INTERNATIONAL ISO/IEC
STANDARD 14496-3

Third edition
2005-12-01

AMENDMENT 3
2006-06-01

Information technology — Coding of
audio-visual objects —

Part 3:
Audio

AMENDMENT3: Scalable Lossless Codir
(SLS)

—

g

Technologies de l'information — Codage des objets audiovisuels —
Partie 3:\Codage audio
AMENDEMENT 3: Codage extensible sans perte (SLS)

Reference number
ISO/IEC 14496-3:2005/Amd.3:2006(E)

1SO|IEC
g g © ISO/IEC 2006

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In

bkl PRPTR ol ey PRI S : ’ s o PRI~ PSRt ol : el
the u MACTYy TVCTIU UTdat a PTODICITT TTIallny tU U IS TOUTIU, PICdsT TTHTUNTTUIC UCTIU al oClITLAldl dU UTT aUUTToS UIVETT UTIUW.

© ISOHEE2666

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of

ISO or IEC participate In the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. 1ISOCang IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governnpental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the fieldhof"information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bedi€s for voting. Publicatipn as

an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this docuUment may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or'all such patent rights.

Amendment3 to ISO/IEC 14496-3:2005/Amd. 3:2005 was \\prépared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC(29, Coding of audio, picture, multimedig and
hypermedia information.

This Amendment specifies Audio Scalable Lossless Coding (SLS).

© ISO/IEC 2006 — All rights reserved iii

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Information technology — Coding of audio-visual objects —

Part 3:
Audio

AMENDMENT 3: Scalable Lossless Coding (SLS)

In ISO/IEC 14496-3, Introduction, add the following to the end of the subclause "MPEG-4 general audio
coding tools":

MPEG-4 SLS (Scalable Lossless Coding) is a tool used in combination with optionaHMPEG-4 General Audio
coding tools to provide fine-grain scalable to numerical lossless coding of digital audio waveform.

In Part 3: Audio, Subpart 1, in subclause 1.3 Terms and Definitions, add.
SLS: Audio Scalable to Lossless Coding

and increase the index-number of subsequent entries.

In Part 3: Audio, Subpart 1, in subclause 1.5.1.1 Audio object type definition, amend table 1.1 with the updates
in the table below:

Tools/
Madules D
@)
— =
D L
ol £ £ S a
Audio Object -g c£ k> é o
Type S| | =+ O |2‘
AR I RIEIR=
S|BS9 ElS
wlElElElm|x|0O
(escape) X 131
SLS X[XX |X|X 37
SLS non-core X | X 38

Note: (*) marks new columns

© ISO/IEC 2006 — All rights reserved 1

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

In Part 3: Audio, Subpart 1, subclause 1.4 (Symbols and Abbreviations) add the following subclause:

1.4.9

Arithmetic data types

INT32 32 bit signed integer using two’s complement

INT64 64 bit signed integer using two’s complement

In Pa

1.5.1

The
enha
audig
alone

1.5.1
The

the ¢

In Pa
table

it 3: Audio, Subpart 1, subclause 1.5 add the following subclauses:

2.31 SLS object type

bL.S object is supported by the scalable to lossless tool which provides fine-grain scalable to lessless
hcement of MPEG perceptual audio codecs, such as AAC, allowing multiple enhancement'steps from the
quality of the core codec up to near-lossless and lossless signal representation. It also-provides stand-
lossless audio coding when the core audio codec is omitted.

2.32 SLS Non-Core object type

bLS non-core object is supported by the scalable to lossless tool. It is similar'to the SLS object type but

pre audio codec is omitted.

it 3: Audio, Subpart 1, in subclause 1.6.2.1 AudioSpecificConfig, amend table 1.8 with the updates in the

below:
Syntax No. of bits Mnemonic
AudioSpecificConfig ()
{
switch (audioObjectType) {
case 37
case 38:
SLSSpecificConfig();
break;
}

In Pa

1.6.2

Defin

it 3: Audio, Subpart1, in subclause 1.6.2.1 add the following subclause:
1.13 SLSSpecificConfig

ed in ISO/IEC 14496-3 subpart 12.

In Part 3: Audio, Subpart 1, in subclause 1.6.2.2.1 Overview, add the following to table 1.14:

Audio Object Type Object Definition of elementary stream | Mapping of audio payloads to
Type ID | payloads and detailed syntax access units and elementary
streams
SLS 37 ISO/IEC 14496-3 subpart 12
SLS non_core 38 ISO/IEC 14496-3 subpart 12
2 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Create Part 3: Audio, Subpart 12:

Subpart 12: Technical description of scalable lossless coding

12.1 Scope

12.2 Terms and definitions

12.2.1 Definitions

The following definitions are used in this subpart.

Core Layer

LLE Layer

Bit-Plane

BPGC
CBAC
LEMC

Implicit Band

Explicit Band

Oversampling Factor (osf)

This description partially relies on the specification as given in subpart 4.

The MPEG-4 GA T/F coder used as the firstylayer in SLS . The audio ¢bject
types AAC LC, AAC Scalable (without LiTR), ER AAC LC, ER AAC Scalable
and ER BSAC are supported.

Lossless enhancement layer used'in SLS to enhance the quality of thg core
layer towards lossless coding.

Position of specific bit in binary data word, starting with 0 as the positlon of
the least significant bit (kSB). For example, the binary bit-plane symbolq from
bit-plane 0, 1, 2, and’ 3 of data word 0x0011 1101 (0x3d) are 1, 0, 1, and 1
respectively.

Bit-Plane Golomb Code

Context'Based Arithmetic Code
Low’Energy Mode Code

A scale factor band for which the quantized spectral data presented in the
core layer bit-stream will be used in determining part of the necessary side
information for the LLE layer.
A scale factor band for which the quantized spectral data presented in the
core layer bit-stream will not be used in determining the necessary side
information for the LLE layer. All the side information will be coded explicitly

in the LLE payload.

Ratio between sampling rates of LLE Layer and Core Layer, possible vialues
are 1,2 and 4.

L

FaaY L R
Ve TodiTipIn Iy mdi ISU

Reserved

© ISO/IEC 2006 — All rights reserved

: :;Sh fl Uunll\;y Iallyc UUVUIUd Ull:y by thU LayCI, UUlllprises

(osf-1)*1024 resp. (osf-1)*128 frequency values per window.

| S - —

All fields labelled Reserved are reserved for future standardization. All
Reserved fields must be set to zero.

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.2.

2 Notations

In order to make the description stringent, the following notations are used in this subpart:

e Vectors are indicated by bold lower-case names, e.g. vector.

e Matrices (and vectors of vectors) are indicated by bold upper-case single letter names, e.g. M.

12.2

DIV(r

12.3

ariaptes are mdicated by itatics, e.g. varable.

unctions are indicated as func(x)

3 Definitions

n,n)

argument.

Payloads for the audio object

Table 12.1 — Syntax of SLSSpecific€onfig

Integer division with truncation of the result of m/n to an integer value towards/=%.

The floor operation. Returns the largest integer that is less than or equalto the real-valued

Syntax No. of bits Mnemonics
SLSSpecificConfig(samplingFrequencylndex,
channelConfiguration,
audioObjectType)
{
pcmWordLength; 3 uimsbf
aac_core_present; 1 uimsbf
lle_main_stream,; 1 uimsbf
reserved_bit; 1 uimsbf
framelLength,; 3 uimsbf
if (IchannelConfiguration){
program_config_element();
}
}
Table 12.2 — Top layer payload for lle stream
Syntax No. of bits Mnemonics
lle_element()
{
for (ch=0;ch<channel_number;) {
if (is_channel_pair(ch)) {
fre—canmet_pair_etement();
ch +=2;
}else {
lle_single channel_element();
ch++;
}
}
}

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Table 12.3 — Syntax of lle_single_channel_element

Syntax No. of bits Mnemonics
lle_single_channel_element()

lle_individual_channel_stream(1);

Table 12.4 — Syntax of lle_channel_pair_element

Syntax No. of bits Mnemanhics
lle_channel_pair_element()

lle_individual_channel_stream(1);
lle_individual_channel_stream(0);

}
Table 12.5 — Syntax of lle_individual_channel stream
Syntax No. of bits Mnemonics
lle_individual_channel_stream(is_first_channel)
{
lle_ics_length; 16 uimsbf
if (is_first_channel) {
element_instance_tag; 4 uimsbf
}
lle_reserved_bit; 1 uimsbf
if (lle_main_stream) {
lle_header(is_first_channel);
lle_side_info();
}
lle_data();
byte align();
}

© ISO/IEC 2006 — All rights reserved 5

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Table 12.6 — Syntax of lle_header()

Syntax No. of bits Mnemonics
lle_header(is_first_channel)
{
if (lle_channel_pair_element && common_window &&
is_first_channel) {
use_stereo_intmdct; 1 uimsbf
}
IT (aac_core_present) {
band_type_signaling; 2 uimsbf
if (band_type_signaling==1) {
for(g=0;g<num_window_groups;g++) {
for(sfb=0;sfb<max_sfb;sfb++) {
band_typelg][sfb]; 1 uimsbf
}
}
}else {
if (is_first channel) {
windows_sequence; 2 uimsbf
}
}
}
Table 12.7 — Syntax of lle_side_info
Syntax No. of bits ~ Mnemonics
lle_side_info()
{
For(g=0;g<num_window_groups;g++) {
for(sfb=0;sfb<num_sfb+num_osf_sfh;sfb++) {
if (band_type[g][sfb]==Explicit_Band) {
vcod_dpcm_max_bp{g][sfbl; 1..17 bslbf
}
if (max_bp[g][sfb] != -1)¥{
vcod_lazy_bpfg]isfb]; 1.2 bslbf
}
}
}
cb_cbac; 1 uimsbf
}
Table 12.8 — Syntax of lle_data
Syntax No. of bits ~ Mnemonics
el data()
t
BPGC/CBAC data; varies bslbf
LEMC data; varies bslbf
}

6 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.4 Semantics
Data elements:
aac_core_present Indicates, whether the lossless enhancement operates on top of an MPEG-4
GA T/F core (aac_core present=1) or in non-core mode
(aac_core_present=0).
He—main—st Indicates—whether—the—current—stream—represents—an—LLE—mair—siream
including all the necessary side information or an LLE extension stréam that
extends the previous LLE stream.

pcmWordlength Quantization word length of the original PCM waveform.

Table 12.9 — Word length of original PCM waveform

pcmWordlength Word length of original PCM
waveform

8

16

20

24

-7 Reserved

AIWIN[=|O

frameLength Length of the IntMDCT fram® in the LLE layer.

Table 12.10 — Length of the IntMDCT frame

frameLength Length of the INntMDCT frame Oversampling factor of the
IntMDCT filterbank (osf)
0 1024 1
1 2048 2
2 4096 4
3-7 Reserved Reserved
element_instance_tag Unique instance tag for syntactic elements. All syntactic elements containing

instance tags may occur more than once, but must have a upique
element_instance_tag in each audio frame. When the MPEG-4 GA T/H core
is present, syntactic elements of SLS and MPEG-4 GA T/F from the same
audio channel use the same element_instance_tag.

lle_ics_length Length of LLE individual channel stream (LLE_ICS) for the current frame; in
bytes.
band_type_signaling By default, the band type for a scale factor band is defined as follows: Alscale

factor band that is in a section coded with the zero codebook (ZERO_HCB),
Intensity Sterea (IS) coded ar Perceptual Noise Substitution (PNS) coded is

an Explicit_Band. Otherwise it is an Implicit_Band.

Scale factor bands above max_sfb and in the oversampling range are always
Explicit_Band.

This default band type can by overwritten by band_type signaling in the
following way:

© ISO/IEC 2006 — All rights reserved 7

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/I

EC 14496-3:2005/Amd.3:2006(E)

Table 12.11 — Band type signaling

Value of band type
band_type_signaling
00 Use default
01 Band type signaling for each sfb follows
10 All sfb are Explicit Band
11 Reserved
band_type[g][sfb] Band type signaling for each scale factor band whén
band_type_signaling==01. A scale factor band is set to Explicit Bandif
band_type[g][sfb] is 0.
Table 12.12 —Band type
Value Band type
0 Explicit Band
1 Default
vcod| dpecm_max_bp[g][sfb] The variable length coded maximum bit-plane for scale factor band sfb and
group g.
veod| lazy bpl[g][sfb] The variable length coded lazy bit-plane‘for non-zero scale factor band sfb
and group g.
cb_cpac Indication of frequency table that'will be used in the LLE decoding process.
Table 12.13 — cb’ cbac table
cb_cbac Frequency table
0 BPGC
1 CBAC
bpgc/cbac_data The binarybit-stream of the bpgc/cbac coded residual spectrum data
low_energy_mode_data The' binary bit-stream of the LEMC mode coded residual spectrum data
12.5| SLS decoder tool
12.5)1 Overyiew
The Block diagram of the scalable lossless (SLS) decoder is given in Figure 12.1. The core layer MPEG-4 GA

strea

URE] decoded by a deterministic Core Layer decoder. Its output, which is a deterministic spectrum in the

I _domainic _can - {-n <|-|v\t\ n VOFSEe—eFFOF mf\r\r\ REPrecess l\llnnn h In Hr\t\ w\nnl nl |n+|\/|nr\'r onnnh- 1o

MDCH

ot To—OTT ot TP T ProcC oo \ >} oo TPT oI

carried in the LLE layer streams, is decoded and sent to the inverse error mapping process to reconstruct the
INtMDCT spectrum. An inverse integer Mid/Side (M/S) and an inverse integer TNS process are then invoked
and performed on the IntMDCT coefficients if necessary. Finally, its output is inversely transformed by using
the inverse IntMDCT process to produce the PCM audio samples. A detailed description of each process is

given

in the subsequent sections.

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

MPEG -4 Deterministic
GA stream » MPEG -4 GA
decoder
MPEG -4 l
SLS Bitstream LLE o poM
p| Payload BPGC/ Inverse Inverse Inverse utput
Parser streaqp | o~ - - -l " Inverse samples
b—cBA > Error p—integer g VDT »
Decoder Mapping M/S TNS
Low
Energy
7] Mode
Decoder

12.5.1.1 Non-core Mode

Figure 12.1 — SLS decoder block diagram

SLS
stream Bitstream
__\ Jy, Payload
Parser

e window_shape = 0 (sine window)

In the non-core mode the following default values are used:

e if (lle_channel_pair_element) common_window = 1 (on)

o if (use_stereo_intmdct) all M/S flags,are’on, else all M/S flags are off

e if (window_sequence == EIGHT _SHORT_SEQUENCE) grouping = {2,2,2,2}

LLE Output PCM
BPGC/
strearg Inverse samples
- Ll >
CBAC IntMDCT
decoder
Low osf*1024 osf*1024
Energy
] Mode
Decoder

In the non-core mode SLS works as a stand-alone codec without AAC core. In case of the SLS audio
type this is signalled by aac_core_present=0 for the non-core made and aac_core_present=1 for the
based mode. In case of the SLS non-core audio object type it is @lways aac_core_present=0.

bbject
core-

Figure 12.2 — SLS non-core decoder block diagram

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.5.2 Oversampling technique

The core layer is allowed to operate at a lower sampling rate than the LLE layers. The following table shows
some possible sampling rate combinations.

Table 12.14 — Example combinations of sampling rates for Core and LLE layers

Core@ 48 kHz Core@ 96 kHz Core@ 192 kHz
HEE48kH= X{osf=1
LLE@ 96 kHz X (osf = 2) X (osf =1)
LLE@ 192 kHz X (osf =4) X (osf = 2) X (osf=1)

This {echnique is referred to as “Oversampling” in the following.

The dcalability of the codec using different sampling rates is achieved by changing the length of the inverse
IntMDCT in the decoder accordingly. While the AAC core processes 1024 values in eachdframe, the SLS
code¢ needs to process 0sf*1024 values per frame. This is achieved by extending the length of the inverse
INtMDCT in the decoder to 0sf*1024 spectral lines. The 1024 inverse quantized spegctral values from the AAC
core are added to the 1024 low-frequency values of the SLS residual spectrum. This)is illustrated in Figure
12.3.

GNAPI?GJ‘ Deterministic
stream » MPEG4 GA
decoder
<+— 1024
AAC +
tl LE Bitstream
Searns.| Payload LLE | gpgy Inverse Inverse Inverse | Output PCM
Parser | Slreag) cpac > Emér) B Integer [P Integer M ITK/IeEr)SCeT |_samples,,
decoder Mapping M/S TNS n
Low 0sf*1024 osf*1024 osf*1024 osf*1024
Energy
"] Mode
Deceder

Figure 12.3 — Structure of SLS decoder with oversampling

12.5)3 SLS with"Scalable AAC Core

If the| coré layer is AAC Scalable, the spectral data decoded from the SLS layers are added to the spectral
data [décoded from the AAC Scalable streams with a deterministic inverse AAC quantizer. The resulting

SpeCl G: data ;D thUII pIUbCOOCd vv;th ;IIVUIOU ;Iltcycl rvl:/ls GII\‘-JI ;IIVUIOU ;IItUHUI TIK‘IIS pIUbUOO ;f ||cucooa|y.
Finally, the output is transformed by the inverse IntMDCT to produce the PCM audio samples. The decoding
process is illustrated in Figure 12.4.

10 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Deterministic L'
Scalable Inverse Integer
[*> | AAC Quantization | FSS L s Inverse
(SIAQ) IM' __,é}. & INSL
Left/Mid
(One or more layers Integer
! 0
Bitstream Deterministic R ![rggr;e
= Demultiplex jms] SIAQ FSs
L Right / Side . é P R
(One or more layers) 1 Integer
trrverse
, Integer
S MS Inverse
/l) TNS M
Deterministic M
= SIAQ M" m ¢ l
Mono M Integer’
(One or more Tnvael
layers)) S MDET R
SLS L l
. . Integer
Right/Side .
" OutputTime Inverse
One or more | S utput o
(layers) Signal (Right) TNS!M
SLS R" Integer
Left/Mid . Inverse
(One or more M MDCTL
layers)
Output Time
Signal (Left)

Figure 12.4 — Structure of SLS decoder with Scalable AAC core layer streams

12.5.4 Decoding of lle_single_channel_element (LLE_SCE) and lle_channel_pair_element

(LLE_CPE)

12.5.4.1 Definitions
lle_ics_length

vcod_dpcm_max_bp[g][sfb]

vcod_lazy..bp[g][sfb]

Length of LLE individual channel stream (LLE_ICS) in bytes.

The variable length coded maximum bit-plane for scale factor barld sfb
and group g. This element is only present for insignificant scale factor
bands.

The variable length coded lazy bit-plane for non-zero scale factor|band
sfb and group g.

g Group index.

sfb Seale-factor-banc-within-group:
win Window index.

bin Frequency bin index.

num_window_groups

© ISO/IEC 2006 — All rights reserved

Number of groups of windows which share one set of scale factors.

11

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

num_sfb Number of scale factor bands per short window in case of
EIGHT_SHORT_SQEUENCE, number of scale factor bands for long
windows otherwise.

num_osf_sfb Number of scale factor bands per window in the oversampling range. The
oversampling range is covered by (osf-1)*16 bands with a width of 64 in
case of long windows resp. (osf-1)*4 bands with a width of 32 in case of
short windows.

max_|bp[g][sfb] The maximum bit-plane for group g and scale factor band sfb.

lazy _pp[g][sfb] The lazy bit-plane for group g and scale factor band sfb.

read |bits(n) Read n consecutive bits from the inputs bit-stream in the orderwof.bslbf.

quanf[g][win][sfb][bin] AAC quantized spectral data.

intervial[g][win][sfb][k] Quantization intervals in the core AAC encoder.

12.5.4.2 Decoding process

12.5.

An L
lle_in

12.5.4

In the

.21 LLE_SCE and LLE_CPE

| E SCE is composed of an lle_individual_channel_streamZ(LLE_ICS) while an LLE_CPE has two
dividual_channel_streams (LLE_ICS).

}.2.2 Decoding an LLE_ICS

LLE_ICS, the order of the decoding process is-given in the following flowchart:

(Get ll_ics_len

Get LLE decoding
side information
Get BPGC/CBAC
data

v

[Get LEMC data J

Figure 12.5 — Process of decoding LLE_ICS

For SLS bit-stream composed of an lle_main stream (lle_main_stream = 1) and multiple (>=1) lle_extension
stream (lle_main_stream = 0), for each LLE_ICS, the lle_data() is constructed by concatenating the lle_data()
elements from the lle_main stream, and all the available lle_extension streams in sequences as shown in the
following figure:

12

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

<
2 LLE
—1 decoding
8 side lle_data() lle_data() lle_data()
g' information
>~
lle_main lle_extension lle_extension
(laver 1) (layer N)

Figure 12.6 — Construction of LLE_ICS for from multiple LLE streams

If there is an intermediate LLE_extension stream missing, the data in lle_data() of the\subsequent str
can not be used.

12.5.4.2.3 Recovering BPGC/CBAC side information

eams

For each scale factor band of band type Explicit_ Band, a maximum bit-plane (max_bp) is transmitt¢d. In

addition, for each scale factor band, a lazy bit-plane (lazy_bp) is transmitted unless the residual spectra
is all zero for this scale factor band (which is signalled by maximum™bit-plane = -1). The max_bp is q
using variable length coded DPCM relative to the previously transmitted maximum bit-plane. The first va
each window group is coded using 5 bits PCM. The max_bp:value is coded in unary representation
following table gives some examples of how the DPCM value(ofymax_bp is coded.

Table 12.15 — Codeword for decoding the DPCM value of max_bp

DPCM max_bp codeword codeword length
0 1 1

(s)1 01(s) 3

(s)2 001(s) 4

(s)10 00000000001(s) 12

The difference between max: bp and lazy_bp, whose value is within the range {1, 2, 3} is decoded as foll

Table 12,16 — Codeword for decoding the difference between max_bp and lazy_bp

max_bp - lazy_bp codeword codeword length
1 10 2
2 0 1
3 11 2

data
oded
ue in
. The

PWS!

© ISO/IEC 2006 — All rights reserved

13

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The following pseudo code illustrates the decoding process for max_bp and lazy bp.

for (g = 0;g < num window _groups; g++)
init = 0;
for (sfb = 0; sfb <num sfb+num osf sfb;sfb++) {
if (band typelg][sfb]== Explicit Band) {

if (!init){

max _bp[g] [sfb] = read bits(5) - 1; init ++;
}
else {

m = 0;

while (read bits(l) == 0) m+t+;

if (m) |

if (read bits(l)) m = -m;
}
max bp([g] [sfb] = m0 - m;
}
m0 = max bp[g][sfb];
}
if (max bplg] [sfb]>=0) {
if (read bits(1)==0)
lazy bplg] [sfb] = max bpl[g][sfb] - 2;

else {
if (read bits(1)==0) lazy bplg]([sfb] = max bplg][sfb] - d’
else lazy bplgl[sfb] = max bp[g][sfb] - 3;

For Implicit_Bands, max_bp[g][sfb] is calculated from the quantization thresholds of the core layer quantizer

as follows:

As the first step, the maximum bit-plane M for each residual’'spectral bin for significant scale factor bands can

be cqlculated from

M{g|l[win][sfb][bin] = INT {log, [interval[g |[win[sfb][bin]]}

wher¢ interval[g|[win][sfb][bin] is the quantization interval that is given by:

interyal[g |[win][sfb][bin] = thr(quant[g][win][sj%][bin] + 1) — thr(quant[g][win][sfb][bin]) +1 '

Here|thr(x) and inv_quant(x) are, respectively, the deterministic quantization threshold and the corresponding

deterministic inverse quantization for AAC quantizer. They are calculated as in the following pseudo code:

If (x==0)

thr(x)=0;
else

thr (x).S=(thrMantissa(|x|-1, scale res))<<(l2+scale int);
inv_qualbtAx) = (invQuantMantissa(|x|,scale res))<<(l2+scale int);
where

scale_int = DIV(scale,4)
scale_res = scale - scale_int*4, and

scale=scale_factor(sfb)+core_scaling factor+scale _osf-118.

14 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The value of core_scaling _factor is given in Table 12.17.

Table 12.17 — Table for core_scaling_factor

Word Length
16 20 24
sfb Type
Long Window (2048), M/S 0 16 32
Long-Windew-(2048-ron-Mis—2 18 34
Short Window (256), M/S 6 22 38
Short Window (256), non M/S |8 24 40

Table 12.18 — Table for scale_osf

osf 1 2 4

scale_osf 0 2 4

The functions thrMantissa() and invQuantMantissa() are defined in 12.5.117x

For scalefactor bands coded with IS or PNS the value of inv_quant(X),is set to 0.

The maximum bit-plane max_bp for each sfb is the maximum~value of M for spectral data that belongs t

sfb:

max_bp|g][sfb] = max (M[g][win][sfb][bin])
12.5.5 Decoding of lle_data

12.5.5.1 Definitions

lle_data() Rart of the bit-stream which contains the coded residual spectrum data.
window_group_len[g] Number of windows in each group.

is_lle_ics_eof() An auxiliary function to detect the end of LLE_ICS.

read_bits(n) Read n consecutive bits from the input bit-stream in the order of bslbf. If

exists no bit to be fed in the bitstream, it returns ‘0’ by default.

b that

there

cur_bp[g][sfb] The current decoded bit-plane.

res[g][win][sfb][k] The reconstructed residual integer spectral data vector.

amp[g]iwin][sfb][k] The amplitude of the reconstructed residual integer spectral data vector
sign[g][win][sfb][K] The sign of the reconstructed residual integer spectral data vector.
determine_frequency() The function to determine the probability of the symbol '1' according to either

the CBAC or the BPGC frequency table.

ambiguity _check(f) The function to detect ambiguity for the arithmetic decoding. The argument f

indicates the probability of the symbol '1".

terminate_decoding() The function to terminate decoding of the LLE data when ambiguity occurs.

© ISO/IEC 2006 — All rights reserved

15

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

smart_decoding_cbac _bpgc() The function to decode additional symbols in the absence of incoming bits in

the cbac/bpgc mode decoding. This decoding continues up to the point where
there exists no ambiguity. It includes ambiguity check(f) and
terminate_decoding().

smart_decoding_low_energy() The function to decode additional symbols in the absence of incoming bits in

the low energy mode decoding. It also includes ambiguity check(f) and
terminate_decoding().

12.5.

12.5.1

The
facto
res ig

6.2 Decoding process

5.2.1 Overview

esidual integer spectral data vector is decoded from the LLE data stream lle_data(). Firstly,~all scale
bands with lazy bp > 0 are BPGC/CBAC decoded, where the amplitude of the residual‘\spectral data
bit-plane decoded starting from the maximum bit-plane max_bp and progressing to lowef_bit-planes until

bit-plane 0 for each scale factor band. Subsequently, the low energy mode decoding is invoked to decode the

rema

The §
More
arithn

12.5.1

The H
BPG
resid
progr|
arithn

/* pr
for
f

/* BH
whilg

ning scale factor bands with lazy bp <= 0.

BLS decoder can provide the functionality of fine-grain scalability (FGS) by truneating the LLE bitstream.
pver, it allows to decode additional symbols beyond the point of truncation.by: exploiting the properties of
netic coding.

5.2.2 BPGC/CBAC decoding process

BPGC decoding or CBAC decoding process is performed on scale factor bands for which lazy _bp>0. The
C/CBAC bit-plane decoding process is used to decade the bit-plane symbols for reconstructing the
hal integer spectral data res. The bit-plane decoding process is started from max_bp for each sfb, and
pssively proceeds to lower bit-planes. For the first NUM_BP bit-plane scans the bit-plane symbols are
netic decoded as illustrated in the following pseudo code:

eparing the help element */
g=0; g<num_window_groups;g++) {

br (sfb = 0;sfb<num sfb;sfb++) {
width = swb offset[g] [sfb+1l]s5 swb offset(g] [sfb];
for (win = 0;win <window group len[g];win++) {

for (bin=0;bin<widthsin++)
is _siglg] [win}{sfb] [bin] =
(quant [g] [sfbMwin] [bin]) && (band type(g] [sfb]==ImplicitBand)?1:0;
/* sign witll be determined implicitly if is sig == 1 */
res[g] (wig}[sfb] [bin] = 0;
}
cur bplg] [sfb]/= max bpl[g] [sfb];

GC/CBAC-decoding */
(fmax) bp[g] [sfb] - cur bplg] [sfb]<LAZY BP) && (cur_bplg][sfb] >= 0)){
br (g=0;g<num window groups;g++) {

16

TOL (o \>ar3 1 Trom L}u, Lb\\/l
if ((cur bplg] [sfb]>=0) && (lazy bplg][sfb] > 0)){
width = swb offset[g] [sfb+l] - swb offset[g] [sfb];
for (win=0;win<window group len[g];win++) {
for (bin=0;bin<width;bin++) {
if (!is lle ics eof ()){
if (intervallg] [win] [sfb] [bin] >
res[g] [win] [sfb] [bin] + (l<<cur bpl[g][sfb])
{
freq = determine frequency();
res[g] [win] [sfb] [bin] += decode(freq) << cur bpl[g] [sfb];
/* decode bit-plane cur bp*/

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

if ((!is_sig(g] [win] [sfb] [bin]) && (res[g][win] [sfb] [bin])) {
/* decode sign bit of res if necessary */
res[g] [win] [sfb] [bin] *= (decode(freq sign))? 1:-1;
is sig[g] [win] [sfb] [bin] = 1;
}
}
}
else {
smart decoding cbac_bpgc();
}

}
}

cur bplg][sfb]--; /* progress to next bit-plane */

}

After that, BPGC/CBAC enters the lazy decoding mode after skipping the 2 bit terminating string, whefe the
bit-plane symbols are directly read from the input bit-stream:

/* BPGC/CBAC lazy decoding */
read bits(l);read bits(l); /* skip the 2 AC termination string béfdre lazy coding
while (cur bplg][sfb] >= 0){
for (g=0;g<num window groups;g++) {
for (sfb = 0;sfb<num sfb+num osf sfb;sfb++) {
if ((cur bplg][sfb]>=0) && (lazy bplg][sfb] >(0)) {
width = swb offset[g] [sfb+1l] - swb offsetg] [sfb];
for (win=0;win<window group len[g];wiht+) {
for (bin=0;bin<width;bin++) {
if (!is lle ics eof ()){
if (intervallg] [wink[lsfb] [bin] >
res[g] [win] [sfk] Tbin] + (l<<cur bpl[g][sfb])
{
res[g] [win] [8fD] [bin] += read bit() << cur bplg] [sfb];
/* decode\d@it-plane cur bp */
if (((!fsysiglg] [win] [sfb] [bin]) && (res([g][win][sfb] [bin])) {
/[*Ndecode sign bit of res if necessary */
tes[g] [win] [sfb] [bin] *= (read bit())? 1:-1;
is siglg] [win] [sfb] [bin] = 1;

}
}
curvbp gl [sfb]--;

the value of NUM_BP is determined in the following table.

Table 12.19 — Value of NUM_BP

cb_cbac NUM_BP
0 (BPGC) 4
1 (CBAC) 6

The probability assignment freq in the above BPGC/CBAC decoding process is either the BPGC frequency
freq_bpgc or the CBAC frequency freq_cbhac depending on whether the current LLE_ICS is decoded with the
BPGC or the CBAC frequency table. freq_bpgc is determined by the relationship of the cur_bp to the lazy bp

© ISO/IEC 2006 — All rights reserved 17

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

parameter as given in the following table. The sign bits in the above decoding process are decoded with
frequency 8192, i.e., freq_sign = 8192.

Table 12.20 — freq_bpgc table

The
Thersg

e (C
The
i=0,..

cur_bp BPGC frequency
lazy _bp+3 64

lazy _bp+2 964

lazy _bp+1 3277

lazy_bp 5461

<lazy_bp 8192

alue freq_chac is determined by the context of the bit-plane symbol which is currently beifg: decoded.
e are three types of context used in CBAC which are listed in the following.

ontext 1: frequency band (fb)

fo context is determined by the index of the interleaved residual IntMDGT.”spectral data c[i],
,1024*0sf-1, and the sampling rate of the current LLE layer as shown in the following table.

Table 12.21 — Frequency band (fb) context [frequehcy bin]

Sampling Rate | 44100 48000 96000 192000 Other
Context no
0 (Low Band) 0-185 0-169 0-84 0-42 0-338
1 (Mid Band) 186 - 511 170 — 469 85(:234 43 - 117 338 — 938
2 (High Band) >511 >469 3234 >117 > 938

e (

ontext 2: significant state (ss)

For ipterleaved residual IntMDCT spectral data _¢[i, i=0,...,1024*0sf-1 that is insignificant (i.e., the bit-plane

symb
spect

sig

wherg

Sig

and

_state(i,bp) - {1

ols of c[i] decoded so far are all zeroes) the ss context is determined by the significance of its adjacent
ral data:

ex (i,bp) = {sig _state(i—2,bp \ssig _state(i—1,bp),sig _state(i+1,bp),sig _state(i + 2,bp)}

b sig state(i,bp) is defined as:

0 c[i] is insignificant before bitplane bp
c [z] is significant before bitplane bp

yig, 'state(i,bp) is defined as 0 if j is smaller than 0 or larger than the IntMDCT length.

For c[i] that is already significant, the ss context is determined by the band type of the scalefactor band that it
is from:

Sig

18

0 c[i] is from an Explicit Band

core(i) ={

1 c[i] is from an Implicit Band

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Furthermore, for the latter case, the ss context is further determined according to the value of
quant_interval(i,bp) defined as:

quant_interval(i,bp) = {

0 rec_spectrum[i]+2”"" <interval[i]

1 rec spectrum[i]+2” < interval[i] < rec_spectrum[i] 42t

Table 12.22 - Significance state (SS) context

— 1 e detaitedcontextassignmentof the sstontextis summarized i thefottowingtabte:

Context no sig_state(i,cur_bp) | sig_cx(i,cur_bp) | sig_core(i) quant interval(i)

0 0 {0,0,0,0} X X

1 0 {0,0,0,1} X X
{1,0,0,0}

2 0 {0,0,1,0} X X
{0,1,0,0}

3 0 {0,0,1,1} X X
{1,1,0,0}

4 0 {0,1,0,1} X X
{1,0,1,0}

5 0 {0,1,1,0} X X

6 0 {0,1,1,1} X X
{1,1,1,0}

7 0 {1,0,0,1} X X

8 0 {1,0,1,1} X X
{1,501}

9 0 {4 1,1} X X

10 1 X 0 X

11 1 X 1 0

12 1 X 1 1

Context 3: distance to lazy(d2I)

Table 12.23 - Distance to lazy (D2L) context

Context no cur_bp —lazy bp
0 <-2

1 -2

2 -1

3 0

4 1

5 2

6 3

The d2l context is determined by the distance of cur_bp to the lazy bp parameter of the currently decods
plane symbol. The detailed-assignment is listed in the following table.

The frequencies freq_cbac for each context are given in the following table.

© ISO/IEC 2006 — All rights reserved

d bit-

19

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Table 12.24 - freq_cbac table

d2l | 0 1 2 3 4 5 6
fb*13+ss
0 8192 7823 7826 6506 4817 2186 1053
1 8192 8344 7983 6440 4202 1362 64
2 8192 8399 8382 7016 4202 1234 64
3 8192 8305 7960 6365 3963 1285 64
4 8192 8335 8146 6655 3746 825 64
5 8192 8473 8244 6726 3929 927 64
6 8192 8398 7919 6098 3581 875 64
7 8192 8359 8028 6382 3459 631 64
8 8192 8192 8192 5461 3277 964 64
9 8192 8333 7481 5288 3076 732 64
10 8192 7658 6898 5145 1424 1636 64
11 8192 5471 5732 6264 4890 1279 93
12 8192 8180 8136 7897 5715 1553 64
13 8192 7242 6876 6083 3604 1214 950
14 8192 7897 7570 6583 3733 1067 900
15 8192 8071 7928 7069 4294 1406 1200
16 8192 8197 7952 6906 4050 1457 1101
17 8192 8278 8039 7094 4160 1381 64
18 8192 8307 8139 7263 4407 1555 64
19 8192 8339 8124 7065 4074 1636 64
20 8192 8213 7918 6827 3787 1161 64
21 8192 8286 8067 6902 3855 1387 64
22 8192 8336 8072 6705 3731 1558 64
23 8192 7636 6962 5036 1985 1037 64
24 8192 5519 5270 5238 4778 1588 219
25 8192 7884 7528 6743 4848 1970 64
26 8192 6084 6323 5929 3321 900 385
27 8192 7862 7618 6728 4409 1431 1302
28 8192 8078 7871 7081 5119 2371 1670
29 8192 8294 8046 7239 5218 2032 967
30 8192 8378 8119 7351 5413 1947 64
31 8192 8378 8207 7491 5624 2444 64
32 8192 8484 8302 7626 5514 2021 64
33 8192 8302 8006 7192 4941 1561 64
34 8192 8464 8246 7510 5217 1780 64
35 8192 8544 8442 7742 4944 2010 64
36 8192 7556 6771 4859 2638 2155 64
37 8192 5916 4780 4713 4239 1240 182
38 8192 7658 7095 5986 3886 1394 64

12.5.5.2.3 Low Energy Mode Code (LEMC) decoding

The following pseudo code illustrates the LEMC decoding process that is performed on scale factor bands for
which lazy_bp<=0.

/* low energy mode decoding */
for (g = 0;g < num window _groups; g++) {
for (sfb = 0; sfb <num_ sfb+num osf sfb;sfb++) {
if ((cur_bplg][sfb] >= 0) && (lazy bplg][sfb] <= 0))
{
width = swb offset[g] [sfb+l] - swb offset[g][sfb];

20 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

for (win=0;win<window group len[g];win++) {

res[g] [sfb] [win] [bin] = 0;
pos = 0;
for (bin=0;bin<width;bin++) {
if (!is 1le ics eof ()){
/* decoding of binary string and reconstructing res */
while (decode (freq silence[pos])==1) {
res[g] [sfb] [win] [bin] ++;
pos++;
if (pos>2) pos = 2;
1f (resl[g][sfb][win] [bin]==(1<<(max bpl[g] [sfb]+1))-1) break;

}

/* decoding of sign of res */

if (!is_sig[g] [win] [sfb] [bin]) && res[g][sfb] [win] [bin]) {
res[g] [sfb] [win] [bin] *= (decode(freq sign))? -1:1;
is sig[g] [win] [sfb] [bin] = 1;

}
}

else smart decoding low energy();

The probability assignments for the low energy mode decoding, ffeq bpgc and freq_silence are given
following tables. The sign bits in the above decoding process are‘décoded with frequency 8192, i.e. freq
= 8192.

Table 12.25 — freq) silence table

n the
| sign

lazy_bp | 0 -1 -2 -3
pos
0 12603 9638 6554 3810
1 7447 3344 1820 X
>1 6302 745 552 X

The following table defines the-mapping between the binary string decoded in case of the low energy mode
and the residual spectral- data res. The sign bit of res is decoded after the first non-zero bit-plane symbgl has
been decoded.

Table 12.26 — Binarization of res in low energy mode coding

Amplitude of res[g][win][sfb][bin] | Binary string

0 0

1 10

2 110

3 1110

4 11110

2Nmax_bp[g][sfb]+1)-2 11......... 10

2Nmax_bp[g][sfb]+1)-1 11......... 11

pos 0123...
© ISO/IEC 2006 — All rights reserved 21

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.5.5.2.4 Arithmetic decoding

The following pseudo code illustrates the integer arithmetic decoding process used in the BPGC/CBAC and
the low energy mode decoding process.

Definitions:

#define CODE_WL 16

#define PRE_ SHT 14

#define TOP_VALUE (((long)l<<CODE WL)-1)

#defijne QTR _VALUE (TOP_VALUE/Z+T)
#defijne HALF VALUE (2*QTR VALUE)
#define TRDQTR VALUE (3*QTR_VALUE)

Initijalization:

low

4 0;

high | TOP VALUE;
valug = 0;

The

int

{

decoding subroutine

decode (int freq)

rpnge = (long) ((high-low)+1);
chmu = ((long) ((value-low)+1)<<PRE_ SHT);
iff (cumu<range*freq) {

sym = 1;

high = low + (range*freqg>>PRE_SHT)-1;

ellse |
sym = 0;
low = low + (range*freg>>PRE_SHT) ;

for (;;) A
if (high<HALF_VALUE) {
} else if (low>=HALF VALUE) {
value -= HALF VALUE;
low -= HALF VALUE;
high -= HALF VALUE;
} else if (low>=QTR_VALUE && hiqh<TRDQTR_VALUE) {

value -= QTR VALUE;
low -= QTR VALUE;
high -= QTR VALUE;
} else
break;

low = 2*low;
high = 2*high+1;
value = 2*valwe + read bits(l); /*input next bit from bit-stream */

-

Eturn sym;

12.5.5.2.5 Smart arithmetic decoding of truncated SLS bitstreams

The g$mart arithmetic decoding provides an efficient way to decode an intermediate layer corresponding to a
given| target bitrate. This algorithm exploits the fact that a decoding buffer still contains meaningful information
fOI' alithlllct;\; dcuudilly CVCII If thUIU ;D "o blt :Uft tU bU fcd ;IItU thc dUbUdilly buffcl. Thc dUbUd;lly PIULT OO

continues as long as there exists no ambiguity in determining a symbol.

The following pseudo code illustrates the algorithm to detect the ambiguity in the arithmetic decoding module.
The variable num_dummy _bits represents the number of calls to evoke the function of read bits(1) in the
arithmetic decoding process just after the truncation point.

int ambiguity check (int freq)

{

22

/* if there is no ambiguity, returns 1 */
/* otherwise, returns 0 */

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

upper = 1<<num_dummy bits;

decisionVal = ((high-low)*freg>>PRE SHT)-value+low-1;
if (decisionVal>upper || decisionVal<0) return O;

else return 1;

Either smart_decoding _cbac_bpgc() or smart_decoding low_energy() is executed when num_dummy_bits is
greater than 0. In order to prevent sign bit errors, the spectral value of the current spectral line should be set
to zero when an ambiguity can occur while decoding a sign bit. Notice that all index variables in the smart

decoding process should be carried over Trom the previous arithmetc decoding process.

smart decoding cbac bpgc ()
{
/* BPGC/CBAC normal decoding with ambiguity detection */
while ((max bp[g][sfb] - cur bplg] [sfb]<LAZY BP) && (cur bpl[g][sfb] >= 0)){
for (;g<num _window groups;g++) {
for (;sfb<num sfb;sfb++) {
if ((cur bplg][sfb]>=0) && (lazy bplg][sfb] > 0)){
width = swb offset[g] [sfb+1l] - swb offset[g][sfb];
for (;win<window group len[g];win++) {
for (;bin<width;bin++) {
if (intervallg] [win] [sfb] [bin] >
res[g] [win] [sfb] [bin] + (1<<cur bp[gN sfb])

freq = determine frequency () ;
if (ambiguity check(freq)) {
/* no ambiguity for aridthmetic decoding */
res[g] [win] [sfb] [bin\ += decode (freq) << cur bplg] [sfb];
/* decode bit-planelcur bp*/
if ((!is_siglg] jwind[sfb] [bin]) && (res[g][win] [sfb][bin])) {
/* decodeysign bit of res if necessary */
if (ambi¥Quity check(freq)) {

res[g] [win] [sfb] [bin] *= (decode(freg sign))? 1:-1;
isy'siglg] [win] [sfb] [bin] = 1;

}

else
/* discard the decoded symbol prior to sign symbol */
res[g] [win] [sfb] [bin] = O;

terminate decoding();

}
else terminate decoding();

}
cur bplg] [sfb]--; /* progress to next bit-plane */

smart decoding low energy ()

{
/* low energy mode decoding */
for (;g < num window groups; g++) {
for (; sfb <num sfb+num osf sfb;sfb++) {
if ((cur_bplgl([sfb] >= 0) && (lazy bplgl[sfb] <= 0))
{
width = swb offset[g] [sfb+1l] - swb offset[g][sfb];
for (;win<window group len[g];win++) {
res[g] [sfb] [win] [bin] = 0;
pos = 0;
for (;bin<width;bin++) {
while (1) {

© ISO/IEC 2006 — All rights reserved 23

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

/* if ambiguity check is false, discard the spectrum is set to be 0 */

if (!ambiguity check(freq)) res[g][sfb][win][bin] = 0, terminate decoding();
tmp = decode (freq silence[pos]);

if (tmp==0) break;

res[g] [sfb] [win] [bin] ++;

pos++;

if (pos>2) pos = 2;

if (res[g][sfb] [win] [bin]==(1<<(max bp[g] [sfb]+1))-1) break;

/* decoding of sign of res */

1f (lis siglg][win] [sfb][bin]) && res[g][sfb] [win] [bin]) {
/* if ambiguity check is false,the current spectrum value is set to be 0 /£

if (!ambiguity check(freq)) res[g][sfb][win][bin] = 0, terminate decoding()
res[g] [sfb] [win] [bin] *= (decode(freg sign))? -1:1;
is sig[g] [win] [sfb] [bin] = 1;

12.5/6 Compensation for IntMDCT residual for early terminating BPGC/CBAC decoding
If thg BPGC/CBAC decoding process is terminated early due to a tfupcation of the LLE_ICS, res is
compensated with a res_fill term as follows:
for (jg=0;g<num window groups;g++) {
fpr (sfb = 0;sfb<num sfb+num osf sfb;sfb++) {
width = swb offset[g] [sfb+l] - swb offset[g][sfb];
for (win=0;win<window group len[g];win++) {
for (bin=0;bin<width;bin++) {
if (is_siglg] [win] [sfb] [bin]) {
if (res([g][win] [sfb] [bin] >= 0)\es[g] [win] [sfb] [bin] += (res fill >> (23-
stop_jop[g] [win] [sfb] [bin]));
else if (resl[g][win] [sfb] [biry] < 0) res[g][win] [sfb] [bin] -= (res fill >> (23-
stop_loplg] [win] [sfb] [bin]));
}
}
}
}
}
Here [stop_bp[g][win][sfb][bin] is the highest bit-plane for which the bit-plane symbol is not decoded due to the
early ftermination of LLE_ICS. The value of res_fill is given in the following table.
Table 12.27 — Value of res_fill
stop_bp res_fill
lazy_bp+3 1572608
lazy_bp+2 3079935
lazy _bp+1 5172975
lazy bp 6990507
<lazy _bp 8388607
24 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.5.7 Inverse error mapping

12.5.71 Principle

The inverse error mapping process is used to reconstruct the IntMDCT spectral data from the IntMDCT
residual data from the LLE layer and the quantized MDCT spectral data from the core layer. This process is

only applied in the non-oversampling range. The input to the inverse error mapping tool is the residual sp

ectral

data res and the quantized spectral data quant. Its output is the reconstructed IntMDCT spectral data ¢. The

MVETSE eITor Mapping procedures 1s descrited i the fottowing:

if (quantlg] [win] [sfb] [bin]==0)
clg]l [win] [sfb] [bin]=res[g] [win] [sfb] [bin];
else
clg]l [win] [sfb] [bin] = sign(quant([g] [win] [sfb] [bin]) *
(res[g] [win] [sfb] [bin]+ref (quant[g] [win] [sfb] [bin]);

To ensure lossless coding, in the SLS encoder the following error mapping procedure should be employ
the same spectral range:

if (quantlg] [win] [sfb] [bin]==0)
res[g] [win] [sfb] [bin]l=c[g] [win] [sfb] [bin];
else
res[g] [win] [sfb] [bin]=sign (quant[g] [win] [sfb] [bin])* c[g] [Wwin] [sfb] [bin]-
ref (quant[g] [win] [sfb] [bin]) ;

The function ref(x) in the above process is deterministically calculated as follows
if ((sfb is Implicit Band) then

ref(x) = thr(abs(x))
else if (sfb is Explicit Band)

ref (x) = inv_quant (abs (x))

Here the calculation of thr() and inv_quant() follows subclause 12.5.4.2.3

12.5.8 Integer Mid/Side process

If the Mono IntMDCT is.used for the left and the right channel (common_window == 0 or use_stereo _in

ed for

tmdct

== 0), the inverse integer M/S processing has to be applied to the scale factor bands where the M/S flag is

switched on.

The Mid/Side (M/S) decoding is performed on the integer spectral values by a lossless —7/4 Givens ro
using the\lifting scheme as follows:

tation

Step 1:

S=S—-NINT(¢,-M);

Step 2:
M=M—NINT(c2 -S) ;

© ISO/IEC 2006 — All rights reserved

25

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Step

3:

R=M;
L=S-NINT (¢, R);

where M,S,R,L denotes the spectral data of Mid, Side, Left, and Right channels and ¢, = (cos%—l)/sin% ,

and (

Thes
The @

The i
facto

The
using

Step

Step

Step

whersg

,and

Thes
The @

—sin”
2 = - .
4

e three multiplications are performed in a fixed-point fashion by using integer coefficients and bit-shifts.
etailed fixed-point arithmetic is described in subclause 12.5.10.3.

hverse Stereo IntMDCT expects an M/S spectrum by default. Hence M/S has to be applied to the scale
bands where the M/S flag is switched off.

Miid/Side (M/S) coding is performed on the integer spectral values by a lossless) 7/4 Givens rotation
the lifting scheme as follows:

1
S=R;

M =L+ NINT (¢,-R);
S=S+NINT (¢, M);

M =M + NINT (c,-S);

e M,S,L,R denote the spectral data’of Mid, Side, Left, and Right channels and ¢, = (cosZ—l)/sinZ

e three multiplications are performed in a fixed-point fashion by using integer coefficients and bit shifts.
etailed fixed=point arithmetic is described in subclause 12.5.10.3.

12.5

9.Integer Temporal Noise Shaping (IntTNS)

When Temporal Noise Shaping (TNS) is used in the AAC core, the same TNS filter is applied to the integer

spect

ral values in SLS. In order to convert this filter to a deterministic invertible integer filter, the following

changes to the TNS tool description in Subpart 4 are required:

For determining the LPC coefficients, instead of the function tns_decode coef () in subclause 4.6.9.3, the

functi
defin

INT32

26

0N int_tns_decode coef () IS used, as described in the following pseude-code:
e SHIFT INTTNS 21

tnsInvQuantCoefFixedPoint (coef res, coef)

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

INT32 intTnsCoef res3[8] = {-2065292, -1816187, -1348023, -717268,
0, 909920, 1639620, 2044572};
INT32 intTnsCoef res4[16] = {-2088206, -2017095, -1877294, -1673563,

-1412842, -1104008, -757579, -385351,
0, 436022, 852989, 1232675,
1558488, 1816187, 1994510, 2085664};
if (coef res == 3) {
return intTnsCoef res3[4+coef];
}
if (coef res == 4) {

return intTnsCoef resd4[8+coef];
}
}

/* Decoder transmitted coefficients for one TNS filter */
int tns decode coef(order, coef res, *coef, INT32 *a)

{
INT32 tmp[TNS MAX ORDER+1], b[TNS MAX ORDER+1];

/* Inverse quantization */
for (i=0; i<order; i++) {

tmp[i+1] = tnsInvQuantCoefFixedPoint (coef res, coef[i]);
}

/* Conversion to LPC coefficients */

/* worst case for order == 12 and all coefficients ==
6th coefficient raised by 12!/ (6!*6!) = 924
-> 10 bits headroom required -> SHIFT INTTNS == 21 */
a[0] = 1<<SHIFT_ INTTNS;
for (m=1; m<=order; m++) {
b[0] = af[0];
for (i=1; i<m; i++) {
bli]l = ali]l + ((((((INT64)tmp[m])*a[m-i])>> (SHLFT INTTNS-1))+1)>>1);
}
b[m] = tmp[m];
for (i=0; i<=m; 1i++) {
afil = b[il;

}

Based on the resulting fixed-point LPC eoefficients, a deterministic integer version of the TNS filter is app
to the integer spectrum in the decoder:This is done by replacing the function tns ar filter() in subcla

4.6.9.3 by the function int tns az\filter (), described by the following pseudo-code:

int tns ar filter (INT32 *spec, size, inc, INT32 *1lpc, order)
{

INT32 vy, state[TNS MAX' ORDER];

INT64 temp accu;

for (i=0; i<order; i++)
state[i] = 04

if (incessv-1)
spe€ /4= size-1;

foxrN(1=0; i<size; 1i++) {
y* = *spec;
temp accu = 0;
for (j=0; j<order; j++) {

lied
ise

temp accu += ((INT64)lpc[j+1]) * statel[]];
}
y -= (INT32) (((temp accu >> (SHIFT INTTNS-1)) + 1) >> 1);
for (j=order-1; j>0; j--)
state[j] = state[j-1];
state[0] = y;
*spec = y;

spec += inc;

© ISO/IEC 2006 — All rights reserved

27

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

If the StereoIntMDCT is used, the integer spectral values represent the M/S spectrum instead of the L/R
spectrum. In this case, the inverse Integer M/S has to be applied before the IntTNS and the forward Integer
M/S has to be applied afterwards.

IntTNS in the encoder

In order to ensure lossless reconstruction, the corresponding forward LPC prediction has to be applied to the
integer spectrum in the encoder. This is achieved by applying the function int tns decode coef() and the
corresponding forward filter to the integer spectrum, as described in the following pseudo-code:

int tns filter encode(length, order, direction, INT32* spec, INT32 *1lpc)
{
INT)64 temp accu;
if |[(direction) {
/¥ Startup, initial state is zero */

temp [length-1]=spec[length-1];
flor (i=length-2;i>(length-l1-order);i--) {
temp[i]=spec[i];
temp accu = 0;
k++;
for (j=1;j<=k;j++) {
temp accu += ((INT64)temp[i+]]) * al[jl;
}
spec[i] += (INT32) (((temp_accu >> (SHIFT INTTNS-1)) + 1) >> 1);

/I* Now filter the rest */

flor (i=length-1l-order;i>=0;1i--) {
temp[i]=spec[i];
temp accu = 0;
for (j=1;j<=order;j++) {
temp accu += ((INT64)templ[i+3]) * aljl;

}
spec[i] += (INT32) (((temp accu >> (SHIFT INTTNS-1))" + 1) >> 1);

} €lse {
/I* Startup, initial state is zero */
temp [0]=spec[0];
flor (i=1;i<order;i++) {

temp[i]=spec[i];

temp accu = 0;
for (j=1;j<=1i;J++) {
temp accu += ((INT64)templ[i-jMN™ aljl;
}
spec[i] += (INT32) (((temp accu >> (SHIFT INTTNS-1)) + 1) >> 1);

/I¥ Now filter the rest *%

flor (i=order;i<length;i++) {
temp[i]=spec[i];

temp accu = 0;

for (j=1;j<=oxder;j++) {

temp accu =,((INT64) temp[i-J])*alj];
}
spec[i] < (INT32) (((temp_accu >> (SHIFT INTTNS-1)) + 1) >> 1);
}
}
}
In Cd A~ thU StUIUU:I ILIVIDCT ;O uOUd, thU ;I IthUI OVUUtI G: VGIUUO IUVI COUlT It thU InVnIIIS OPUU{I urrt ;I Iothd Uf thU LIIR

spectrum. In this case the inverse Integer M/S has to be applied before the IntTNS and the forward Integer
M/S has to be applied afterwards.

28 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.5.10 IntMDCT and Inverse IntMDCT

12.5.10.1 Description

The IntMDCT is an invertible integer approximation of the MDCT. The following section describes the

structural implementation of the MDCT and IMDCT used for the forward and inverse IntMDCT.

In the following, the frame length N always denotes the number of new input samples in each block, wh

e(ual 10 the numper or irequency vdalues, SO IV IS elthelr OST™ 1UZ4 O OS1™ 1£0.

12.5.10.2 MDCT and Inverse MDCT (IMDCT)

The MDCT is defined by

A= \/%zil Ww(k)x(k) cos PR LEN)@m + D
m=0 7

4N
ps N =1

N: Frame length (osf*1024 or osf*128)
X(m): Values of MDCT spectrum

x(k): Input samples

w(k): Window function (Sine or KBD)

The IMDCT is defined by

QRk+1+NH)@m+)7
4N

N-1
mmzww)EQ}nmnw
N m=0
k=0,..,2N -1

The input of the MDCT and the output of the IMDCT have a 50% overlap, i.e. N samples. In the IMDG
output of two succeeding blocks\is added in the overlapping region.

12.5.10.2.1 MDCT‘and IMDCT by DCT-IV

For the IntMDCTT the MDCT and the IMDCT are divided into two blocks:
- Windowing and Time Domain Aliasing (TDA)

- Diserete Cosine Transform of Type IV (DCT-IV)

ich is

T the

Thaocae bhvo-blocka-ara tllctratad in Tiagien 49 7 £far tha NMNOT opnd tha INANVCT
TTTCoTtv PTIOCIKSarcmusStatCO T 1o C— 1ot iviD o T artatic v ot

© ISO/IEC 2006 — All rights reserved

29

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

x(0) = —* x(0)
DCT-1V Inverse
DCT-1V
X(N/2-1) - — X(N/2—1)
X(N/2) - X(0) — -] X(N/2)
x(N=1) = X(N/2-1) —w= Inverse x(N=1)
XN 7 » DCT-IV | w xnp = DCTIV - x(N)
x(N+N/2-1) \ »— - X(N-1) —= / »—
X(N+N/2) - — X (N+N/2)
Inverse
X(@N=-1) DCT-IV |, — ! DCT-IV x@NoT)

Figure 12.7 — MDCT and IMDCT by Windowing/TDA and DCT-IV

12.5.10.2.2 Calculation of windowing/TDA block

12.5.10.2.3 Structure of MDCT and IMDCT for different window sequences

In thg MDCT the Windowing/TDA block is calculated by

x(k) w(N-1-k) w(k) x(k)
fN=1-8)) 1 —w) WV =1=k)) (N =1=)

=0,..,.N/2-1

In thg IMDCT this block is inverted by

x(k) w(N —-1-k) —-w(k) x(k)
x(N-1-k) i w(k) WNE1-k) \ x(N-1-k)
t=0,...N/2-1

Note that the overlap/add operation'is already contained in this calculation.

The DCT-IV of length N is_defined by:
N-1
Yoy = \/z Fathcos Qk+1)(2m+)x
Nis 4N
= N1

The inverse DCT-IV of length N has the same coefficients, it is defined by:

2 QRk+D2m+1)x
k)= ,.—)> X(m)cos
x(k) NZO (m) AN
k=0,.,N-1

30 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

For the calculation of the MDCT the output of two succeeding Windowing/TDA stages is considered. Let
x'(0),...,X(N-1) be the output of the Windowing/TDA stage of the previous block and x'(N),...,x'(2N-1) be the
output of the Windowing/TDA stage of the current block. Then the DCT-IV is applied to the N values

~X'(N+N/2=1),=x'(N + N/2=2),....~x'(N),~x'(N = 1),=x'(N = 2),...,~x'(N /2)

i.e. the second half of the previous block and the first half of the current block are used. The order of the
values is reverted and values are multiplied with -1 before applying the DCT-IV of length N.

The second half of current block of Windowing/TDA output values have to be stored for the next block.

This structure is illustrated in Figure 12.8:

N new input samples :

______________ s

) r
) N/2 stored values |

_I_l____

Windowing/TDA

l

l

x(k)->-x(N-1-k)

DCT-IV

SRR

Figure 12.8 — Structure for MDCT by DCT-IV and Windowing/TDA

For the calculation of the IMDCT, the MDCT spectral values are transformed by the inverse DCT-I
output is multiplied with -1 @nd the order is reversed. Then the second half is stored for the next block, th
half is processed by thevinverse Windowing/TDA block together with the values stored from the pre

block.

This structure is.illustrated in Figure 12.9:

, the
e first
vious

© ISO/IEC 2006 — All rights reserved

31

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

T R !

Inverse DCT-IV

x(N/2+k)->-x(N/2+N-1-k)

12.5.

The
follow

y | |
Inverse Windowing/TDA

v I ,

| N output samples N/2 values to store |

Figure 12.9 — Structure for IMDCT by DCT-IV and Windowing/TDA

10.2.4 Structure of MDCT and IMDCT for different window sequences

structure in Figure 12.8 resp. Figure 12.9 is slightly modified(for different window sequences. In the
ing this structure is illustrated for typical window sequences.

[Windowing/TDA | Windowing/TDA | | Shott Winddwihg/TDA | | Windowing/TDA |
| DCT-IV | DCT-IV [ElgHt Shdrt bdT-IV | DCT-IV |
I "LONG MDCT_ I..CSTART MDCT | _SHORT MDCT [_ STOP MDCT _ |

I _LoNGMbeT _ T STARTMDCT_ I~ SHORT MDGT_ [_ STOPMDCT_ T 1ONG MDCT _ 1
| Inversé DCT-IV_ | Inverse DCT-IV_ [inYerkelshbrt{DETIHV Inverse DCT-IV | Inverse DCT-IV_ |
| Inverse Win./TDA | Inyerse[SHort Win[/TDA | Inverse Win./TDA |

32

[—&Jt_pﬁtEa_m_plgs__f output samples :[output samples I output samples |

Figure 12.11 — Structure of IMDCT for LONG, START, SHORT, STOP, LONG sequence

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.5.10.2.5 The IntMDCT

The IntMDCT is an invertible integer approximation of the MDCT. Two versions of this transform are
here, relying on the same algorithm:

Mono-IntMDCT: This version provides the IntMDCT spectrum of one channel.

used

Stereo-IntMDCT: In case of a channel pair element with common_window and use_stereo_intmdct switched

onthic vareinn ic 11cad It prn\lir'lae tha mid/cidg IntMDCT cnaectrum of thg laoft and righl’ ch
A—HS—eSHeR—S —tt FOHGES— HGSHG Hot+—SP oA —t4 fSH—aa—HghRt +

sin,1ultaneously.
Decomposition of MDCT into lifting steps

For the IntMDCT, all calculations are decomposed into so-called lifting steps, allowing to introduce a rou
operation without losing the perfect reconstruction property.

In the forward IntMDCT the Windowing/TDA block is calculated by 3N/2 lifting steps:

<) | WN-1-k)-1 N _w(N 4l=k)-1 <)
— w(k) w(k)
x(N-1-k) 0 | —w(k) 1 0 | x(N-1-k)

k=0,.,N/2-1

In the inverse INtMDCT the Windowing/TDA block is caleulated by:

(b j | w(N—l—k)—l[1 OJl w(N—l—k)—l(b]
N w(k) w(k)
X(N=1-k)) 7| | | k) 1) | x(N-1-k)

k=0,.,N/2-1

These calculations are mathematically equivalent to the one described above, because the window fu
w(k) fulfils the TDAC condition

wk): +w(N-SL=k) =1, k=0,.,N/2-1

After eachrlifting step, a rounding operation is applied to stay in the integer domain.

annel

nding

nction

__Caloulation-of-Int-DCT-IV
Frt-DCT-V

For the IntMDCT, the DCT-IV is calculated in an invertible integer fashion, called the Int-DCT-IV. The Int-

DCT-

IV of length N is implemented by so-called multi-dimensional lifting steps. They have the following general

structure:

© ISO/IEC 2006 — All rights reserved

33

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

with the identity matrix [, ,, of size N/2 and an arbitrary (N/2)x(N/2) matrix A.

Applying this block matrix means that the first half of the input values are processed by the matrix A and then
added to the second half of the input values.

For an integer approximation, the output values of the matrix A are rounded to integer before adding them.
Figure 12.12 illustrates this process.

x(N/2) >

x(N-1) Y >

Figure 12.12 — Forward step_for multi-dimensional lifting including rounding

This process can be inverted by

]N/Z 0 J
-4 IN/Z
i.e. the same matrix.A"is applied to the first half of the values and the resulting values are subtracted from the

second half of the input values.

For the invertible integer approximation, the output values of A are rounded to integer before subtracting them.

34 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

To apply this structure to the IntMDCT, the DCT-IV of length N is decomposed in the following way:

1 cs(0)
0 I es(N/2-1)
DCTIV, = |
1
1 1 cs(0)
1 1 es(N/2-1)
s(N/2-1) 1 1
5(0) 1 1
I %\/EDCTIVN/Z(1 OJ I %\/EDCTIV,M I —%1 (1 OJQP
0 / —2pcm,,, 1), ; o 7 T

with the values

cos DTy

_ 4N _ _
, cs(k)= Sm(2k+1)7f k=0,.,N/2-1

4N,

s(k)=si

kD
4

and the permutation matrices P and Qwith

le,4k = R1k+l,4k+l = le+2,4k+3 5 Lak+34k+2 = I, k=0,..,N/4-1
P ,=0 else

i.e. every second pair of values is swapped, and

Qk,zk = QN/2+/c,2k+1 =1, k=0,.,N/2-1
O,, =0 -else

i.e. the-even indices are arranged in the first half, the odd indices are arranged in the second half.

Thus the DCT-IV is basically decomposed into 8 multi-dimensional lifting steps.

© ISO/IEC 2006 — All rights reserved 35

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The corresponding inverse lifting decomposition for the inverse DCT-IV is given by:

1 1
I 0\ I —=I||I -=-J2DCTIV, I 0
DCTJVN‘1=P‘1Q‘1(;]j 2 2[i [A J
- o 1 o / 2DCTIV,,, 1
1 —cs(0)
I —%\/EDCTIVN/Z 1 —es(N/2-1)
0 I !
1
1 1 —cs(0)
1 1 —cs(N/2-1) In. 0
—s(N/2-1) 1 1 0 —I
—s(0) 1 1

Calculation of Stereo-Int-DCT-IV used for Stereo-IntMDCT

In ca
switc
achie
dime

== |-

e of a stereo signal coded as a channel_pair_element with common_window and use_stereo_intmdct
ned on, the DCT-IV is calculated for both channels in one step, including the M/S calculation. This is
ved by using the decomposition of the Int-DCT-I\Adescribed above, and omitting the three stages of one-
nsional lifting steps and the two permutations, resulting in:

OJ] %\/EDCTIVN[1 0]1 %ﬁDCT]VN I —%1 (1 0]
1) o 7 -JeDCrv, 1), / o 1 M1
Ja2perv, %\/EDCTIVN
J2pCrTiv, —%ﬁDCT]VN

i
V21 HV2*l [DCTIVN 0 j
i _Lyg« N0 pem,

2

Hence, this simplification of the DCT-IV algorithm results in an integrated calculation of the M/S matrix and the

DCT-

IV for the left and the right channel. In this mode of the IntMDCT the DCT-IV operates at a length of N

instead of N/2.

36

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The corresponding inverse lifting decomposition for the inverse Stereo-Int-DCT-IV is given by:

(1 0]1 %1 I —%\/EDCTIVN(1 Ojl —%\/EDCTIVN [1 OJ
-1 1)y 7 o 7 V2perv, 1) 7 0 -1

%ﬁDCT]VN %ﬁDCT]VNW

%\/EDCTIVN —éﬁDCTIVNJ

1 1
(pcrv,” o jgﬁ*l JV2ri
- -1
0 DCTIV, %\/5*1 _%\/5*1

Noise shaping

In the lifting steps where time-domain signals are processed, the rounding operations are connected [to an
error feedback to provide a spectral shaping of the approximation noise.

This approximation noise affects the lossless coding efficieney ‘mainly in the high frequency region \here
audio signals usually contain a very small amount of enérgy, especially at sampling rates of 96 kHz and
higher. Hence, a low-pass characteristic of the approximation noise improves the lossless coding efficiengy.

A first-order noise shaping filter is used, as illustratedin Figure 12.13.

xint(n)

x(n) a5 _

» round()

\j

Figure 12.13 — Noise shaping filter for IntMDCT

For the IntMDCT this filter is applied to the three stages of lifting steps in the Windowing/TDA processing and
to thefirst rounding stage of the Int-DCT-IV processing.

EFor the inverse IntMDCT the same filter is applied to the three stages of lifting steps in the Windowind/TDA

processing and to the last rounding stage of the inverse Int-DCT-IV processing.

12.5.10.3 Algorithm for IntMDCT and inverse IntMDCT
Arithmetics
All operations are based on integer arithmetics. The following formats are used:

- INT32 for input, output and intermediate values, pre-defined fixed-point coefficients

© ISO/IEC 2006 — All rights reserved 37

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

- INT64 for multiplications with fixed-point coefficients, results are shifted and stored in INT32 immediately
after each multiplication

Basic definitions for IntMDCT:

SINE DATA SIZE = 8192
SHIFT = 30

SHIFT _FOR_ERROR FEEDBACK = 6

All flgating point operations in the algorithm are performed in a fixed-point fashion. The number of fractional
bits ig given by SHIFT.

The necessary floating point coefficients for the multiplications in the lifting steps and for the‘intermediate
fixed{point calculations are stored as fixed-point values in INT32:

INT32] coeff = nearestint ((1<<SHIFT)*FLOAT coeff);

The fpllowing float coefficients are stored in this way:

sinefatalk] = sin(k*pi/(Z*SINEiDATAisIZE)), k=0,...,SINE7DATAisIZE/2
defingd in sineData[SINE_DATA_SIZE/2+1] (see 12.5.11).

sinefata cs[k] =
(l—Cos(k*pi/(Z*SINEiDATA7$IZE)))/Sin(k*pi/(2*SINE7DATAisIZE)),

k=0, ...,SINE DATA SIZE/2

defingd in sineData_cs[SINE_DATA SIZE/2+1] (see12.5.11).
The ¢orresponding values for the KBD window are pre-defined in KBDWindow[SINE _DATA_SIZE/2] resp.
KBDWindow_cs[SINE_DATA_SIZE/2] (see/Annex B).

Basi¢ functions for IntMDCT:

INT32 multShiftINT32 (INT32 x,~INT32 y, int shift) {
return ((INT32) (((@NT64)x*y)>>shift));

INT32 multShiftRound¥NT32 (INT32 x, INT32 y, int shift) {
return ((SmultShiftINT32(x,y,shift-1) + 1) >>1);

INT32 shiffRoundINT32 (INT32 y, INT32 shift) {
returh (((y>>(shift-1))+1)>>1);

INT32 shiftRoundINT32withErrorFeedback (INT32 y, INT32* errorFeedback, int shift) {
y += *errorFeedback;
result = shiftRoundINT32 (y,shift);
*errorFeedback = (result << shift) - y;
return (result);

}

void rotateINT32 (int index, INT32 xin, INT32 yin, INT32* xout, INT32* yout) {
xin += multShiftINT32 (-sineData cs[index], yin, SHIFT);
yin += multShiftINT32 (sineDatal[index], xin, SHIFT);
xin += multShiftINT32 (-sineData cs[index], yin, SHIFT);

38 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

xin;
yin;

*xout
*yout

void multHalfSqgrt2 (INT32* x) {
*x multShiftINT32 (sineData [SINE DATA SIZE/2],

ISO/IEC 14496-3:2005/Amd.3:2006(E)

*x, SHIFT);

void rotatePlusMinusINT32 (INT32 xin, INT32 yin, INT32* xout, INT32* yout) {
xtmp = xin;
ytmp = yin;
*xout = xtmp + ytmp;
*yout = xtmp - ytmp;

}

void rotatePlusMinusNormINT32 (INT32 xin, INT32 yin, INT32* xout, INT32* yout) ({
rotatePlusMinusINT32 (xin, yin, =xout, yout);

multHalfSqrt2 (xout) ;
multHalfSqgrt2 (yout) ;

void addINT32 (INT32* xin, INT32* xout, int N) {
for (i=0; i<N; i++)
xout [1] += xin[i];
}
void diffINT32 (INT32* xin, INT32* xout, int N) {
for (i=0; i<N; i++)
xout[1] -= xin[i];
}
void copyINT32 (INT32* xin, INT32* xout, int N) {
for (i=0; i<N; 1i++)
xout[1] = xin[i];

void shiftLeftINT32 (INT32* x,
for (1i=0; 1i<N; i++)
<<= shift;

int N, int ,shift) {

x[1i]

void shiftRightINT32 (INT32* x,

for (i=0; i<N; 1i++)
x[1i] >>= shift;

in€) N, int shift) {

Definitions for windowing/TDA algorithm:
For forward-Windowing/TDA:

direction 1;

For inverse Windowing/TDA:

direction = -1;

Algorithm for forward resp. inverse windowing/TDA:
if (windowShape == 0) {

window sineData;

window cs sineData cs;

© ISO/IEC 2006 — All rights reserved

39

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

} else {
window = KBDWindow;
window_cs = KBDWindow cs;
}
errorFeedback = 0;
for (i=0; i<N/2; i++) {
tmp = multShiftINT32(—windowics[(2*i+1)*SINEiDATAisle/(2*N)],
signal [N-1-1],
SHIFT - SHIFT FOR ERROR FEEDBACK) ;

signal[i] -= direction *
shiftRoundINT32withErrorFeedback (tmp,
&errorFeedback,

SHIFT FOR ERROR FEEDBACK) ;

errforFeedback = 0;

for] (1i=0; i<N/2; i++) {

tmp = multShiftINT32 (window([(2*i+1)*SINE DATA SIZE/ (2*N)],
signalli],

SHIFT - SHIFT FOR ERROR FEEDBACK) ;

slignal [N-1-i] -= direction *
shiftRoundINT32withErrorFeedback (tmp,
&errorFeedback,

SHIFT FOR ERROR FEEDBACK) ;

errjorFeedback = 0;

for] (1i=0; i<N/2; i++) {

tmp = multShiftINT32(—windowics[(2*i+1)*SINEiDATAisle/(2*N)],
signal [N-1-1],

SHIFT - SHIFT FOR ERROR_FEEDBACK) ;

glignal[i] -= direction *
shiftRoundINT32withErrorFeedback (tmp,
&errorFeedback,

SHIFT FOR ERROR FEEDBACK) ;

Algorithm for the forward resp. inverse Int-DCT-IV:
The ipput values are transformed to the forward resp. inverse Int-DCT-IV values in-place.

In cage of the Mono IntMDCT, signal0Jf0,...,N-1] represents the input values of one channel, signal1[0,...,N/2-1]
correpponds to the upper half values signalO[N/2,...,N-1].

If the Stereo IntMDCT is used, the length N is twice the frame length in the Int-DCT-IV algorithm;
signal0[o0,...,N/2-1] represents the left channel input values and signal1[0,...,N/2-1] represents the right
channpel input values.

A temporary bufferdiftBuffer[k] ,k=0,...,N/2-1 of INT32 values is used.

Algorithm for forward Int-DCT-IV:

Permutation P:
if (Mono IntMDCT) {

for (i=0; i<N; i+=4) {
(signalO[i+2], signalO[i+3]) = (signalO[i+3], signallO[i+2]);

40 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

Permutation Q:

if (Mono_ IntMDCT) {
for (i=0; i<N; i++) |
temp[i] = signalli];
}
for (i=0; i<N/2; i++) {
signalfi] = temp[2*i];
signal [N/2+1i] = temp[2*i+1];

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Apply lifting steps:

addINT32 (signal0, signall, N/2);

liftingStep2and3(signall, liftBuffer, N);
addINT32 (liftBuffer, signalO, N/2);

liftingStep4 (signalO, liftBuffer, N);
addINT32 (1iftBuffer, signall, N/2);

liftingStep5and6 (signall, liftBuffer, N, Mono_ IntMDCT) ;
addINT32 (1iftBuffer, signalO, N/2);

if (Mono_ IntMDCT) {
liftingStep7 (signall0, liftBuffer, N);
addINT32 (1iftBuffer, signall, N/2);

liftingStep8(signall, liftBuffer, N);
addINT32 (liftBuffer, signalO, N/2);

Multiply with -1:

for (k=0; k<N/2; k++) {
signall([k] *= -1;

Algorithm for inverse Int-DCT-IV:

Multiply with {1:

for ((R=0; k<N/2; k++) {
sdgnall([k] *= -1;

Apply inverse lifting steps:

if (Mono_ IntMDCT) {
liftingStep8 (signall, liftBuffer, N);
diffINT32 (1liftBuffer, signall, N/2);

liftingStep7(signall, liftBuffer, N);
diffINT32 (1iftBuffer, signall, N/2);

© ISO/IEC 2006 — All rights reserved

41

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

liftingStep5and6 (signall, liftBuffer, N, Mono_ IntMDCT) ;
diffINT32 (liftBuffer, signalO, N/2);

liftingStep4 (signalO, liftBuffer, N);
diffINT32 (liftBuffer, signall, N/2);

liftingStep2and3(signall, liftBuffer, N);
diffINT32 (1liftBuffer, signal0l, N/2);

diffINT32 (signalO, signall, N/2);

Inverse permutation Q:

if |(Mono IntMDCT) {
flor (1i=0; i<N; i++) {
temp[i] = signalli];

flor (i=0; i<N/2; i++) {
signal[2*i] = templ[i];
signal [2*i+1] = temp[n/2+i];

Inverise permutation P:

if |(Mono IntMDCT) {
flor (i=0; i<N; i+=4) {
(signalO[i+2], signalO[i+3]) = (signalO[i+3], signalOfiw2T);

Lifting steps for forward and inverse Int-DCT-IV:

void [1iftingStep2and3 (INT32* signall, INT32M/AiftBuffer, int N) {
cofyINT32 (signall, liftBuffer, N/2);
shilfftNormalize = DCTIVsqrt2 fixpt (liftBuffer, N/2) + 1;
if [(shiftNormalize > SHIFT FOR ERROR(EEEDBACK) {
shiftRightINT32 (liftBuffer, N/2,
shiftfNormalize - SHIFT FOR ERROR FEEBBACK) ;
shiftNormalize = SHIFT FOR ERROR FEEDBACK;
}
for] (k=0; k<N/2; k++) {
HJiftBuffer([k] -= signalllk] << (shiftNormalize - 1);
}
errjorFeedback = 0;
for] (k=0; k<N/2; k+#) {
JiftBuffer (k] = . shiftRoundINT32withErrorFeedback (liftBuffer(k],
serrorFeedback,/ shiftNormalize) ;

}

void |Li€£ingStep4 (INT32* signalO, INT32* liftBuffer, int N) {
COplyINT32 (signal0, 1iftRuffer, N/2):

shiftNormalize = DCTIVsqrt2 fixpt (liftBuffer, N/2);
for (k=0; k<N/2; k++) {
liftBuffer[k] = -shiftRoundINT32 (liftBuffer[k],shiftNormalize);

void liftingStepband6 (INT32* signall, INT32* liftBuffer, int N, int mono) {
copyINT32 (signall, liftBuffer, N/2);
shiftNormalize = DCTIVsqrt2 fixpt (liftBuffer, N/2);
shiftRightINT32 (1iftBuffer, N/2, shiftNormalize);
if (mono) {
for (k=0; k<N/2; k++)

42 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

liftBuffer[k] += multShiftINT32(-sineData cs[step* (2*k+1)],

signall[N/2-1-k], (SHIFT-1)); }
for (k=0; k<N/2; k++)
liftBuffer(k] = ((liftBuffer[k]+1)>>1);

void liftingStep7 (INT32* signalO, INT32* liftBuffer, int N) ({
for (k=0; k<N/2; k++)
liftBuffer([N/2-1-k] =
multShiftRoundINT32 (sineDatal[(2*k+1)*SINE DATA SIZE/ (2*N)],

signalO[k], SHIFT) ;
}

void 1liftingStep8 (INT32* signall, INT32* liftBuffer, int N) {
for (k=0; k<N/2; k++)
liftBuffer(k] =
multShiftRoundINT32 (-sineData cs[(2*k+1)*SINE DATA SIZE/ (2*N)],
signall[N/2-1-k],SHIFT);
}

Algorithm for SQRT(2)*DCT-IV:

Both in the forward and the inverse Int-DCT-IV the calculation of SQRT(2)*DCT-IV is required. This calculation
is performed in a deterministic fixed-point fashion:

int DCTIVsqgrt2 fixpt (INT32 *data, int N) {
preShift = msbHeadroomINT32 (data, N) - 1;
if (preShift > 15) preShift = 15;
if (preShift < 0) preShift = 0;
shiftLeftINT32 (data, N, preShift);
preModulationDCT fixpt (data, xr, xi, N);
fftshift = srfft fixpt(xr, xi, N/2);
postModulationDCT fixpt (xr, xi, data, N)3»
shiftNormalize = (log2int(N) - 2) / 2(% preShift - fftShift;
sgrt2Normalize = (log2int(N) - 2) %\2%
if (sgrt2Normalize) {

for (i=0; i<N; 1i++)
multHalfSqgrt2 (&datali]) ;

}

return shiftNormalize;

Pre-modulation for DCT-IV:

void preModulationDCT fixpt (INT32 *x, INT32 *xr, INT32 *xi, int N) {
for (i=04iXWN74;i++) {
rotateINT32((4*i+l)*SINEiDATA7$IZE/(2*N),
X[N-1-2*i],x[2*1i],
&xi[1i],&xr[i]);
rotateINT32((4*i+3)*SINEiDATA7$IZE/(2*N),
x[2*%i+1],-x[N-2-2*1i],

ok DL] el
T T

Al N2] 1\
T T

7 7

Post-modulation for DCT-IV:

void pOStMOdulationDCTifiXpt(INT32 *xr, INT32 *xi, INT32 *x, int N) {
x[0] = xr[0];

© ISO/IEC 2006 — All rights reserved 43

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

x[N-1] = -x1[0];
for (i=1;1i<N/4;1i++) {
rOtateINT32(Z*i*SINEiDATA7$IZE/N,
xr[i],-xi[i],
&x[2*%1], &x[N=-2*i-1]) ;
rOtateINT32(2*i*SINE_DATA_SIZE/N,
xr[N/2-i],x1i[N/2-1],
&x[2*%1-1],&x[N=-2*1]) ;
}
rotatePlusMinusNormINT32 (xr [N/4],x1i[N/4],

&xX[N/27,&x[N/2-17);

SplitiRadix FFT:

int grfft fixpt (INT32 *xr, INT32 *xi, int N) {
numShifts = 0;
/* L =1,2,4,...,N/2 */
for] (L=1; L<N; L*=2) {

M= N/L; /*M=N, N/2,...,2 */
M2 = M/2;

M4 = M2/2;

/I L: number of sub-blocks

M: length of sub-block */

lumShifts += shiftIfRequired(xr, xi, N);

flor (1=0; 1<L; 1++) {

/* butterfly on (x[k],x[M2+k]), k = 0,...,N2-1 on each sub-block */
for (k=0; k<M2; k++) {

rptatePlusMinusINT32 (xr [1*M+k], xr [1*M+M2+k],
&xr[1*M+k], &xr [1*M+M2+Kk]) ;
rptatePlusMinusINT32 (xi[1*M+k], xi[1*M+M2+k],
&xi[1*M+k], &xi [1*M+M2+k]) ;

o]

lumShifts += shiftIfRequired(xr, xi, N);
Gt M > 2) {

for (1=0; 1<L; 1++) {
f (srfftIndex(l) == 0) {

/* x[N2+N4+k] -> -j*x[N2+N4+k] , %k = 0,...,N4-1 on each sub-block

-

*/
for (k=0; k<M4; k++) {
swap (&xr [1*M+M2+M4+k] & 1 *M+M2+M4+k]) ;
xi[1*M+M2+M4+k] *= -0;
}
} else {
/* complex multifplications */
for (k = 1; kK M4; k++) {
rotateINT32(4*k*SINE7DATA7$IZE/(Z*M),
%1 [JPMek], xr [1*M+k],
XL M+k], &xr[1*M+k]) ;
rotateINT32(4*k*SINE7DATA7$IZE/(Z*M),
%i[1*M+M2-k], -xr [1*M+M2-k],
&xr[1*M+M2-k], &x1i [1*M+M2-k]) ;

1

for (k = 1; 3*k < M4; k++) {
rotateINT32(4*3*k*SINE7DATA7$IZE/(2*M),
xi [1*M+M2+k], xr [1*M+M2+k],
&x1[1*M+M2+k], &xr [1*M+M2+k]) ;
rotateINT32(4*3*k*SINE7DATA7$IZE/(2*M),
-xi[1*M+M-k],xr[1*M+M-k],
&xr[1*M+M-k], &xi[1*M+M-k]) ;
}
for (; 3*k < 2*M4; k++) {
rotateINT32(4*(M2—3*k)*SINEiDATA7$IZE/(2*M),
xi [1*M+M2+k], -xr [1*M+M2+k],
&xr [1*M+M2+k], &x1i [1*M+M2+k]) ;

44 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

rotateINT32 (4* (M2-3*k) *SINE DATA SIZE/ (2*M),
-xi[1*M+M-k],-xr[1*M+M-k],
&xi [1*M+M-k], &xr [1*M+M-k]) ;
}
for (; 3*k < 3*M4; k++) |
rotateINT32 (4* (3*k-M2) *SINE DATA SIZE/ (2*M),
-xr [1*M+M2+k], x1i [1*M+M2+k],
&xi [1*M+M2+k], &xr[1*M+M2+k]) ;
rotateINT32 (4* (3*k-M2) *SINE DATA SIZE/ (2*M),
-xr [1*M+M-k],-xi[1*M+M-k],

}

bit reverse fixpt (xr,N);
bit reverse fixpt(xi,N);
return numShifts;

Basic functions for FFT:

int msbHeadroomINT32 (INT32 *x, int N) {
max = 0;

fo

max |= ABS(x[1i]);

}

re

int
sh
if

}

re

void bit reverse fixpt(INT32 *x, int N) {

fo

srfftlndexTable[32] = {0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, O, O, 1, 0, O,

Tt

&xr [1L*M+M-k], &x1 [1*M+M-k]) ;
}
rotatePlusMinusNormINT32 (xi[1*M+M4], xr [1*M+M4],
&xr[1*M+M4], &xi[1*M+M4]) ;
rotatePlusMinusNormINT32 (-xr [1*M+M-M4],xi[1*M+M-M4],
&Xr[1*M+M-M4], &xi [1*M+M-M4]) ;

r (i=0; 1i<N; 1i++) {

turn (30-log2int (max));

shiftIfRequired (INT32 *xr, INT32 *xi,\¥nt N) {
iftRequired = 0;

((!msbHeadroomINT32 (xr,N)) | | (!msbHeadroomINT32 (xi,N))) {
shiftRequired = 1;
shiftRightINT32 (xr, N, 1);
shiftRightINT32 (xi, N, 1);

turn shiftRequired;

r (m=1,3=0; m<N-I; m++) {
for (k=N>>1;~(V((j"=k)&k)); k>>=1);
if (j>m) sswap (&x[m], &x[J]);

o, 1, 0, 0, 0, 1, 0, 1, O, 1, O, O, O, 1, O, 1};

srfftIndex (int 1) {

return sriftlindexTable[(sriftlndexTable[l1>>4] 4) [(L&OXE) T7

Forward and inverse Integer Mid/Side processing:

void IntMidSideINT32 (INT32* 1, INT32* r) /* L/R -> M/S */

{

m = *1;
s = *r;
m += multShiftRoundINT32 (-sineData cs[SINE DATA SIZE/2], s, SHIFT);

© ISO/IEC 2006 — All rights reserved 45

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

s += multShiftRoundINT32(sineData[SINE DATA SIZE/2], m, SHIFT);
m += multShiftRoundINT32 (-sineData cs[SINE DATA SIZE/2], s, SHIFT);
*1 = s;
*r =m;
}
void InverseIntMidSideINT32 (INT32* 1, INT32* r) /* M/S -> L/R */
{
m = *1;
s = *r;
s - multShiftRoundINT32 (-sineData cs[SINE DATA SIZE/2], m, SHIFT);
m - multShiftRoundINT32(sineData[SINE DATA SIZE/2], s, SHIFT);
s = multShiftRoundINT32 (-sineData cs[SINE DATA SIZE/2], m, SHIFT);
*1 F s;
*r = m;
}
12.5{11 Computation of table values based on compact tables
The values of the tables sineData, sineData_cs, thrMantissa(), and invQuantMantissa() are computed from

the compact tables in Annex B. This is described in the following pseudo code:

/* infterpolate value between v0 = data[0] and v8 = datal[8],
usling additionally vm8 = data[-8] and v16 = datal[l6] */
INT32[interpolateValuelto7 (INT32 vm8,
INT32 vO,
INT32 v8,
INT32 vle,
INT32 1)
{
INT32 value;
INT32 di, d2, d3;
dl | 2*x(v8-v0); /* 1 add, 1 shift */
d2 | v8-vm8; /* 1 add */
d3 | v1i6-v0; /* 1 add */
if [(1==1) {
vialue = vO + ((8*%d2 - d2 + dl + 64) %>.7); /* 4 adds, 2 shifts */
} else if (1==2) ({
vialue = vO + ((2*d2 + d2 + dl1 + 16 >> 5); /* 4 adds, 2 shifts */
} else if (1==3) {
vialue = vO + ((16*d2 - d2 + 8*dI™% dl1 + 64) >> 7); /* 5 adds, 3 shifts */
} else if (1==4) {
vialue = vO + ((1 d2 + dl + 4.) >> 3); /* 3 adds, 1 shifts */
} else if (1==5) ({
vialue = v8 - ((16*d3 -,.d38\¥ 8*dl + dl1 + 64) >> 7); /* 5 adds, 3 shifts */
} else if (1==6) {
vialue = v8 - ((2*d3 +d3 +dl + 16) >> 5); /* 4 adds, 2 shifts */
} else if (1==7) {
vialue = v8 - ((8%¥d3 - d3 + dl + 64) >> 7); /* 4 adds, 2 shifts */
1
retjurn value;
1
INT32| interpeltateFromCompactTable (int index, INT32* compactTable)
INT|32 svalue;
j Tnd o] +
k = index/8;
if (3 == 0) {
value = compactTable [k+1];
return value;
value = interpolateValuelto7 (compactTable [k],
compactTable [k+1],
compactTable [k+2],
compactTable [k+3],
3)i
return value;
1
46 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The values for the sineData and the sineData_cs tables are computed by applying

sineData[index] = interpolateFromCompactTable (index, sineDataCompact) ;
resp.
sineData_ cs[index] = interpolateFromCompactTable (index, sineDataCompact cs) ;

The values for the function invQuantMantissa() are computed by

INT32 invQuantMantissa (int gquant, int res)

INT32 wvalue;
INT32 pow 2 quat[4] = {0, 1276901417, 1518500250, 1805811301};
/* (int) (pow(2.0,res/4.0)* (1<<SHIFT)+0.5) */

if (quant < MAX_INV_QUANT TABLE) {
value = invQuantCompact [quant] ;
if (res > 0)
value = multShiftRoundINT32 (value,
pow_2 quat [res],

SHIFT) ;
1
} else {
1 = quant%8;
k = quant/8;
if (1 == 0) {
value = invQuantMantissa(k, res)<<4; /* 8% (4/3) = 16 2274 */
} else {
value = interpolateValuelto7(invQuantMantissa (k-1, \res)<<4,
invQuantMantissa (k, ‘r8&s)<<4,
invQuantMantissa (k+1\ res)<<4,
invQuantMantissa(k+2, res)<<4,
1);
1

}

return value;

The value for the function thrMantissa() arée’computed by
INT32 thrMantissa(quant, res)

INT32 value;

INT32 invQuantO;

INT32 invQuantl;

if (quant < MAX_THR_TABLE] {

value = thrCompact [res] [quant];

} else {
invQuant Q0~=w-invQuantMantissa (quant, res) ;
invQuantIns invQuantMantissa (quant+1,res) ;
valuee=\ihvQuantl+ (((invQuant0-invQuantl) *13) >>5) ;
1

returrn value;

© ISO/IEC 2006 — All rights reserved 47

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/I

EC 14496-3:2005/Amd.3:2006(E)

Annex 12.A
(informative)

Encoder description

12.A

.1 overview

The $LS encoder generates, for a given PCM audio input, a lossless bit-stream that can be decoded to(@ bit-

exac
gene

reproduction of the given PCM audio by using an SLS decoder. Furthermore, the lossless’ stream
ated by the SLS encoder can be truncated to lower bit-rates down to the bit-rate of the core MPEG-4 GA

encogler. This way, the resulting bit-stream can be decoded by the SLS decoder to produce a lossy
reproduction of the original audio in such a way that better signal fidelity is always achieved with higher rates

in the

N{

"

12.A

For
Dowr

Dowr
IntML

LLE layer.
MPEG-4 GA
p Quantization »
& Coding
ut PCM SLS bit-
mples Integer Integer Error BPGC/ Multiplexer | strea
INtMDCT | L Integ > . » CBAC | Stream,
TNS M/S Mapping
Encoder
Low
Energy
"1 Mode
Encoder
Figure 12.A.1 — Block diagram of SLS encoder
1.1 Encoding with oversampling

he encodings process incorporating the oversampling technique, two approaches are possible:
sampling imythe MDCT domain and downsampling in the time domain.

sampling”in the MDCT domain is illustrated in Figure 12.A.2. The input signal is processed by an
CT oflength osf*1024 and the first 1024 spectral values are fed into the MPEG-4 GA encoder.

48

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

MPEG-4 GA
Quantization
1024—» & Coding
y<—1024
Input PCM SLS bit-
samples Integer Integer Error BPGC/ Multiplexer stream
IntMDCT +———P» CBAC
NS M/IS (7Iapp|ng
Encoder
* %
osf*1024 0sf*1024 osf*1024 osf*1024 Low
Energy | |
> Mode
Encoder

Figure 12.A.2 — Block diagram of SLS encoder with downsampling in the MDCT domain

For the second possible encoding approach, the input signal is downsampled in the time domain and the
complete AAC encoding part is performed in parallel. This is illustrateéd in Figure 12.A.3.

L 12.A.2 Integer MDCT

A

1024 1024
+ + MPEG-4 GA
MDCT [# TNS M/S = Quantization
& Coding
vost #4—1024
A
Input PCM
BPGC/
samples | ! ntvpcT | ME9S! teger » ErMOr » CBAC
TNS M/S Mapping
Encoder
osf*1024 osf*1024 osf*1024 Low
Energy
Mode
Encoder

Multiplexer

SLS|bit-
strepm

Figure 12.A.3 — Block diagram of SLS encoder with downsampling in the time domain

The IntMDCT is already described in the normative part.

12.A.3 Grouping and interleaving

There are two types of window used in the SLS implementation. They are the same as in the AAC windowing
scheme. One is a long window with osf*1024 IntMDCT coefficients, the other is a short window with 0sf*128
INtMDCT coefficients. An integer transform is applied to a windowed audio sequence. When the short window

© ISO/IEC 2006 — All rights reserved

49

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/I

EC 14496-3:2005/Amd.3:2006(E)

is employed, the set of 0sf*1024 IntMDCT coefficients is handled as a matrix of 8 by 0sf*128 frequency
coefficients representing the time-frequency evolution of the signal over the duration of eight short windows.
The same grouping and interleaving process adopted in AAC is followed here. To be specific, assume that
before interleaving the set of os*1024 IntMDCT coefficients ¢ are indexed as

clglwl[b][K]

where

g is the index on groups
w is the index on windows within a group
b is the index on scale factor bands within a window

k is the index on coefficients within a scale factor band

and the right-most index varies most rapidly.

After interleaving the coefficients are indexed as

In the
the in

12.A

If the

clgllblw]lK]

subsequent sections, when a short window is used we assume that the signal process is performed on
terleaved spectrum for eight short window frames unless otherwiseg, specified.

.4 Integer mid/side

Mono IntMDCT is used for the left and the right channel, the integer M/S processing has to be applied to

the sgale factor bands where the M/S flag is set to '1'.

The $tereo IntMDCT delivers by default an M/S'Spectrum. Hence M/S has to be turned off for the scale factor
band$ where it is not desired.

The
norm

12.A

After
facto

Cc =(

whersg

blgorithms for both the forward and™the inverse Integer Mid/Side processing are described in the
btive part.

.5 Normalize before-AAC coding

IntMDCT, a scale factor core_scaling is used to normalize the IntMDCT coefficients c(k) for each scale
band sfb in order'to’provide the AAC core layer input spectrum c'(k).

ore _scaling - c,

b the value of the scale factor core_scaling is jointly determined by the type of the corresponding scale

facto

band and the word Ipngfh of the inlnnf audio gi\/nn inthe fnllnwing table:

50

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

Table 12.A.1 — Value of core_scaling

Word Length

16 20 24
sfb Type
Long Window (2048), M/S 32 2 1/8
Long Window (2048), non M/S 322 22 \/5/8
Short Waindow (256) _N/S [[[
> YYHREOW T 75 V2 V]2 V<[54
Short Window (256), non M/S 16 1 1/16

After normalization, the normalized ¢' is quantized with the core AAC quantizer, whose output quantij
index i is then Huffman coded. It is then multiplexed with the necessary side informatien,.€.g. scale
scale_factor(sfb) used in the quantizer for each scale factor band sfb, according to the AAC bit-stream s
to generate the core AAC bit-stream.

12.A.6 Error mapping

In the LLE layer, an error mapping procedure is employed to remove thée information that has been al
coded in the core layer. The input to the error mapping module is,the*1024 IntMDCT coefficients c[sfb
the non-oversampling range and its corresponding quantized yalue in the core encoder quant[sfb]f
output is the IntMDCT residual spectrum res. The detailed errorsmapping procedure is already given

normative part of this document (12.5.7).

12.A.7 BPGC/CBAC encoder

In SLS, the IntMDCT residual spectrum res isseoded by the BPGC/CBAC coding process that consists
following steps:

e BPGC/CBAC parameter determination
e Bit-plane coding of residual integer spectral data
e Low energy mode coding of residual integer spectral data

12.A.7.1 BPGC/CBAC parameter determination

As a first step, the maximum bit-planes max_bp for each scale factor band are identified. For Implicit_
the maximum bit-plane M for each residual spectral data and can be calculated from

M g1[winl[3/bl[bin] = INT {log, [interval[g[win][sfb][bin]]}

where interval[g][win][sfb][bin] is the AAC quantization interval that is calculated as shown in the norn
part of-this document.

Faor Explicit_Band, M is given as:

ration
factor
ntax,

ready
I[k] in
J. Its
n the

bf the

Band,

native

M{g][win][s/b][bin] = INT (log, [res[g][win][sfb][bin]])

and we further define log,0=—1 for the above log calculation. The maximum bit-plane max_bp for
scalefactor band is the maximum value of M for spectral data that belongs to sfb:

max_bp[g][sfb] = max (M[g][win][s/b][bin])

each

After finding max_bp for each scale factor band, the lazy plane lazy bp is selected from the three possible

values max_bp-1, max_bp-2, and max_bp-3.

© ISO/IEC 2006 — All rights reserved

51

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.A.7.2 Bit-plane coding of residual integer spectral data

The following pseudo code illustrates how the sign and the amplitude of the IntMDCT residual spectral data
res are coded into the BPGC/CBAC data stream. The help element M for an insignificant scalefactor band is
set to the value of max_bp in order to be compatible with the decoding process. The BPGC/CBAC coding
process is performed on scale factor bands for which lazy bp>0.

/* preparing of help elements */
for (g=0;g<num window groups;g++) {

f L o N— ﬂ’ £l - FL\' o) {
width = swb offset[g] [sfb+1l] - swb offset[g][sfb];
for (win = 0;win <window group len[g];win++) {

for (bin=0;bin<width;bin++)
is sig[g] [win] [sfb] [bin]=
((quant[g] [sfb] [win] [bin]) && (band type([g] [sfb]==Implicit band))?1:0;
}
chr bplg] [sfb] = max bpl[g][sfb];
}
}
/* BHGC/CBAC normal coding process */
whilg ((there exists max bp[g][sfb]-1i >= 0) && (i<LAZY BP)) {
fpr (g=0;g<num window groups;g++) {
for (sfb = 0;sfb<num sfb;sfb++) {
if ((cur_bplgl[sfb]>=0) && (lazy bplg][sfb] > 0)){
width = swb offset[g] [sfb+1l] - swb offset[g][sfb];
for (win=0;win<window group len[g];win++) {
for (bin=0;bin<width;bin++) {

sym = (abs(res([g][win] [sfb] [bin]) & (1<<cur’bp{g] [sfb]))?1:0;
sgn = (sign(res[g][win] [sfb] [bin])+1) /2%
if (interval(g] [win] [sfb] [bin]>res[g](win] [sfb] [bin]+ (1<<cur bplg] [sfb]) {
encode (sym, freq); /* encode bit#plane cur bp*/
if ((!is_sig(g][win] [sfb] [bin] f&&\(sym)) {
encode (sgn, freq sign); [*‘encode sign bit if necessary * /
is _siglg] [win] [sfb] [biA) = 1;

}
}
cur _bplg] [sfb]--;

}

The BPGC/CBAC lazy coding mode isl-started after the first NUM BP bit-planes have been coded.

/* BHGC/CBAC lazy coding process */

flush encode(); /* flush the AC encoder before lazy coding */

whilg (there exists maxebplg] [sfb]-1 >= 0) {

fpr (g=0;g<num window groups;g++) {

for (sfb = O0fsfb<num sfb;sfb++) {

if ((cur bplgl[sfb]>=0) && (lazy bplg][sfb] > 0)){
width = swb offset[g] [sfb+1l] - swb offset[g][sfb];
£0t (win=0;win<window group len[g];win++) {
for (bin=0;bin<width;bin++) {

sym = (abs(res[g] [win] [sfb] [bin]) & (1<<cur bplg] [sfb]))?1:0;
sgn = (sign(res[g][win] [sfb] [bin])+1)/2;
if (interval(g] [win] [sfb] [bin]>res[g] [win] [sfb] [bin]+ (1<<cur bplg] [sfb]) {
WLJI.L,C_L)JI.L,\ Y]y CIICOUT L)JI.L, pPLallc k,uJ._L)LJ
if ((!is_siglg] [win] [sfb] [bin]) && (sym)) {
write bit (sgn); /* encode sign bit if necessary */
is siglg] [win] [sfb] [bin] = 1;

}
}
cur _bplg] [sfb]--;

52 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The value of NUM_BP is listed in Table 12.19

12.A.7.3 Low energy mode code (LEMC) encoding

For scale factor bands with lazy bp = 0, -1, -2, and -3, the residual spectral data res is not coded with the
BPGC/CBAC. Instead, it is coded with the LEMC coding process. In the low energy mode, the amplitude of
the residual spectral data res is first converted into binary format as listed in Table 12.26. The resulting binary
string is then coded arithmetically. Note that the low energy mode coding process is performed directly after

Y RDhoCo PUH + lataal
ure pr OUw UUUI Iy }JI ULCTOoOo 1o UUIIT I}JIULCU.
The low energy mode coding process is illustrated with the following pseudo code:

for (g = 0;9 < num _window groups; g++) {
for (sfb = 0; sfb <num sfb+num osf sfb;sfb++) {
if ((cur_bplgl[sfb] >= 0) && (lazy bplgl([sfb] <= 0))
{

width = swb offset[g] [sfb+1l] - swb offset[g][sfb];
for (win=0;win<window group len[g];win++) {
pos = 0;
for (bin=0;bin<width;bin++) {
if (!is lle ics eof ()){
amp = abs(res[g] [sfb][win] [bin]);
sgn = (sign(res[g][sfb][win] [bin]) + 1)/2;
dumb = amp;

while (dumb > 0) { /* binarize and encoding for non-zero res*/
encode (1, freq silence[position]);

position++;

if (position>2) position = 2y

dumb --;
if (amp != (1<<(max_bplg] [@in]T[sfb] + 1)) - 1)

encode (0, freq silenc€[Rosition]); /* encode of terminating 0 */
if (amp)

encode (sgn, freq_sgn)’; /* encode of sign symbol*/

The frequency assignment freq for BPGC/CBAC encoding and low energy mode encoding has already|been
given in the normative part.

The following pseudo code explains how the binary symbol is arithmetically coded in the BPGC/CBAC and the
low energy mode coding processes.

Definitions:

fdefine CODE WL 16

i#define PRE SHT 14
#define TOP_VALUE (((long)1<<CODE WL)-1)
#define QTR VALUE (TOP7VALUE/4+1)

#define HALF VALUE (2*QTR VALUE)
#define TRDQTR VALUE (3*QTR VALUE)

Initialization:
low = 0;

high = TOP VALUE;
fbits = 0;

© ISO/IEC 2006 — All rights reserved 53

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

The

encoding subroutine:

void encode (int sym, int freq)

{

range = (long) (high-low)+1;
if (sym)

high = low + (range*freg>>PRE SHT)-1;
else

low = low + (range*freg>>PRE_SHT) ;
for (;;) |

1f (high<HALF VALUE) {
output bit (0);
while (fbits > 0) {
output bit (1);
fbits --;
}
} else if (low>=HALF VALUE) {
output bit (1);
while (fbits > 0) {
output bit (0);

fbits --;
}
low -= HALF VALUE;
high -= HALF VALUE;
} else if (ow>=QTR VALUE && high<TRDQTR VALUE)
fbits += 1;
low -= QTR VALUE;
high -= QTR VALUE;
} else
break;

low = 2*low;
high = 2*high+1;
rpturn;

flushl the status of encode:

/* fllush the state register of AC encoder*/
flushf encode ()

{

54

fpits += 1;

f (low < QTR VALUE)

output bit (0);

while (fbits > 0) {
output bit (1);
fbits --;

-

}

ellse

output bit(1);

while (fbits >(0Y) {
output it (0);
foitks, —-;

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.A.8 Method of bitstream truncation by re-parsing the bitstream

The full SLS bitstream can be truncated at any given target bitrate in a simple way. The modification of the
values of lle_ics length does not affect the LLE decoding results before the truncation point, since
lle_ics_length is independent from the LLE decoding procedure. The bitstream truncation can be performed as

e the

rame

follows:

1. Read the lle_ics_length from the bitstream

2. Read the LLE bitstream

3. Calculate the available frame length at a given target bitrate. The simplest way to.calcula
available frame length is as follows:
target_bits = (int)(target_bitrate/2.*1024.*osf/sampling_rate+0.5)-16;
target_bytes = (target_bits+7)/8;
The variable target_bitrate represents the target bitrate in bits/sec! The variable osf reprgsents
the oversampling factor. The variable sampling _rate represents the sampling frequency ¢f the
input audio signal in Hz.

4. Update lle_ics_length by taking the minimum of the available frame length and the current
length.
lle_ics_length = min(lle_ics_length, target_bytes);

5. Generate the truncated bitstream with the ‘updated /le_ics length.

The resulting truncated bitstream is decoded with”the smart arithmetic decoding method as describ
12.5.5.2.5.

ed in

© ISO/IEC 2006 — All rights reserved

55

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

12.8BTTables for pre-defined fixed-point coefficients

defi

/* sin (0, ..

INT32)
-1647099,

11529474,

24704310,

37879426,

51040837,

64198563,

77344620,

90483029,

103605812,
116712992,
1298012595,
142872651,
155921191,
168946249,
181945865,
194913080,
207860942,
220772500,
233650811,
246493935,
259299937,
272066891,
284792871,
297475964,
310114257,
322705848,
335248841,
347741347,
360181484,
372567379,
384897167,
397143991,
409381002,
421531363,
43361J8242,
445639820,
457594286,
469479840,
481294693,
493037064,
5047055185,
516297300,
52781J1662,
539246538,
5506000205,
5618710954

.,pi/4)

0, 1647099,
13176464,
26350943,
39521455,
52686014,
65842639,
78989349,
92124163,
105245103,
118350194,
131437462,
144504935,
157550647,
170572633,
183568930,
196537583,
209476638,
222384147,
235258165,
248096755,
260897982,
273659918,
286380643,
299058239,
311690799,
324276419,
336813204,
349299266,
361732726,
374111709,
386434353,
398698801,
410903207,
423045732,
435124548,
447137835,
459083786,
470960600,
482766489
494499676,
506158392,
517740883,
520245404,
540670223,
552013618,
563273883

14823423,
27997515,
41167391,
54331067,
67486561,
80631892,
93765079,

e SINE DATA SIZE 8192

and +-1 */
sineDataCompact [515] = {

3294193,

106884147,
119987118,
133072019,
146136880,
159179733,
172198615,
185191564,
198156624,
211091842,
223995270,
236864966,
249698991,
262495412,
275252302,
287967740,
300639811,
313266607,
325846226,
338376774,
350856364,
363283116,
375655159,
387970630,
400227673,
412424484y
424559105,
436629829,
448634799,
160572205,
472440251,
484237150,
495961124,
507610408,
519183248,
530677900,
542092635,
553425732,
564675486

Annex 12.B
(normative)

Tables

4941281,
16470347,
29644021,
42813230,
55975992,
69130324,
82274245,
95405776,

108522939,
121623759,
134706263,
147768480,
160808445,
173824192,
186813762,
199775198,
212706549,
225605867,
238471210,
251300640,
264092224,
276844038,
289554160,
302220676,
314841679,
327415267,
339939549,
352412636,
364832652,
377297725,
389505993,
491755603,
413944711,
426071480,
438134084,
450130706,
462059541,
473918791,
485706671,
497421405,
509061229,
520624391,
532109148,
543513772,
554836544,
566075761

6588356,
18117233,
31290457,
44458968,
57620785,
70773924,
83916404,
97046247,

110161476,
123260114,
136340190,
149399733,
162436778,
175449360,
188435520,
201393302,
214320755,
227215933,
240076892,
252901697,
2656884165)
278435322
291139898,
303800829,
316416009,
328983538,
341501523,
353968079,
366381329,
378739403,
391040440,
403282588,
415464004,
427582852,
439637307,
451625555,
463545789,
475396216,
487175049,
498880516,
510510853,
522064309,
533539144,
544933630,
556246051,
567474703

8235416,
19764076,
32936819,
46104602,
59265442,
72417357,
85558366,
98686491,

111799753,
124896179,
137973796,
151030634,
164064728,
177074115,
190056834,
203010932,
215934257,
228825464,
241682010,
254502159,
767283981,
280025552,
292724951,
305380268,
317989595,
330551034,
343062693,
355522689,
367929144,
380280190,
392573967,
404808624,
416982319,
429093217,
441139496,
453119340,
465030947,
476872522,
488642281,
500338453,
511959275,
523502998,
534967884,
546352205,
557654248,
568872310

9882456,
21410872,
34583104,
47750128,
60909960,
74060620,
87200127,
100326502,

113437768,
126531950
139607077,
152661180,
165692293,
8698453,
191677702,
204628085,
217547651,
230434456,
243286558,
256102022,
268878918,
281615322,
294309316,
306958988,
319562433,
332117752,
344623057,
357076462,
369476093,
381820082,
394106570,
406333708,
418499653,
430602573,
442640647,
454612060,
466515010,
478347705,
490108363,
501795212,
513406493,
524940456,
536395365,
547769495,
559061133,
570268579

23057618,
36229307,
49395541,
62554335,
75703709,
88841683,
101966207,

115075515,
128167423,
141240030,
154291367,
167319468,
180322371,
193298119,
206244756,
219160334,
232042906,
244890535,
257701283,
270473223,
283204430,
295892988,
308536985,
321134518,
333683689,
346182609,
358629395,
371022173,
383359076,
395638246,
407857835,
420016002,
432110916,
444140756,
456103710,
467997976,
479821764,
491573292,
503250791,
514852502,
526376678,
537821584,
549185496,
560466703,
571663506

573057087,
584156920,
595168781,
606091012,
616921967,
627660017,
638303543,
648850943,
659300629,
669651026,
679900576,
690047736,
700090977,

56

574449320,
585538248,
596538995,
607449906,
618269338,
628995660,
639627258,
650162530,
660599890,
670937767,
681174602,
691308855,
701339000,

575840202,
586918198,
597907806,
608807372,
619615253,
630329823,
640949467,
651472587,
661897597,
672222928,
682447025,
692568348,
702585372,

577229728,
588296766,
599275210,
610163404,
620959711,
631662503,
642270169,
652781111,
663193747,
673506508,
683717842,
693826211,
703830092,

578617896,
589673951,
600641203,
611518001,
622302707,
632993696,
643589359,
654088099,
664488336,
674788504,
684987051,
695082441,
705073155,

580004702,
591049748,
602005783,
612871159,
623644239,
634323400,
644907034,
655393548,
665781362,
676068911,
686254647,
696337036,
706314559,

581390144,
592424154,
603368947,
614222875,
624984303,
635651611,
646223192,
656697454,
667072820,
677347728,
687520629,
697589992,
707554301,

© ISO/IEC 2006 — All rights reserved

582774218,
593797166,
604730691,
615573145,
626322897,
636978327,
647537830,
657999816,
668362709,
678624950,
688784993,
698841307,
708792378,

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

710028787,
719859669,
729582143,
739194745,
748696026,
758084557,
}i
/*

(1l-cos)

711263525,
721080937,
730789757,
740388522,
749875788,
759250125,

/sin

(o, ..

., pi/4)

INT32 sineDataCompact cs[515]

-823550,

0,

823550,

1647101,

712496590,
722300508,
731995651,
741580558,
751053785,
760413906

== tan(0, ..

= {
2470653,

713727978,
723518380,
733199822,
742770848,
752230015,

.,pi/8)

32942009,

714957687,
724734549,
734402269,
743959390,
753404474,

*/

4117769,

716185713,
725949013,
735602987,
745146182,
754577161,

ISO/IEC 14496-3:2005/Amd.3:2006(E)

4941333,

717412054,
727161768,
736801974,
746331221,
755748072,

718636707,
728372813,
737999228,
747514503,
756917205,

5764903,
12353790,
18943607,
25534852,
32128020,
38723609,
45322119,
51924047,
58529894,
65140162,
71755353,
78375971,
85002523,
91635515,
98275458,
104922863,
111578245,
118242119,
124915004,
131597424,
138289901,
144992965,
151707146,
158432979,
165171001,
171921756,
178685788,
185463648,
192255890,
199063074,
205885762,
212724524,
219579933,
226452568,
233343014,
240251860,
247179704,
254127147,
261094797,
268083271,
275093191,
282125184,
289179889,
296257949,
303360016,
310486750,
317638818),
324816898,
332020%76,
339253846,
346514112,
353803189,

6588480,

13177456,
19767425,
26358882,
32952326,
39548253,
46147163,
52749553,
59355926,
65966781,
72582623,
79203955,
85831284,
92465117,
99105965,

105754339,
112410754,
119075726,
125749775,
132433423,
139127195,
145831619,
152547227,
159274554,
166014138,
172766522,
179532253,
186311880,
193105960,
199915050,
206739717,
213580528,
220438059,
227312888,
234205601,
241116790,
248047050,
254996985,
261967205,
268958326,
275970970,
283005767,
290063355,
297144381,
304249495,
311379359,
318534642,
325716021,
332924185,
340159828,
347423657,
354716385,

7412065,

14001138,
20591265,
27182944,
33776671,
40372944,
46972261,
53575122,
60182027,
66793478,
73409979,
80032033,
86660147,
93294829,
99936590,

8235658,

106585941,
113243397,
119909475,
126584695,
133269580,
139964654,
146670447,
153387491,
160116320,
166857475,
173611498,
180378935,
187160339,
193956264,
200767270,
207593924,
214436793,
221296454,
228173487,
235068477,
2419820175
2489147083,
255867141,
262839939,
269833716,
216849095,
283886706,
290947189,
298031190,
305139361,
312272365,
319430873,
326615563,
333827123,
341066251,
348333652,
355630045,

14824836,
21415130,
28007038,
34601055,
41197681,
47797414,
54400754,
61008200,
67620255,
74237422,
80860205,
87489113,
94124652,
100767333,

9059261,

107417669,
114076174,
120743367,
127419766,
134105896,
140802281,
147509452,
154227939,
160958280,
167701013,
174456682,
181225835,
188009024,
194806803,
201619735y
208448384,
215293321,
222155121,
229034367,
235931643,
242847543,
249782666,
256737615,
263713002,
270709444,
277727567,
284768003,
291831390,
298918376,
306029615,
313165770,
320327513,
327515524,
334730492,
341973115,
349244101,
356544168,

15648551,
22239020,
28831164,
35425481,
42022468,
48622624,
55226449,
61834444,
68447111,
75064952,
81688474,
88318182,
94954586,

101598196,
108249525,
114909088,
121577403,
128254990,
134942372,
141640077,
148348633,
155068572,
161800432,
168544753,
175302078,
182072955,
188857937,
195657579,
202472445,
209303098,
216150112,
223014061,
229895528,
236795100,
243713370,
250650937,
257608408,
264586393,
271585511,
278606389,
285649658,
292715959,
299805941,
306920258,
314059575,
321224564,
328415907,
335634293,
342880423,
350155004,
357458757,

9882875,

16472285,
23062936,
29655325,
36249948,
42847304,
49447892,
56052210,
62660762,
69274047,
75892571,
82516838,
89147356,
95784632,

10706500,

102429179,
109081509,
115742138,
122411583,
129090366,
135749040,
142478042,
149787992,
155909392,
162642780,
169388696,
176147685,
182920295,
189707079,
196508594,
203325401,
210158069,
217007167,
223873274,
230756972,
237658849,
244579498,
251519520,
258479521,
265460114,
272461918,
279485560,
286531673,
293600899,
300693886,
307811292,
314953781,
322122027,
329316712,
336538528,
343788175,
351066363,
358373814,

17296039,
23886880,
30479520,
37074458,
43672190,
50273217,
56878038,
63487153,
70101066,
76720280,
83345301,
89976635,
96614793,

10326028%,
109913623,
116575326,
123245910,
129925897,
136615810,
143316178,
150027529,
156750399,
163485323,
170232844,
176993505,
183767856,
190556451,
197359847,
204178606,
211013296,
217864489,
224732763,
231618701,
238522891,
245445929,
252388415,
259350957,
266334167,
273338666,
280365082,
287414049,
294486209,
301582213,
308702717,
315848389,
323019902,
330217941,
337443197,
344696373,
351978180,
359289339,

11530138,

18119812,
24710851,
31303752,
37899011,
44497128,
51098602,
57703932,
64313620,
70928168
77548080y
84173862,
90806021,
97445068,
104091512,
110745868,
117408652,
124080383,
130761582,
137452774,
144154485,
150867247,
157591594,
164328063,
171077197,
177839539,
184615640,
191406055,
198211340,
205032059,
211868780,
218722077,
225592527,
232480714,
239387228,
246312664,
253257624,
260222715,
267208552,
274215756,
281244956,
288296787,
295371892,
302470922,
309594536,
316743401,
323918192,
331119595,
338348303,
345605018,
352890454,
360205334,

01121000,
368470680,
375850574,
383262238,
390706439,
398183956,
405695580,
413242115,
420824376,
428443194,
436099411,
443793884,
}i

620387407
369391456,
376775279,
384190968,
391639290,
399121027,
406636971,
414187927,
421774712,
429398159,
437059110,
444758426,

© ISO/IEC 2006 — All rights reserved

62956104,
370312717,
377700482,
385120208,
392572664,
400058633,
407578909,
415134299,
422725621,
430353709,
438019409,
445723581

301203,
371234466,
378626184,
386049959,
393506561,
400996775,
408521396,
416081232,
423677104,
431309847,
438980309,

019281 T;
372156704,
379552387,
386980223,
394440984,
401935455,
409464433,
417028728,
424629163,
432266574,
439941811,

65 71L 1256,
373079432,
380479093,
387911001,
395375933,
402874673,
410408022,
417976789,
425581800,
433223893,
440903918,

666305827
374002652,
381406302,
388842296,
396311410,
403814433,
411352164,
418925416,
426535017,
434181804,
441866632,

QD0 700USTU,
374926366,
382334016,
389774108,
397247417,
404754734,
412296861,
419874612,
427488814,
435140309,
442829953,

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

ISO/IEC 14496-3:2005/Amd.3:2006(E)

define MAX INV_QUANT TABLE 1025

/* (int) (0.5 + (1<<12)
INT32 invQuantCompact [MAX INV_QUANT TABLE]
0, 4096, 10321, 17722, 26008, 35020,
100204, 112530, 125204, 138207, 151524,
222365, 237312, 252497, 267915, 283558,
364942, 381817, 398880, 416128, 433556,
523285, 541726, 560325, 579080, 597988,
694742, 714521, 734437, 754490, 774676,
877561, 898517, 919596, 940797, 962118,

44658,

= {

165140,
299419,
451161,
617046,
794995,
983557,

54848,
179043,
315494,
468940,
636253,
815445,
1005114,

* pow ((double)quant, (double) 4/ (double) 3))

65536,

76680,
193222,
331776,
486889,
655607,
836023,
1026788,

*/

88246,
207666,
348260,
505005,
675104,
856729,
1048576,

1070478,
1249656,
1435511,
1627596,
1825530,
202)8986,
2237679,
2451360,
2669805,
2892815,
3120211,
3391829,
3587521,
3827151,
4070593,
4317731,
45¢8459,
4790711,
5047904,
530[8416,
5572165,
5839073,
61000068,
6382079,
6658043,
6936896,
721l8581,
750[3041,
7790224,
8080078,
8372556,
86d7611,
8965199,
9265277,
9547805,
9872744,
101J80056,
10450872,
10723455,
10997781,
11273828,
11551576,
11831003,
120[71834,
12354329,
12638448,
12924172,
13211485,
13500369,
137190806,
14082789,
14376576,

1092493,
1272533,
1459190,
1652025,
1850666,
2054792,
2264122,
2478409,
2697436,
2921003,
3148935,
3381071,
3617262,
3857375,
4101285,
4348878,
4600047,
4822675,
5080288,
5341209,
5605357,
5872655,
6143030,
6416414,
6692742,
6971953,
7253988,
7538791,
7826310,
8116495,
8409298,
8704672,
9002573,
9302960,
9605791,
9911029,

T114610,
1295513,
1482964,
1676545,
1875888,
2080679,
2290641,
2505533,
2725137,
2949260,
3177726,
3410376,
3647064,
3887658,
4132035,
4380080,
4631689,
4854693,
5112724,
5374053,
5638599,
5906285,
6177040,
6450796,
6727487,
7007054,
7289438,
7574584,
7862439,
8152954,
8446080,
8741772,
9039986,
9340681,
9643815,
9949351,

T136855,
1318595,
1506835,
1701154,
1901195,
2106646,
2317238,
2532730,
2752909,
2977584,
3206581,
3439744,
3676928,
3918001,
4162842,
4411339,
4663386,
4886764,
5145211,
5406947,
5671889,
5939963,
6211097,
6485223,
6762277,
7042199,
7324931,
7610418,
7898609,
8189452,
8482902,
8778912,
9077438,
9378440,
9681877,
9987710,

TI59201,
1341779,
1530800,
1725853,
1926586,
2132694,
2343911,
2560000,
2780751,
3005975,
3235502,
3469175,
3706852,
3948403,
4193707,
4442653,
4695137,
4918887,
5177750,
5439891,
5705229,
5973689,
6245200,
6519696,
6797112,
7077388,
7360467,
7646295,
7934820,
8225992,
8519764,
8816091,
9114929,
9416237,
9745976,
10026106,

T181655,
1365063,
1554860,
1750641,
1952062,
2158822,
2370660,
2587343,
2808663,
3034434,
3264487,
3498668,
3736836,
3978863,
4224628,
4474022,
4726941,
4951063,
5210340,
5472885,
5738617,
6007463,
6279351,
6554214,
6831991,
7112621,
7396049,
768274,
7979073,
§262572,
8556666,
8853309,
9152458,
9454072,
9758112,

1204216,
1388447,
1579013,
1775517,
1977620,
2185029,
2397485,
2614758,
2836645,
3062960,
3293537,
3528224,
3766881,
4009381,
4255606,
4505446,
4758799,
4983291,
5242981,
5505929,
5772054,
6041284,
63135471,
6588778,
6866915,
7147897,
7431669,
7718176,
8007367,
8299193,
8593608,
8890567,
9190026,
9491946,
9796285,

1226883,
1411930,
1603258,
1800480,
2003262,
2211315,
2424385,
2642246,
2864696,
3091552,
3322651,
3557841,
3796986,
4039958,
4286640,
4536925,

5015571,
5275678,
5636022,
5805540,
6075152,
6347790,
6623388,
6901883,
7183217,
7467334,
7754179,
8043702,
8335854,
8630590,
8927863,
9227632,
9529856,
9834496,

10064538,

10103007,

10141513,

10218635,
10489705,
10762538,
11037111,
11313403,
11591392,
11871058,
12112091,
12394818,
126791684
129656120,
13252658,
18541765,
13832423,
14124615,
14418327,

10257251,
10528574,
10801657,
11076477}
11353012,
11631242,
1fe11145,
12152380,
12435341,
12719920,
13006100,
13293864,
13583193,
13874071,
14166482,
144604009,

10295902,
10567479,
10840811,
11115877,
11392656,
11671126,
11951267,
12192703,
12475896,
12760706,
13047113,
13335101,
13624652,
13915750,
14208379,
14502522,

10334591,
10606419,
10880000,
11155313,
11432334,
11711044,
11991423,
12233060,
12516485,
12801523,
13088158,
13376370,
13666143,
13957461,
14250307,
14544665,

10373315,
10645395,
10919225,
11194783,
11472047,
11750997,
12031612,
12273450,
12557106,
12842374,
13129235,
13417671,
13707666,
13999203,
14292266,
14586839,

10412076,
10684407,
10958485,
11234288,
11511794,
11790983,

12313873,
12597761,
12883257,
13170344,
13459004,
13749220,
14040976,
14334256,
14629043,

146712785
14967770,
15265737,
15565166,
15866042,
16168351,
16472080,
16777216,
17083745,
17391656,
17700936,
18011572,
18323554,

58

TH7TS5737
15010246,
15308424,
15608060,
15909142,
16211655,
16515585,
16820921,
17127648,
17435755,
17745230,
18056059,
18368232,

TH7558387
15052753,
15351140,
15650984,
15952271,
16254987,
16559119,
16864654,
17171580,
17479883,
17789551,
18100573,
18412937,

TH798T62,
15095290,
15393886,
15693937,
15995429,
16298348,
16602681,
16908416,
17215539,
17524038,
17833900,
18145115,
18457670,

THEA05207
15137857,
15436662,
15736919,
16038616,
16341738,
16646272,
16952206,
17259526,
17568221,
17878277,
18189684,
18502429,

THEE29067
15180454,
15479467,
15779931,
16081832,
16385157,
16689892,
16996024,
17303541,
17612431,
17922681,
18234280,
18547216,

2925 7
15223081,
15522302,
15822972,
16125077,
16428604,
16733540,
17039871,
17347585,
17656670,
17967113,
18278903,
18592029,

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=59710649c8c648bf939369cf00cf0dae

