ L/ L INe N
AU GLIDC 2.

2) [SUSV3]

P Y7k i & o Vaul
Ltyllall [E(GLIDC

2.2) [SUSV3]

P IR
Ll.y 1A GLID

C_2.2) [SUSv3]

twalk(GLIBC_2.2
) [SUSV3]

unlockpt(GLIBC
_2.2) [SUSV3]

unsetenv(GLIBC
_2.2) [SUSv3]

usleep(GLIBC_2.
2) [SUSv3]

verrx(GLIBC_2.2
) [LSB]

viscanf(GLIBC_2
.2) [LSB]

vscanf(GLIBC_2.
2) [LSB]

vsscanf(GLIBC_2
2)JLSB]

vsyslog(GLIBC_2
.2) [LSB]

warn(GLIBC_2.2)
[LSB]

warnx(GLIBC_2.
2) [LSB]

wordexp(GLIBC
_2.2.2) [SUSV3]

wordfree(GLIBC
_2.2) [SUSV3]

An LSB conforming implementation shall\provide the architecture specific datq
interfaces for Standard Library specifiedin Table 11-23, with the full mandatory
functionality as described in the referénced underlying specification.

Table 11-23 libc - Standard Library Data Interfaces

__environ(GLIB _environ(GLIBC | _sys_errlist(GLIB | environ(GLIBC_
C_2.2) [LSB] _2.2)\[LSB] C_2.3) [LSB] 2.2) [SUSV3]
getdate_err(GLIB, | optarg(GLIBC_2. | opterr(GLIBC_2. | optind(GLIBC_2.
C_2.2) [SUSv3] 2) [SUSv3] 2) [SUSv3] 2) [SUSv3]

optopt(GLIBC_2.
2) [SUSw3]

11.3 Data Definitions for libc

This section defines global identifiers and their values that are associated with
interfaces contained in libc. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language

© 2006 ISO/IEC — All rights reserved 47

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

description of these data objects
programming languages.

11.3.1 ctype.h

/*

* This header is architecture
* Please refer to the generic

*/

11.3.2 dirent.h

does not preclude their use by other

neutral
specification for details

/*
* This header is architecture
* Please refer to the generic
*/

11.3.3 errno.h

11.3.5 fnmatch.h

/*
* This header is architecture
* Please refer to thellgeneric
*/

11.3.6 ftw.h
/*
* This_header is architecture

* Please refer to the generic
*/

11.3.7 getopt.h

/*
* This header is architecture

#define EDEADLOCK EDEADLK
11.3.4 fcntl.h

#define F_GETLK64 5
#define F_SETLK64 6
#define F_SETLKW64 7

neutral
specification for details

neutral

specification for details

neutral

specification for details

neutral

* Please refer to the generic
*/

11.3.8 glob.h
/*
* This header is architecture

* Please refer to the generic
*/

48

specification for details

neutral

specification for details

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

11.3.9iconv.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.10 inttypes.h

typedef long int intmax_t;
typedef unsigned long int uintmax_t;
typedef unsigned long int uintptr_t;

= (P (- . S WL S
CypCTuUciT UliorTylricu wully §rfc urimcous_ ¢,

11.3.11 langinfo.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details

*/
11.3.12 limits.h

#define LONG_MAX OX7FFFFFFFFFFFFEFFL
#define ULONG_MAX OXFFFFFFFFFFEFFEFFUL
#define CHAR_MAX SCHAR_MAX

#define CHAR _MIN SCHAR_MIN

#define PTHREAD_STACK_MIN 196608

11.3.13 locale.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.14.net/if.h
/*
*\This header is architecture neutral

* Please refer to the generic specification for details
*/

11.3.15 netdb.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.16 netinet/in.h

/*
* This header is architecture neutral

© 2006 ISO/IEC — All rights reserved 49

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

* Please refer to the generic specification for details
*/

11.3.17 netinet/ip.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.18 netinet/tcp.h

V2%
4

* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.19 netinet/udp.h

/*
* This header is architecture neutral
* Please refer to the generic specification fors/details
*/

11.3.20 nl_types.h

/*
* This header is architecture peutral
* Please refer to the generigc specification for details
*/

11.3.21 pwd.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.22.regex.h
/*
#*\This header is architecture neutral

* Please refer to the generic specification for details
*/

11.3.23 rpc/auth.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.24 rpc/cint.h

/*
* This header is architecture neutral

50 © 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

* Please refer to the generic
*/

11.3.25 rpc/rpc_msg.h

/*
* This header is architecture
* Please refer to the generic
*/

11.3.26 rpc/svc.h

V2%

specification

neutral
specification

ISO/IEC 23360-3:2006(E)

for details

for details

7
* This header is architecture
* Please refer to the generic
*/

11.3.27 rpc/types.h

/*
* This header is architecture
* Please refer to the generic
*/

11.3.28 rpc/xdr.h

/*
* This header is architecture
* Please refer to the generic
*/

11.3.29 sched.h

/*
* This header is architecture
* Please refer to the generic
*/

11.3.30.search.h
/*
#\This header is architecture

* Please refer to the generic
*/

11.3.31 setjmp.h

neutral
specification

neutral
specification

neutral
specification

neutral
specification

neutral
specification

for details

forsdetails

for details

for details

for details

typedef long int __ jmp_buf[70] _ attribute _ ((aligned(16)));

11.3.32 signal.h

#define SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int))-4)

#define S1_PAD_SIZE

struct sigaction {

© 2006 ISO/IEC — All rights reserved

((SI_MAX_SIZE/sizeof(int))-4)

51

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

union {
sighandler_t _sa handler;

void (*_sa_sigaction) (int, siginfo_t *, void *);

} _ sigaction_handler;
unsigned long int sa_flags;
sigset_t sa_mask;

}:
#define MINSIGSTKSZ 131027
#define SIGSTKSZ 262144

struct ia64_fpreg {
union {
unsigned long int bits[2];

long double _ dummy;
> ous
};

struct sigcontext {
unsigned long int sc_flags;
unsigned long int sc_nat;
stack_t sc_stack;
unsigned long int sc_ip;
unsigned long int sc_cfm;
unsigned long int sc_um;
unsigned long int sc_ar_rsc;
unsigned long int sc_ar_bsp;
unsigned long int sc_ar_rnat;
unsigned long int sc_ar_ccv;
unsigned long int sc_ar_unat;
unsigned long int sc_ar_fpsr;
unsigned long int sc_ar_pfs;
unsigned long int sc_ar_lIc;
unsigned long int sc_pr;
unsigned long int sc_br[8];
unsigned long int sc_gr[32];
struct i1a64_fpreg sc_fr{128];
unsigned long int scurbs base;
unsigned long int.sc_loadrs;
unsigned long intisc_ar25;
unsigned longxint sc_ar26;
unsigned long. Iint sc_rsvd[12];
unsigned dong int sc_mask;

}:
11.3.33sstddef.h

typedef long int ptrdiff_t;
typedef unsigned long int size_t;

11.3.34 stdio.h

#define _ 10 FILE SIZE 216

11.3.35 stdlib.h

/*

* This header is architecture neutral
* Please refer to the generic specification for details

*/

52

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

11.3.36 syslfile.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.37 syslioctl.h

#define TIOCGWINSZ 0x5413
#define FIONREAD 0x541B
#define TIOCNOTTY 0x5422

11.3.38 sys/ipc.h

struct ipc_perm {
key t __ key;
uid_t uid;
gid_t gid;
uid_t cuid;
uid_t cgid;
mode_t mode;
unsigned short __seq;
unsigned short _ padl;
unsigned long int __unusedl;
unsigned long int __unused2;

}:
11.3.39 sys/mman.h

#define MCL_CURRENT 1
#define MCL_FUTURE 2

11.3.40 sys/msg.h

struct msqid_ds {
struct ¥pc.perm msg_perm;
time_t msg_stime;
time & msg_rtime;
time\t msg_ctime;
unsigned long int _ msg_chytes;
unsigned long int msg_gnum;
unsigned long int msg_gbytes;
pid_t msg_Ispid;
pid_t msg_lrpid;
unsigned long int __unusedl;
unsigned long int __unused2;

¥

11.3.41 sys/param.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

© 2006 ISO/IEC — All rights reserved 53

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

11.3.42 sys/poll.h

/*

* This header is architecture neutral
* Please refer to the generic specification for details

*/

11.3.43 sys/resource.h

/*

* This header is architecture neutral
* Please refer to the generic specification for details

i

11.3.44 sys/sem.h

struct semid_ds {

struct ipc_perm sem_perm;

time_t sem_otime;
time_t sem _ctime;
unsigned long int
unsigned long int
unsigned long int

}:
11.3.45 sys/shm.h

#define SHVMLBA (1024*1024)

struct shmid_ds {

struct Ipc_perm shm_perns;

size_t shm_segsz;
time_t shm_atime;
time_t shm_dtime;
time_t shm_ctine;
pid_t shm_cpid,

pid_t shm_Lpid;

unsigned-long int
unsigned._long int
unsigned long int

}:
11,3146 sys/socket.h

‘typedef uint64_t _ ss aligntype;

sem_nsems;
___unusedl;
__unused?2;

shm_nattch;
__unusedl;
__unused2;

54

#define SO_RCVLOWAT 18
#define SO_SNDLOWAT 19
#define SO_RCVTIMEO 20
#define SO_SNDTIMEO 21
11.3.47 sys/stat.h

#define _STAT_VER 1

struct stat {
dev_t st_dev;
ino_t st _ino;

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

nlink_t st_nlink;
mode_t st_mode;
uid_t st _uid;
gid_t st _gid;
unsigned int padO;
dev_t st_rdev;
off_t st_size;
struct timespec st_atim;
struct timespec st _mtim;
struct timespec st_ctim;
blksize_t st_blksize;
blkent_t st_blocks;
unsigned long int _ _unused[3];
}:
struct stat64 {
dev_t st _dev;
ino64_t st _ino;
nlink_t st _nlink;
mode_t st_mode;
uid_t st _uid;
gid_t st _gid;
unsigned int padO;
dev_t st _rdev;
off_t st_size;
struct timespec st_atim;
struct timespec st_mtim;
struct timespec st_ctim;
blksize_t st_blksize;
blkcnt64_t st _blocks;
unsigned long int __unused[3];

}:
11.3.48 sys/statvfs.h

struct statvfs {
unsigned long int f_bsi¥ze;
unsigned long int f£.Frsize;
fsblkent64_t T blocks;
fsblkcnt64_t T _bfree;
fsblkcnt64 _t Fobavail;
fsFfilcnt64_tf files;
fsftilcnted t T ffree;
fsfilcnte4d_t £ _favail;
unsigned long int f_fsid;
unsigned long int f_flag;
unsigned long int f_namemax;
unsigned int _ f spare[6];

}s

struct statvfs64 {
unsigned long int f _bsize;
unsigned long int f_frsize;
fsblkcnt64_t T blocks;
fsblkcent64_t £ bfree;
Tsbikented_© T_bavalt;
fsfilcnt64_t T _fFiles;
fsfilcnt64_t T ffree;
fsfilcnt64_t £ _favail;
unsigned long int f _fsid;
unsigned long int f_flag;
unsigned long int f _namemax;
unsigned int _ f spare[6];

© 2006 ISO/IEC — All rights reserved 55

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

11.3.49 sys/time.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.50 sys/timeb.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details

i

11.3.51 sys/times.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.52 sys/types.h

typedef long int int64_t;
typedef int64_t ssize t;

#define _ FDSET _LONGS 16

11.3.53 sys/un.h

/*
* This header is architecture neutral
* Please refer tocthe generic specification for details
*/

11.3.54 sys{utsname.h

/*

* This header is architecture neutral

*Rlease refer to the generic specification for details
i 4

11.3.55 sys/wait.h

Lo

V4
* This header is architecture neutral
* Please refer to the generic specification for details
*/

11.3.56 syslog.h

/*
* This header is architecture neutral
* Please refer to the generic specification for details
*/

56 © 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

11.3.57 termios.h

ISO/IEC 23360-3:2006(E)

#define OLCUC 0000002
#define ONLCR 0000004
#define XCASE 0000004
#define NLDLY 0000400
#define CR1 0001000
#define IUCLC 0001000
#define CR2 0002000
#define CR3 0003000
#define CRDLY 0003000
#define TAB1 0004000
#define TAB2 0010000
#define TARI 0014000
#define TABDLY 0014000
#define BS1 0020000
#define BSDLY 0020000
#define VT1 0040000
#define VTDLY 0040000
#define FF1 0100000
#define FFDLY 0100000
#define VSUSP 10
#define VEOL 11
#define VREPRINT 12
#define VDISCARD 13
#define VWERASE 14
#define VEOL2 16
#define VMIN 6
#define VSWTC 7
#define VSTART 8
#define VSTOP 9
#define IXON 0002000
#define IXOFF 0010000
#define CS6 0000020
#define CS7 0000040
#define CS8 0000060
#define CSIZE 0000060
#define CSTOPB 0000100
#define CREAD 0000200
#define PARENB 0000400
#define RAROGDD 0001000
#define HUPCL 0002000
#define CLOCAL 0004000
#define VTIME 5
#define ISIG 0000001
#define ICANON 0000002
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
FdeTine NOFLCSH 0000200
#define TOSTOP 0000400
#define ECHOCTL 0001000
#define ECHOPRT 0002000
#define ECHOKE 0004000
#define FLUSHO 0010000
#define PENDIN 0040000
#define IEXTEN 0100000

11.3.58 ucontext.h

© 2006 ISO/IEC — All rights reserved

57

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

#define _SC_GRO_OFFSET \

(((char *) & ((struct sigcontext *) 0)->sc_gr[0]) - (char

*) 0)
typedef struct sigcontext mcontext_t;

typedef struct ucontext {
union {
mcontext_t _mc;
struct {
unsigned long int _pad[_SC_GRO_OFFSET / 8];
struct ucontext *_link;
} _uc;
¥} _u;

} uconfext_t;

11.3.59 ulimit.h

/*
* This header is architecture neutral
* Please refer to the generic specification for detarls
*/

11.3.60 unistd.h

typedef long int intptr_t;

11.3.61 utime.h

/*
* This header is architecturé neutral
* Please refer to the generic specification for details
*/

11.3.62 utmp.h

struct lastlog {
time_t Ll\time;
char 11 \Line[UT_LINESIZE];
char (1 1.host[UT_HOSTSIZE];

}:

struet’ utmp {
short ut_type;
pid_t ut_pid;
char ut_line[UT_LINESIZE];
char ut_id[4];
char ut_user[UT_NAMESIZE];
char ut_host[UT_HOSTSIZE];

struct exit_status ut_exit;
long int ut_session;

struct timeval ut_tv;
int32_t ut_addr_v6[4];

char __unused[20];

}:
11.3.63 utmpx.h

struct utmpx {
short ut_type;

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

pid_t ut_pid;

char ut_line[UT_LINESIZE];
char ut_id[4];

char ut_user[UT_NAMESIZE];
char ut_host[UT_HOSTSIZE];
struct exit_status ut_exit;
long int ut_session;

struct timeval ut_tv;
int32_t ut_addr_v6[4];

char __unused[20];

}:
11.3.64 wctype.h

/*

* This header is architecture neutral

* Please refer to the generic specification for details
*/

11.3.65 wordexp.h
/*
* This header is architecture neutral

* Please refer to the generic specification-for details
*/

11.4 Interfaces for libm
Table 11-24 defines the library name and shared object name for the libm library

Table 11-24 libm Definition

Library: libm

SONAME:

libm.so.6.1

The behavior of the interfaces in this library is specified by the following speci-
fications:

[ISOC99] ISOL(1999)
[LSB] ISO/IEC23360-1

[SUSv2] SUSv2
[SUSw3] ISO POSIX (2003)
[SVID:3] SVID Issue 3

11.4.1 Math

11.4.1.1 Interfaces for Math

An 1SB conforming implementation shall provide the architecture specifid
functions for Math specified in Table 11-25, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-25 libm - Math Function Interfaces

__finite(GLIBC_2 | __finitef(GLIBC_ [__finitel(GLIBC_ | __fpclassify(GLI
.2) [ISOC99] 2.2) [ISOC99] 2.2) [ISOC99] BC_2.2) [LSB]

_ fpclassifyf(GLI | _ fpclassifyl(GLI | __signbit(GLIBC | __signbitf(GLIBC
BC_2.2) [LSB] BC_2.2) [LSB] _2.2) [ISOC99] _2.2) [ISOC99]

© 2006 ISO/IEC — All rights

reserved

59

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

__signbitl(GLIBC
_2.2) [ISOC99]

acos(GLIBC_2.2)
[SUSV3]

acosf(GLIBC_2.2)
[SUSV3]

acosh(GLIBC_2.2
) [SUSV3]

acoshf(GLIBC_2.

acoshl(GLIBC_2.

acosl(GLIBC_2.2)

asin(GLIBC_2.2)

2) [SUSV3] 2) [SUSV3] [SUSv3] [SUSV3]
asinf(GLIBC_2.2) | asinh(GLIBC_2.2 | asinhf(GLIBC_2. | asinhl(GLIBC_2.
[SUSV3]) [SUSV3] 2) [SUSv3] 2) [SUSv3]
asinl(GLIBC_2.2) | atan(GLIBC_2.2) | atan2(GLIBC_2.2 | atan2f(GLIBC_2.
[SUSv3] [SUSv3]) [SUSV3] 2) [SUSv3]
atan2l(GLIBC_2. | atanf(GLIBC_2.2) | atanh(GLIBC_2.2 | atanhf(GLIBC_2.
2) [SUSv3] [SUSv3]) [SUSv3] 2) [SUSv3]

atanhl(GLIBC_2.
2) [SUSV3]

atanl(GLIBC_2.2)
[SUSV3]

cabs(GLIBC_2.2)
[SUSV3]

cabsf(GLIBC_2:2)
[SUSV3]

cabsl(GLIBC_2.2)

cacos(GLIBC_2.2

cacosf(GLIBC_2.

cacosh(GL:IBC_2.

[SUSV3]) [SUSV3] 2) [SUSV3] 2) [SUSV3]
cacoshf(GLIBC_2 | cacoshl(GLIBC_2 | cacosl(GLIBC_2.2 | carg(GLIBC_2.2)
.2) [SUSv3] .2) [SUSv3]) [SUSV3] [SUSv3]

cargf(GLIBC_2.2)

cargl(GLIBC_2.2)

casin(GLIBC.2:2)

casinf(GLIBC_2.2

[SUSV3] [SUSV3] [SUSV3]) [SUSV3]
casinh(GLIBC_2. | casinhf(GLIBC_2. | casinb{(GLIBC_2. | casinl(GLIBC_2.2
2) [SUSv3] 2) [SUSv3] 2) {SUSv3]) [SUSV3]
catan(GLIBC_2.2 | catanf(GLIBC_2. f«atanh(GLIBC_2. | catanhf(GLIBC_2
) [SUSV3] 2) [SUSV3] 2) [SUSV3] .2) [SUSv3]
catanhl(GLIBC_2 | catanl(GLIBC;2.2 | cbrt(GLIBC_2.2) cbrtf(GLIBC_2.2)
.2) [SUSV3]) [SUSV3] [SUSV3] [SUSV3]

cbrtl(GLIBC_2.2)
[SUSV3]

ccos(GLIBC_2.2)
[SUSV3]

ccosf(GLIBC_2.2)
[SUSV3]

ccosh(GLIBC_2.2
) [SUSV3]

ccoshf(GLIBC_2.
2) [SUSV3]

ccoshl(GLIBC_2.
2) [SUSV3]

ccosl(GLIBC_2.2)
[SUSV3]

ceil(GLIBC_2.2)
[SUSV3]

ceilf(GLIBC_2.2)

ceill(GLIBC_2.2)

cexp(GLIBC_2.2)

cexpf(GLIBC_2.2

[SUSv3] [SUSvV3] [SUSV3]) [SUSV3]
cexpl(GLIBC_2.2) | cimag(GLIBC_2. [cimagf(GLIBC_2. | cimagl(GLIBC_2.
[SUSv3] 2) [SUSv3] 2) [SUSv3] 2) [SUSv3]
clog(GLIBC_2.2) | cloglO(GLIBC_2. | clogl0f(GLIBC_2 | clog10l(GLIBC_2.
[SUSV3] 2) [ISOC99] 2) [ISOC99] 2) [ISOC99]

clogf(GLIBC 2.2)

clogl(GLIBC 2.2)

conj(GLIBC 2.2)

conif(GLIBC 2.2)

60

[SUSV3]

[SUSV3]

[SUSV3]

[SUSV3]

conjl(GLIBC_2.2)
[SUSV3]

copysign(GLIBC
_2.2) [SUSv3]

copysignf(GLIBC
_2.2) [SUSV3]

copysignl(GLIBC
_2.2) [SUSv3]

cos(GLIBC_2.2)
[SUSV3]

cosf(GLIBC_2.2)
[SUSv3]

cosh(GLIBC_2.2)
[SUSv3]

coshf(GLIBC_2.2)
[SUSv3]

coshl(GLIBC_2.2)
[SUSV3]

cosl(GLIBC_2.2)
[SUSV3]

cpow(GLIBC_2.2
) [SUSV3]

cpowf(GLIBC_2.
2) [SUSv3]

© 2006 ISO/IEC —

All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

cpowl(GLIBC_2.

cproj(GLIBC_2.2)

cprojf(GLIBC_2.2

cprojl(GLIBC_2.2

2) [SUSv3] [SUSV3]) [SUSV3]) [SUSV3]
creal(GLIBC_2.2) | crealf(GLIBC_2.2 | creall(GLIBC_2.2 | csin(GLIBC_2.2)
[SUSV3]) [SUSV3]) [SUSV3] [SUSV3]
csinf(GLIBC_2.2) | csinh(GLIBC_2.2) | csinhf(GLIBC_2.2 | csinhl(GLIBC_2.2
[SUSV3] [SUSV3]) [SUSV3]) [SUSV3]
csinl(GLIBC_2.2) | csqrt(GLIBC_2.2) | csqrtf(GLIBC_2.2 | csqrtl(GLIBC_2.2
[SUSV3] [SUSV3]) [SUSV3]) [SUSV3]
ctan(GLIBC_2.2) | ctanf(GLIBC_2.2) | ctanh(GLIBC_2.2 | ctanhf(GLIBC_2.
[SUSv3] [SUSv3]) [SUSv3] 2) [SUSv3]

ctanhl(GLIBC_2.
2) [SUSV3]

ctanl(GLIBC_2.2)
[SUSV3]

dremf(GLIBC_2.
2) [ISOC99]

dreml(GLIBC 2:2
) [ISOC99]

erf(GLIBC_2.2)
[SUSV3]

erfc(GLIBC_2.2)
[SUSV3]

erfcf(GLIBC_2.2)
[SUSV3]

erfcl(GLIBC_2.2)
[SUSY3]

erff(GLIBC_2.2)
[SUSv3]

erfl(GLIBC_2.2)
[SUSv3]

exp(GLIBC_2.2)
[SUSv3]

exp2(GLIBC_2.2)
[SUSv3]

exp2f(GLIBC_2.2

exp2](GLIBC_2.2

expf(GLIBC.2.2)

expl(GLIBC_2.2)

) [SUSV3]) [SUSV3] [SUSV3] [SUSV3]
expm1(GLIBC_2. | expm1f(GLIBC_2 | expmH(GLIBC_2 | fabs(GLIBC_2.2)
2) [SUSV3] 2) [SUSV3] 2){sUSv3] [SUSV3]

fabsf(GLIBC_2.2)

fabsl(GLIBC_2.2)

fdfm(GLIBC_2.2)

fdimf(GLIBC_2.2

[SUSV3] [SUSV3] [SUSV3]) [SUSV3]
fdiml(GLIBC_2.2 | feclearexcepf(GL | fegetenv(GLIBC_ | fegetexceptflag(
) [SUSV3] IBC_2.2) [SUSv3] | 2.2) [SUSv3] GLIBC_2.2)

[SUSV3]
fegetround(GLIB | feholdexcept(GLI | feraiseexcept(GL | fesetenv(GLIBC_
C_2.2) [SUSV3] BC_2.2) [SUSv3] [IBC_2.2) [SUSv3] [2.2) [SUSv3]
fesetexceptflag(G~| fesetround(GLIB | fetestexcept(GLI | feupdateenv(GLI
LIBC_2.2) C_2.2) [SUSV3] BC_2.2) [SUSv3] [BC_2.2) [SUSv3]
[SUSv3]

finite(GLIBC_2.2)

finitef(GLIBC_2.2

finitel(GLIBC_2.2

floor(GLIBC_2.2)

[SUSV2]) [ISOC99]) [ISOC99] [SUSV3]
floorf(GLIBC_2.2 | floor](GLIBC_2.2 | fma(GLIBC_2.2) | fmaf(GLIBC_2.2)
) [SUSV3]) [SUSV3] [SUSV3] [SUSV3]

fmal(GLIBC_2.2)

[fah dhraliileh |

fmax(GLIBC_2.2)

[fah dhraliileh |

fmaxf(GLIBC_2.2

N QI IQ2]

fmaxl(GLIBC_2.2

AN Yok o r o % |

[SOSVT]

[SOSV3]

TIoOSVI]

TIoOSvVI]

fmin(GLIBC_2.2)

fminf(GLIBC_2.2

fminl(GLIBC_2.2

fmod(GLIBC_2.2

[SUSV3]) [SUSV3]) [SUSV3]) [SUSV3]
fmodf(GLIBC_2. | fmodl(GLIBC_2.2 | frexp(GLIBC_2.2) | frexpf(GLIBC_2.2
2) [SUSv3]) [SUSV3] [SUSV3]) [SUSV3]
frexpl(GLIBC_2.2 | gamma(GLIBC_2 | gammaf(GLIBC_ | gammal(GLIBC_
) [SUSV3] .2) [SUSv2] 2.2) [ISOC99] 2.2) [ISOC99]

hypot(GLIBC_2.2

hypotf(GLIBC_2.

hypotl(GLIBC_2.

ilogh(GLIBC_2.2)

© 2006 ISO/IEC — All rights reserved

61

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

) [SUSV3] 2) [SUSV3] 2) [SUSV3] [SUSV3]
ilogbf(GLIBC_2.2 | ilogbl(GLIBC_2.2 | jO(GLIBC_2.2) jOf(GLIBC_2.2)

) [SUSV3]) [SUSV3] [SUSv3] [ISOC99]
jOL(GLIBC_2.2) j1(GLIBC_2.2) jL{(GLIBC_2.2) j1I(GLIBC_2.2)
[ISOC99] [SUSV3] [ISOC99] [ISOC99]
jn(GLIBC_2.2) jnf(GLIBC_2.2) jnl(GLIBC_2.2) ldexp(GLIBC_2.2
[SUSV3] [ISOC99] [ISOC99]) [SUSV3]
ldexpf(GLIBC_2. | ldexpl(GLIBC_2. | lgamma(GLIBC_ | Ilgamma_r(GLIB
2) [SUSv3] 2) [SUSv3] 2.2) [SUSv3] C_2.2) [ISOC99]
156[11111 laI(GLIBC 156[11111 ldf_l (GLIB 156[11111 lal(GLIBC_ 156[11111 lal_l (GLIB
_2.2) [SUSV3] C_2.2) [ISOC99] | 2.2) [SUSV3] C_2.2) [ISOC99]
llrint(GLIBC_2.2) | llrintf(GLIBC_2.2 | llrintl(GLIBC_2.2 | llround(GLIBC_2
[SUSV3]) [SUSV3]) [SUSV3] .2) [SUSv3]
llroundf(GLIBC_ | llroundl(GLIBC_ | log(GLIBC_2.2) loghO(GLIBC_2.2
2.2) [SUSV3] 2.2) [SUSV3] [SUSv3] KSUSv3]
log10f(GLIBC_2. [logl10l(GLIBC_2. [loglp(GLIBC_22\ ploglpf(GLIBC_2.
2) [SUSv3] 2) [SUSv3]) [SUSV3] 2) [SUSv3]
loglpl(GLIBC_2. | log2(GLIBC_2.2) | log2f(GLIB¢_2.2) | log2l(GLIBC_2.2)
2) [SUSV3] [SUSV3] [SUSv3] [SUSV3]

logb(GLIBC_2.2)
[SUSV3]

logbf(GLIBC_2.2)
[SUSV3]

10gB1(GLIBC_2.2)
[SUSV3]

logf(GLIBC_2.2)
[SUSV3]

logl(GLIBC_2.2)
[SUSV3]

Irint(GLIBC_2.2)
[SUSV3]

Irintf(GLIBC_2.2)
[SUSV3]

Irintl(GLIBC_2.2)
[SUSV3]

lround(GLIBC_2. | lroundf(GEIBC_2 | Iroundl(GLIBC_2 | matherr(GLIBC_
2) [SUSV3] 2) [SUSV3] .2) [SUSV3] 2.2) [SVID.3]
modf(GLIBC_2.2 [modff(GLIBC_2. [modfl(GLIBC_2.2 [nan(GLIBC_2.2)
) [SUSV3] 2) [SUSv3]) [SUSV3] [SUSv3]
nanf(GLIBC 2.2)° | nanl(GLIBC_2.2) | nearbyint(GLIBC | nearbyintf(GLIB
[SUSv3] [SUSv3] _2.2) [SUSv3] C_2.2) [SUSV3]
nearbyintl(GLIB | nextafter(GLIBC | nextafterf(GLIBC | nextafterl(GLIBC
C_22y[SUSV3] _2.2) [SUSv3] _2.2) [SUSv3] _2.2) [SUSv3]
nexttoward(GLIB | nexttowardf(GLI | nexttowardl(GLI | pow(GLIBC_2.2)

C_2.2) [SUSV3]

BC_2.2) [SUSv3]

BC_2.2) [SUSV3]

[SUSV3]

powl0(GLIBC_2.

pow10f(GLIBC_2

pow10l(GLIBC_2

powf(GLIBC_2.2)

62

2) [ISOC99] 2) [ISOC99] 2) [ISOC99] [SUSV3]
powl(GLIBC_2.2) | remainder(GLIB | remainderf(GLIB | remainderl(GLIB
[SUSV3] C_2.2) [SUSV3] C_2.2) [SUSV3] C_2.2) [SUSV3]
remquo(GLIBC_ | remquof(GLIBC_ | remquol(GLIBC_ | rint(GLIBC_2.2)
2.2) [SUSv3] 2.2) [SUSv3] 2.2) [SUSvV3] [SUSv3]
rintf(GLIBC_2.2) | rintl(GLIBC_2.2) | round(GLIBC_2. | roundf(GLIBC_2.
[SUSV3] [SUSV3] 2) [SUSV3] 2) [SUSV3]

roundl(GLIBC_2.

scalb(GLIBC_2.2)

scalbf(GLIBC_2.2

scalbl(GLIBC_2.2

© 2006 ISO/IEC —

All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

2) [SUSV3] [SUSv3]) [ISOC99]) [ISOC99]
scalbln(GLIBC_2. | scalbIlnf(GLIBC_ | scalblnl(GLIBC_2 | scalbn(GLIBC_2.
2) [SUSV3] 2.2) [SUSv3] .2) [SUSV3] 2) [SUSV3]
scalbnf(GLIBC_2. | scalbnl(GLIBC_2. | significand(GLIB | significandf(GLI
2) [SUSV3] 2) [SUSV3] C_2.2) [ISOC99] [BC_2.2) [ISOC99]
significandl(GLI | sin(GLIBC_2.2) sincos(GLIBC_2. | sincosf(GLIBC_2.
BC_2.2) [ISOC99] | [SUSv3] 2) [ISOC99] 2) [ISOC99]
sincosl(GLIBC_2. | sinf(GLIBC_2.2) [sinh(GLIBC_2.2) | sinhf(GLIBC_2.2)
2) [ISOC99] [SUSv3] [SUSv3] [SUSv3]

s GHBE 22 1simtGHEBE22)—1sqrttGEBE 22— sqrti{GEBE—22)
[SUSv3] [SUSv3] [SUSv3] [SUSv3]
sqrtl(GLIBC_2.2) | tan(GLIBC_2.2) tanf(GLIBC_2.2) | tanh(GLIBC]22)
[SUSv3] [SUSv3] [SUSv3] [SUSv3]
tanhf(GLIBC_2.2) | tanhl(GLIBC_2.2) | tanl(GLIBC_2.2) | tgamima(GLIBC_
[SUSv3] [SUSv3] [SUSV3] 2:2)[SUSv3]
tgammaf(GLIBC | tgammal(GLIBC | trunc(GLIBC_2.2\ P truncf(GLIBC_2.
_2.2) [SUSv3] _2.2) [SUSv3]) [SUSV3] 2) [SUSV3]
truncl(GLIBC_2.2 | yO(GLIBC_2.2) yOf(GLIBC2.2) y0l(GLIBC_2.2)

) [SUSV3] [SUSv3] [ISOC99] [ISOC99]
y1(GLIBC_2.2) y1f(GLIBC_2.2) yAl(GLIBC_2.2) yn(GLIBC_2.2)
[SUSv3] [ISOC99] [ISOC99] [SUSv3]
ynf(GLIBC_2.2) | ynl(GLIBC_2.2)

[ISOC99] [ISOC99]

An LSB conforming impleméntation shall provide the architecture specific data
interfaces for Math spécitied in Table 11-26, with the full mandatory]
functionality as described in the referenced underlying specification.

Table 11-26 libm £ Math Data Interfaces

signgam(GLIBC_
2.2) [SUSv3]

11.5 Data Definitions for libm

This section defines global identifiers and their values that are associated with
interfaces contained in libm. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language

© 2006 ISO/IEC — All rights reserved 63

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

description of these data objects does not preclude their use by other
programming languages.

11.5.1 complex.h

/*

* This header is architecture neutral

* Please refer to the generic specification for details
*/

11.5.2 fenv.h

#define FE_INVALID (1UL << 0)
#define FE_DIVBYZERO (1UL << 2)
#define FE_OVERFLOW (1UL << 3)
#define FE_UNDERFLOW (1UL << 4)
#define FE_INEXACT (1UL << 5)
#define FE_UNNORMAL UL << 1

#define FE_ALL_EXCEPT \
(FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW. [\FE_DIVBYZERO |
FE_UNNORMAL | FE_INVALID)

#define FE_TONEAREST 0
#define FE_DOWNWARD 1
#define FE_UPWARD 2
#define FE_TOWARDZERO 3

typedef unsigned long int fexcept_ t;
typedef unsigned long int feny &,

#define FE_DFL_ENV ((.Const fenv_t *) 0xc009804c0270033FUL)

11.5.3 math.h

#define fpclassify(x) \

(sizeof-(x) == sizeof (Float) ? _ fpclassifyf (xX) :sizeof (X)
== sizeof (deuble) ? _ fpclassify (x) : _ fpclassifyl (x))
#define signbit(x) \

(sizeof (xX) == sizeof (Float)? _ signbitf (X): sizeof (xX) =7

sizeof -(double)? _ signbit (xX) : _ signbitl (x))
#define FP_I1LOGBO -2147483648
#define FP_ILOGBNAN 2147483647

extern int _ fpclassifyl(long double);
extern int __signbitl(long double);
extern long double exp2l(long double);

11.6 Interface Definitions for libm

64

The interfaces defined on the following pages are included in libm and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 11.4 shall behave as described in the referenced
base document.

© 2006 ISO/IEC — All rights reserved

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

ISO/IEC 23360-3:2006(E)

__fpclassifyl

Name
_ Tpclassityl — test for infinity

Synopsis
int _ fpclassifyl(long double arg);

Description

__fpclassifyl () has the same specification as fpclassifyl () in ISO POSIX
(2003), except that the argument type for _fpclassifylQ is known to be lon

double.

__fpclassifyl () is not in the source standard; it is only in the binary standard

11.7 Interfaces for libpthread
Table 11-27 defines the library name and shared object name fer’the libpthread|

library

Table 11-27 libpthread Definition
Library: libpthread
SONAME: libpthread.so.0

The behavior of the interfaces in this libfary is specified by the following speci-
fications:

[LFS] Large File Support
[LSB] ISO/IEC 23360-1
[SUSv3] ISO POSIX (2003)

11.7.1 Realtime Threads

11.7.1.1 Interfages for Realtime Threads

An LSB conforming implementation shall provide the architecture specifig
functions fer Realtime Threads specified in Table 11-28, with the full mandatoryj
functionality as described in the referenced underlying specification.

Table 11-28 libpthread - Realtime Threads Function Interfaces

pthread_attr_geti
nheritsched(GLI
BC_2.2) [SUSv3]

pthread_attr_get
schedpolicy(GLI
BC_2.2) [SUSv3]

pthread_attr_get
scope(GLIBC_2.2
) [SUSV3]

pthread_attr_seti
nheritsched(GLI
BC_2.2) [SUSv3]

P thread—=attr—sets
chedpolicy(GLIB
C_2.2) [SUSv3]

P thread—=attr—sets
cope(GLIBC_2.2)
[SUSv3]

P thr edd_ge tsche
dparam(GLIBC_
2.2) [SUSV3]

P thread—setsched
param(GLIBC_2.
2) [SUSV3]

11.7.2 Advanced Realtime Threads

11.7.2.1 Interfaces for Advanced Realtime Threads

No external functions are defined for libpthread - Advanced Realtime Threads in
this part of the specification. See also the generic specification, ISO/IEC 23360-1.

© 2006 ISO/IEC — All rights reserved 65

https://iecnorm.com/api/?name=a449dabec89e7d25f974ef6fbfaa1549

	Contents
	List of Figures
	Foreword
	Introduction
	I Introductory Elements
	1 Scope
	1.1 General
	1.2 Module Specific Scope

	2 References
	2.1 Normative References
	2.2 Informative References/Bibliography

	3 Requirements
	3.1 Relevant Libraries
	3.2 LSB Implementation Conformance
	3.3 LSB Application Conformance

	4 Definitions
	5 Terminology
	6 Documentation Conventions

	II Executable and Linking Format (ELF)
	7 Introduction
	8 Low Level System Information
	8.1 Machine Interface
	8.1.1 Processor Architecture
	8.1.2 Data Representation
	8.1.2.1 Byte Ordering
	8.1.2.2 Fundamental Types
	8.1.2.3 Aggregates and Unions
	8.1.2.4 Bit Fields

	8.2 Function Calling Sequence
	8.2.1 Registers
	8.2.2 Floating Point Registers
	8.2.3 Stack Frame
	8.2.4 Arguments
	8.2.4.1 Introduction
	8.2.4.2 Integral/Pointer
	8.2.4.3 Floating Point
	8.2.4.4 Struct and Union Point
	8.2.4.5 Variable Arguments

	8.2.5 Return Values
	8.2.5.1 Introduction
	8.2.5.2 Void
	8.2.5.3 Integral/Pointer
	8.2.5.4 Floating Point
	8.2.5.5 Struct and Union

	8.3 Operating System Interface
	8.3.1 Processor Execution Mode
	8.3.2 Exception Interface
	8.3.2.1 Introduction
	8.3.2.2 Hardware Exception Types
	8.3.2.3 Software Trap Types

	8.3.3 Signal Delivery
	8.3.3.1 Signal Handler Interface

	8.3.4 Debugging Support
	8.3.5 Process Startup

	8.4 Process Initialization
	8.4.1 Special Registers
	8.4.2 Process Stack (on entry)
	8.4.3 Auxiliary Vector
	8.4.4 Environment

	8.5 Coding Examples
	8.5.1 Introduction
	8.5.2 Code Model Overview/Architecture Constraints
	8.5.3 Position-Independent Function Prologue
	8.5.4 Data Objects
	8.5.4.1 Absolute Load & Store
	8.5.4.2 Position Relative Load & Store

	8.5.5 Function Calls
	8.5.5.1 Absolute Direct Function Call
	8.5.5.2 Absolute Indirect Function Call
	8.5.5.3 Position-Independent Direct Function Call
	8.5.5.4 Position-Independent Indirect Function Call

	8.5.6 Branching
	8.5.6.1 Branch Instruction
	8.5.6.2 Absolute switch() code
	8.5.6.3 Position-Independent switch() code

	8.6 C Stack Frame
	8.6.1 Variable Argument List
	8.6.2 Dynamic Allocation of Stack Space

	8.7 Debug Information

	9 Object Format
	9.1 Introduction
	9.2 ELF Header
	9.2.1 Machine Information
	9.2.1.1 File Class
	9.2.1.2 Data Encoding
	9.2.1.3 OS Identification
	9.2.1.4 Processor Identification
	9.2.1.5 Processor Specific Flags

	9.3 Sections
	9.3.1 Special Sections
	9.3.2 Linux Special Sections
	9.3.3 Section Types
	9.3.4 Section Attribute Flags
	9.3.5 Special Section Types

	9.4 Symbol Table
	9.5 Relocation
	9.5.1 Relocation Types

	10 Program Loading and Dynamic Linking
	10.1 Introduction
	10.2 Program Header
	10.2.1 Types
	10.2.2 Flags

	10.3 Program Loading
	10.4 Dynamic Linking
	10.4.1 Dynamic Entries
	10.4.1.1 ELF Dynamic Entries
	10.4.1.2 Additional Dynamic Entries

	10.4.2 Global Offset Table
	10.4.3 Shared Object Dependencies
	10.4.4 Function Addresses
	10.4.5 Procedure Linkage Table
	10.4.6 Initialization and Termination Functions

	III Base Libraries
	11 Libraries
	11.1 Program Interpreter/Dynamic Linker
	11.2 Interfaces for libc
	11.2.1 RPC
	11.2.1.1 Interfaces for RPC

	11.2.2 System Calls
	11.2.2.1 Interfaces for System Calls

	11.2.3 Standard I/O
	11.2.3.1 Interfaces for Standard I/O

	11.2.4 Signal Handling
	11.2.4.1 Interfaces for Signal Handling

	11.2.5 Localization Functions
	11.2.5.1 Interfaces for Localization Functions

	11.2.6 Socket Interface
	11.2.6.1 Interfaces for Socket Interface

	11.2.7 Wide Characters
	11.2.7.1 Interfaces for Wide Characters

	11.2.8 String Functions
	11.2.8.1 Interfaces for String Functions

	11.2.9 IPC Functions
	11.2.9.1 Interfaces for IPC Functions

	11.2.10 Regular Expressions
	11.2.10.1 Interfaces for Regular Expressions

	11.2.11 Character Type Functions
	11.2.11.1 Interfaces for Character Type Functions

	11.2.12 Time Manipulation
	11.2.12.1 Interfaces for Time Manipulation

	11.2.13 Terminal Interface Functions
	11.2.13.1 Interfaces for Terminal Interface Functions

	11.2.14 System Database Interface
	11.2.14.1 Interfaces for System Database Interface

	11.2.15 Language Support
	11.2.15.1 Interfaces for Language Support

	11.2.16 Large File Support
	11.2.16.1 Interfaces for Large File Support

	11.2.17 Standard Library
	11.2.17.1 Interfaces for Standard Library

	11.3 Data Definitions for libc
	11.3.1 ctype.h
	11.3.2 dirent.h
	11.3.3 errno.h
	11.3.4 fcntl.h
	11.3.5 fnmatch.h
	11.3.6 ftw.h
	11.3.7 getopt.h
	11.3.8 glob.h
	11.3.9 iconv.h
	11.3.10 inttypes.h
	11.3.11 langinfo.h
	11.3.12 limits.h
	11.3.13 locale.h
	11.3.14 net/if.h
	11.3.15 netdb.h
	11.3.16 netinet/in.h
	11.3.17 netinet/ip.h
	11.3.18 netinet/tcp.h
	11.3.19 netinet/udp.h
	11.3.20 nl_types.h
	11.3.21 pwd.h
	11.3.22 regex.h
	11.3.23 rpc/auth.h
	11.3.24 rpc/clnt.h
	11.3.25 rpc/rpc_msg.h
	11.3.26 rpc/svc.h
	11.3.27 rpc/types.h
	11.3.28 rpc/xdr.h
	11.3.29 sched.h
	11.3.30 search.h
	11.3.31 setjmp.h
	11.3.32 signal.h
	11.3.33 stddef.h
	11.3.34 stdio.h
	11.3.35 stdlib.h
	11.3.36 sys/file.h
	11.3.37 sys/ioctl.h
	11.3.38 sys/ipc.h
	11.3.39 sys/mman.h
	11.3.40 sys/msg.h
	11.3.41 sys/param.h
	11.3.42 sys/poll.h
	11.3.43 sys/resource.h
	11.3.44 sys/sem.h
	11.3.45 sys/shm.h
	11.3.46 sys/socket.h
	11.3.47 sys/stat.h
	11.3.48 sys/statvfs.h
	11.3.49 sys/time.h
	11.3.50 sys/timeb.h
	11.3.51 sys/times.h
	11.3.52 sys/types.h
	11.3.53 sys/un.h
	11.3.54 sys/utsname.h
	11.3.55 sys/wait.h
	11.3.56 syslog.h
	11.3.57 termios.h
	11.3.58 ucontext.h
	11.3.59 ulimit.h
	11.3.60 unistd.h
	11.3.61 utime.h
	11.3.62 utmp.h
	11.3.63 utmpx.h
	11.3.64 wctype.h
	11.3.65 wordexp.h

	11.4 Interfaces for libm
	11.4.1 Math
	11.4.1.1 Interfaces for Math

	11.5 Data Definitions for libm
	11.5.1 complex.h
	11.5.2 fenv.h
	11.5.3 math.h

	11.6 Interface Definitions for libm
	__fpclassifyl
	Name
	Synopsis
	Description

	11.7 Interfaces for libpthread
	11.7.1 Realtime Threads
	11.7.1.1 Interfaces for Realtime Threads

	11.7.2 Advanced Realtime Threads
	11.7.2.1 Interfaces for Advanced Realtime Threads

	11.7.3 Posix Threads
	11.7.3.1 Interfaces for Posix Threads

	11.7.4 Thread aware versions of libc interfaces
	11.7.4.1 Interfaces for Thread aware versions of libc interfaces

	11.8 Data Definitions for libpthread
	11.8.1 pthread.h
	11.8.2 semaphore.h

	11.9 Interfaces for libgcc_s
	11.9.1 Unwind Library
	11.9.1.1 Interfaces for Unwind Library

	11.10 Data Definitions for libgcc_s
	11.10.1 unwind.h

	11.11 Interface Definitions for libgcc_s
	_Unwind_DeleteException
	Name
	Synopsis
	Description

	_Unwind_ForcedUnwind
	Name
	Synopsis
	Description
	Return Value

	_Unwind_GetGR
	Name
	Synopsis
	Description

	_Unwind_GetIP
	Name
	Synopsis
	Description

	_Unwind_GetLanguageSpecificData
	Name
	Synopsis
	Description

	_Unwind_GetRegionStart
	Name
	Synopsis
	Description

	_Unwind_RaiseException
	Name
	Synopsis
	Description
	Return Value

	_Unwind_Resume
	Name
	Synopsis
	Description

	_Unwind_SetGR
	Name
	Synopsis
	Description

	_Unwind_SetIP
	Name
	Synopsis
	Description

	11.12 Interfaces for libdl
	11.12.1 Dynamic Loader
	11.12.1.1 Interfaces for Dynamic Loader

	11.13 Data Definitions for libdl
	11.13.1 dlfcn.h

	11.14 Interfaces for libcrypt
	11.14.1 Encryption
	11.14.1.1 Interfaces for Encryption

	IV Utility Libraries
	12 Libraries
	12.1 Interfaces for libz
	12.1.1 Compression Library
	12.1.1.1 Interfaces for Compression Library

	12.2 Data Definitions for libz
	12.2.1 zlib.h

	12.3 Interfaces for libncurses
	12.3.1 Curses
	12.3.1.1 Interfaces for Curses

	12.4 Data Definitions for libncurses
	12.4.1 curses.h

	12.5 Interfaces for libutil
	12.5.1 Utility Functions
	12.5.1.1 Interfaces for Utility Functions

	V Package Format and Installation
	13 Software Installation
	13.1 Package Dependencies
	13.2 Package Architecture Considerations

	Annex A Alphabetical Listing of Interfaces
	A.1 libgcc_s
	A.2 libm

