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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

Amendment 3 to ISO/IEC 14496-3:2005/Amd. 3:2005 was prepared by Joint Technical Committee 
ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and 
hypermedia information. 

This Amendment specifies Audio Scalable Lossless Coding (SLS). 
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Information technology — Coding of audio-visual objects — 

Part 3: 
Audio 

AMENDMENT 3: Scalable Lossless Coding (SLS) 

In ISO/IEC 14496-3, Introduction, add the following to the end of the subclause "MPEG-4 general audio 
coding tools": 

MPEG-4 SLS (Scalable Lossless Coding) is a tool used in combination with optional MPEG-4 General Audio 
coding tools to provide fine-grain scalable to numerical lossless coding of digital audio waveform. 

 

In Part 3: Audio, Subpart 1, in subclause 1.3 Terms and Definitions, add: 

SLS: Audio Scalable to Lossless Coding 

and increase the index-number of subsequent entries. 

 

In Part 3: Audio, Subpart 1, in subclause 1.5.1.1 Audio object type definition, amend table 1.1 with the updates 
in the table below: 

 
 
Tools/ 
Modules 
 
 
 
Audio Object 
Type 

E
rr

or
 M

ap
pi

ng
 (

*)
 

In
te

ge
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T
N

S
 (

*)
 

In
te

ge
r 

M
/S

 (
*)

 

In
tM

D
C

T
 (

*)
 

B
P

G
C

/C
B

A
C

/L
E

M
C

 (
*)

 

R
em

ar
k 

O
bj

ec
t T

yp
e 

ID
 

…        
(escape)      X 31 
…        
SLS X X X X X  37 
SLS non-core    X X  38 
...        

Note: (*) marks new columns 
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In Part 3: Audio, Subpart 1, subclause 1.4 (Symbols and Abbreviations) add the following subclause: 

1.4.9 Arithmetic data types 

INT32 32 bit signed integer using two’s complement 

INT64 64 bit signed integer using two’s complement 

 

In Part 3: Audio, Subpart 1, subclause 1.5 add the following subclauses: 

1.5.1.2.31 SLS object type 

The SLS object is supported by the scalable to lossless tool which provides fine-grain scalable to lossless 
enhancement of MPEG perceptual audio codecs, such as AAC, allowing multiple enhancement steps from the 
audio quality of the core codec up to near-lossless and lossless signal representation. It also provides stand-
alone lossless audio coding when the core audio codec is omitted. 
 
1.5.1.2.32 SLS Non-Core object type 

The SLS non-core object is supported by the scalable to lossless tool. It is similar to the SLS object type but 
the core audio codec is omitted. 
 

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, amend table 1.8 with the updates in the 
table below: 

Syntax No. of bits Mnemonic 
AudioSpecificConfig ()   
{   
…   
 switch (audioObjectType) {   
 case 37: 
 case 38: 

  

  SLSSpecificConfig();   
  break;   
…   
 }   
…   
}   

 

In Part 3: Audio, Subpart 1, in subclause 1.6.2.1 add the following subclause: 

1.6.2.1.13 SLSSpecificConfig 

Defined in ISO/IEC 14496-3 subpart 12. 

 

In Part 3: Audio, Subpart 1, in subclause 1.6.2.2.1 Overview, add the following to table 1.14: 

Audio Object Type Object 
Type ID 

Definition of elementary stream 
payloads and detailed syntax 

Mapping of audio payloads to 
access units and elementary 
streams 

…    
SLS 37 ISO/IEC 14496-3 subpart 12  
SLS non_core 38 ISO/IEC 14496-3 subpart 12  
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Create Part 3: Audio, Subpart 12: 

Subpart 12: Technical description of scalable lossless coding 

12.1 Scope 

This subpart of ISO/IEC 14496-3 describes the MPEG-4 scalable lossless coding algorithm for audio signals. 
This description partially relies on the specification as given in subpart 4. 

12.2 Terms and definitions 

12.2.1 Definitions 

The following definitions are used in this subpart. 

Core Layer The MPEG-4 GA T/F coder used as the first layer in SLS . The audio object 
types AAC LC, AAC Scalable (without LTP), ER AAC LC, ER AAC Scalable 
and ER BSAC are supported. 

LLE Layer Lossless enhancement layer used in SLS to enhance the quality of the core 
layer towards lossless coding. 

Bit-Plane Position of specific bit in binary data word, starting with 0 as the position of 
the least significant bit (LSB). For example, the binary bit-plane symbols from 
bit-plane 0, 1, 2, and 3 of data word 0x0011 1101 (0x3d) are 1, 0, 1, and 1 
respectively. 

BPGC Bit-Plane Golomb Code 

CBAC Context Based Arithmetic Code 

LEMC Low Energy Mode Code 

Implicit Band A scale factor band for which the quantized spectral data presented in the 
core layer bit-stream will be used in determining part of the necessary side 
information for the LLE layer. 

Explicit Band A scale factor band for which the quantized spectral data presented in the 
core layer bit-stream will not be used in determining the necessary side 
information for the LLE layer. All the side information will be coded explicitly 
in the LLE payload. 

Oversampling Factor (osf) Ratio between sampling rates of LLE Layer and Core Layer, possible values 
are 1, 2 and 4. 

Oversampling Range High frequency range covered only by the LLE Layer, comprises 
(osf-1)*1024 resp. (osf-1)*128 frequency values per window. 

Reserved All fields labelled Reserved are reserved for future standardization. All 
Reserved fields must be set to zero. 
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12.2.2 Notations 

In order to make the description stringent, the following notations are used in this subpart: 

• Vectors are indicated by bold lower-case names, e.g. vector. 

• Matrices (and vectors of vectors) are indicated by bold upper-case single letter names, e.g. M. 

• Variables are indicated by italics, e.g. variable. 

• Functions are indicated as func(x) 

12.2.3 Definitions 

DIV(m,n) Integer division with truncation of the result of m/n to an integer value towards −∞. 

•⎢ ⎥⎣ ⎦  The floor operation. Returns the largest integer that is less than or equal to the real-valued 
argument. 

12.3 Payloads for the audio object 

Table 12.1 – Syntax of SLSSpecificConfig 

Syntax No. of bits Mnemonics 
SLSSpecificConfig(samplingFrequencyIndex,   
     channelConfiguration,   
     audioObjectType)   
{   
 pcmWordLength; 3 uimsbf 
 aac_core_present; 1 uimsbf 
 lle_main_stream; 1 uimsbf 
      reserved_bit; 1 uimsbf 
 frameLength; 3 uimsbf 
 if (!channelConfiguration){   
  program_config_element();   
 }   
}   

 

Table 12.2 – Top layer payload for lle stream 

Syntax No. of bits Mnemonics 
lle_element()   
{   
  for (ch=0;ch<channel_number;) {   
   if (is_channel_pair(ch)) {   
    lle_channel_pair_element();   
    ch += 2;   
   } else {   
    lle_single channel_element();   
    ch++;   
   }   
  }   
}   
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Table 12.3 – Syntax of lle_single_channel_element 

Syntax No. of bits Mnemonics 
lle_single_channel_element()   
{   
 lle_individual_channel_stream(1);   
}   

 

Table 12.4 – Syntax of lle_channel_pair_element 

Syntax No. of bits Mnemonics 
lle_channel_pair_element()   
{   
 lle_individual_channel_stream(1);   
 lle_individual_channel_stream(0);   
}   

 

Table 12.5 – Syntax of lle_individual_channel_stream 

Syntax No. of bits Mnemonics 
lle_individual_channel_stream(is_first_channel)   
{   
 lle_ics_length; 16 uimsbf 
 if (is_first_channel) {    
  element_instance_tag; 4 uimsbf 
 }   
 lle_reserved_bit; 1 uimsbf 
 if (lle_main_stream) {   
  lle_header(is_first_channel);   
  lle_side_info();   
 }   
 lle_data();   
 byte_align();   
}   
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Table 12.6 – Syntax of lle_header() 

Syntax No. of bits Mnemonics 
lle_header(is_first_channel)   
{   
 if (lle_channel_pair_element && common_window && 
 is_first_channel) { 

  

             use_stereo_intmdct; 1 uimsbf 
       }   
 if (aac_core_present) {   
  band_type_signaling;  2 uimsbf 
  if (band_type_signaling==1) {   
   for(g=0;g<num_window_groups;g++) {   
    for(sfb=0;sfb<max_sfb;sfb++) {   
     band_type[g][sfb]; 1 uimsbf 
    }   
   }   
  }   
 } else {   
            if (is_first channel) {   
      windows_sequence; 2 uimsbf 
  }   
 }   
}   

 

Table 12.7 – Syntax of lle_side_info 

Syntax No. of bits Mnemonics 
lle_side_info()   
{   
 For(g=0;g<num_window_groups;g++) {   
  for(sfb=0;sfb<num_sfb+num_osf_sfb;sfb++) {   
   if (band_type[g][sfb]==Explicit_Band) {   
    vcod_dpcm_max_bp[g][sfb]; 1...17 bslbf 
   }   
   if (max_bp[g][sfb] != -1) {   
    vcod_lazy_bp[g][sfb]; 1... 2 bslbf 
   }   
  }   
 }   
 cb_cbac; 1 uimsbf 
}   

 

Table 12.8 – Syntax of lle_data 

Syntax No. of bits Mnemonics 
lle_data()   
{   
 BPGC/CBAC data; varies bslbf 
 LEMC data; varies bslbf 
}   
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12.4 Semantics 

Data elements: 

aac_core_present Indicates, whether the lossless enhancement operates on top of an MPEG-4 
GA  T/F core (aac_core_present=1) or in non-core mode 
(aac_core_present=0). 

lle_main_stream Indicates, whether the current stream represents an LLE main stream 
including all the necessary side information or an LLE extension stream that 
extends the previous LLE stream. 

pcmWordlength Quantization word length of the original PCM waveform. 

Table 12.9 – Word length of original PCM waveform 

pcmWordlength Word length of original PCM 
waveform 

0 8 
1 16 
2 20 
3 24 
4 – 7  Reserved 

 

frameLength Length of the IntMDCT frame in the LLE layer. 

Table 12.10 – Length of the IntMDCT frame 

frameLength Length of the IntMDCT frame  Oversampling factor of the 
IntMDCT filterbank (osf) 

0 1024 1 
1 2048 2 
2 4096 4 
3-7 Reserved Reserved 

 

element_instance_tag Unique instance tag for syntactic elements. All syntactic elements containing 
instance tags may occur more than once, but must have a unique 
element_instance_tag in each audio frame. When the MPEG-4 GA T/F core 
is present, syntactic elements of SLS and MPEG-4 GA T/F from the same 
audio channel use the same element_instance_tag. 

lle_ics_length Length of LLE individual channel stream (LLE_ICS) for the current frame; in 
bytes. 

band_type_signaling By default, the band type for a scale factor band is defined as follows: A scale 
factor band that is in a section coded with the zero codebook (ZERO_HCB), 
Intensity Stereo (IS) coded, or Perceptual Noise Substitution (PNS) coded is 
an Explicit_Band. Otherwise it is an Implicit_Band. 

Scale factor bands above max_sfb and in the oversampling range are always 
Explicit_Band. 

This default band type can by overwritten by band_type_signaling in the 
following way: 
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Table 12.11 – Band type signaling  

Value of 
band_type_signaling  

band type 

00 Use default 
01 Band type signaling for each sfb follows 
10 All sfb are Explicit_Band  
11 Reserved 

 

band_type[g][sfb] Band type signaling for each scale factor band when 
band_type_signaling==01. A scale factor band is set to Explicit_Band if 
band_type[g][sfb] is 0. 

Table 12.12 –Band type  

Value Band type 
0 Explicit_Band 
1 Default 

 

vcod_dpcm_max_bp[g][sfb] The variable length coded maximum bit-plane for scale factor band sfb and 
group g. 

 
vcod_lazy_bp[g][sfb] The variable length coded lazy bit-plane for non-zero scale factor band sfb 

and group g. 
 
cb_cbac Indication of frequency table that will be used in the LLE decoding process. 
 

Table 12.13 – cb_cbac table 
cb_cbac Frequency table 
0 BPGC 
1 CBAC 

 
bpgc/cbac_data The binary bit-stream of the bpgc/cbac coded residual spectrum data 
 

low_energy_mode_data The binary bit-stream of the LEMC mode coded residual spectrum data 
 

12.5 SLS decoder tool 

12.5.1 Overview 

The block diagram of the scalable lossless (SLS) decoder is given in Figure 12.1. The core layer MPEG-4 GA 
stream is decoded by a deterministic Core Layer decoder. Its output, which is a deterministic spectrum in the 
MDCT domain, is sent to the inverse error mapping process. Meanwhile, the residual IntMDCT spectrum, 
carried in the LLE layer streams, is decoded and sent to the inverse error mapping process to reconstruct the 
IntMDCT spectrum. An inverse integer Mid/Side (M/S) and an inverse integer TNS process are then invoked 
and performed on the IntMDCT coefficients if necessary. Finally, its output is inversely transformed by using 
the inverse IntMDCT process to produce the PCM audio samples. A detailed description of each process is 
given in the subsequent sections. 
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Inverse 
Integer 
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Figure 12.1 – SLS decoder block diagram 

12.5.1.1 Non-core Mode 

In the non-core mode SLS works as a stand-alone codec without AAC core. In case of the SLS audio object 
type this is signalled by aac_core_present=0 for the non-core mode and aac_core_present=1 for the core-
based mode. In case of the SLS non-core audio object type it is always aac_core_present=0. 

In the non-core mode the following default values are used: 

• window_shape = 0 (sine window) 

• if (lle_channel_pair_element) common_window = 1 (on) 

• if (use_stereo_intmdct) all M/S flags are on, else all M/S flags are off 

• if (window_sequence == EIGHT_SHORT_SEQUENCE) grouping = {2,2,2,2} 

 

 

Bitstream  
Payload  
Parser

BPGC/
CBAC

decoder

Inverse 
IntMDCT

Output PCM  
samples 

SLS  
stream 

LLE 
stream 

Low 
Energy 
Mode 

Decoder

osf*1024 osf* 1024 

 

Figure 12.2 – SLS non-core decoder block diagram 
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12.5.2 Oversampling technique 

The core layer is allowed to operate at a lower sampling rate than the LLE layers. The following table shows 
some possible sampling rate combinations. 

Table 12.14 – Example combinations of sampling rates for Core and LLE layers 

 Core@ 48 kHz Core@ 96 kHz Core@ 192 kHz 
LLE@ 48 kHz X (osf = 1)   
LLE@ 96 kHz X (osf = 2) X (osf = 1)  
LLE@ 192 kHz X (osf = 4) X (osf = 2)  X (osf = 1) 

 

This technique is referred to as “Oversampling” in the following. 

The scalability of the codec using different sampling rates is achieved by changing the length of the inverse 
IntMDCT in the decoder accordingly. While the AAC core processes 1024 values in each frame, the SLS 
codec needs to process osf*1024 values per frame. This is achieved by extending the length of the inverse 
IntMDCT in the decoder to osf*1024 spectral lines. The 1024 inverse quantized spectral values from the AAC 
core are added to the 1024 low-frequency values of the SLS residual spectrum. This is illustrated in Figure 
12.3. 

 

Bitstream 
Payload  
Parser BPGC / 

CBAC 
decoder 

Inverse 
Error 

Mapping

Inverse 
Integer 

M/S

Inverse  
IntMDCT 

Deterministic 
MPEG-4 GA

decoder

Output PCM 
samples 

AAC  + 
LLE  

stream 

MPEG-4  
GA stream 

LLE 
stream 

Low  
Energy  
Mode  

Decoder 

1024

  osf * 1024  osf*1024   osf*1024  osf * 1024

Inverse 
Integer 
TNS

 

Figure 12.3 – Structure of SLS decoder with oversampling 

 

12.5.3 SLS with Scalable AAC Core 

If the core layer is AAC Scalable, the spectral data decoded from the SLS layers are added to the spectral 
data decoded from the AAC Scalable streams with a deterministic inverse AAC quantizer. The resulting 
spectral data is then processed with inverse integer M/S and inverse integer TNS process if necessary. 
Finally, the output is transformed by the inverse IntMDCT to produce the PCM audio samples. The decoding 
process is illustrated in Figure 12.4. 
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Figure 12.4 – Structure of SLS decoder with Scalable AAC core layer streams 

 

 

12.5.4 Decoding of lle_single_channel_element (LLE_SCE) and lle_channel_pair_element 
(LLE_CPE) 

12.5.4.1 Definitions 

lle_ics_length Length of LLE individual channel stream (LLE_ICS) in bytes. 

vcod_dpcm_max_bp[g][sfb] The variable length coded maximum bit-plane for scale factor band sfb 
and group g. This element is only present for insignificant scale factor 
bands. 

vcod_lazy_bp[g][sfb] The variable length coded lazy bit-plane for non-zero scale factor band 
sfb and group g. 

g Group index. 

sfb Scale factor band within group. 

win Window index. 

bin Frequency bin index. 

num_window_groups Number of groups of windows which share one set of scale factors. 
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num_sfb Number of scale factor bands per short window in case of 
EIGHT_SHORT_SQEUENCE, number of scale factor bands for long 
windows otherwise. 

num_osf_sfb Number of scale factor bands per window in the oversampling range. The 
oversampling range is covered by (osf-1)*16 bands with a width of 64 in 
case of long windows resp. (osf-1)*4 bands with a width of 32 in case of 
short windows. 

max_bp[g][sfb] The maximum bit-plane for group g and scale factor band sfb. 

lazy_bp[g][sfb] The lazy bit-plane for group g and scale factor band sfb. 

read_bits(n) Read n consecutive bits from the inputs bit-stream in the order of bslbf. 

quant[g][win][sfb][bin] AAC quantized spectral data. 

interval[g][win][sfb][k] Quantization intervals in the core AAC encoder. 

 

12.5.4.2 Decoding process 

12.5.4.2.1  LLE_SCE and LLE_CPE 

An LLE_SCE is composed of an lle_individual_channel_stream (LLE_ICS) while an LLE_CPE has two 
lle_individual_channel_streams (LLE_ICS). 

12.5.4.2.2  Decoding an LLE_ICS 

In the LLE_ICS, the order of the decoding process is given in the following flowchart: 

 Get ll_ics_len

Get LLE decoding
side information

Get BPGC/CBAC
data

Get LEMC data
 

Figure 12.5 – Process of decoding LLE_ICS 

 

For SLS bit-stream composed of an lle_main stream (lle_main_stream = 1) and multiple (>=1) lle_extension 
stream (lle_main_stream = 0), for each LLE_ICS, the lle_data() is constructed by concatenating the lle_data() 
elements from the lle_main stream, and all the available lle_extension streams in sequences as shown in the 
following figure: 
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Figure 12.6 – Construction of LLE_ICS for from multiple LLE streams 

 

If there is an intermediate LLE_extension stream missing, the data in lle_data() of the subsequent streams 
can not be used. 

12.5.4.2.3  Recovering BPGC/CBAC side information 

For each scale factor band of band type Explicit_Band, a maximum bit-plane (max_bp) is transmitted. In 
addition, for each scale factor band, a lazy bit-plane (lazy_bp) is transmitted unless the residual spectral data 
is all zero for this scale factor band (which is signalled by maximum bit-plane = -1). The max_bp is coded 
using variable length coded DPCM relative to the previously transmitted maximum bit-plane. The first value in 
each window group is coded using 5 bits PCM. The max_bp value is coded in unary representation. The 
following table gives some examples of how the DPCM value of max_bp is coded. 

Table 12.15 – Codeword for decoding the DPCM value of max_bp 

DPCM max_bp codeword codeword length 
0 1 1 
(s)1 01(s) 3 
(s)2 001(s) 4 
… … … 
(s)10 00000000001(s) 12 
… … … 

 

The difference between max_bp and lazy_bp, whose value is within the range {1, 2, 3} is decoded as follows: 

Table 12.16 – Codeword for decoding the difference between max_bp and lazy_bp 

max_bp - lazy_bp codeword codeword length 
1 10 2 
2 0 1 
3 11 2 
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The following pseudo code illustrates the decoding process for max_bp and lazy_bp. 

for (g = 0;g < num_window_groups; g++) 
    init = 0; 
 for (sfb = 0; sfb <num_sfb+num_osf_sfb;sfb++){ 
  if (band_type[g][sfb]== Explicit_Band) { 
    if (!init){ 
    max_bp[g][sfb] = read_bits(5) - 1; init ++; 
   } 
   else { 
    m = 0; 
    while (read_bits(1) == 0) m++; 
    if (m) { 
      if (read_bits(1)) m = -m; 
    } 
    max_bp[g][sfb] = m0 - m; 
   } 
   m0 = max_bp[g][sfb]; 
  } 
  if (max_bp[g][sfb]>=0) { 
   if (read_bits(1)==0) 
     lazy_bp[g][sfb] = max_bp[g][sfb] - 2; 
    else { 
     if (read_bits(1)==0) lazy_bp[g][sfb] = max_bp[g][sfb] - 1; 
     else lazy_bp[g][sfb] = max_bp[g][sfb] - 3; 
    } 
   } 
  } 
 

For Implicit_Bands, max_bp[g][sfb] is calculated from the quantization thresholds of the core layer quantizer 
as follows: 

As the first step, the maximum bit-plane M for each residual spectral bin for significant scale factor bands can 
be calculated from 

[ ]{ }2[ ][ ][ ][ ] log [ ][ ][ ][ ]M g win sfb bin INT interval g win sfb bin=  

where [ ][ ][ ][ ]interval g win sfb bin  is the quantization interval that is given by: 

( ) ( )[ ][ ][ ][ ] [ ][ ][ ][ ] 1 [ ][ ][ ][ ] 1interval g win sfb bin thr quant g win sfb bin thr quant g win sfb bin= + − + . 

Here thr(x) and inv_quant(x) are, respectively, the deterministic quantization threshold and the corresponding 
deterministic inverse quantization for AAC quantizer. They are calculated as in the following pseudo code: 

If (x==0) 
 thr(x)=0; 
else 
 thr(x) = (thrMantissa(|x|-1, scale_res))<<(12+scale_int); 
 
inv_quant(x) = (invQuantMantissa(|x|,scale_res))<<(12+scale_int); 
 

where 

scale_int = DIV(scale,4) 

scale_res = scale - scale_int*4, and 

scale=scale_factor(sfb)+core_scaling_factor+scale_osf-118. 
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The value of core_scaling_factor is given in Table 12.17. 

Table 12.17 – Table for core_scaling_factor 

Word Length

sfb Type 
16 20 24 

Long Window (2048), M/S  0  16 32  
Long Window (2048), non M/S  2  18  34  
Short Window (256), M/S 6  22  38  
Short Window (256), non M/S 8  24  40  

 

Table 12.18 – Table for scale_osf 

osf  1 2  4  

scale_osf 0 2 4 
 

The functions thrMantissa() and invQuantMantissa() are defined in 12.5.11. 

For scalefactor bands coded with IS or PNS the value of inv_quant(x) is set to 0. 

The maximum bit-plane max_bp for each sfb is the maximum value of M for spectral data that belongs to that 
sfb: 

( )[ ][ ] max [ ][ ][ ][ ]max_bp g sfb M g win sfb bin=  

12.5.5 Decoding of lle_data 

12.5.5.1 Definitions 

lle_data() Part of the bit-stream which contains the coded residual spectrum data. 

window_group_len[g] Number of windows in each group.  

is_lle_ics_eof() An auxiliary function to detect the end of LLE_ICS. 

read_bits(n) Read n consecutive bits from the input bit-stream in the order of bslbf. If there 
exists no bit to be fed in the bitstream, it returns ‘0’ by default. 

cur_bp[g][sfb] The current decoded bit-plane. 

res[g][win][sfb][k] The reconstructed residual integer spectral data vector. 

amp[g][win][sfb][k] The amplitude of the reconstructed residual integer spectral data vector. 

sign[g][win][sfb][k] The sign of the reconstructed residual integer spectral data vector. 

determine_frequency() The function to determine the probability of the symbol '1' according to either 
the CBAC or the BPGC frequency table. 

ambiguity_check(f)  The function to detect ambiguity for the arithmetic decoding. The argument f 
indicates the probability of the symbol '1'. 

terminate_decoding()  The function to terminate decoding of the LLE data when ambiguity occurs. 
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smart_decoding_cbac_bpgc() The function to decode additional symbols in the absence of incoming bits in 
the cbac/bpgc mode decoding. This decoding continues up to the point where 
there exists no ambiguity. It includes ambiguity_check(f) and 
terminate_decoding(). 

smart_decoding_low_energy() The function to decode additional symbols in the absence of incoming bits in 
the low energy mode decoding. It also includes ambiguity_check(f) and 
terminate_decoding(). 

12.5.5.2 Decoding process 

12.5.5.2.1  Overview 

The residual integer spectral data vector is decoded from the LLE data stream lle_data(). Firstly, all scale 
factor bands with lazy_bp > 0 are BPGC/CBAC decoded, where the amplitude of the residual spectral data 
res is bit-plane decoded starting from the maximum bit-plane max_bp and progressing to lower bit-planes until 
bit-plane 0 for each scale factor band. Subsequently, the low energy mode decoding is invoked to decode the 
remaining scale factor bands with lazy_bp <= 0. 

The SLS decoder can provide the functionality of fine-grain scalability (FGS) by truncating the LLE bitstream. 
Moreover, it allows to decode additional symbols beyond the point of truncation by exploiting the properties of 
arithmetic coding. 

 

12.5.5.2.2  BPGC/CBAC decoding process 

The BPGC decoding or CBAC decoding process is performed on scale factor bands for which lazy_bp>0. The 
BPGC/CBAC bit-plane decoding process is used to decode the bit-plane symbols for reconstructing the 
residual integer spectral data res. The bit-plane decoding process is started from max_bp for each sfb, and 
progressively proceeds to lower bit-planes. For the first NUM_BP bit-plane scans the bit-plane symbols are 
arithmetic decoded as illustrated in the following pseudo code: 

/* preparing the help element */ 
for (g=0;g<num_window_groups;g++){ 
 for (sfb = 0;sfb<num_sfb;sfb++){ 
  width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
  for (win = 0;win <window_group_len[g];win++) { 
   for (bin=0;bin<width;bin++) 
    is_sig[g][win][sfb][bin] = 
    (quant[g][sfb][win][bin])&&(band_type[g][sfb]==ImplicitBand)?1:0; 
    /* sign will be determined implicitly if is_sig == 1 */ 
    res[g][win][sfb][bin] = 0; 
  } 
  cur_bp[g][sfb] = max_bp[g][sfb]; 
 } 
} 
 
/* BPGC/CBAC decoding */ 
while ((max_bp[g][sfb] – cur_bp[g][sfb]<LAZY_BP) && (cur_bp[g][sfb] >= 0)){ 
 for (g=0;g<num_window_groups;g++){ 
  for (sfb = 0;sfb<num_sfb;sfb++){ 
   if ((cur_bp[g][sfb]>=0) && (lazy_bp[g][sfb] > 0)){ 
    width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
    for (win=0;win<window_group_len[g];win++){ 
     for (bin=0;bin<width;bin++){ 
      if (!is_lle_ics_eof ()){ 
       if (interval[g][win][sfb][bin] > 
        res[g][win][sfb][bin] + (1<<cur_bp[g][sfb]) 
       { 
       freq = determine_frequency(); 
       res[g][win][sfb][bin] += decode(freq ) << cur_bp[g][sfb]; 
        /* decode bit-plane cur_bp*/ 
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      if ((!is_sig[g][win][sfb][bin]) && (res[g][win][sfb][bin] )) { 
       /* decode sign bit of res if necessary */ 
       res[g][win][sfb][bin] *= (decode(freq_sign))? 1:-1; 
       is_sig[g][win][sfb][bin] = 1; 
        } 
       } 
      } 
      else { 
       smart_decoding_cbac_bpgc(); 
      }        
     } 
    } 
    cur_bp[g][sfb]--; /* progress to next bit-plane */ 
   } 
  }  
 } 
} 
 
After that, BPGC/CBAC enters the lazy decoding mode after skipping the 2 bit terminating string, where the 
bit-plane symbols are directly read from the input bit-stream: 

 

/* BPGC/CBAC lazy decoding */ 
read_bits(1);read_bits(1); /* skip the 2 AC termination string before lazy coding 
while (cur_bp[g][sfb] >= 0){ 
 for (g=0;g<num_window_groups;g++){ 
  for (sfb = 0;sfb<num_sfb+num_osf_sfb;sfb++){ 
   if ((cur_bp[g][sfb]>=0) && (lazy_bp[g][sfb] > 0)){ 
    width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
    for (win=0;win<window_group_len[g];win++){ 
     for (bin=0;bin<width;bin++){ 
      if (!is_lle_ics_eof ()){ 
       if (interval[g][win][sfb][bin] > 
        res[g][win][sfb][bin] + (1<<cur_bp[g][sfb]) 
       { 
        res[g][win][sfb][bin] += read_bit() << cur_bp[g][sfb]; 
         /* decode bit-plane cur_bp */ 
        if (((!is_sig[g][win][sfb][bin]) && (res[g][win][sfb][bin] )) { 
         /* decode sign bit of res if necessary */ 
         res[g][win][sfb][bin] *= (read_bit())? 1:-1; 
         is_sig[g][win][sfb][bin] = 1; 
        } 
       } 
      } 
     } 
    } 
    cur_bp[g][sfb]--; 
   } 
  } 
 }  
} 
 

the value of NUM_BP is determined in the following table. 

Table 12.19 – Value of NUM_BP 

cb_cbac NUM_BP 
0 (BPGC) 4 
1 (CBAC) 6 

 

The probability assignment freq in the above BPGC/CBAC decoding process is either the BPGC frequency 
freq_bpgc or the CBAC frequency freq_cbac depending on whether the current LLE_ICS is decoded with the 
BPGC or the CBAC frequency table. freq_bpgc is determined by the relationship of the cur_bp to the lazy_bp 
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parameter as given in the following table. The sign bits in the above decoding process are decoded with 
frequency 8192, i.e., freq_sign = 8192. 

Table 12.20 – freq_bpgc table 

cur_bp BPGC frequency  
lazy_bp+3 64 
lazy_bp+2 964 
lazy_bp+1 3277 
lazy_bp 5461 
<lazy_bp  8192 

 

The value freq_cbac is determined by the context of the bit-plane symbol which is currently being decoded. 
There are three types of context used in CBAC which are listed in the following. 

• Context 1: frequency band (fb) 
The fb context is determined by the index of the interleaved residual IntMDCT spectral data c[i], 
i=0,…,1024*osf-1, and the sampling rate of the current LLE layer as shown in the following table. 

Table 12.21 – Frequency band (fb) context [frequency bin] 
Sampling Rate 

Context no 

44100 48000 96000 192000 Other 

0 (Low Band) 0 - 185 0 – 169 0 - 84 0 - 42 0 – 338 
1 (Mid Band) 186 - 511 170 – 469 85 - 234 43 - 117 338 – 938 
2 (High Band) >511 >469 >234 >117 > 938 

  

• Context 2: significant state (ss) 
For interleaved residual IntMDCT spectral data c[i], i=0,…,1024*osf-1 that is insignificant (i.e., the bit-plane 
symbols of c[i] decoded so far are all zeroes) the ss context is determined by the significance of its adjacent 
spectral data: 

( ) ( ) ( ) ( ) ( ){ }_ , _ 2, , _ 1, , _ 1, , _ 2,sig cx i bp sig state i bp sig state i bp sig state i bp sig state i bp= − − + +  

where _ ( , )sig state i bp  is defined as: 

( ) [ ]
[ ]

0
_ ,

1
c i is insignificant before bitplane bp

sig state i bp
c i is significant before bitplane bp

⎧
= ⎨
⎩  

and _ ( , )sig state i bp  is defined as 0 if i is smaller than 0 or larger than the IntMDCT length. 

For c[i] that is already significant, the ss context is determined by the band type of the scalefactor band that it 
is from: 

( ) [ ]
[ ]

0 _
_

1 _
c i is from an Explicit Band

sig core i
c i is from an Implicit Band

⎧
= ⎨
⎩

. 
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Furthermore, for the latter case, the ss context is further determined according to the value of 
( , )quant_interval i bp  defined as: 

( ) [ ] [ ]
1

1

0 _ [ ] 2 [ ]
_ ,

1 _ [ ] 2 _ 2

bp

bp bp

rec spectrum i interval i
quant interval i bp

rec spectrum i interval i rec spectrum i

+

+

⎧ + ≤⎪= ⎨ + ≤ < +⎪⎩
, 

The detailed context assignment of the ss context is summarized in the following table: 

Table 12.22 – Significance state (SS) context 

Context no sig_state(i,cur_bp) sig_cx(i,cur_bp) sig_core(i) quant_interval(i)
0 0 {0,0,0,0} x x 
1 0 {0,0,0,1} 

{1,0,0,0} 
x x 

2 0 {0,0,1,0} 
{0,1,0,0} 

x x 

3 0 {0,0,1,1} 
{1,1,0,0} 

x x 

4 0 {0,1,0,1} 
{1,0,1,0} 

x x 

5 0 {0,1,1,0} x x 
6 0 {0,1,1,1} 

{1,1,1,0} 
x x 

7 0 {1,0,0,1} x x 
8 0 {1,0,1,1} 

{1,1,0,1} 
x x 

9 0 {1,1,1,1} x x 
10 1 x 0 x 
11 1 x 1 0 
12 1 x 1 1 

 

• Context 3: distance to lazy (d2l) 
The d2l context is determined by the distance of cur_bp to the lazy_bp parameter of the currently decoded bit-
plane symbol. The detailed assignment is listed in the following table. 

Table 12.23 – Distance to lazy (D2L) context 
Context no cur_bp – lazy_bp 
0 <-2 
1 -2 
2 -1 
3 0 
4 1 
5 2 
6 3 

 

The frequencies freq_cbac for each context are given in the following table. 
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Table 12.24 – freq_cbac table 

d2l 

fb*13+ss 

0 1 2 3 4 5 6 

0 8192 7823 7826 6506 4817 2186 1053 
1 8192 8344 7983 6440 4202 1362 64 
2 8192 8399 8382 7016 4202 1234 64 
3 8192 8305 7960 6365 3963 1285 64 
4 8192 8335 8146 6655 3746 825 64 
5 8192 8473 8244 6726 3929 927 64 
6 8192 8398 7919 6098 3581 875 64 
7 8192 8359 8028 6382 3459 631 64 
8 8192 8192 8192 5461 3277 964 64 
9 8192 8333 7481 5288 3076 732 64 
10 8192 7658 6898 5145 1424 1636 64 
11 8192 5471 5732 6264 4890 1279 93 
12 8192 8180 8136 7897 5715 1553 64 
13 8192 7242 6876 6083 3604 1214 950 
14 8192 7897 7570 6583 3733 1067 900 
15 8192 8071 7928 7069 4294 1406 1200 
16 8192 8197 7952 6906 4050 1457 1101 
17 8192 8278 8039 7094 4160 1381 64 
18 8192 8307 8139 7263 4407 1555 64 
19 8192 8339 8124 7065 4074 1636 64 
20 8192 8213 7918 6827 3787 1161 64 
21 8192 8286 8067 6902 3855 1387 64 
22 8192 8336 8072 6705 3731 1558 64 
23 8192 7636 6962 5036 1985 1037 64 
24 8192 5519 5270 5238 4778 1588 219 
25 8192 7884 7528 6743 4848 1970 64 
26 8192 6084 6323 5929 3321 900 385 
27 8192 7862 7618 6728 4409 1431 1302 
28 8192 8078 7871 7081 5119 2371 1670 
29 8192 8294 8046 7239 5218 2032 967 
30 8192 8378 8119 7351 5413 1947 64 
31 8192 8378 8207 7491 5624 2444 64 
32 8192 8484 8302 7626 5514 2021 64 
33 8192 8302 8006 7192 4941 1561 64 
34 8192 8464 8246 7510 5217 1780 64 
35 8192 8544 8442 7742 4944 2010 64 
36 8192 7556 6771 4859 2638 2155 64 
37 8192 5916 4780 4713 4239 1240 182 
38 8192 7658 7095 5986 3886 1394 64 

 
 

12.5.5.2.3 Low Energy Mode Code (LEMC) decoding 

The following pseudo code illustrates the LEMC decoding process that is performed on scale factor bands for 
which lazy_bp<=0. 
 
/* low energy mode decoding */ 
for (g = 0;g < num_window_groups; g++){ 
 for (sfb = 0; sfb <num_sfb+num_osf_sfb;sfb++){ 
  if ((cur_bp[g][sfb] >= 0) && (lazy_bp[g][sfb] <= 0)) 
  { 
   width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
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   for (win=0;win<window_group_len[g];win++){ 
    res[g][sfb][win][bin] = 0; 
    pos = 0; 
    for (bin=0;bin<width;bin++){ 
     if (!is_lle_ics_eof ()){ 
      /* decoding of binary string and reconstructing res */ 
      while (decode(freq_silence[pos])==1) { 
       res[g][sfb][win][bin] ++; 
       pos++; 
       if (pos>2) pos = 2; 
       if (res[g][sfb][win][bin]==(1<<(max_bp[g][sfb]+1))-1) break; 
      } 
      /* decoding of sign of res */ 
      if (!is_sig[g][win][sfb][bin]) && res[g][sfb][win][bin]){ 
       res[g][sfb][win][bin] *= (decode(freq_sign))? -1:1; 
       is_sig[g][win][sfb][bin] = 1; 
      } 
     } 
     else smart_decoding_low_energy();     
    } 
   } 
  } 
 } 
} 
 

The probability assignments for the low energy mode decoding, freq_bpgc and freq_silence are given in the 
following tables. The sign bits in the above decoding process are decoded with frequency 8192, i.e. freq_sign 
= 8192. 

Table 12.25 – freq_silence table 

lazy_bp

pos 

0 -1 -2 -3 

0 12603 9638 6554 3810 
1 7447 3344 1820 X 
>1 6302 745 552 X 

 

The following table defines the mapping between the binary string decoded in case of the low energy mode 
and the residual spectral data res. The sign bit of res is decoded after the first non-zero bit-plane symbol has 
been decoded. 

 

Table 12.26 – Binarization of res in low energy mode coding 

Amplitude of res[g][win][sfb][bin] Binary string 
0 0 
1 1 0 
2 1 1 0 
3 1 1 1 0 
4 1 1 1 1 0 
… … 
2^(max_bp[g][sfb]+1)-2 1 1 … … … 1 0 
2^(max_bp[g][sfb]+1)-1 1 1 … … … 1 1 
pos 0 1 2 3 …  
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12.5.5.2.4  Arithmetic decoding 

The following pseudo code illustrates the integer arithmetic decoding process used in the BPGC/CBAC and 
the low energy mode decoding process. 

Definitions: 
#define CODE_WL  16 
#define PRE_SHT  14 
#define TOP_VALUE  (((long)1<<CODE_WL)-1) 
#define QTR_VALUE  (TOP_VALUE/4+1) 
#define HALF_VALUE (2*QTR_VALUE) 
#define TRDQTR_VALUE  (3*QTR_VALUE) 

 
Initialization: 
low = 0; 
high = TOP_VALUE; 
value = 0; 

 
The decoding subroutine 
 
int decode(int freq) 
{ 
   range = (long)((high-low)+1); 
   cumu = ((long)((value-low)+1)<<PRE_SHT); 
   if (cumu<range*freq)  { 
  sym = 1; 
   high = low + (range*freq>>PRE_SHT)-1; 
   } 
   else  { 
  sym = 0; 
      low = low + (range*freq>>PRE_SHT); 
   } 
     for (;;)  { 
      if (high<HALF_VALUE)  { 
  }  else if (low>=HALF_VALUE)  { 
         value -= HALF_VALUE; 
         low -= HALF_VALUE; 
         high -= HALF_VALUE; 
      }  else if (low>=QTR_VALUE && high<TRDQTR_VALUE)  { 
        value -= QTR_VALUE; 
         low -= QTR_VALUE; 
         high -= QTR_VALUE; 
      }  else 
         break; 
      low = 2*low; 
      high = 2*high+1; 
      value = 2*value + read_bits(1);  /*input next bit from bit-stream */ 
   } 
   return sym; 
} 
 

12.5.5.2.5 Smart arithmetic decoding of truncated SLS bitstreams 

The smart arithmetic decoding provides an efficient way to decode an intermediate layer corresponding to a 
given target bitrate. This algorithm exploits the fact that a decoding buffer still contains meaningful information 
for arithmetic decoding even if there is no bit left to be fed into the decoding buffer. The decoding process 
continues as long as there exists no ambiguity in determining a symbol. 

The following pseudo code illustrates the algorithm to detect the ambiguity in the arithmetic decoding module. 
The variable num_dummy_bits represents the number of calls to evoke the function of read_bits(1) in the 
arithmetic decoding process just after the truncation point. 

int ambiguity_check(int freq) 
{ 
 /* if there is no ambiguity, returns 1 */ 
 /* otherwise, returns 0                */ 
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 upper = 1<<num_dummy_bits; 
 decisionVal = ((high-low)*freq>>PRE_SHT)-value+low-1; 
 if(decisionVal>upper || decisionVal<0) return 0; 
 else return 1; 
} 
 
Either smart_decoding_cbac_bpgc() or smart_decoding_low_energy() is executed when num_dummy_bits is 
greater than 0. In order to prevent sign bit errors, the spectral value of the current spectral line should be set 
to zero when an ambiguity can occur while decoding a sign bit. Notice that all index variables in the smart 
decoding process should be carried over from the previous arithmetic decoding process. 

 
 
smart_decoding_cbac_bpgc() 
{ 
 /* BPGC/CBAC normal decoding with ambiguity detection */ 
 while ((max_bp[g][sfb] - cur_bp[g][sfb]<LAZY_BP) && (cur_bp[g][sfb] >= 0)){ 
  for (;g<num_window_groups;g++){ 
   for (;sfb<num_sfb;sfb++){ 
    if ((cur_bp[g][sfb]>=0) && (lazy_bp[g][sfb] > 0)){ 
     width = swb_offset[g][sfb+1] - swb_offset[g][sfb]; 
     for (;win<window_group_len[g];win++){ 
      for (;bin<width;bin++){ 
       if (interval[g][win][sfb][bin] > 
        res[g][win][sfb][bin] + (1<<cur_bp[g][sfb]) 
       { 
        freq = determine_frequency(); 
        if (ambiguity_check(freq)) { 
         /* no ambiguity for arithmetic decoding */ 
         res[g][win][sfb][bin] += decode(freq ) << cur_bp[g][sfb]; 
          /* decode bit-plane cur_bp*/ 
         if ((!is_sig[g][win][sfb][bin]) && (res[g][win][sfb][bin] )) { 
          /* decode sign bit of res if necessary */ 
          if (ambiguity_check(freq)) { 
           res[g][win][sfb][bin] *= (decode(freq_sign))? 1:-1; 
           is_sig[g][win][sfb][bin] = 1; 
          } 
          else { 
           /* discard the decoded symbol prior to sign symbol */ 
           res[g][win][sfb][bin] = 0; 
           terminate_decoding(); 
          } 
         } 
        } 
        else terminate_decoding(); 
       } 
      } 
     } 
     cur_bp[g][sfb]--; /* progress to next bit-plane */ 
    } 
   } 
  } 
 } 
} 
 
 
smart_decoding_low_energy() 
{ 
 /* low energy mode decoding */ 
 for (;g < num_window_groups; g++){ 
  for (; sfb <num_sfb+num_osf_sfb;sfb++){ 
   if ((cur_bp[g][sfb] >= 0) && (lazy_bp[g][sfb] <= 0)) 
   { 
    width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
    for (;win<window_group_len[g];win++){ 
     res[g][sfb][win][bin] = 0; 
     pos = 0; 
     for (;bin<width;bin++){ 
      while (1) { 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD3:2

00
6

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae


ISO/IEC 14496-3:2005/Amd.3:2006(E) 

24 © ISO/IEC 2006 – All rights reserved
 

       /* if ambiguity check is false, discard the spectrum is set to be 0 */ 
       if(!ambiguity_check(freq)) res[g][sfb][win][bin] = 0, terminate_decoding(); 
       tmp = decode(freq_silence[pos]);  
       if(tmp==0) break; 
       res[g][sfb][win][bin] ++; 
       pos++; 
       if (pos>2) pos = 2; 
       if (res[g][sfb][win][bin]==(1<<(max_bp[g][sfb]+1))-1) break; 
      } 
      /* decoding of sign of res */ 
      if (!is_sig[g][win][sfb][bin]) && res[g][sfb][win][bin]){ 
       /* if ambiguity check is false,the current spectrum value is set to be 0 */ 
       if(!ambiguity_check(freq)) res[g][sfb][win][bin] = 0, terminate_decoding(); 
       res[g][sfb][win][bin] *= (decode(freq_sign))? -1:1; 
       is_sig[g][win][sfb][bin] = 1; 
      } 
     } 
    } 
   } 
  } 
 } 
} 
 

12.5.6 Compensation for IntMDCT residual for early terminating BPGC/CBAC decoding 

If the BPGC/CBAC decoding process is terminated early due to a truncation of the LLE_ICS, res is 
compensated with a res_fill term as follows: 
 
for (g=0;g<num_window_groups;g++){ 
 for (sfb = 0;sfb<num_sfb+num_osf_sfb;sfb++){ 
  width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
  for (win=0;win<window_group_len[g];win++){ 
   for (bin=0;bin<width;bin++){ 
    if (is_sig[g][win][sfb][bin]){ 
     if (res[g][win][sfb][bin] >= 0) res[g][win][sfb][bin] += (res_fill >> (23-
stop_bp[g][win][sfb][bin])); 
     else if (res[g][win][sfb][bin] < 0) res[g][win][sfb][bin] -= (res_fill >> (23-
stop_bp[g][win][sfb][bin])); 
    } 
   } 
  } 
 } 
} 
 
Here stop_bp[g][win][sfb][bin] is the highest bit-plane for which the bit-plane symbol is not decoded due to the 
early termination of  LLE_ICS. The value of res_fill is given in the following table. 

Table 12.27 – Value of res_fill 

stop_bp res_fill 
lazy_bp+3 1572608 
lazy_bp+2 3079935 
lazy_bp+1 5172975 
lazy_bp 6990507 
<lazy_bp 8388607 
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12.5.7 Inverse error mapping 

12.5.7.1 Principle 

The inverse error mapping process is used to reconstruct the IntMDCT spectral data from the IntMDCT 
residual data from the LLE layer and the quantized MDCT spectral data from the core layer. This process is 
only applied in the non-oversampling range. The input to the inverse error mapping tool is the residual spectral 
data res and the quantized spectral data quant. Its output is the reconstructed IntMDCT spectral data c. The 
inverse error mapping procedure is described in the following: 

 if (quant[g][win][sfb][bin]==0) 
  c[g][win][sfb][bin]=res[g][win][sfb][bin]; 
 else 
  c[g][win][sfb][bin] = sign(quant[g][win][sfb][bin]) * 

(res[g][win][sfb][bin]+ref(quant[g][win][sfb][bin]); 
 

To ensure lossless coding, in the SLS encoder the following error mapping procedure should be employed for 
the same spectral range: 

if (quant[g][win][sfb][bin]==0) 
 res[g][win][sfb][bin]=c[g][win][sfb][bin]; 
else 
 res[g][win][sfb][bin]=sign(quant[g][win][sfb][bin])* c[g][win][sfb][bin]-

ref(quant[g][win][sfb][bin]); 
 
 

The function ref(x) in the above process is deterministically calculated as follows 

if ((sfb is Implicit_Band) then 
 ref(x) = thr(abs(x)) 
else if  (sfb is Explicit_Band) 
 ref(x) = inv_quant(abs(x)) 
 
Here the calculation of thr() and inv_quant() follows subclause 12.5.4.2.3 

 

12.5.8 Integer Mid/Side process 

If the Mono IntMDCT is used for the left and the right channel (common_window == 0 or use_stereo_intmdct 
== 0), the inverse integer M/S processing has to be applied to the scale factor bands where the M/S flag is 
switched on. 

The Mid/Side (M/S) decoding is performed on the integer spectral values by a lossless 4π−  Givens rotation 
using the lifting scheme as follows: 

 

Step 1: 

( )1S S NINT c M= − ⋅ ; 

 

Step 2: 

( )2M M NINT c S= − ⋅ ; 
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Step 3: 

R M= ; 

( )1L S NINT c R= − ⋅ ; 

 

where M,S,R,L denotes the spectral data of Mid, Side, Left, and Right channels and 1 (cos 1) sin
4 4

c π π= − , 

and 2 sin
4

c π
= . 

These three multiplications are performed in a fixed-point fashion by using integer coefficients and bit shifts. 
The detailed fixed-point arithmetic is described in subclause 12.5.10.3. 

The inverse Stereo IntMDCT expects an M/S spectrum by default. Hence M/S has to be applied to the scale 
factor bands where the M/S flag is switched off. 

The Mid/Side (M/S) coding is performed on the integer spectral values by a lossless 4π  Givens rotation 
using the lifting scheme as follows: 

Step 1 
S R= ; 

( )1M L NINT c R= + ⋅ ; 

Step 2: 

( )2S S NINT c M= + ⋅ ; 

Step 3: 

( )1M M NINT c S= + ⋅ ; 

where M,S,L,R denote the spectral data of Mid, Side, Left, and Right channels and 1 (cos 1) sin
4 4

c π π
= −  

, and 2 sin
4

c π
= . 

These three multiplications are performed in a fixed-point fashion by using integer coefficients and bit shifts. 
The detailed fixed-point arithmetic is described in subclause 12.5.10.3. 

 

12.5.9 Integer Temporal Noise Shaping (IntTNS) 

When Temporal Noise Shaping (TNS) is used in the AAC core, the same TNS filter is applied to the integer 
spectral values in SLS. In order to convert this filter to a deterministic invertible integer filter, the following 
changes to the TNS tool description in Subpart 4 are required: 
 
For determining the LPC coefficients, instead of the function tns_decode_coef() in subclause 4.6.9.3, the 
function int_tns_decode_coef() is used, as described in the following pseude-code: 
 
define SHIFT_INTTNS 21 
 
INT32 tnsInvQuantCoefFixedPoint(coef_res, coef) 
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{ 
  INT32 intTnsCoef_res3[8] = {-2065292, -1816187, -1348023, -717268, 
                            0, 909920, 1639620, 2044572}; 
  INT32 intTnsCoef_res4[16] = {-2088206, -2017095, -1877294, -1673563, 
                             -1412842, -1104008, -757579, -385351, 
                             0, 436022, 852989, 1232675, 
                             1558488, 1816187, 1994510, 2085664}; 
  if (coef_res == 3) { 
    return intTnsCoef_res3[4+coef]; 
  } 
  if (coef_res == 4) { 
    return intTnsCoef_res4[8+coef]; 
  } 
} 
 
/* Decoder transmitted coefficients for one TNS filter */ 
int_tns_decode_coef( order, coef_res, *coef, INT32 *a ) 
{ 
  INT32 tmp[TNS_MAX_ORDER+1], b[TNS_MAX_ORDER+1]; 
 
  /* Inverse quantization */ 
  for (i=0; i<order; i++)  { 
    tmp[i+1] = tnsInvQuantCoefFixedPoint(coef_res, coef[i]); 
  } 
  /* Conversion to LPC coefficients */ 
  /* worst case for order == 12 and all coefficients == 1: 
     6th coefficient raised by 12!/(6!*6!) = 924 
     -> 10 bits headroom required -> SHIFT_INTTNS == 21 */ 
 
  a[0] = 1<<SHIFT_INTTNS; 
  for (m=1; m<=order; m++)  { 
    b[0] = a[0]; 
    for (i=1; i<m; i++)  { 
     b[i] = a[i] + ((((((INT64)tmp[m])*a[m-i])>>(SHIFT_INTTNS-1))+1)>>1); 
    } 
    b[m] = tmp[m]; 
    for (i=0; i<=m; i++)  { 
     a[i] = b[i]; 
    } 
  } 
} 
 
Based on the resulting fixed-point LPC coefficients, a deterministic integer version of the TNS filter is applied 
to the integer spectrum in the decoder. This is done by replacing the function tns_ar_filter() in subclause 
4.6.9.3 by the function int_tns_ar_filter(), described by the following pseudo-code: 
 
 
int_tns_ar_filter(INT32 *spec, size, inc, INT32 *lpc, order ) 
{ 
  INT32 y, state[TNS_MAX_ORDER]; 
  INT64 temp_accu; 
 
  for (i=0; i<order; i++) 
    state[i] = 0; 
 
  if (inc == -1) 
    spec += size-1; 
 
  for (i=0; i<size; i++) { 
    y = *spec; 
    temp_accu = 0; 
    for (j=0; j<order; j++) { 
      temp_accu += ((INT64)lpc[j+1]) * state[j]; 
    } 
    y -= (INT32)( ( ( temp_accu >> (SHIFT_INTTNS-1) ) + 1) >> 1 ); 
    for (j=order-1; j>0; j--) 
     state[j] = state[j-1]; 
    state[0] = y; 
    *spec = y; 
    spec += inc; 
  } 
} 
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If the StereoIntMDCT is used, the integer spectral values represent the M/S spectrum instead of the L/R 
spectrum. In this case, the inverse Integer M/S has to be applied before the IntTNS and the forward Integer 
M/S has to be applied afterwards. 
 
IntTNS in the encoder 
In order to ensure lossless reconstruction, the corresponding forward LPC prediction has to be applied to the 
integer spectrum in the encoder. This is achieved by applying the function int_tns_decode_coef() and the 
corresponding forward filter to the integer spectrum, as described in the following pseudo-code: 
 
int_tns_filter_encode(length, order, direction, INT32* spec, INT32 *lpc) 
{ 
  INT64 temp_accu; 
  if (direction) { 
    /* Startup, initial state is zero */ 
    temp[length-1]=spec[length-1]; 
    for (i=length-2;i>(length-1-order);i--) { 
      temp[i]=spec[i]; 
      temp_accu = 0; 
      k++; 
      for (j=1;j<=k;j++) { 
        temp_accu += ((INT64)temp[i+j]) * a[j]; 
      } 
      spec[i] += (INT32)( ( ( temp_accu >> (SHIFT_INTTNS-1) ) + 1) >> 1); 
    } 
   
    /* Now filter the rest */ 
    for (i=length-1-order;i>=0;i--) { 
      temp[i]=spec[i]; 
      temp_accu = 0; 
      for (j=1;j<=order;j++) { 
        temp_accu += ((INT64)temp[i+j]) * a[j]; 
      } 
      spec[i] += (INT32)( ( ( temp_accu >> (SHIFT_INTTNS-1) ) + 1) >> 1 ); 
    } 
   
   
  } else { 
    /* Startup, initial state is zero */ 
    temp[0]=spec[0]; 
    for (i=1;i<order;i++) { 
      temp[i]=spec[i]; 
      temp_accu = 0; 
      for (j=1;j<=i;j++) { 
        temp_accu += ((INT64)temp[i-j]) * a[j]; 
      } 
      spec[i] += (INT32)( ( ( temp_accu >> (SHIFT_INTTNS-1) ) + 1) >> 1 ); 
    } 
   
    /* Now filter the rest */ 
    for (i=order;i<length;i++) { 
      temp[i]=spec[i]; 
      temp_accu = 0; 
      for (j=1;j<=order;j++) { 
        temp_accu += ((INT64)temp[i-j])*a[j]; 
      } 
      spec[i] += (INT32)( ( ( temp_accu >> (SHIFT_INTTNS-1) ) + 1) >> 1 ); 
    } 
  } 
} 
 
In case the StereoIntMDCT is used, the integer spectral values represent the M/S spectrum instead of the L/R 
spectrum. In this case the inverse Integer M/S has to be applied before the IntTNS and the forward Integer 
M/S has to be applied afterwards. 
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12.5.10 IntMDCT and Inverse IntMDCT 

12.5.10.1 Description 

The IntMDCT is an invertible integer approximation of the MDCT. The following section describes the 
structural implementation of the MDCT and IMDCT used for the forward and inverse IntMDCT. 

In the following, the frame length N always denotes the number of new input samples in each block, which is 
equal to the number of frequency values, so N is either osf*1024 or osf*128. 

12.5.10.2 MDCT and Inverse MDCT (IMDCT) 

The MDCT is defined by 

2 1

0

2 (2 1 )(2 1)( ) ( ) ( )cos
4

0,..., 1

N

k

k N mX m w k x k
N N

m N

π−

=

+ + +
=

= −

∑  

N: Frame length (osf*1024 or osf*128) 

X(m): Values of MDCT spectrum 

x(k): Input samples 

w(k): Window function (Sine or KBD) 

The IMDCT is defined by 

1

0

2 (2 1 )(2 1)( ) ( ) ( )cos
4

0,...,2 1

N

m

k N mx k w k X m
N N

k N

π−

=

+ + +
=

= −

∑  

The input of the MDCT and the output of the IMDCT have a 50% overlap, i.e. N samples. In the IMDCT the 
output of two succeeding blocks is added in the overlapping region. 

 

12.5.10.2.1 MDCT and IMDCT by DCT-IV 

For the IntMDCT the MDCT and the IMDCT are divided into two blocks: 

- Windowing and Time Domain Aliasing (TDA) 

- Discrete Cosine Transform of Type IV (DCT-IV) 

These two blocks are illustrated in Figure 12.7 for the MDCT and the IMDCT 
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Figure 12.7 – MDCT and IMDCT by Windowing/TDA and DCT-IV 

 

12.5.10.2.2 Calculation of windowing/TDA block 

12.5.10.2.3 Structure of MDCT and IMDCT for different window sequences 

In the MDCT the Windowing/TDA block is calculated by 

( ) ( 1 ) ( ) ( )
( 1 ) ( ) ( 1 ) ( 1 )
0,..., / 2 1

x k w N k w k x k
x N k w k w N k x N k
k N

− −⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟− − − − − − −⎝ ⎠ ⎝ ⎠⎝ ⎠
= −

 

In the IMDCT this block is inverted by 

( ) ( 1 ) ( ) ( )
( 1 ) ( ) ( 1 ) ( 1 )
0,..., / 2 1

x k w N k w k x k
x N k w k w N k x N k
k N

− − −⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠⎝ ⎠
= −

 

Note that the overlap/add operation is already contained in this calculation. 

The DCT-IV of length N is defined by: 

1

0

2 (2 1)(2 1)( ) ( )cos
4

0,..., 1

N

k

k mX m x k
N N

m N

π−

=

+ +
=

= −

∑  

 

The inverse DCT-IV of length N has the same coefficients, it is defined by: 

1

0

2 (2 1)(2 1)( ) ( )cos
4

0,..., 1

N

m

k mx k X m
N N

k N

π−

=

+ +
=

= −

∑  
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For the calculation of the MDCT the output of two succeeding Windowing/TDA stages is considered. Let 
x’(0),…,x’(N-1) be the output of the Windowing/TDA stage of the previous block and x’(N),…,x’(2N-1) be the 
output of the Windowing/TDA stage of the current block. Then the DCT-IV is applied to the N values 

'( / 2 1), '( / 2 2),..., '( ), '( 1), '( 2),..., '( / 2)x N N x N N x N x N x N x N− + − − + − − − − − − −  

i.e. the second half of the previous block and the first half of the current block are used. The order of the 
values is reverted and values are multiplied with -1 before applying the DCT-IV of length N. 

The second half of current block of Windowing/TDA output values have to be stored for the next block. 

This structure is illustrated in Figure 12.8: 

 
N/2 stored values N new input samples 

Windowing/TDA 

x(k)->-x(N-1-k) 

DCT-IV

N MDCT values N/2 values to store 

 

Figure 12.8 – Structure for MDCT by DCT-IV and Windowing/TDA 

 

For the calculation of the IMDCT, the MDCT spectral values are transformed by the inverse DCT-IV, the 
output is multiplied with -1 and the order is reversed. Then the second half is stored for the next block, the first 
half is processed by the inverse Windowing/TDA block together with the values stored from the previous 
block. 

This structure is illustrated in Figure 12.9: 
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N/2 stored values 

N output samples 

Inverse Windowing/TDA 

x(N/2+k)->-x(N/2+N-1-k)

Inverse DCT-IV 

N MDCT values 

N/2 values to store 

 

Figure 12.9 – Structure for IMDCT by DCT-IV and Windowing/TDA 

 

12.5.10.2.4 Structure of MDCT and IMDCT for different window sequences 

The structure in Figure 12.8 resp. Figure 12.9 is slightly modified for different window sequences. In the 
following this structure is illustrated for typical window sequences. 

 

 
1024 input samples 1024 input samples 1024 input samples

Windowing/TDA 

DCT-IV DCT-IV DCT-IV 

1024 input samples 

Windowing/TDA 

1024 input samples 

Windowing/TDA Short Windowing/TDA

Eight Short DCT-IV

LONG MDCT START MDCT STOP MDCT SHORT MDCT
 

Figure 12.10 – Structure of MDCT for LONG, START, SHORT, STOP sequence 

 

 

output samples output samples output samples 

Inverse Win./TDA 

Inverse DCT-IV Inverse DCT-IV Inverse DCT-IV

Inverse Win./TDA 

output samples

Inverse Short Win./TDA

Inverse short DCT-IV 

LONG MDCT START MDCT STOP MDCTSHORT MDCT LONG MDCT 

Inverse DCT-IV 

 

Figure 12.11 – Structure of IMDCT for LONG, START, SHORT, STOP, LONG sequence 
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12.5.10.2.5  The IntMDCT 

The IntMDCT is an invertible integer approximation of the MDCT. Two versions of this transform are used 
here, relying on the same algorithm: 

Mono-IntMDCT: This version provides the IntMDCT spectrum of one channel. 

Stereo-IntMDCT: In case of a channel pair element with common_window and use_stereo_intmdct switched 
on, this version is used. It provides the mid/side IntMDCT spectrum of the left and right channel 
simultaneously. 

Decomposition of MDCT into lifting steps 

For the IntMDCT, all calculations are decomposed into so-called lifting steps, allowing to introduce a rounding 
operation without losing the perfect reconstruction property. 

 

In the forward IntMDCT the Windowing/TDA block is calculated by 3N/2 lifting steps: 

( 1 ) 1 ( 1 ) 11 1( ) 1 0 ( )
( ) ( )

( 1 ) ( ) 1 ( 1 )
0 1 0 1

0,..., / 2 1

w N k w N k
x k x k

w k w k
x N k w k x N k

k N

− − − − − −⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= −

 

In the inverse IntMDCT the Windowing/TDA block is calculated by: 

( 1 ) 1 ( 1 ) 11 1( ) 1 0 ( )
( ) ( )

( 1 ) ( ) 1 ( 1 )
0 1 0 1

0,..., / 2 1

w N k w N k
x k x k

w k w k
x N k w k x N k

k N

− − − − − −⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= −

 

 

These calculations are mathematically equivalent to the one described above, because the window function 
w(k) fulfils the TDAC condition 

2 2( ) ( 1 ) 1, 0,..., / 2 1w k w N k k N+ − − = = −  

 

After each lifting step, a rounding operation is applied to stay in the integer domain. 

 

Calculation of Int-DCT-IV 

For the IntMDCT, the DCT-IV is calculated in an invertible integer fashion, called the Int-DCT-IV. The Int-DCT-
IV of length N is implemented by so-called multi-dimensional lifting steps. They have the following general 
structure: 

/ 2

/ 2

0N

N

I
A I

⎛ ⎞
⎜ ⎟
⎝ ⎠
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with the identity matrix / 2NI  of size N/2 and an arbitrary (N/2)x(N/2) matrix A. 

Applying this block matrix means that the first half of the input values are processed by the matrix A and then 
added to the second half of the input values. 

For an integer approximation, the output values of the matrix A are rounded to integer before adding them. 
Figure 12.12 illustrates this process. 

 

 

Figure 12.12 – Forward step for multi-dimensional lifting including rounding 

 

This process can be inverted by 

/ 2

/ 2

0N

N

I
A I

⎛ ⎞
⎜ ⎟−⎝ ⎠

 

i.e. the same matrix A is applied to the first half of the values and the resulting values are subtracted from the 
second half of the input values. 

For the invertible integer approximation, the output values of A are rounded to integer before subtracting them. 
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To apply this structure to the IntMDCT, the DCT-IV of length N is decomposed in the following way: 

/ 2 / 2

/ 2

1 (0)

0 1 ( / 2 1)
0 1

1

1 1 (0)

1 1 ( / 2 1)
( / 2 1) 1 1

(0) 1 1

1 1 102 2
2 2 2

20 0

N

N N

N

cs

I cs N
DCTIV

I

cs

cs N
s N

s

II DCTIV I DCTIV I
DCTIV II I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

0

0

II
QP

I II

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

with the values 

(2 1)cos 1(2 1) 4( ) sin , ( ) , 0,..., / 2 1(2 1)4 sin
4

k
k Ns k cs k k NkN

N

π
π

π

+ −+
= = = −

+
 

 

and the permutation matrices P and Q with 

4 ,4 4 1,4 1 4 2,4 3 4 3,4 2

,

1, 0,..., / 4 1
0

k k k k k k k k

k l

P P P P k N
P else

+ + + + + += = = = = −

=
 

i.e. every second pair of values is swapped, and 

,2 / 2 ,2 1

,

1, 0,..., / 2 1
0

k k N k k

k l

Q Q k N
Q else

+ += = = −

=
 

i.e. the even indices are arranged in the first half, the odd indices are arranged in the second half. 

 

Thus the DCT-IV is basically decomposed into 8 multi-dimensional lifting steps. 
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The corresponding inverse lifting decomposition for the inverse DCT-IV is given by: 

1 1 1 / 2
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2 2
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1 1 ( / 2 1)2
2
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1
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Calculation of Stereo-Int-DCT-IV used for Stereo-IntMDCT 

In case of a stereo signal coded as a channel_pair_element with common_window and use_stereo_intmdct 
switched on, the DCT-IV is calculated for both channels in one step, including the M/S calculation. This is 
achieved by using the decomposition of the Int-DCT-IV described above, and omitting the three stages of one-
dimensional lifting steps and the two permutations, resulting in: 
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Hence, this simplification of the DCT-IV algorithm results in an integrated calculation of the M/S matrix and the 
DCT-IV for the left and the right channel. In this mode of the IntMDCT the DCT-IV operates at a length of N 
instead of N/2. 
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The corresponding inverse lifting decomposition for the inverse Stereo-Int-DCT-IV is given by: 
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Noise shaping 

In the lifting steps where time-domain signals are processed, the rounding operations are connected to an 
error feedback to provide a spectral shaping of the approximation noise. 

This approximation noise affects the lossless coding efficiency mainly in the high frequency region where 
audio signals usually contain a very small amount of energy, especially at sampling rates of 96 kHz and 
higher. Hence, a low-pass characteristic of the approximation noise improves the lossless coding efficiency. 

A first-order noise shaping filter is used, as illustrated in Figure 12.13. 

 

round()
x ( n ) 

+

+

z-1

xint(n)

-

 

Figure 12.13 – Noise shaping filter for IntMDCT 

 

For the IntMDCT this filter is applied to the three stages of lifting steps in the Windowing/TDA processing and 
to the first rounding stage of the Int-DCT-IV processing. 

For the inverse IntMDCT the same filter is applied to the three stages of lifting steps in the Windowing/TDA 
processing and to the last rounding stage of the inverse Int-DCT-IV processing. 

12.5.10.3 Algorithm for IntMDCT and inverse IntMDCT 

Arithmetics 

All operations are based on integer arithmetics. The following formats are used: 

- INT32 for input, output and intermediate values, pre-defined fixed-point coefficients 
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- INT64 for multiplications with fixed-point coefficients, results are shifted and stored in INT32 immediately 
after each multiplication 

 
Basic definitions for IntMDCT: 

SINE_DATA_SIZE = 8192 
SHIFT = 30 
SHIFT_FOR_ERROR_FEEDBACK = 6 

 
All floating point operations in the algorithm are performed in a fixed-point fashion. The number of fractional 
bits is given by SHIFT. 

 
The necessary floating point coefficients for the multiplications in the lifting steps and for the intermediate 
fixed-point calculations are stored as fixed-point values in INT32: 

 
INT32_coeff = nearestint((1<<SHIFT)*FLOAT_coeff); 
 

The following float coefficients are stored in this way: 

sineData[k] = sin(k*pi/(2*SINE_DATA_SIZE)), k=0,...,SINE_DATA_SIZE/2 
 
defined in sineData[SINE_DATA_SIZE/2+1] (see 12.5.11). 

 
sineData_cs[k] = 
(1-cos(k*pi/(2*SINE_DATA_SIZE)))/sin(k*pi/(2*SINE_DATA_SIZE)), 
   k=0,...,SINE_DATA_SIZE/2 
 
defined in sineData_cs[SINE_DATA_SIZE/2+1] (see 12.5.11). 

The corresponding values for the KBD window are pre-defined in KBDWindow[SINE_DATA_SIZE/2] resp. 
KBDWindow_cs[SINE_DATA_SIZE/2] (see Annex B). 

 
Basic functions for IntMDCT: 

INT32 multShiftINT32(INT32 x, INT32 y, int shift) { 
      return ( (INT32)(((INT64)x*y)>>shift) );     
} 
 
INT32 multShiftRoundINT32(INT32 x, INT32 y, int shift) { 
      return ( ( multShiftINT32(x,y,shift-1) + 1 ) >>1 ); 
} 
 
INT32 shiftRoundINT32(INT32 y, INT32 shift) { 
      return (((y>>(shift-1))+1)>>1); 
} 
 
INT32 shiftRoundINT32withErrorFeedback(INT32 y, INT32* errorFeedback, int shift) { 
       y += *errorFeedback; 
       result = shiftRoundINT32(y,shift);    
       *errorFeedback = (result << shift) - y;   
       return (result); 
} 
 
void rotateINT32(int index, INT32 xin, INT32 yin, INT32* xout, INT32* yout) { 
       xin += multShiftINT32(-sineData_cs[index], yin, SHIFT); 
       yin += multShiftINT32(sineData[index], xin, SHIFT); 
       xin += multShiftINT32(-sineData_cs[index], yin, SHIFT); 
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       *xout = xin; 
       *yout = yin; 
} 
 
void multHalfSqrt2(INT32* x) { 
     *x = multShiftINT32(sineData[SINE_DATA_SIZE/2], *x, SHIFT); 
} 
 
void rotatePlusMinusINT32(INT32 xin, INT32 yin, INT32* xout, INT32* yout) { 
     xtmp = xin; 
     ytmp = yin; 
     *xout = xtmp + ytmp;                                
     *yout = xtmp - ytmp;                                 
} 
 
void rotatePlusMinusNormINT32(INT32 xin, INT32 yin, INT32* xout, INT32* yout) { 
     rotatePlusMinusINT32(xin, yin, xout, yout); 
     multHalfSqrt2(xout); 
     multHalfSqrt2(yout); 
} 
 
void addINT32(INT32* xin, INT32* xout, int N) { 
  for (i=0; i<N; i++) 
    xout[i] += xin[i]; 
} 
 
void diffINT32(INT32* xin, INT32* xout, int N) { 
  for (i=0; i<N; i++) 
    xout[i] -= xin[i]; 
} 
 
void copyINT32(INT32* xin, INT32* xout, int N) { 
  for (i=0; i<N; i++) 
    xout[i] = xin[i]; 
} 
 
void shiftLeftINT32(INT32* x, int N, int shift) { 
  for (i=0; i<N; i++) 
    x[i] <<= shift; 
} 
 
void shiftRightINT32(INT32* x, int N, int shift) { 
  for (i=0; i<N; i++) 
    x[i] >>= shift; 
} 
 

 

Definitions for windowing/TDA algorithm: 

For forward Windowing/TDA: 

direction = 1; 

For inverse Windowing/TDA: 

direction = -1; 

 

Algorithm for forward resp. inverse windowing/TDA: 

  if (windowShape == 0) { 
    window = sineData; 
    window_cs = sineData_cs; 
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  } else { 
    window = KBDWindow; 
    window_cs = KBDWindow_cs; 
  } 
  errorFeedback = 0; 
  for (i=0; i<N/2; i++) { 
    tmp = multShiftINT32(-window_cs[(2*i+1)*SINE_DATA_SIZE/(2*N)], 
    signal[N-1-i], 
    SHIFT - SHIFT_FOR_ERROR_FEEDBACK); 
    signal[i] -= direction *                       
      shiftRoundINT32withErrorFeedback(tmp, 
           &errorFeedback, 
           SHIFT_FOR_ERROR_FEEDBACK); 
  } 
  errorFeedback = 0; 
  for (i=0; i<N/2; i++) { 
    tmp = multShiftINT32(window[(2*i+1)*SINE_DATA_SIZE/(2*N)], 
    signal[i], 
    SHIFT - SHIFT_FOR_ERROR_FEEDBACK); 
    signal[N-1-i] -= direction *                 
      shiftRoundINT32withErrorFeedback(tmp, 
           &errorFeedback, 
           SHIFT_FOR_ERROR_FEEDBACK); 
  } 
  errorFeedback = 0; 
  for (i=0; i<N/2; i++) { 
    tmp = multShiftINT32(-window_cs[(2*i+1)*SINE_DATA_SIZE/(2*N)], 
    signal[N-1-i], 
    SHIFT - SHIFT_FOR_ERROR_FEEDBACK); 
    signal[i] -= direction * 
      shiftRoundINT32withErrorFeedback(tmp, 
           &errorFeedback, 
           SHIFT_FOR_ERROR_FEEDBACK); 
  } 
 

 

Algorithm for the forward resp. inverse Int-DCT-IV: 

The input values are transformed to the forward resp. inverse Int-DCT-IV values in-place. 

In case of the Mono IntMDCT, signal0[0,...,N-1] represents the input values of one channel, signal1[0,...,N/2-1] 
corresponds to the upper half values signal0[N/2,...,N-1]. 

If the Stereo IntMDCT is used, the length N is twice the frame length in the Int-DCT-IV algorithm; 
signal0[0,...,N/2-1] represents the left channel input values and signal1[0,...,N/2-1] represents the right 
channel input values. 

A temporary buffer liftBuffer[k] ,k=0,...,N/2-1 of INT32 values is used. 

 

Algorithm for forward Int-DCT-IV: 

 

Permutation P: 

if (Mono_IntMDCT) { 
   for (i=0; i<N; i+=4) { 
       (signal0[i+2], signal0[i+3]) = (signal0[i+3], signal0[i+2]); 
   } 
} 
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Permutation Q: 

if (Mono_IntMDCT) { 
   for (i=0; i<N; i++) { 
       temp[i] = signal[i]; 
   } 
   for (i=0; i<N/2; i++) { 
       signal[i] = temp[2*i]; 
       signal[N/2+i] = temp[2*i+1]; 
   } 
} 
 

Apply lifting steps: 

 

  addINT32(signal0, signal1, N/2); 
 
  liftingStep2and3(signal1, liftBuffer, N); 
  addINT32(liftBuffer, signal0, N/2); 
 
  liftingStep4(signal0, liftBuffer, N); 
  addINT32(liftBuffer, signal1, N/2); 
 
  liftingStep5and6(signal1, liftBuffer, N, Mono_IntMDCT); 
  addINT32(liftBuffer, signal0, N/2); 
 
  if (Mono_IntMDCT) { 
    liftingStep7(signal0, liftBuffer, N); 
    addINT32(liftBuffer, signal1, N/2); 
 
    liftingStep8(signal1, liftBuffer, N); 
    addINT32(liftBuffer, signal0, N/2); 
  } 
 

Multiply with -1: 

 
  for (k=0; k<N/2; k++) { 
    signal1[k] *= -1; 
  } 
 

Algorithm for inverse Int-DCT-IV: 

Multiply with -1: 

 
  for (k=0; k<N/2; k++) { 
    signal1[k] *= -1; 
  } 
 

Apply inverse lifting steps: 

 
  if (Mono_IntMDCT) { 
    liftingStep8(signal1, liftBuffer, N); 
    diffINT32(liftBuffer, signal0, N/2); 
 
    liftingStep7(signal0, liftBuffer, N); 
    diffINT32(liftBuffer, signal1, N/2); 
  } 
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  liftingStep5and6(signal1, liftBuffer, N, Mono_IntMDCT); 
  diffINT32(liftBuffer, signal0, N/2); 
 
  liftingStep4(signal0, liftBuffer, N); 
  diffINT32(liftBuffer, signal1, N/2); 
 
  liftingStep2and3(signal1, liftBuffer, N); 
  diffINT32(liftBuffer, signal0, N/2); 
 
  diffINT32(signal0, signal1, N/2); 
 

Inverse permutation Q: 

  if (Mono_IntMDCT) { 
    for (i=0; i<N; i++) { 
      temp[i] = signal[i]; 
    } 
    for (i=0; i<N/2; i++) { 
      signal[2*i] = temp[i]; 
      signal[2*i+1] = temp[n/2+i]; 
    } 
  } 
 

Inverse permutation P: 

  if (Mono_IntMDCT) { 
    for (i=0; i<N; i+=4) { 
      (signal0[i+2], signal0[i+3]) = (signal0[i+3], signal0[i+2]); 
    } 
  } 
 

Lifting steps for forward and inverse Int-DCT-IV: 

void liftingStep2and3(INT32* signal1, INT32* liftBuffer, int N) { 
  copyINT32(signal1, liftBuffer, N/2); 
  shiftNormalize = DCTIVsqrt2_fixpt(liftBuffer, N/2) + 1; 
  if (shiftNormalize > SHIFT_FOR_ERROR_FEEDBACK) { 
    shiftRightINT32(liftBuffer, N/2, 
shiftNormalize - SHIFT_FOR_ERROR_FEEDBACK); 
    shiftNormalize = SHIFT_FOR_ERROR_FEEDBACK; 
  } 
  for (k=0; k<N/2; k++) {                         
    liftBuffer[k] -= signal1[k] << (shiftNormalize - 1); 
  } 
  errorFeedback = 0; 
  for (k=0; k<N/2; k++) {                         
    liftBuffer[k] = shiftRoundINT32withErrorFeedback(liftBuffer[k], 
&errorFeedback, shiftNormalize); 
  } 
} 
 
void liftingStep4(INT32* signal0, INT32* liftBuffer, int N) { 
  copyINT32(signal0, liftBuffer, N/2); 
  shiftNormalize = DCTIVsqrt2_fixpt(liftBuffer, N/2); 
  for (k=0; k<N/2; k++) {                         
    liftBuffer[k] = -shiftRoundINT32(liftBuffer[k],shiftNormalize); 
  } 
} 
 
void liftingStep5and6(INT32* signal1, INT32* liftBuffer, int N, int mono) { 
  copyINT32(signal1, liftBuffer, N/2); 
  shiftNormalize = DCTIVsqrt2_fixpt(liftBuffer, N/2); 
  shiftRightINT32(liftBuffer, N/2, shiftNormalize); 
  if (mono) { 
    for (k=0; k<N/2; k++)                        
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      liftBuffer[k] += multShiftINT32(-sineData_cs[step*(2*k+1)], 
signal1[N/2-1-k],(SHIFT-1));   } 
  for (k=0; k<N/2; k++)      
    liftBuffer[k] = ((liftBuffer[k]+1)>>1); 
} 
 
void liftingStep7(INT32* signal0, INT32* liftBuffer, int N) { 
  for (k=0; k<N/2; k++) 
    liftBuffer[N/2-1-k] = 
multShiftRoundINT32(sineData[(2*k+1)*SINE_DATA_SIZE/(2*N)], 
signal0[k],SHIFT); 
} 
 
void liftingStep8(INT32* signal1, INT32* liftBuffer, int N) { 
  for (k=0; k<N/2; k++) 
    liftBuffer[k] = 
multShiftRoundINT32(-sineData_cs[(2*k+1)*SINE_DATA_SIZE/(2*N)], 
signal1[N/2-1-k],SHIFT); 
} 
 

 

Algorithm for SQRT(2)*DCT-IV: 

Both in the forward and the inverse Int-DCT-IV the calculation of SQRT(2)*DCT-IV is required. This calculation 
is performed in a deterministic fixed-point fashion: 

int DCTIVsqrt2_fixpt(INT32 *data, int N) { 
  preShift = msbHeadroomINT32(data, N) - 1; 
  if (preShift > 15) preShift = 15; 
  if (preShift < 0) preShift = 0; 
  shiftLeftINT32(data, N, preShift); 
  preModulationDCT_fixpt(data, xr, xi, N); 
  fftShift = srfft_fixpt(xr, xi, N/2); 
  postModulationDCT_fixpt(xr, xi, data, N); 
  shiftNormalize = (log2int(N) - 2) / 2 + preShift - fftShift; 
  sqrt2Normalize = (log2int(N) - 2) % 2; 
  if (sqrt2Normalize) { 
    for (i=0; i<N; i++) 
      multHalfSqrt2(&data[i]); 
  } 
  return shiftNormalize; 
} 
 

Pre-modulation for DCT-IV: 

void preModulationDCT_fixpt(INT32 *x, INT32 *xr, INT32 *xi, int N) { 
  for(i=0;i<N/4;i++) { 
    rotateINT32((4*i+1)*SINE_DATA_SIZE/(2*N), 
  x[N-1-2*i],x[2*i], 
  &xi[i],&xr[i]); 
    rotateINT32((4*i+3)*SINE_DATA_SIZE/(2*N), 
  x[2*i+1],-x[N-2-2*i], 
  &xr[N/2-1-i],&xi[N/2-1-i]); 
  } 
} 
 

 

Post-modulation for DCT-IV: 

void postModulationDCT_fixpt(INT32 *xr, INT32 *xi, INT32 *x, int N) { 
  x[0] = xr[0]; 
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  x[N-1] = -xi[0]; 
  for(i=1;i<N/4;i++){                                
    rotateINT32(2*i*SINE_DATA_SIZE/N, 
  xr[i],-xi[i], 
  &x[2*i],&x[N-2*i-1]);  
    rotateINT32(2*i*SINE_DATA_SIZE/N, 
  xr[N/2-i],xi[N/2-i], 
  &x[2*i-1],&x[N-2*i]);               
  } 
  rotatePlusMinusNormINT32(xr[N/4],xi[N/4], 
      &x[N/2],&x[N/2-1]); 
} 
 

 

Split-Radix FFT: 

int srfft_fixpt(INT32 *xr, INT32 *xi, int N) { 
  numShifts = 0; 
  /* L = 1,2,4,...,N/2 */ 
  for (L=1; L<N; L*=2) { 
    M = N/L; /* M = N, N/2,...,2 */ 
    M2 = M/2; 
    M4 = M2/2; 
    /* L: number of sub-blocks 
       M: length of sub-block */ 
    numShifts += shiftIfRequired(xr, xi, N); 
    for (l=0; l<L; l++) { 
      /* butterfly on (x[k],x[M2+k]), k = 0,...,N2-1 on each sub-block */ 
      for (k=0; k<M2; k++) { 
 rotatePlusMinusINT32(xr[l*M+k],xr[l*M+M2+k], 
        &xr[l*M+k],&xr[l*M+M2+k]); 
 rotatePlusMinusINT32(xi[l*M+k],xi[l*M+M2+k], 
        &xi[l*M+k],&xi[l*M+M2+k]); 
      } 
    } 
    numShifts += shiftIfRequired(xr, xi, N); 
    if (M > 2) { 
      for (l=0; l<L; l++) { 
 if (srfftIndex(l) == 0) { 
   /* x[N2+N4+k] -> -j*x[N2+N4+k] , k = 0,...,N4-1 on each sub-block 
*/ 
   for (k=0; k<M4; k++) { 
     swap(&xr[l*M+M2+M4+k],&xi[l*M+M2+M4+k]); 
     xi[l*M+M2+M4+k] *= -1; 
   } 
 } else { 
   /* complex multiplications */ 
   for (k = 1; k < M4; k++) { 
     rotateINT32(4*k*SINE_DATA_SIZE/(2*M), 
   xi[l*M+k],xr[l*M+k], 
   &xi[l*M+k],&xr[l*M+k]); 
     rotateINT32(4*k*SINE_DATA_SIZE/(2*M), 
   xi[l*M+M2-k],-xr[l*M+M2-k], 
   &xr[l*M+M2-k],&xi[l*M+M2-k]); 
   } 
   for (k = 1; 3*k < M4; k++) { 
     rotateINT32(4*3*k*SINE_DATA_SIZE/(2*M), 
   xi[l*M+M2+k],xr[l*M+M2+k], 
   &xi[l*M+M2+k],&xr[l*M+M2+k]); 
     rotateINT32(4*3*k*SINE_DATA_SIZE/(2*M), 
   -xi[l*M+M-k],xr[l*M+M-k], 
   &xr[l*M+M-k],&xi[l*M+M-k]); 
   } 
   for (; 3*k < 2*M4; k++) { 
     rotateINT32(4*(M2-3*k)*SINE_DATA_SIZE/(2*M), 
      xi[l*M+M2+k],-xr[l*M+M2+k], 
      &xr[l*M+M2+k],&xi[l*M+M2+k]); 
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     rotateINT32(4*(M2-3*k)*SINE_DATA_SIZE/(2*M), 
   -xi[l*M+M-k],-xr[l*M+M-k], 
   &xi[l*M+M-k],&xr[l*M+M-k]); 
   } 
   for (; 3*k < 3*M4; k++) { 
     rotateINT32(4*(3*k-M2)*SINE_DATA_SIZE/(2*M), 
   -xr[l*M+M2+k],xi[l*M+M2+k], 
   &xi[l*M+M2+k],&xr[l*M+M2+k]); 
     rotateINT32(4*(3*k-M2)*SINE_DATA_SIZE/(2*M), 
   -xr[l*M+M-k],-xi[l*M+M-k], 
   &xr[l*M+M-k],&xi[l*M+M-k]); 
   } 
   rotatePlusMinusNormINT32(xi[l*M+M4],xr[l*M+M4], 
       &xr[l*M+M4],&xi[l*M+M4]); 
   rotatePlusMinusNormINT32(-xr[l*M+M-M4],xi[l*M+M-M4], 
       &xr[l*M+M-M4],&xi[l*M+M-M4]); 
 } 
      } 
    } 
  }     
  bit_reverse_fixpt(xr,N); 
  bit_reverse_fixpt(xi,N); 
  return numShifts; 
} 
 

Basic functions for FFT: 

int msbHeadroomINT32(INT32 *x, int N) { 
  max = 0; 
  for (i=0; i<N; i++) { 
    max |= ABS(x[i]); 
  } 
  return (30-log2int(max)); 
} 
 
int shiftIfRequired(INT32 *xr, INT32 *xi, int N) { 
  shiftRequired = 0; 
  if ((!msbHeadroomINT32(xr,N))||(!msbHeadroomINT32(xi,N))) { 
    shiftRequired = 1; 
    shiftRightINT32(xr, N, 1); 
    shiftRightINT32(xi, N, 1); 
  } 
  return shiftRequired; 
} 
 
void bit_reverse_fixpt(INT32 *x, int N) { 
  for (m=1,j=0; m<N-1; m++) { 
    for(k=N>>1; (!((j^=k)&k)); k>>=1); 
    if (j>m) swap(&x[m],&x[j]); 
  } 
} 
 
srfftIndexTable[32] = {0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 
         0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1}; 
 
int srfftIndex(int l) { 
  return srfftIndexTable[(srfftIndexTable[l>>4]<<4)|(l&0xF)]; 
} 
 

 
Forward and inverse Integer Mid/Side processing: 

void IntMidSideINT32(INT32* l, INT32* r) /* L/R -> M/S */ 
{ 
  m = *l; 
  s = *r; 
  m += multShiftRoundINT32(-sineData_cs[SINE_DATA_SIZE/2], s, SHIFT); 
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  s += multShiftRoundINT32( sineData[SINE_DATA_SIZE/2],    m, SHIFT); 
  m += multShiftRoundINT32(-sineData_cs[SINE_DATA_SIZE/2], s, SHIFT); 
  *l = s; 
  *r = m; 
} 
 
 
void InverseIntMidSideINT32(INT32* l, INT32* r) /* M/S -> L/R */ 
{ 
  m = *l; 
  s = *r; 
  s -= multShiftRoundINT32(-sineData_cs[SINE_DATA_SIZE/2], m, SHIFT); 
  m -= multShiftRoundINT32( sineData[SINE_DATA_SIZE/2],    s, SHIFT); 
  s -= multShiftRoundINT32(-sineData_cs[SINE_DATA_SIZE/2], m, SHIFT); 
  *l = s; 
  *r = m; 
} 

 

12.5.11  Computation of table values based on compact tables 

The values of the tables sineData, sineData_cs, thrMantissa(), and invQuantMantissa() are computed from 
the compact tables in Annex B. This is described in the following pseudo code: 

 
/* interpolate value between v0 = data[0] and v8 = data[8], 
   using additionally vm8 = data[-8] and v16 = data[16] */ 
INT32 interpolateValue1to7(INT32 vm8, 
                           INT32 v0, 
                           INT32 v8, 
                           INT32 v16, 
                           INT32 l) 
{ 
  INT32 value; 
  INT32 d1, d2, d3; 
 
  d1 = 2*(v8-v0); /* 1 add, 1 shift */ 
  d2 = v8-vm8; /* 1 add */ 
  d3 = v16-v0; /* 1 add */ 
 
  if (l==1) { 
    value = v0 + ( ( 8*d2 - d2 + d1 + 64 ) >> 7 ); /* 4 adds, 2 shifts */ 
  } else if (l==2) { 
    value = v0 + ( ( 2*d2 + d2 + d1 + 16 ) >> 5 ); /* 4 adds, 2 shifts */ 
  } else if (l==3) { 
    value = v0 + ( ( 16*d2 - d2 + 8*d1 + d1 + 64 ) >> 7 ); /* 5 adds, 3 shifts */ 
  } else if (l==4) { 
    value = v0 + ( ( d2 + d1 + 4 ) >> 3 ); /* 3 adds, 1 shifts */ 
  } else if (l==5) { 
    value = v8 - ( ( 16*d3 - d3 + 8*d1 + d1 + 64 ) >> 7 ); /* 5 adds, 3 shifts */ 
  } else if (l==6) { 
    value = v8 - ( ( 2*d3 + d3 + d1 + 16 ) >> 5 ); /* 4 adds, 2 shifts */ 
  } else if (l==7) { 
    value = v8 - ( ( 8*d3 - d3 + d1 + 64 ) >> 7 ); /* 4 adds, 2 shifts */ 
  } 
  return value; 
} 
 
 
INT32 interpolateFromCompactTable(int index, INT32* compactTable) 
{ 
  INT32 value; 
 
  j = index%8; 
  k = index/8; 
 
  if (j == 0) { 
    value = compactTable[k+1]; 
    return value; 
  } 
  value = interpolateValue1to7(compactTable[k], 
                               compactTable[k+1], 
                               compactTable[k+2], 
                               compactTable[k+3], 
                               j); 
  return value; 
} 
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The values for the sineData and the sineData_cs tables are computed by applying 
 
  sineData[index] = interpolateFromCompactTable(index, sineDataCompact); 
 

resp. 
 
  sineData_cs[index] = interpolateFromCompactTable(index, sineDataCompact_cs); 
 
 

The values for the function invQuantMantissa() are computed by 
 
INT32 invQuantMantissa(int quant, int res) 
{ 
  INT32 value; 
  INT32 pow_2_quat[4] = {0, 1276901417, 1518500250, 1805811301}; 
   /* (int)(pow(2.0,res/4.0)*(1<<SHIFT)+0.5) */ 
 
  if (quant < MAX_INV_QUANT_TABLE) { 
    value = invQuantCompact[quant]; 
    if (res > 0) { 
      value = multShiftRoundINT32(value, 
                                  pow_2_quat[res], 
                                  SHIFT); 
    } 
 
  } else { 
 
    l = quant%8; 
    k = quant/8; 
   
    if (l == 0) { 
      value = invQuantMantissa(k, res)<<4; /* 8^(4/3) = 16 = 2^4 */ 
    } else { 
      value = interpolateValue1to7(invQuantMantissa(k-1, res)<<4, 
                                   invQuantMantissa(k, res)<<4, 
                                   invQuantMantissa(k+1, res)<<4, 
                                   invQuantMantissa(k+2, res)<<4, 
                                   l); 
    } 
  } 
  return value; 
} 
 

The value for the function thrMantissa() are computed by 
 
INT32 thrMantissa(quant, res) 
{ 
  INT32 value; 
  INT32 invQuant0; 
  INT32 invQuant1; 
 
  if (quant < MAX_THR_TABLE) { 
 
    value = thrCompact[res][quant];    
 
  } else { 
 
    invQuant0 = invQuantMantissa(quant,res); 
    invQuant1 = invQuantMantissa(quant+1,res); 
    value = invQuant1+(((invQuant0-invQuant1)*13)>>5); 
 
  } 
  return value; 
} 
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Annex 12.A  
(informative) 

 
Encoder description 

12.A.1  Overview 

The SLS encoder generates, for a given PCM audio input, a lossless bit-stream that can be decoded to a bit-
exact reproduction of the given PCM audio by using an SLS decoder. Furthermore, the lossless stream 
generated by the SLS encoder can be truncated to lower bit-rates down to the bit-rate of the core MPEG-4 GA 
encoder. This way, the resulting bit-stream can be decoded by the SLS decoder to produce a lossy 
reproduction of the original audio in such a way that better signal fidelity is always achieved with higher rates 
in the LLE layer. 
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M /  S 
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& Coding

Error 
Mapping

BPGC/
CBAC

Encoder

Input PCM  
samples Multiplexer 

SLS bit - 
stream 

Low 
Energy 
Mode 

Encoder

Integer 
TNS 

 

Figure 12.A.1 – Block diagram of SLS encoder 

 

12.A.1.1 Encoding with oversampling 

For the encoding process incorporating the oversampling technique, two approaches are possible: 
Downsampling in the MDCT domain and downsampling in the time domain. 

Downsampling in the MDCT domain is illustrated in Figure 12.A.2. The input signal is processed by an 
IntMDCT of length osf*1024 and the first 1024 spectral values are fed into the MPEG-4 GA encoder. 
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Figure 12.A.2 – Block diagram of SLS encoder with downsampling in the MDCT domain 

 

For the second possible encoding approach, the input signal is downsampled in the time domain and the 
complete AAC encoding part is performed in parallel. This is illustrated in Figure 12.A.3. 

 

Figure 12.A.3 – Block diagram of SLS encoder with downsampling in the time domain 

 

12.A.2  Integer MDCT 

The IntMDCT is already described in the normative part. 

12.A.3  Grouping and interleaving 

There are two types of window used in the SLS implementation. They are the same as in the AAC windowing 
scheme. One is a long window with osf*1024 IntMDCT coefficients, the other is a short window with osf*128 
IntMDCT coefficients. An integer transform is applied to a windowed audio sequence. When the short window 
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is employed, the set of osf*1024 IntMDCT coefficients is handled as a matrix of 8 by osf*128 frequency 
coefficients representing the time-frequency evolution of the signal over the duration of eight short windows. 
The same grouping and interleaving process adopted in AAC is followed here. To be specific, assume that 
before interleaving the set of osf*1024 IntMDCT coefficients c are indexed as 

c[g][w][b][k] 

where 

g is the index on groups 

w is the index on windows within a group 

b is the index on scale factor bands within a window 

k is the index on coefficients within a scale factor band 

and the right-most index varies most rapidly. 

After interleaving the coefficients are indexed as 

c[g][b][w][k] 

In the subsequent sections, when a short window is used we assume that the signal process is performed on 
the interleaved spectrum for eight short window frames unless otherwise specified. 

12.A.4  Integer mid/side 

If the Mono IntMDCT is used for the left and the right channel, the integer M/S processing has to be applied to 
the scale factor bands where the M/S flag is set to '1'. 

The Stereo IntMDCT delivers by default an M/S spectrum. Hence M/S has to be turned off for the scale factor 
bands where it is not desired. 

The algorithms for both the forward and the inverse Integer Mid/Side processing are described in the 
normative part. 

12.A.5  Normalize before AAC coding 

After IntMDCT, a scale factor core_scaling is used to normalize the IntMDCT coefficients ( )c k  for each scale 
factor band sfb in order to provide the AAC core layer input spectrum '( )c k . 

' _ ,c core scaling c= ⋅  

where the value of the scale factor core_scaling is jointly determined by the type of the corresponding scale 
factor band and the word length of the input audio given in the following table: IECNORM.C
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Table 12.A.1 – Value of core_scaling 

Word Length

sfb Type 
16 20 24 

Long Window (2048), M/S  32  2  1 8  
Long Window (2048), non M/S  32 2  2 2  2 8  
Short Window (256), M/S 8 2  2 2  2 32  
Short Window (256), non M/S 16  1  1 16  

 
After normalization, the normalized 'c  is quantized with the core AAC quantizer, whose output quantization 
index i  is then Huffman coded. It is then multiplexed with the necessary side information, e.g. scale factor 
scale_factor(sfb) used in the quantizer for each scale factor band sfb, according to the AAC bit-stream syntax, 
to generate the core AAC bit-stream. 

12.A.6  Error mapping 

In the LLE layer, an error mapping procedure is employed to remove the information that has been already 
coded in the core layer. The input to the error mapping module is the 1024 IntMDCT coefficients c[sfb][k] in 
the non-oversampling range and its corresponding quantized value in the core encoder quant[sfb][k]. Its 
output is the IntMDCT residual spectrum res. The detailed error mapping procedure is already given in the 
normative part of this document (12.5.7). 

12.A.7  BPGC/CBAC encoder 

In SLS, the IntMDCT residual spectrum res is coded by the BPGC/CBAC coding process that consists of the 
following steps: 

• BPGC/CBAC parameter determination 
• Bit-plane coding of residual integer spectral data 
• Low energy mode coding of residual integer spectral data 
 
12.A.7.1 BPGC/CBAC parameter determination 

As a first step, the maximum bit-planes max_bp for each scale factor band are identified. For Implicit_Band, 
the maximum bit-plane M for each residual spectral data and can be calculated from 

[ ]{ }2[ ][ ][ ][ ] log [ ][ ][ ][ ]M g win sfb bin INT interval g win sfb bin=  

where [ ][ ][ ][ ]interval g win sfb bin  is the AAC quantization interval that is calculated as shown in the normative 
part of this document. 

For Explicit_Band, M is given as: 

( )2[ ][ ][ ][ ] log [ ][ ][ ][ ]M g win sfb bin INT res g win sfb bin= , 

and we further define 2log 0 1= −  for the above log calculation. The maximum bit-plane max_bp for each 
scalefactor band is the maximum value of M for spectral data that belongs to sfb: 

( )[ ][ ] max [ ][ ][ ][ ]max_bp g sfb M g win sfb bin=  

After finding max_bp for each scale factor band, the lazy plane lazy_bp is selected from the three possible 
values max_bp-1, max_bp-2, and max_bp-3. 
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12.A.7.2 Bit-plane coding of residual integer spectral data 

The following pseudo code illustrates how the sign and the amplitude of the IntMDCT residual spectral data 
res are coded into the BPGC/CBAC data stream. The help element M for an insignificant scalefactor band is 
set to the value of max_bp in order to be compatible with the decoding process. The BPGC/CBAC coding 
process is performed on scale factor bands for which lazy_bp>0. 
/* preparing of help elements */ 
for (g=0;g<num_window_groups;g++){ 
 for (sfb = 0;sfb<num_sfb;sfb++){ 
  width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
  for (win = 0;win <window_group_len[g];win++) { 
   for (bin=0;bin<width;bin++) 
    is_sig[g][win][sfb][bin]= 
((quant[g][sfb][win][bin])&&(band_type[g][sfb]==Implicit_band))?1:0; 
  } 
 cur_bp[g][sfb] = max_bp[g][sfb]; 
 } 
} 
/* BPGC/CBAC normal coding process */ 
while ((there exists max_bp[g][sfb]-i >= 0) && (i<LAZY_BP)){ 
 for (g=0;g<num_window_groups;g++){ 
  for (sfb = 0;sfb<num_sfb;sfb++){ 
   if ((cur_bp[g][sfb]>=0) && (lazy_bp[g][sfb] > 0)){ 
     width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
     for (win=0;win<window_group_len[g];win++){ 
      for (bin=0;bin<width;bin++){ 
       sym = (abs(res[g][win][sfb][bin])&(1<<cur_bp[g][sfb]))?1:0; 
       sgn = (sign(res[g][win][sfb][bin])+1)/2; 
       if (interval[g][win][sfb][bin]>res[g][win][sfb][bin]+(1<<cur_bp[g][sfb]) { 
        encode(sym,freq);  /* encode bit-plane cur_bp*/ 
        if ((!is_sig[g][win][sfb][bin])&&(sym)){ 
         encode(sgn,freq_sign);   /* encode sign bit if necessary * / 
         is_sig[g][win][sfb][bin] = 1; 
        } 
       } 
      } 
     } 
    } 
   } 
   cur_bp[g][sfb]--; 
  }  
 } 
} 
 
The BPGC/CBAC lazy coding mode is started after the first NUM_BP bit-planes have been coded. 
 
/* BPGC/CBAC lazy coding process */ 
flush_encode(); /* flush the AC encoder before lazy coding */ 
while (there exists max_bp[g][sfb]-i >= 0){ 
 for (g=0;g<num_window_groups;g++){ 
  for (sfb = 0;sfb<num_sfb;sfb++){ 
   if ((cur_bp[g][sfb]>=0) && (lazy_bp[g][sfb] > 0)){ 
    width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
    for (win=0;win<window_group_len[g];win++){ 
     for (bin=0;bin<width;bin++){ 
      sym = (abs(res[g][win][sfb][bin])&(1<<cur_bp[g][sfb]))?1:0; 
      sgn = (sign(res[g][win][sfb][bin])+1)/2; 
      if (interval[g][win][sfb][bin]>res[g][win][sfb][bin]+(1<<cur_bp[g][sfb]) { 
       write_bit(sym);  /* encode bit-plane cur_bp*/ 
       if ((!is_sig[g][win][sfb][bin])&&(sym)){ 
        write_bit(sgn);   /* encode sign bit if necessary */ 
        is_sig[g][win][sfb][bin] = 1; 
       } 
      } 
     } 
    } 
   } 
   cur_bp[g][sfb]--; 
  }  
 } 
} 
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The value of NUM_BP is listed in Table 12.19 

12.A.7.3 Low energy mode code (LEMC) encoding 

For scale factor bands with lazy_bp = 0, -1, -2, and -3, the residual spectral data res is not coded with the 
BPGC/CBAC. Instead, it is coded with the LEMC coding process. In the low energy mode, the amplitude of 
the residual spectral data res is first converted into binary format as listed in Table 12.26. The resulting binary 
string is then coded arithmetically. Note that the low energy mode coding process is performed directly after 
the BPGC coding process is completed. 

The low energy mode coding process is illustrated with the following pseudo code: 

for (g = 0;g < num_window_groups; g++){ 
 for (sfb = 0; sfb <num_sfb+num_osf_sfb;sfb++){ 
  if ((cur_bp[g][sfb] >= 0) && (lazy_bp[g][sfb] <= 0)) 
  { 
   width = swb_offset[g][sfb+1] – swb_offset[g][sfb]; 
   for (win=0;win<window_group_len[g];win++){ 
    pos = 0; 
    for (bin=0;bin<width;bin++){ 
     if (!is_lle_ics_eof ()){ 
      amp = abs(res[g][sfb][win][bin]); 
      sgn = (sign(res[g][sfb][win][bin])  + 1)/2; 
      dumb = amp; 
      while (dumb > 0) { /* binarize and encoding for non-zero res*/ 
       encode(1,freq_silence[position]); 
       position++; 
       if (position>2) position = 2; 
       dumb --; 
      } 
      if (amp != (1<<(max_bp[g][win][sfb] + 1)) - 1) 
       encode(0,freq_silence[position]);  /* encode of terminating 0 */ 
      if (amp) 
       encode(sgn,freq_sgn);   /* encode of sign symbol*/ 
      } 
     } 
    } 
   } 
  } 
 } 
} 

 

The frequency assignment freq for BPGC/CBAC encoding and low energy mode encoding has already been 
given in the normative part. 

The following pseudo code explains how the binary symbol is arithmetically coded in the BPGC/CBAC and the 
low energy mode coding processes. 

 
Definitions: 
 
#define CODE_WL  16 
#define PRE_SHT    14 
#define TOP_VALUE  (((long)1<<CODE_WL)-1) 
#define QTR_VALUE    (TOP_VALUE/4+1) 
#define HALF_VALUE (2*QTR_VALUE) 
#define TRDQTR_VALUE  (3*QTR_VALUE) 
 
Initialization: 
 
low = 0; 
high = TOP_VALUE; 
fbits = 0; 
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The encoding subroutine: 
 
void encode(int sym, int freq) 
{ 
 range = (long)(high-low)+1; 
   if (sym) 
   high = low + (range*freq>>PRE_SHT)-1; 
   else 
  low = low + (range*freq>>PRE_SHT); 
   for (;;)  { 
      if (high<HALF_VALUE)  { 
        output_bit(0); 
  while (fbits > 0)  { 
       output_bit (1); 
       fbits --; 
    } 
     }  else if (low>=HALF_VALUE)  { 
       output_bit(1); 
  while (fbits > 0)  { 
       output_bit (0); 
       fbits --; 
    } 
        low -= HALF_VALUE; 
        high -= HALF_VALUE; 
     }  else if (ow>=QTR_VALUE && high<TRDQTR_VALUE)  { 
        fbits += 1; 
        low -= QTR_VALUE; 
        high -= QTR_VALUE; 
     }  else 
       break; 
     low = 2*low; 
     high = 2*high+1; 
  return; 
} 
 
flush the status of encode: 
 
/* flush the state register of AC encoder*/ 
flush_encode() 
{ 
 fbits += 1; 
 if (low < QTR_VALUE) 
  output_bit(0); 
  while (fbits > 0)  { 
       output_bit (1); 
       fbits --; 
    } 
 else 
  output_bit(1); 
  while (fbits > 0)  { 
       output_bit (0); 
       fbits --; 
} 
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12.A.8  Method of bitstream truncation by re-parsing the bitstream 

The full SLS bitstream can be truncated at any given target bitrate in a simple way. The modification of the 
values of lle_ics_length does not affect the LLE decoding results before the truncation point, since 
lle_ics_length is independent from the LLE decoding procedure. The bitstream truncation can be performed as 
follows: 

1. Read the lle_ics_length from the bitstream 

2. Read the LLE bitstream 

3. Calculate the available frame length at a given target bitrate. The simplest way to calculate the 
available frame length is as follows: 

target_bits = (int)(target_bitrate/2.*1024.*osf/sampling_rate+0.5)-16; 

target_bytes = (target_bits+7)/8; 

The variable target_bitrate represents the target bitrate in bits/sec. The variable osf represents 
the oversampling factor. The variable sampling_rate represents the sampling frequency of the 
input audio signal in Hz. 

4. Update lle_ics_length by taking the minimum of the available frame length and the current frame 
length. 

lle_ics_length = min(lle_ics_length, target_bytes); 

5. Generate the truncated bitstream with the updated lle_ics_length. 

The resulting truncated bitstream is decoded with the smart arithmetic decoding method as described in 
12.5.5.2.5. 
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Annex 12.B  
(normative) 

 
Tables 

12.B.1 Tables for pre-defined fixed-point coefficients 

define SINE_DATA_SIZE 8192 
 
/* sin(0,...,pi/4) and +-1 */ 
INT32 sineDataCompact[515] = { 
-1647099, 0, 1647099, 3294193, 4941281, 6588356, 8235416, 9882456, 
11529474, 13176464, 14823423, 16470347, 18117233, 19764076, 21410872, 23057618, 
24704310, 26350943, 27997515, 29644021, 31290457, 32936819, 34583104, 36229307, 
37875426, 39521455, 41167391, 42813230, 44458968, 46104602, 47750128, 49395541, 
51040837, 52686014, 54331067, 55975992, 57620785, 59265442, 60909960, 62554335, 
64198563, 65842639, 67486561, 69130324, 70773924, 72417357, 74060620, 75703709, 
77346620, 78989349, 80631892, 82274245, 83916404, 85558366, 87200127, 88841683, 
90483029, 92124163, 93765079, 95405776, 97046247, 98686491, 100326502, 101966277, 
103605812, 105245103, 106884147, 108522939, 110161476, 111799753, 113437768, 115075515, 
116712992, 118350194, 119987118, 121623759, 123260114, 124896179, 126531950, 128167423, 
129802595, 131437462, 133072019, 134706263, 136340190, 137973796, 139607077, 141240030, 
142872651, 144504935, 146136880, 147768480, 149399733, 151030634, 152661180, 154291367, 
155921191, 157550647, 159179733, 160808445, 162436778, 164064728, 165692293, 167319468, 
168946249, 170572633, 172198615, 173824192, 175449360, 177074115, 178698453, 180322371, 
181945865, 183568930, 185191564, 186813762, 188435520, 190056834, 191677702, 193298119, 
194918080, 196537583, 198156624, 199775198, 201393302, 203010932, 204628085, 206244756, 
207860942, 209476638, 211091842, 212706549, 214320755, 215934457, 217547651, 219160334, 
220772500, 222384147, 223995270, 225605867, 227215933, 228825464, 230434456, 232042906, 
233650811, 235258165, 236864966, 238471210, 240076892, 241682010, 243286558, 244890535, 
246493935, 248096755, 249698991, 251300640, 252901697, 254502159, 256102022, 257701283, 
259299937, 260897982, 262495412, 264092224, 265688415, 267283981, 268878918, 270473223, 
272066891, 273659918, 275252302, 276844038, 278435122, 280025552, 281615322, 283204430, 
284792871, 286380643, 287967740, 289554160, 291139898, 292724951, 294309316, 295892988, 
297475964, 299058239, 300639811, 302220676, 303800829, 305380268, 306958988, 308536985, 
310114257, 311690799, 313266607, 314841679, 316416009, 317989595, 319562433, 321134518, 
322705848, 324276419, 325846226, 327415267, 328983538, 330551034, 332117752, 333683689, 
335248841, 336813204, 338376774, 339939549, 341501523, 343062693, 344623057, 346182609, 
347741347, 349299266, 350856364, 352412636, 353968079, 355522689, 357076462, 358629395, 
360181484, 361732726, 363283116, 364832652, 366381329, 367929144, 369476093, 371022173, 
372567379, 374111709, 375655159, 377197725, 378739403, 380280190, 381820082, 383359076, 
384897167, 386434353, 387970630, 389505993, 391040440, 392573967, 394106570, 395638246, 
397168991, 398698801, 400227673, 401755603, 403282588, 404808624, 406333708, 407857835, 
409381002, 410903207, 412424444, 413944711, 415464004, 416982319, 418499653, 420016002, 
421531363, 423045732, 424559105, 426071480, 427582852, 429093217, 430602573, 432110916, 
433618242, 435124548, 436629829, 438134084, 439637307, 441139496, 442640647, 444140756, 
445639820, 447137835, 448634799, 450130706, 451625555, 453119340, 454612060, 456103710, 
457594286, 459083786, 460572205, 462059541, 463545789, 465030947, 466515010, 467997976, 
469479840, 470960600, 472440251, 473918791, 475396216, 476872522, 478347705, 479821764, 
481294693, 482766489, 484237150, 485706671, 487175049, 488642281, 490108363, 491573292, 
493037064, 494499676, 495961124, 497421405, 498880516, 500338453, 501795212, 503250791, 
504705185, 506158392, 507610408, 509061229, 510510853, 511959275, 513406493, 514852502, 
516297300, 517740883, 519183248, 520624391, 522064309, 523502998, 524940456, 526376678, 
527811662, 529245404, 530677900, 532109148, 533539144, 534967884, 536395365, 537821584, 
539246538, 540670223, 542092635, 543513772, 544933630, 546352205, 547769495, 549185496, 
550600205, 552013618, 553425732, 554836544, 556246051, 557654248, 559061133, 560466703, 
561870954, 563273883, 564675486, 566075761, 567474703, 568872310, 570268579, 571663506, 
573057087, 574449320, 575840202, 577229728, 578617896, 580004702, 581390144, 582774218, 
584156920, 585538248, 586918198, 588296766, 589673951, 591049748, 592424154, 593797166, 
595168781, 596538995, 597907806, 599275210, 600641203, 602005783, 603368947, 604730691, 
606091012, 607449906, 608807372, 610163404, 611518001, 612871159, 614222875, 615573145, 
616921967, 618269338, 619615253, 620959711, 622302707, 623644239, 624984303, 626322897, 
627660017, 628995660, 630329823, 631662503, 632993696, 634323400, 635651611, 636978327, 
638303543, 639627258, 640949467, 642270169, 643589359, 644907034, 646223192, 647537830, 
648850943, 650162530, 651472587, 652781111, 654088099, 655393548, 656697454, 657999816, 
659300629, 660599890, 661897597, 663193747, 664488336, 665781362, 667072820, 668362709, 
669651026, 670937767, 672222928, 673506508, 674788504, 676068911, 677347728, 678624950, 
679900576, 681174602, 682447025, 683717842, 684987051, 686254647, 687520629, 688784993, 
690047736, 691308855, 692568348, 693826211, 695082441, 696337036, 697589992, 698841307, 
700090977, 701339000, 702585372, 703830092, 705073155, 706314559, 707554301, 708792378, 
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710028787, 711263525, 712496590, 713727978, 714957687, 716185713, 717412054, 718636707, 
719859669, 721080937, 722300508, 723518380, 724734549, 725949013, 727161768, 728372813, 
729582143, 730789757, 731995651, 733199822, 734402269, 735602987, 736801974, 737999228, 
739194745, 740388522, 741580558, 742770848, 743959390, 745146182, 746331221, 747514503, 
748696026, 749875788, 751053785, 752230015, 753404474, 754577161, 755748072, 756917205, 
758084557, 759250125, 760413906 
}; 
 
/* (1-cos)/sin (0,...,pi/4) == tan(0,...,pi/8) */ 
INT32 sineDataCompact_cs[515] = { 
-823550, 0, 823550, 1647101, 2470653, 3294209, 4117769, 4941333, 
5764903, 6588480, 7412065, 8235658, 9059261, 9882875, 10706500, 11530138, 
12353790, 13177456, 14001138, 14824836, 15648551, 16472285, 17296039, 18119812, 
18943607, 19767425, 20591265, 21415130, 22239020, 23062936, 23886880, 24710851, 
25534852, 26358882, 27182944, 28007038, 28831164, 29655325, 30479520, 31303752, 
32128020, 32952326, 33776671, 34601055, 35425481, 36249948, 37074458, 37899011, 
38723609, 39548253, 40372944, 41197681, 42022468, 42847304, 43672190, 44497128, 
45322119, 46147163, 46972261, 47797414, 48622624, 49447892, 50273217, 51098602, 
51924047, 52749553, 53575122, 54400754, 55226449, 56052210, 56878038, 57703932, 
58529894, 59355926, 60182027, 61008200, 61834444, 62660762, 63487153, 64313620, 
65140162, 65966781, 66793478, 67620255, 68447111, 69274047, 70101066, 70928168, 
71755353, 72582623, 73409979, 74237422, 75064952, 75892571, 76720280, 77548080, 
78375971, 79203955, 80032033, 80860205, 81688474, 82516838, 83345301, 84173862, 
85002523, 85831284, 86660147, 87489113, 88318182, 89147356, 89976635, 90806021, 
91635515, 92465117, 93294829, 94124652, 94954586, 95784632, 96614793, 97445068, 
98275458, 99105965, 99936590, 100767333, 101598196, 102429179, 103260284, 104091512, 
104922863, 105754339, 106585941, 107417669, 108249525, 109081509, 109913623, 110745868, 
111578245, 112410754, 113243397, 114076174, 114909088, 115742138, 116575326, 117408652, 
118242119, 119075726, 119909475, 120743367, 121577403, 122411583, 123245910, 124080383, 
124915004, 125749775, 126584695, 127419766, 128254990, 129090366, 129925897, 130761582, 
131597424, 132433423, 133269580, 134105896, 134942372, 135779010, 136615810, 137452774, 
138289901, 139127195, 139964654, 140802281, 141640077, 142478042, 143316178, 144154485, 
144992965, 145831619, 146670447, 147509452, 148348633, 149187992, 150027529, 150867247, 
151707146, 152547227, 153387491, 154227939, 155068572, 155909392, 156750399, 157591594, 
158432979, 159274554, 160116320, 160958280, 161800432, 162642780, 163485323, 164328063, 
165171001, 166014138, 166857475, 167701013, 168544753, 169388696, 170232844, 171077197, 
171921756, 172766522, 173611498, 174456682, 175302078, 176147685, 176993505, 177839539, 
178685788, 179532253, 180378935, 181225835, 182072955, 182920295, 183767856, 184615640, 
185463648, 186311880, 187160339, 188009024, 188857937, 189707079, 190556451, 191406055, 
192255890, 193105960, 193956264, 194806803, 195657579, 196508594, 197359847, 198211340, 
199063074, 199915050, 200767270, 201619735, 202472445, 203325401, 204178606, 205032059, 
205885762, 206739717, 207593924, 208448384, 209303098, 210158069, 211013296, 211868780, 
212724524, 213580528, 214436793, 215293321, 216150112, 217007167, 217864489, 218722077, 
219579933, 220438059, 221296454, 222155121, 223014061, 223873274, 224732763, 225592527, 
226452568, 227312888, 228173487, 229034367, 229895528, 230756972, 231618701, 232480714, 
233343014, 234205601, 235068477, 235931643, 236795100, 237658849, 238522891, 239387228, 
240251860, 241116790, 241982017, 242847543, 243713370, 244579498, 245445929, 246312664, 
247179704, 248047050, 248914703, 249782666, 250650937, 251519520, 252388415, 253257624, 
254127147, 254996985, 255867141, 256737615, 257608408, 258479521, 259350957, 260222715, 
261094797, 261967205, 262839939, 263713002, 264586393, 265460114, 266334167, 267208552, 
268083271, 268958326, 269833716, 270709444, 271585511, 272461918, 273338666, 274215756, 
275093191, 275970970, 276849095, 277727567, 278606389, 279485560, 280365082, 281244956, 
282125184, 283005767, 283886706, 284768003, 285649658, 286531673, 287414049, 288296787, 
289179889, 290063356, 290947189, 291831390, 292715959, 293600899, 294486209, 295371892, 
296257949, 297144381, 298031190, 298918376, 299805941, 300693886, 301582213, 302470922, 
303360016, 304249495, 305139361, 306029615, 306920258, 307811292, 308702717, 309594536, 
310486750, 311379359, 312272365, 313165770, 314059575, 314953781, 315848389, 316743401, 
317638818, 318534642, 319430873, 320327513, 321224564, 322122027, 323019902, 323918192, 
324816898, 325716021, 326615563, 327515524, 328415907, 329316712, 330217941, 331119595, 
332021676, 332924185, 333827123, 334730492, 335634293, 336538528, 337443197, 338348303, 
339253846, 340159828, 341066251, 341973115, 342880423, 343788175, 344696373, 345605018, 
346514112, 347423657, 348333652, 349244101, 350155004, 351066363, 351978180, 352890454, 
353803189, 354716385, 355630045, 356544168, 357458757, 358373814, 359289339, 360205334, 
361121800, 362038740, 362956154, 363874044, 364792411, 365711256, 366630582, 367550390, 
368470680, 369391456, 370312717, 371234466, 372156704, 373079432, 374002652, 374926366, 
375850574, 376775279, 377700482, 378626184, 379552387, 380479093, 381406302, 382334016, 
383262238, 384190968, 385120208, 386049959, 386980223, 387911001, 388842296, 389774108, 
390706439, 391639290, 392572664, 393506561, 394440984, 395375933, 396311410, 397247417, 
398183956, 399121027, 400058633, 400996775, 401935455, 402874673, 403814433, 404754734, 
405695580, 406636971, 407578909, 408521396, 409464433, 410408022, 411352164, 412296861, 
413242115, 414187927, 415134299, 416081232, 417028728, 417976789, 418925416, 419874612, 
420824376, 421774712, 422725621, 423677104, 424629163, 425581800, 426535017, 427488814, 
428443194, 429398159, 430353709, 431309847, 432266574, 433223893, 434181804, 435140309, 
436099411, 437059110, 438019409, 438980309, 439941811, 440903918, 441866632, 442829953, 
443793884, 444758426, 445723581 
}; 
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define MAX_INV_QUANT_TABLE 1025 
 
/* (int)(0.5 + (1<<12) * pow((double)quant,(double)4/(double)3)) */ 
INT32 invQuantCompact[MAX_INV_QUANT_TABLE] = { 
  0, 4096, 10321, 17722, 26008, 35020, 44658, 54848, 65536, 76680, 88246, 
  100204, 112530, 125204, 138207, 151524, 165140, 179043, 193222, 207666, 
  222365, 237312, 252497, 267915, 283558, 299419, 315494, 331776, 348260, 
  364942, 381817, 398880, 416128, 433556, 451161, 468940, 486889, 505005, 
  523285, 541726, 560325, 579080, 597988, 617046, 636253, 655607, 675104, 
  694742, 714521, 734437, 754490, 774676, 794995, 815445, 836023, 856729, 
  877561, 898517, 919596, 940797, 962118, 983557, 1005114, 1026788, 1048576, 
  1070478, 1092493, 1114619, 1136855, 1159201, 1181655, 1204216, 1226883, 
  1249656, 1272533, 1295513, 1318595, 1341779, 1365063, 1388447, 1411930, 
  1435511, 1459190, 1482964, 1506835, 1530800, 1554860, 1579013, 1603258, 
  1627596, 1652025, 1676545, 1701154, 1725853, 1750641, 1775517, 1800480, 
  1825530, 1850666, 1875888, 1901195, 1926586, 1952062, 1977620, 2003262, 
  2028986, 2054792, 2080679, 2106646, 2132694, 2158822, 2185029, 2211315, 
  2237679, 2264122, 2290641, 2317238, 2343911, 2370660, 2397485, 2424385, 
  2451360, 2478409, 2505533, 2532730, 2560000, 2587343, 2614758, 2642246, 
  2669805, 2697436, 2725137, 2752909, 2780751, 2808663, 2836645, 2864696, 
  2892815, 2921003, 2949260, 2977584, 3005975, 3034434, 3062960, 3091552, 
  3120211, 3148935, 3177726, 3206581, 3235502, 3264487, 3293537, 3322651, 
  3351829, 3381071, 3410376, 3439744, 3469175, 3498668, 3528224, 3557841, 
  3587521, 3617262, 3647064, 3676928, 3706852, 3736836, 3766881, 3796986, 
  3827151, 3857375, 3887658, 3918001, 3948403, 3978863, 4009381, 4039958, 
  4070593, 4101285, 4132035, 4162842, 4193707, 4224628, 4255606, 4286640, 
  4317731, 4348878, 4380080, 4411339, 4442653, 4474022, 4505446, 4536925, 
  4568459, 4600047, 4631689, 4663386, 4695137, 4726941, 4758799, 
  4790711, 4822675, 4854693, 4886764, 4918887, 4951063, 4983291, 5015571, 
  5047904, 5080288, 5112724, 5145211, 5177750, 5210340, 5242981, 5275673, 
  5308416, 5341209, 5374053, 5406947, 5439891, 5472885, 5505929, 5539022, 
  5572165, 5605357, 5638599, 5671889, 5705229, 5738617, 5772054, 5805540, 
  5839073, 5872655, 5906285, 5939963, 5973689, 6007463, 6041284, 6075152, 
  6109068, 6143030, 6177040, 6211097, 6245200, 6279351, 6313547, 6347790, 
  6382079, 6416414, 6450796, 6485223, 6519696, 6554214, 6588778, 6623388, 
  6658043, 6692742, 6727487, 6762277, 6797112, 6831991, 6866915, 6901883, 
  6936896, 6971953, 7007054, 7042199, 7077388, 7112621, 7147897, 7183217, 
  7218581, 7253988, 7289438, 7324931, 7360467, 7396047, 7431669, 7467334, 
  7503041, 7538791, 7574584, 7610418, 7646295, 7682214, 7718176, 7754179, 
  7790224, 7826310, 7862439, 7898609, 7934820, 7971073, 8007367, 8043702, 
  8080078, 8116495, 8152954, 8189452, 8225992, 8262572, 8299193, 8335854, 
  8372556, 8409298, 8446080, 8482902, 8519764, 8556666, 8593608, 8630590, 
  8667611, 8704672, 8741772, 8778912, 8816091, 8853309, 8890567, 8927863, 
  8965199, 9002573, 9039986, 9077438, 9114929, 9152458, 9190026, 9227632, 
  9265277, 9302960, 9340681, 9378440, 9416237, 9454072, 9491946, 9529856, 
  9567805, 9605791, 9643815, 9681877, 9719976, 9758112, 9796285, 9834496, 
  9872744, 9911029, 9949351, 9987710, 10026106, 10064538, 10103007, 10141513, 
  10180056, 10218635, 10257251, 10295902, 10334591, 10373315, 10412076, 
  10450872, 10489705, 10528574, 10567479, 10606419, 10645395, 10684407, 
  10723455, 10762538, 10801657, 10840811, 10880000, 10919225, 10958485, 
  10997781, 11037111, 11076477, 11115877, 11155313, 11194783, 11234288, 
  11273828, 11313403, 11353012, 11392656, 11432334, 11472047, 11511794, 
  11551576, 11591392, 11631242, 11671126, 11711044, 11750997, 11790983, 
  11831003, 11871058, 11911145, 11951267, 11991423, 12031612, 
  12071834, 12112091, 12152380, 12192703, 12233060, 12273450, 12313873, 
  12354329, 12394818, 12435341, 12475896, 12516485, 12557106, 12597761, 
  12638448, 12679168, 12719920, 12760706, 12801523, 12842374, 12883257, 
  12924172, 12965120, 13006100, 13047113, 13088158, 13129235, 13170344, 
  13211485, 13252658, 13293864, 13335101, 13376370, 13417671, 13459004, 
  13500369, 13541765, 13583193, 13624652, 13666143, 13707666, 13749220, 
  13790806, 13832423, 13874071, 13915750, 13957461, 13999203, 14040976, 
  14082780, 14124615, 14166482, 14208379, 14250307, 14292266, 14334256, 
  14376276, 14418327, 14460409, 14502522, 14544665, 14586839, 14629043, 
  14671278, 14713543, 14755838, 14798164, 14840520, 14882906, 14925323, 
  14967770, 15010246, 15052753, 15095290, 15137857, 15180454, 15223081, 
  15265737, 15308424, 15351140, 15393886, 15436662, 15479467, 15522302, 
  15565166, 15608060, 15650984, 15693937, 15736919, 15779931, 15822972, 
  15866042, 15909142, 15952271, 15995429, 16038616, 16081832, 16125077, 
  16168351, 16211655, 16254987, 16298348, 16341738, 16385157, 16428604, 
  16472080, 16515585, 16559119, 16602681, 16646272, 16689892, 16733540, 
  16777216, 16820921, 16864654, 16908416, 16952206, 16996024, 17039871, 
  17083745, 17127648, 17171580, 17215539, 17259526, 17303541, 17347585, 
  17391656, 17435755, 17479883, 17524038, 17568221, 17612431, 17656670, 
  17700936, 17745230, 17789551, 17833900, 17878277, 17922681, 17967113, 
  18011572, 18056059, 18100573, 18145115, 18189684, 18234280, 18278903, 
  18323554, 18368232, 18412937, 18457670, 18502429, 18547216, 18592029, 
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