
INTERNATIONAL
STANDARD

ISO/IEC
13522-3

First edition
1997-05-I 5

Information technology - Coding of
multimedia and hypermedia information -

Part 3:
MHEG script interchange representation

Technologies de /‘information - Codage de /‘information multimkdia et
hypermedia -

Partie 3: Rep&en ta tion d ‘in terkhange script MHEG

Reference number
ISO/I EC 13522-3: 1997(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/I,EC 13522-3: 1997(E)

Contents

1 Scope ..~... 1
11 Context of the scope~..~............................ 1 .
12 Scope of this part of ISO/IEC 13522 ..~...............................~..~.......”.... 1 .

2 Normative references ..,..~..................~....~.......~..,~.............,. 1

3 Definitions ..*..“... 2

4 Abbreviations ..“......................“........”...............~....~~..~~~~. 6

5 Conformance ... 7

51 Information object conformance .. 7 .
5.1 .I Profiles .. 7

5.1.2 Encoding ... 7

5.1.3 Syntax ... 8
5.1.4 Semantics ... 8

52 Implementation conformance .. 8 .
5.2.1 Conformance requirements ... 8
5.2.2 Conformance documentation ... 8

5.3 Application conformance . ..*...,....~....~... Y
54 Test Methods ..~.........................~................. 9 .

6 Overview ..~..”.................~~~..~~~..~.~.~.~~~~~ 9
61 Description methodology ..“...................~... Y .
62 . Data processing operations ..~...~.................... 10
63 Access to external data and functions~..................................”............~........... 10 .

7 MHEG/MHEG-3 relationship ... 11
7.1 MHEG entities .. 11
7.2 Functional entities .. 11
73 12 . MHEG-SIR script interpreter ...

8 Elements of MHEG-SIR .. 12
81 Data types .. 12 .

8.1 .l Predefined types ... 13
8.1 .l .l Primitive types ... 13

8.1.1.1.1 . void type .. 14
8.1 .l .I .2 octet type .. 14
8.1 .1.1.3 short type .. 14
8.1 .1.1.4 long type .. 14
8.1 .1.1.5 unsigned short type 14

0 ISO/IEC 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l Cl-l-l 211 Geneve 20 l Switzerland

Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522-3: 1997(E)

8.1.1.1.6 unsigned long type 14
8.1.1.1.7 float type .. 14
8.1.1.1.8 double type .. 14
8.1.1.1.9 boolean type .. 14
8.1.1.1.10 character type .. 14
8.1.1.1.11 data identifier type 14
8.1.1.1.12 object reference type 15

8.1.1.2 Predefined constructed types ... 15
8.1.2 Declared constructed types 15

8.1.2.1 sequence types 15
8.1.2.2 string types 16
8.1.2.3 array types 16
8.1.2.4 structure types 17
8.1.2.5 union types 17

82 . Data 17
8.2.1 Immediate values 18
8.2.2 Constants 18
8.2.3 Variables 18

8.2.3.1 Global variables 19
8.2.3.2 Local variables 19
8.2.3.3 Dynamic variables 19

83 . Functions 19
8.3.1 Routines ... 20
8.3.2 Services 20
8.3.3 Predefined functions 21

84 . Messages ... 21
8.4.1 Package exceptions ... 21
8.4.2 Predefined messages .. 22

85 . Instructions 22
86 . Identifiers .. 22

8.6.1 Type identifiers ... 22
8.6.2 Data identifiers ... 23
8.6.3 Function identifiers 23
8.6.4 Message identifiers .. 23

9 The MHEG-SIR virtual machine ... 23
91 . Structure of the MHEG-SIR virtual machine ... 24
92 . Structures and notations ... 24

9.2.1 Table ... 24
9.2.2 Stack 24
9.2.3 Parameter stack ... 25
9.2.4 Queue 25
9.2.5 Data representation ... 25

93 . Memory areas 26
9.3.1 M h-script memory areas .. 26

9.3.1 .I Data areas .. 27
9.3.1.1.1 Type definition table 27
9.3.1.1.2 Constant table ... 27
9.3.1.1.3 Global variable definition table 27

9.3.1.2 Code areas ... 27
9.3.1.2.1 Routine definition table 27
9.3.1.2.2 Package definition table 28
9.3.1.2.3 Service definition table 28
9.3.1.2.4 Exception definition table 28
9.3.1.2.5 Handler definition table 29
9.3.1.2.6 Program code area 29

. . .
III

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISO/IEC

10

II

12

iv

9.3.2 Rt-script memory areas 29
9.3.2.1 Dynamic memory areas .. 29

9.3.2.1 .l Variable table .. .29
9.3.2.1.2 Call stack 30
9.3.2.1.3 Parameter stack ... 30
9.3.2.1.4 Message queue ... 31
9.3.2.1.5 Heap 31

9.3.2.2 Registers .. 31
9.3.2.2.1 Instruction pointer register 32
9.3.2.2.2 Instruction register 32
9.3.2.2.3 Error register .. 32
9.3.2.2.4 Stack pointer register 32
9.3.2.2.5 Frame pointer register 32
9.3.2.2.6 Queue pointer register 32
9.3.2.2.7 Function register .. 32

94 33 . Script statuses ..
9.4.1 Mh-script statuses .. 33

9.4.1 .I Not available 33
9.4.1.2 Available ... 33

9.4.2 Rt-script statuses ... 33
9.4.2.1 Not ready 33
9.4.2.2 Ready 33
9.4.2.3 Running 34
9.4.2.4 Erroneous 34

95 . Processing units 34
9.5.1 Message reception ... 34

9.5.1 .l MHEG-3 API operations ... 34
9.5.1.2 External exception 34
9.5.1.3 InstructionExecutionError exception.. 35
9.5.1.4 MHEG-3 API exception .. 35

9.5.2 Mh-script initialisation ... 35
9.5.3 Rt-script initialisation .. 35
9.5.4 Rt-script execution unit ... 36
9.5.5 MHEG-SIR instruction execution unit ... 36

Provisions for run-time environment access 36
10.1 General model .. 36
10.2 Declaration of IDL interfaces .. 37
10.3 Invocation of external operations in an MHEG-SIR program.. .. 38
10.4 Handling of external exceptions in an MHEG-SIR program ... 38
10.5 Invocation of external operations by an MHEG-3 engine ... 38
10.6 Handling of external exceptions by an MHEG-3 engine ... 38
10.7 Platform mapping specifications ... 39

Provisions for MHEG object manipulation .. 39
11.1 Invoking MHEG actions 39

11.1.1 Sending messages to other scripts .. 39
11.1.2 Exchange of information with MHEG objects ... 40

11.2 Receiving MHEG messages ... 40
11.2.1 MHEG-3 API run operations 40
1 I .2.2 MHEG API exceptions .. 40

MHEG-SIR declarations ... 40
12.1 Type declaration ... 41

12.1.1 Type identifier ... 41
12.1.2 Type description 41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISO/IEC 13522=3:1997(E)

12.2

12.3

12.4

12.5

12.6

12.1.2.1 String description .. 42
12.1.2.2 Sequence description ... 42
12.1.2.3 Array description .. 42
12.1.2.4 Structure description .. 42
12.1.2.5 Union description .. 42

Constant declaration ... 43
12.2.1 Data identifier ... 43
12.2.2 Type identifier ... 43
12.2.3 Constant value 43
Global variable declaration ... 44
12.3.1 Data identifier ... 44
12.3.2 Type identifier 44
12.3.3 Constant reference .. 44
Package declaration ... 45
12.4.1 Package identifier 45
12.4.2 Name 45
12.4.3 Service description ... 45

12.4.3.1 Function identifier ... 45
12.4.3.2 Name .. 46
12.4.3.3 Calling mode 46
12.4.3.4 Type identifier ... 46
12.4.3.5 Parameter description .. 46

12.4.3.5.1 Passing mode .. 46
12.4.3.5.2 Type identifier .. 47

‘I 2.4.4 Exception description ... 47
12.4.4.1 Message identifier .. 47
12.4.4.2 Parameter description .. 47

Handler declaration .. 47
12.5.1 Message identifier .. 48
12.5.2 Function identifier ... 48
Routine declaration 48
12.6.1 Function identifier ... 48
12.6.2 Type identifier ... 48
12.6.3 Parameter description .. 48

12.6.3.1 Passing mode ... 49
12.6.3.2 Type identifier.. ... 49

12.6.4 Local variable declaration 49
12.6.4.1 Data identifier 49
12.6.4.2 Type identifier 49
12.6.4.3 Constant reference.. 49

12.6.5 Program code 50

13 MHEG-SIR instructions 50
13.1 Presentation methodology 50

13.1.1 Error conditions 50
13.1.2 Formal specification 51
13.1.3 Data table notation 51
13.1.4 Template instruction notation 51
13.1.5 Primitives 52

13.2 Classification of MHEG-SIR instructions 52
13.3 Description of instructions 54

13.3.1 No operation 54
13.3.2 Yield 54
13.3.3 Return .. 54
13.3.4 Free 55
13.3.5 Not 55

V

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISO/IEC

13.3.6
13.3.7
13.3.8
13.3.9
13.3.10
13.3.11
13.3.12
13.3.13
13.3.14
13.3.15
13.3.16
13.3.17
13.3.18
13.3.19
13.3.20
13.3.21
13.3.22
13.3.23
13.3.24
13.3.25
13.3.26
13.3.27
13.3.28
13.3.29
13.3.30
13.3.31
13.3.32
13.3.33
13.3.34
13.3.35
13.3.36
13.3.37
13.3.38
13.3.39
13.3.40
13.3.41
13.3.42
13.3.43

Or 56
Exclusive or .. 56
And .. 57
Equal reference .. 57
Equal ... 58
Less than .. 58
Greater than ... 59
Add .. 59
Subtract .. 59
Multiply ... 60
Divide ... 60
Negate .. 61
Remainder .. 61
Duplicate .. 62
Convert ... 62
Jump on true .. 62
Jump on false ... 63
Jump ... 63
Shift ... 64
Get object reference ... 64
Long jump on true .. 65
Long jump on false ... 65
Long jump ... 65
Call ... 66
External call .. 67
Push .. 68
Push reference ... 69
Push immediate .. 69

POP .. 70
Pop reference ... 70
Pop contents .. 70
Allocate ... 71
Increment ... 71
Decrement .. 72
Get .. 72
Get contents ... 73
Set ... 74
Set contents ... 75

TP
13.4 Type conversion rules ... f3

13.4.1 Reversible conversions .. 76
13.4.2 Lossless extensions ... 76

13.4.2.1 Conversions from boolean .. 76
13.4.2.2 Conversions from octet to a numeric type 76
13.4.2.3 Lossless conversions from a numeric to a larger numeric

type ... 76
13.4.3 Lossy extensions 77
13.4.4 Truncations to boolean ... 77
13.4.5 Truncations between integer or between floating-point types 77
13.4.6 Truncations from floating-point to integer ... 77

14 IDL mapping to MHEG-SIR .. 77
14.1 IDL specifications .. 77
14.2 IDL interfaces and modules .. 78
14.3 IDL operations .. 78

14.3.1 Operation name 78
14.3.2 Operation parameters .. 78

vi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC lSO/IEC 13522=3:1997(E)

14.4

14.5
14.6

14.7

14.8

14.3.3 Implicit parameter 78
14.3.4 Return value 78
IDL attributes 78
14.4.1 Accessor .. 79
14.4.2 Modifier 79
14.4.3 Readonly attribute 79
I DL inherited operations 79
IDL exceptions 79
14.6.1 Exception name ... 79
14.6.2 Exception members 79
14.6.3 Implicit member 79
IDL types 80
14.7.1 char type 80
14.7.2 enum type 80
14.7.3 Constructed types 80
14.7.4 any type 81
14.7.5 Restrictions on types 81
IDL constants 81

15 The MHEG-3 API 81
15.1 Scriptinterpreter object 81

15.1.1 kill operation 82
15.1.2 prepare operation ... 82

15.2 MhScript object ... 83
15.2.1 destroy operation ... 83
15.2.2 new operation ... 83

15.3 RtScript object 84
15.3.1 delete operation 84
15.3.2 setpriority operation ... 84
15.3.3 getpriority operation ... 84
15.3.4 setData operation ... 85
15.3.5 getData operation ... 85
15.3.6 allocate operation ... 86
15.3.7 free operation ... 86
15.3.8 stop operation .. 87
15.3.9 relnit operation ... 87
15.3.10 getRtScriptStatus operation ... 88
15.3.1 I open operation ... 88

15.4 Routinelnvocation object .. 88
15.4.1 close operation ... 88
15.4.2 routine id readonly attribute ... 89
15.4.3 setparameter operation ... 89
15.4.4 getprototype operation ... 90
15.4.5 run operation .. 90
15.4.6 reset operation ... 91
15.4.7 getlnvocationStatus operation ... 91

Annex A (normative) ASN.1 specification of interchanged scripts .. 92

Annex B (normative) Coded representation of interchanged scripts .. 95

B.l Coding for interchanged scripts 95

B.2 Coding for the program code 95
B.2. I Instruction op-codes 95
B.2.2 Instruction operands 95

vii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/lEC 13522=3:1997(E) 0 ISO/IEC

B.2.2. I Data identifier operands ... 95
B.2.2.2 Function identifier operands ... 95
B.2.2.3 Miscellaneous numeric operands ... 96

Annex C (normative) MHEG-SIR predefined elements ..~............................~....................~~.. 101

C. 1 Predefined types .. 101

c.1.1 Primitive types .. 101

c.1.2 MHEG API types ... 102

C.2 Predefined functions ... 102

c.2.1 MHEG API operations .. 102

c.2.2 MHEG-3 API operations ... 102

C.3 Predefined messages .. 103

c.3. I MHEG-3 API operations ... 103

C.3.2 The InstructionExecutionError exception .. 103

c.3.3 MHEG-3 API exceptions ... 104

c-3.4 MHEG API exceptions .. 104

Annex D (normative) IDL Platform mapping specification form ... 105

Platform description .. 105

Package availability procedure.. ... 105

Package load procedure ... 105

Package unload procedure.. ... 105

Operation invocation procedure .. 105

Parameter passing procedure .. 105

Output parameter retrieval procedure ... 105

Return value retrieval procedure .. 106

Data encoding rules .. 106

Exception retrieval procedure ... 106

System exceptions .. 106

Resource limitations ... 106

Annex E (normative) MHEG API definition process ..*..........*......* 107

El Generic API definition framework .. 107 .
E.l .I MHEG elements input to MHEG API definition process .. 107

E.1.2 IDL elements output by MHEG API definition process .. 107

E.1.3 Requirements on the MHEG API definition process.. .. 107

E.1.3.1 Portability .. 108

E. I .3.2 Genericity ... 108

E. 1.3.3 Conformance testability .. 108

E. 1.3.4 Implementability ... 108

E. 1.3.5 Fulfilment of technical requirements ... 108

E.1.4 General structure of the MHEG API .. 109

E.1.5 IDL non-object datatype definition ... 109

E.l.5.1 Name mapping ... 109
E.1.5.1.1 Data types .. 109
E.l.5.1.2 Components ... 109

E.l.5.1.3 Values ... 110

E. 1.5.2 Type mapping ... 110

E.1.5.2.1 INTEGER .. 110

E. I .5.2.2 BOOLEAN 110

E. I .5.2.3 OCTET STRING ... III
E. I .5.2.4 ENUMERATED .. III

. . .
VIII

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISO/IEC 13522=3:1997(E)

E. 1.5.2.5 SEQUENCE OF 111
E. 1.5.2.6 CHOICE ... III
E. I .5.2.7 SEQUENCE ... 112

E. 1.5.3 Order of declarations ... 112
E.1.6 IDL interface definition 114
E.1.7 IDL attribute definition 114

E.l.7.1 MHEG interchanged attributes 114
E. I .7.2 MHEG internal attributes 115

E.1.8 IDL operation definition .. 115
E.1.8.1 Operations mapping MHEG elementary actions .. 115
E. 1.8.2 Operations enabling the deletion of an interface instance 116
E. 1.8.3 Operations to attach and detach an interface instance to a MHEG entity.. 117

E.1.9 I DL exception definition 117

E2 . MHEG API mapping to MHEG-SIR 118

Annex F (normative) IDL specification of the MHEG-3 API 119

Annex G (normative) Relationships with other parts of ISO/IEC 13522 121

G. I Relationships with ISO/IEC 13522-I 121

G.2 Relationships with lSO/IEC 13522-5 122

Annex H (informative) MHEG-SIR syntax (EBNF notation) .. 123

Annex J (informative) Textual notation for MHEG-SIR scripts .. 125

Annex K (informative) MHEG entities .. 128

K.l MHEG objects .. 128

K.2 Mh-objects 128

K. 3 Rt-objects 128

K.4 Interchanged MHEG objects 129

Annex L (informative) Main features of MHEG-SIR .. 130

Ll .

L2 .

L3 .

Features of using applications ... 130
L.l .I Manipulation of MHEG entities ... 130
L.l.2 Computations, variable handling and control structures.. ... 130
L.1.3 External device control 130
L.l.4 Data acquisition 130
L.1.5 Access to external data 131
L.l.6 Access to arbitrary external run-time services ... 131

Functional features 131
L.2. I Data processing operations.. .. 131
L.2.2 Access to external data and functions 131

Technical features .. 132
L.3.1 Hardware independence .. 132
L.3.2 Final form representation 133
L.3.3 Compactness 133

ix

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISOAEC

L.3.4 Ease of implementation .. 133
L.3.5 Interpretation efficiency ... 133
L.3.6 Openness and extensibility ... 133
L.3.7 Non-revisability ... 134
L.3.8 Provisions for real-time interchange ... 134
L.3.9 Semantic validation for quality of service purposes.. .. 134
L.3.10 Syntax checkability (with regard to contamination hazards) ... 134
L.3.11 Non-proprietary representation ... 134
L.3.12 Secure script processing .. 134

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOA EC 13522-3: 1997(E)

Foreword

IS0 (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialised system for worldwide standardisation. National bodies that are members
of IS0 or IEC participate in the development of International Standards through technical committees
established by the respective organisation to deal with particular fields of technical activity. IS0 and IEC
technical committees collaborate in fields of mutual interest. Other international organisations,
governmental and non-governmental, in liaison with IS0 and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

International Standard ISO/IEC 13522-3 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

ISO/IEC 13522 consists of the following parts, under the general title information technology - Coding of
multimedia and hypermedia information

- Part 1: MHEG object representation - Base notation (ASN. 1)
- Part 3: MHEG script interchange representation
- Part 4: MHEG registration procedure
- Part 5: Support for base-level interactive applications
- Part 6: Support for enhanced interactive applications

Annexes A to G form an integral part of this part of lSO/IEC 13522. Annexes H to K are for information only.

XI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

This page intentionally left blank

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

INTERNATIONAL STANDARD 0 ISO/IEC ISO/IEC 13522=3:1997(E)

Information technology - Coding of multimedia and
hypermedia information -

Part 3:
MHEG script interchange representation

1 Scope

1.1 Context of the scope

ISO/IEC 13522 specifies the coded representation of multimedia/hypermedia information objects (MHEG
objects) for interchange as final form units within or across services and applications, by any means of
interchange including local area networks, wide area telecommunication or broadcast networks, storage
media, etc.

MHEG objects are usually produced by computer tools taking as a source form multimedia applications
designed using multimedia scripting languages. In this context, one of the MHEG object classes, the script
class, is intended to complement the other MHEG classes in expressing the functionality commonly
supported by scripting languages. Script objects express more powerful control mechanisms and describe
more complex relationships among MHEG objects than can be expressed by MHEG action and link objects
alone. Furthermore, script objects express access and interaction with external services provided by the
run-time environment.

Other parts of ISO/IEC 13522 define the coded representation for script objects in an open manner so that
script objects may encapsulate either standardised or proprietary script code. Script objects encapsulate
scripts that may be encoded in any encoding format as registered according to ISO/IEC 13522-4.

1.2 Scope of this part of lSO/lEC 13522

The scope of this part of lSO/IEC 13522 is to extend the coded representation of the MHEG script object
class defined by another part of ISO/IEC 13522, including ISOAEC 13522-l and ISO/IEC 13522-5.

This part of lSO/IEC 13522 specifies the MHEG script interchange representation (MHEG-SIR) for the
contents of script objects, i.e. the encoding of the script data component of the MHEG script class.

MHEG engines are system or application components that handle, interpret and present MHEG objects.
This part of lSO/IEC 13522 also specifies the semantics of interchanged scripts. These semantics are
defined in terms of minimum requirements on the behaviour of MHEG engines that support the
interpretation of interchanged scripts.

This part of ISOAEC 13522 is applicable to all applications that interchange multimedia and hypermedia
information.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this
part of ISOAEC 13522. At the time of publication, the editions indicated were valid. All standards are subject

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISOAEC

to revision, and parties to agreements based on this part of ISOAEC 13522 are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below. Members of IS0 and
IEC maintain registers of currently valid International Standards.

PI ISOAEC 8824-l :I 995llTUT Recommendation X.680 (1994): information technology -
Abstract Notation One (ASN. I): Specification of basic notation.

PI ISOAEC 88251:1995llTU-T Recommendation X.690 (1994): information technology - ASN. 7
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER).

PI ISO/IEC 9646: 1992-l 995, information technology - Open Systems Interconnection -
Conformance testing methodology and framework(all parts).

141 I SO/I EC 10646-I : 1993, lnforma tion technology - Universal Multiple-Octet Coded Character
Set (KS) - Part 1: Architecture and Basic Multilingual Plane.

PI ISOA EC 13522-l : 1997, information technology - Coding of multimedia and hypermedia
information - Part 1: MHEG object representation - Base notation (ASN. 1).

PI ISO/I EC 13522-4: 1996, information technology - Coding of multimedia and hypermedia
information - Part 4: MHEG registration procedure.

PI ISO/I EC 13522-5: 1997, Information technology - Coding of multimedia and hypermedia
information - Part 5: Support for base-level interactive applications

PI ISO/IEC 14750: -I), Information technology - Open Distributed Processing - Interface
Definition Language

PI IEEE 754-l 985, IEEE Standard for Binary Floating-Point Arithmetic

3 Definitions

For the purposes of this part of ISOAEC 13522, the definitions given in ISOIIEC 8824-l [1], ISO/lEC 8825-l
[2] and the following definitions apply.

3.1 application programming interface (API): Boundary across which a software application uses
facilities of programming languages to invoke software services. These facilities may include
procedures or operations, shared data objects and resolution of identifiers.

3.2 attribute: (1) MHEG attribute (see ISOAEC 13522-l [S]);
(2) IDL attribute (q.v.).

3.3 conforming MHEG-3 engine: MHEG-3 engine whose implementation conforms to the provisions of
this part of ISOAEC 13522.

3.4 conforming MHEG-3 interchanged script: Interchanged script that conforms to the provisions of this
part of ISOAEC 13522.

3.5 conforming MHEG-3 object: MHEG script object whose coded representation conforms to the
provisions of this part of ISOAEC 13522.

1) To be published.

2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC lSO/IEC 13522-3: 1997(E)

3.6 frame: Record of elements on the call stack that define an execution context; one such record is pushed
onto the call stack everytime a routine is called, to memorize the current execution context; one is
popped from the call stack when the routine is returned from, to restore the execution context at the time
of calling.

3.7 hypermedia (adj.): Featuring access monomedia and multimedia information by interaction with explicit
links.

3.8 interchanged script: The coded representation of the “script data” attribute of an MHEG script object.

3.9 interface definition language (IDL): Formal notation that is used to specify types and objects through
the definition of the interface that they provide, as defined by ISOAEC 14750-I [8].

3.10 IQL attribute: Named, typed association between an object and a value; it is declared as part of an IDL
interface; it is made visible to clients as a pair of operations: an accessor (get) and a modifier (set); if it is
read-only, it only provides an accessor.

3.11 IDL exception: Message that can be raised when an exceptional condition occurs during the

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

performance of the request to an IDL operation; it is defined in an IDL module and may have members,
which are returned to the caller together with the message identifier.

IDL instance: Object that provides the operations, signatures and semantics specified by an IDL
interface; its creation and management is implementation-specific.

IDL interface: Description, using IDL, of a set of operations that a client may request of an IDL object.

IDL object: Identifiable, encapsulated entity that provides one or more services which can be requested
by a client.

IDL operation: Service that can be requested and is provided by an IDL object; it is defined within an
IDL interface by a name, a signature which defines the type of its parameters and return value, and the
list of exceptions that its invocation may raise.

mh-script: Internal representation, within an MHEG engine, of an “available” MHEG script object.

MHEG action: Operation that applies to MHEG objects and consists of sequential and/or parallel
combinations of MHEG elementary actions.

MHEG action object: MHEG object that describes MHEG actions.

MHEG application: Application that involves the interchange of MHEG objects within itself or with
another application.

MHEG conforming object: Information object whose coded representation conforms to the provisions
of another part of ISO/IEC 13522.

MHEG elementary action: One of the basic operations applying to MHEG objects; it maps one
MHEG API primitive.

MHEG engine: Process or set of processes able to interpret MHEG objects.

MHEG entity: Any MHEG object, t-t-object, content data, script data, socket, channel or other
construction defined by ISOllEC 13522.

MHEG link: MHEG object that defines spatio-temporal relationships among MHEG objects expressed in
terms of trigger conditions and actions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISO/IEC

3.25 MHEG object: Coded representation of an instance of an MHEG object class.

3.26 MHEG script class: MHEG class defining a structure to interchange script data in a specified encoded
form.

3.27 MHEG script object: The coded representation of an instance of an MHEG script class.

3.28 MHEG API: The API provided by an MHEG engine to MHEG applications for the manipulation of MHEG
objects.

3.29 MHEG-3 (adj.): Applies to entities that conform to the provisions of this part of lSO/IEC 13522.

3.30 MHEG-3 application: MHEG application that interchanges scripts within itself and/or with other
applications as the “script data” component of MHEG script objects, according to the representation
specified by this part of ISOIIEC 13522.

3.31 MHEG-3 engine: MHEG engine that processes and interprets MHEG-SIR interchanged scripts.

3.32 MHEG-3 profile: Profile of this part of lSO/IEC 13522.

3.33 MHEG-SIR: (1) The script interchange representation defined by this part of lSO/IEC 13522;
(2) (adj.) Applies to an entity defined as part of this Script Interchange Representation.

3.34 (MHEG-SIR) call stack: Stack that is associated with each running r&script by the MHEG-SIR virtual
machine and that contains a call frame for each active function invocation.

3.35 MHEG-SIR code: Encoded sequence of MHEG-SIR instructions.

3.36 (MHEG-SIR) constant: Static, typed, named value which is declared within an interchanged script and
whose value is globally accessible and unchanged throughout the execution of the script.

3.37 (MHEG-SIR) constructed type: Type described as a combination of other types using one of the
following constructors: sequence, string, array, union, structure.

3.38 (MHEG-SIR) data identifier: Integer that uniquely identifies the name of a data element of an
interchanged script (constant, global variable, dynamic variable, local variable).

3.39 (MHEG-SIR) exception: Message triggered during the invocation of a service.

3.40 (MHEG-SIR) function: Named code sequence whose execution may be invoked by an interchanged
script; it may be a routine, a predefined function or a service.

3.41 (MHEG-SIR) function identifier: Integer that uniquely identifies a function within an interchanged script.

3.42 (MHEG-SIR) global variable: Variable with global scope.

3.43 (MHEG-SIR) instruction: Elementary unit of code of an MHEG-SIR interchanged script; it consists of
an op-code followed by zero or more operands.

3.44 (MHEG-SIR) instruction execution unit: Within an MHEG-SIR script interpreter, virtual processing unit
that executes an MHEG-SIR instruction.

3.45 MHEG-SIR interchanged script: Interchanged script coded according to MHEG-SIR.

3.46 (MHEG-SIR) local variable: Variable with local scope within a routine.

4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOIIEC 13522=3:1997(E)

3.47 (MHEG-SIR) message: Event that may be received by the script interpreter during the execution of the
script; it may be either predefined (MHEG API exception, MHEG-3 API operation and exception, internal
exception) or declared within an interchanged script (exception provided by an external interface).

3.48 (MHEG-SIR) message identifier: Integer that uniquely identifies a message within an interchanged
script.

3.49 (MHEG-SIR) message queue: Queue that is associated with each running t-t-script by the MHEG-SIR
virtual machine and that contains the messages targeted at the t-t-script.

3.50 (MHEG-SIR) object reference: MHEG-SIR value that represents an IDL instance and that is passed as
the parameter of an external call to request a service from this instance.

3.51 (MHEG-SIR) operand: Parameter of an instruction; it is encoded next to the instruction’s op-code.

3.52 (MHEG-SIR) package: Set of external functions that are provided by a module of the run-time
environment and that are accessible to an rt-script and declared within an interchanged script; it is
composed of services and exceptions.

3.53 (MHEG-SIR) parameter: Piece of data exchanged with a function call, a message or an instruction.

3.54 (MHEG-SIR) parameter stack: Stack that is associated with each running r-t-script by the MHEG-SIR
virtual machine and that is used to provide parameters to and retrieve results of instructions.

3.55 (MHEG-SIR) predefined type: A type whose description and identifier are predefined by this part of
ISO/IEC 13522 and thus need not be declared within interchanged scripts; it may be either a primitive
type or a constructed type.

3.56 (MHEG-SIR) primitive type: Basic predefined type, as opposed to constructed type.

3.57 (MHEG-SIR) routine: Function that is declared within an interchanged script together with the virtual
machine code that defines its semantics.

3.58 (MHEG-SIR) r&script execution unit: Within an MHEG-SIR script interpreter, virtual processing unit
that executes script code.

3.59 (MHEG-SIR) script interpreter: The part of an MHEG-3 engine, that handles and interprets
interchanged scripts.

3.60 (MHEG-SIR) service: External function that is declared within an interchanged script and whose
implementation is made accessible to an r&script by the run-time environment on the execution platform.

3.61 (MHEG-SIR) variable: Within the MHEG-SIR virtual machine, named, typed memory unit whose value
may be changed at any time when its scope is active and whose most recent value may be read.

3.62 (MHEG-SIR) virtual machine: Abstract description of the memory units and instruction execution
engine of an MHEG-SIR script interpreter.

3.63 multimedia (adj.): That handles several types of representation media.

3.64 multimedia and hypermedia application: Application that features presentation of multimedia
information to the user and interactive navigation across this information by the user.

3.65 multimedia application: Application that features presentation of multimedia information to the user.

5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 lSO/IEC

3.66

3.67

3.68

3.69

3.70

3.71

3.72

platform mapping specification: Specification of how MHEG-3 engine implementations shall map IDL
specifications to run-time environment components on one type of platform.

queue: Collection of elements that are inserted and removed in first-in first-out (FIFO) order.

r-t-script: Run-time instance (or copy) of an mh-script, created by an MHEG engine.

scope: Context of reference for a variable; if it is global, the variable may be referenced by any script
instruction; if it is local, the variable may only be referenced in the local execution context.

scripting language: Programming language intended for easy and rapid design of applications by non-
professional programmers.

script interchange representation (SIR): Coded representation used by an application to interchange
scripts for the purpose of implementing dynamic behaviour.

stack: Collection of elements that are inserted (pushed) and removed (popped) in last-in first-out (LIFO)
order.

4 Abbreviations

For the purposes of this part of ISOllEC 13522, the following abbreviations apply.

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
CORBA Common Object Request Broker Architecture
cs Call Stack
CT Constant Table
DER Distinguished Encoding Rules
DID Data IDentifier
DT Data Table
EBNF Extended Backus-Naur Form
ER Error Register
ETR ETSI Technical Report
FID Function IDentifier
FIFO First In First Out
FP Frame Pointer
FR Function Register
GT Global variable definition Table
HT Handler Definition Table
IDL Interface Definition Language
IEC International Electrotechnical Commission
IP Instruction Pointer
IR Instruction Register
IS0 International Organisation For Standardisation
ITU-T International Telecommunication Union, Telecommunication standardisation sector
JTC Joint Technical Committee
LIFO Last In First Out
LT Local variable Table
MHEG Multimedia and Hypermedia information coding Experts Group
MID Message I Dentifier
MPEG/DSM-CC Moving Picture Experts Group - Digital Storage Media Command and Control
MQ Message Queue
PID Package I Dentifier
PS Parameter Stack
PT Package definition Table

6

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISO/IEC 13522-3: 1997(E)

QP
rt
RT
SIR
SP
ST
TID
TLV
TT
VT
XT

Queue Pointer
Run-time
Routine definition Table
Script Interchange Representation
Stack Pointer
Service definition Table
Type IDentifier
Type-Length-Value
Type definition Table
Variable Table
exception definition Table

5 Conformance

This part of ISO/IEC 13522 defines conformance requirements

on information objects, i.e. MHEG script objects;
on implementations, i.e. MHEG engine implementations.

5.1 Information object conformance

A conforming MHEG-3 script object shall meet all of the following criteria:

I>
2)

its coded representation shall conform to the provisions of another part of ISOllEC 13522;
its coded representation shall encapsulate a conforming MHEG-3 interchanged script.

The information object conformance is evaluated on the information objects that are interchanged in the
purpose of their execution on a terminal.

5.1 .I Profiles

This part of ISO/IEC 13522 defines no profiles.

NOTE 1: However, MHEG-3 profiles may be defined by other standards or by other parts of lSO/IEC 13522.
In accordance with the profile definition framework, standardised MHEG-3 profiles should be at
least as constraining; information objects claiming conformance to such profiles should at least
conform to this part of ISOAEC 13522.

An MHEG-3 profile should define all of the following:

a profile of the MHEG-SIR virtual machine defined by this part of ISO/IEC 13522;
a profile of IDL, together with its mapping to MHEG-SIR, for the expression of interface between scripts
and the external environment;
an API for the manipulation of MHEG objects defined by another part of ISO/IEC 13522, together with
a mapping of this interface to MHEG-SIR.

NOTE 2: According to IS0 recommendations, MHEG-3 profiles should ensure upward compatibility of the
ASN.l encoding, so that interchanged scripts conforming to an MHEG-3 profile also conform to
this part of ISO/IEC 13522.

5.1.2 Encoding

A conforming MHEG-3 interchanged script shall be encoded according to the encoding rules defined by
Annex B.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522=3:1997(E) 0 ISOIIEC

5.1.3 Syntax

A conforming MHEG-3 interchanged script shall conform to the ASN.1 syntax defined by Annex A.

5.1.4 Semantics

A conforming MHEG-3 interchanged script shall only include
sequences as defined by Clauses 12 and 13.

seman tically valid declarations and instruction

52 m Implementation conformance

An implementation of this part of ISO/IEC 13522 is an MHEG-3 engine.

A conforming MHEG-3 engine shall support the interpretation of conforming MHEG-3 script objects.

This part of ISO/IEC 13522 defines the semantics of MHEG-3 interchanged scripts. This implies conformance
requirements not on information objects, but on the behaviour of MHEG-3 engines.

NOTE I: Although a
conforming

conforming script
engines behave in

might not realise the semantics implied by its des
interpreting this script is predictable.

Iigner, the way

NOTE 2: This part of lSO/IEC 13522 does not consider conformance for a system, an engine or a process
as far as it is not related to the interpretation of interchanged scripts.

5.2.1 Conformance requirements

A conforming MHEG-3 engine shall meet all of the following criteria:

1) it shall parse and interpret conforming MHEG-3 interchanged scripts according to the virtual machine
behaviour defined in this part of lSO/IEC 13522 (see Clause 9);

2) it shall support communication with the run-time environment and with MHEG objects according to the
IDL mapping behaviour defined in this part of ISO/IEC 13522 (see Clauses 10, 11 and 14);

3) it shall provide the MHEG-3 API defined in this part of ISOIIEC 13522 (see Clause 15 and Annex F);

4) for the purpose of manipulation of MHEG objects by interchanged scripts, it shall support an
MHEG API and its mapping according to the framework defined in this part of ISO/IEC 13522 (see
Annex E);

5) for the purpose of communication with the run-time environment, it shall support a platform mapping
specification according to the framework defined in this part of lSO/IEC 13522 (see Annex D);

it may provide additional functions or facilities not required by this part of ISO/IEC 13522 or by the
platform mapping specification. Each such non-standard extension shall be identified as such in the
system documentation.

5.2.2 Conformance documentation

A conformance document with the following information shall be available for an implementation claiming
conformance to this part of lSO/IEC 13522. The conformance document shall meet all of the following criteria:

I> it shall list all the mandatory features required by this part of ISO/IEC 13522, with reference to the
appropriate Clauses and subclauses;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOIIEC 13522-3: 1997(E)

2) it shall either include the platform mapping specification to which the implementation conforms or
reference a registered platform mapping specification in an unambiguous way;

3) it shall contain a statement that indicates the full names, numbers, and dates of the standards that
apply;

4) it shall state which of the optional features defined in this part of ISO/IEC 13522 and in the platform
mapping specification are supported by the implementation;

5) it shall describe the behaviour of the implementation for all implementation-defined features defined in
this part of ISO/IEC 13522 and in the platform mapping specification. This requirement shall be met by
listing these features and by providing either a specific reference to the system documentation or full
syntax and semantics of these features. The conformance document may specify the behaviour of the
implementation for those features where this part of ISOIIEC 13522 or the platform mapping
specification states that implementations may vary or where features are identified as undefined or
unspecified.

No specifications other than those specified by this part of ISOllEC 13522 and the platform mapping
specification shall be present in the conformance document.

5.3 Application conformance

An application of this part of ISOIIEC 13522 (called MHEG-3 application) is an MHEG application that
interchanges scripts within itself and/or with other applications as the “script data” component of MHEG script
objects according to the encoded representation specified by this part of ISOIIEC 13522.

5.4 Test Methods

Any measurement of conformance to this part of ISO/IEC 13522 shal
conform to lSO/IEC 9646 131.

6 Overview

This part of ISOIIEC 13522 extends the provisions of other parts of

be performed using test methods that

SO/IEC 13522 so that MHEG objects
and applications support functionality of multimedia scripting languages in a standard way. Considering the
functionality supported by other parts of ISO/IEC 13522, these extensions are divided in two main topics:

data processing operations (see subc .lause 6.2);
acce ss to external data and functions (see subclause 6.3).

For the support of both topics, this part of ISOIIEC 13522 specifies

complete and detailed provisions for the encoding of interchanged scripts;
the required behaviour of a script interpreter.

61 . Description methodology

For the description of these provisions, this International Standard1 Recommendation follows a methodology
that considers four description levels:

level a): informal text description;
level b): precise description of semantics;
level c): formal description of syntax;
level d): formal description of encoding.

These levels are used in the following Clauses as follows:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3: 1997(E) 0 ISO/IEC

level a): Clauses 8 to 1 I;
level b): Clauses 12 to 15;
level c): Annexes A, E, F, G;
level d): Annexes B, C.

NOTE: Informative Annexes H and J also use level c) description.

6.2 Data processing operations

To deal with data processing operations, MHEG-SIR defines the structure of interchanged scripts that consist
of data declarations and function declarations, the latter encapsulating sequences of instructions.

Clause 8 defines the elements of the MHEG-SIR virtual machine code.

Clause 9 specifies the MHEG-SIR virtual machine, i.e. a model of how MHEG-SIR script interpreters shall
perform interpretation of MHEG-SIR script code. This virtual machine is used afterwards to describe the
semantics of MHEG-SIR instructions. Clause 9 states requirements on the functionality that script interpreters
shall provide; however, it does not specify how to implement this functionality.

Clause 12 defines the declarations of MHEG-SIR interchanged scripts. It specifies their structure, i.e. the way
they shall be represented, and their semantics, i.e. the way they shall be interpreted by MHEG-SIR script
interpreters. The semantics are specified using the virtual machine formalism introduced in Clause 9.

Clause 13 defines the MHEG-SIR instructions. It specifies their structure, i.e. the way they shall be
represented, and their semantics, i.e. the way they shall be interpreted by MHEG-SIR script interpreters.
These semantics are specified using the virtual machine formalism introduced in Clause 9.

Annex A formally defines the precise syntax of interchanged scripts using the ASN.1 notation.

Annex B formally defines the encoding of interchanged scripts.

Annex C lists the predefined elements of MHEG-SIR and defines their encoding.

Annex G formally defines the instantiation of this part of ISO/IEC 13522 to ISO/IEC 13522-I and ISO/IEC
13522-5, i.e. the MHEG objects in these parts to which MHEG-SIR applies, and the way it applies to them.

6.3 Access to external data and functions

To deal with access to external data and functions, MHEG-SIR uses IDL to describe interfaces in an abstract,
language-independent way and thus unify the way external data and functions are viewed by script
interpreters.

In the MHEG-SIR context, IDL is used to separate clearly the way (MHEG-SIR specific) the use of external
data or functions is expressed by interchanged scripts from the way (at least platform-dependent, and maybe
application-dependent) these data or functions are provided by the external environment. MHEG-SIR thus
defines how the interfaces are used, while the application is responsible for defining how they are provided.

To allow script interpreters to manipulate MHEG entities and exchange information with them, MHEG-3
engines provide script interpreters with access to the MHEG entities (data) and invocation of the MHEG
actions (functions) through an MHEG API defined using IDL. The MHEG types and actions are predefined in
MHEG-SIR to achieve compact coding and effi.cient interpretation of MHEG object manipulation.

To allow script interpreters to co-operate with the run-time environment, the run-time environment provides
access to its data and functions according to a platform mapping specification of IDL. This specification
describes how IDL operations need be provided on a particular platform so that MHEG-3 engines be able to
use them as external services.

10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISO/IEC 13522-3: 1997(E)

NOTE: Packages may be provided in the form of libraries, device drivers, operating system components,
processes, telecommunication services, etc.

Clause 7 describes assumptions on the structure of MHEG-3 engines and their relationships with their
environment.

Clause 10 describes the general mechanisms used to access to external data and functions provided by the
run-time environment.

Clause 11 describes the general mechanisms used to manipulate MHEG objects.

Clause 14 specifies the IDL mapping for MHEG-SIR, i.e. the mechanisms used by the MHEG-SIR
representation to describe IDL packages and invoke IDL operations.

Clause 15 specifies the structure and semantics of the MHEG-3 API, i.e. the set of operations that may be
used to manipulate scripts.

Annex D specifies the IDL platform mapping specification form, i.e. the template for the document that need
be filled in and registered for each platform type, to specify the platform-specific provisions that services
provided by the run-time environment on this platform shall fulfil, and to which MHEG-3 engines shall conform
so that they be able to co-operate with services provided by the run-time environment on this platform and
therefore to interpret scripts that call upon such services.

Annex E specifies the framework that shall be used to define an MHEG API using IDL and the procedure that
shall be followed to map it to MHEG-SIR.

Annex F defines the precise syntax of the MHEG-3 API using the IDL notation.

7 MHEG/MHEG-3 relationship

This Clause introduces general assumptions about MHEG-3 engines, which are used afterwards to describe
the performance of a script interpreter and its relationships with its external environment.

MHEG-3 engines shall provide the functionality described hereafter in some way, in order to behave as
expected as far as interpretation of interchanged scripts is concerned.

However, there is no requirement on MHEG-3 engines to implement this functionality as described.

NOTE: For instance, the MHEG-3 engine functional components described thereafter need not correspond
to actual (e.g. software) components of MHEG-3 engine implementations.

7.1 MHEG entities

MHEG-3 engines handle MHEG entities: MHEG objects, mh-objects, r-t-objects, interchanged MHEG objects,
sockets, channels.

NOTE: MHEG entities are described in more detail in Annex K.

7.2 Functional entities

MHEG-3 engines may be viewed as consisting of the following functional components:

MHEG object parser: parses interchanged MHEG objects and transforms them into mh-objects under
control of the mh-object manager;
mh-object manager: controls the life cycle and allows access to all mh-objects;
&object manager: controls the life cycle and allows access to all t-t-objects;

11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISO/IEC

reference resolver: transforms an MHEG reference into a usable identifier or handle;
link handler: watches active links and triggers the corresponding actions when their conditions become
true;
action interpreter: interprets MHEG elementary actions;
script interpreter: parses .MHEG-SIR interchanged scripts and interprets r-t-scripts; provides access to
the run-time environment;
presentation agent: interface with the presentation environment; orders presentation of rt-contents;
receives user selections and modifications;
access agent: interface with the communication environment; provides access to interchanged MHEG
objects and to content data.

7.3 MHEG-SIR script interpreter

Within an Ml-N%-3 engine, the script interpreter shall be responsible for the following:

parsing interchanged scripts (provided by the MHEG object parser)
preparing the appropriate data structures for further execution of &scripts;
executing script code;
realising the default effect of MHEG actions targeted at mh-scripts or t-t-scripts;
invoking the appropriate handler (in the script program) for these MHEG actions;
forwarding MHEG elementary actions invoked by the script program to the action interpreter;
managing interchange with the run-time environment (locating and loading packages, invoking
services, receiving messages, passing data) using the appropriate platform-specific communication
mechanisms.

8 Elements of MHEG-SIR

This Clause describes the main elements of MHEG-SIR and how interchanged scripts shall use them.

The entities that are declared and manipulated by MHEG-SIR interchanged scripts are

data types;
data;
functions;
messages.

These concepts are defined in the following subclauses; however, the detailed structure of their declarations
is specified in Clause 12.

8.1 Data types

Data types are used to describe the structure of

the script’s own data (constants and variables);
the parameters and return values of the script’s routines;
the parameters and return values of external functions;
the parameters of messages handled by scripts.

As scripts need adapt themselves to the signature of functions that may be provided by the external
environment, MHEG-SIR defines a wide range of types corresponding to the IDL data types.

The encoding of data type definitions in an interchanged script is defined by Annex A. This part of ISO/IEC
13522 imposes no requirement on the way MHEG-3 engines represent these data types.

The MHEG-SIR uses two kinds of data types:

12

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC lSO/IEC 13522=3:1997(E)

predefined types (see subclause 8.1.1);
declared types (see subclause 8.1.2).

All types may be referenced in a unique, unambiguous way by their type identifier.

8.1 .I Predefined types

Predefined types may be either primitive or constructed types.

Predefined types have predefined type identifiers and therefore need not be declared by interchanged scripts.
The list of predefined types and their identifiers is given in Annex C.

8.1 .I .I Primitive types

The primitive types correspond to the IDL primitive types. This is the list of MHEG-SIR primitive types:

void;
octet;
short;
long;
unsignedshort;
unsignedlong;
float;
double;
boolean;
character;
dataidentifier;
object reference.

For easier reference, primitive types have individual letter codes as indicated by Table 1:

Table 1: Letter codes of primitive types

TvDe I Letter code

octet

short
long

0

S

L

unsigned short

unsigned long

float

1 W (as Word)

U

F

double

boolean

character

data identifier

object reference

D

B

C

I (as Identifier)

R (as Reference)

8.1 .I .I .I void type

The void type shall only be used to express the type of return value of a function. Functions whose type of
return value is void do not return any data. An interchanged script shall have no constants or variables of
void type. The void type shall not be used in the definition of constructed types.

13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3: 1997(E) 0 ISO/IEC

8.1 .I .I .2 octet type

Data whose type is octet shall take a numeric value within the range [0 . . 2551. Octet variables without
explicit initial value shall be initialised to 0.

8.1 .I .I .3 short type

Data whose type is short shall take a signed integer value within the range [-32 768 . . 32 7671. Short
variables without explicit initial value shall be initialised to 0.

8.1 .I .I .4 long type

Data whose type is long shall take a signed integer value within the range [-2 147 483 648 . . 2 147 483 6471.
Long variables without explicit initial value shall be initialised to 0.

8.1 .I .I .5 unsigned short type

Data whose type is unsigned short shall take an unsigned integer value within the range [0 . . 65 5351.
Unsigned short variables without explicit initial value shall be initialised to 0.

8.1 .1.1.6 unsigned longtype

Data whose type is unsigned long shall take an unsigned integer value within the range
[0 . . 4 294 967 2951. u nsigned long variables without explicit initial value shall be initialised to 0.

8.1 Al.7 float type

Data whose type is float shall take a single-precision floating point value within the range specified by IEEE
754 [9]. Float variables without explicit initial value shall be initialised to 0.

8.1.1.1.8 double type

Data whose type is double shall take a double-precision floating point value within the range specified by
IEEE 754 [9]. Double variables without explicit initial value shall be initialised to 0.

8.1.1 A.9 boolean type

Data whose type is boolean shall have either ‘true’ or ‘false’ as their value. Boolean variables without
explicit initial value shall be initialised to ‘false’.

8.1.1.1.10 character type

Data whose type is character shall take a character value within the BMPString character set as defined
by the Basic Multilingual Plane of ISOllEC 10646-I [4]. Character variables without explicit initial value
shall have an undefined initial value.

Conforming MHEG-3 engines may state that they only adopt a restricted set of characters, e.g. based on the
standard collections of Annex A of ISOIIEC 10646-I [4]. In this case, they shall document these adopted
subsets and the level of implementation in the conformance document.

8.1.1.1.11 data identifiertype

Data whose type is data identifier shall take an unsigned integer value within the range [0 . . 65 5351.
This value is used to identify a constant, global variable, dynamic variable, local variable or routine parameter
of the script, as defined by subclause 8.6.2 below. There shall be no constants of data identifier type.
Data identifier variables without explicit initial value shall have an undefined initial value.

14

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC

8.l.l.l.12 object reference type

ISOAEC 13522-3: 1997(E)

Data whose type is ob j ect reference shall take as value a handle that references an IDL object to which
services or predefined functions apply. Encoding of object references is defined by the platform mapping
specification. There shall be no constants of ob j ect reference type. The ob j ect reference type shall
not be used in the definition of constructed types. Ob j ect reference variables without explicit initial value
shall have an undefined initial value.

Object references are used as the implicit first parameter of all external calls to specify the object to which the
call applies. Object reference values shall be provided by the external environment, as an output parameter
or return value of an external call (XCALL) instruction. The get object reference (GETOR) instruction is used
to get a first object reference on the root object of a given package. The null object reference is used to refer
to the original object of the MHEG-3 API (instance of ScriptInterpreter).

8.1 .I .2 Predefined constructed types

To allow scripts to express manipulation of MHEG data more easily, the MHEG API data types are
predefined.

Although they are not defined within interchanged scripts, predefined constructed types, like declared
constructed types, can be expressed using type constructors and type identifiers, as described in subclause
8.1.2. Only predefined type identifiers shall be used to express the structure of predefined constructed types.

8.1.2 Declared constructed types

Constructed types shall be defined using one constructor and one or several type identifiers identifying either
a declared or predefined type.

The constructor of a constructed type shall be one of the following:

sequence (see subclause 8.1.2.1);
string (see subclause 8.1.2.2);
array (see subclause 8.1.2.3);
structure (see subclause 8.1.2.4);
union (see subclause 8.1.2.5).

Declared types are defined within interchanged scripts.

MHEG-SIR types shall not be redefined in an interchanged script. The structure of a declared type shall not
match that of a predefined type or that of another declared type.

There shall not be more than 16 384 types declared in an interchanged script.

8.1.2.1 sequence types

Sequence types shall be defined by

their size (optional);
their element type.

The size shall be an unsigned short value. It represents the maximum number of elements of the sequence. If
the type definition specifies no size, the number of elements may be any size up to the maximum. Sequence
types with an explicit size are called bounded sequence types.

The maximum size of any sequence type is 65 535 elements.

15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISOAEC

The element type may be any primitive, constructed or predefined type except void and object
reference. The element type shall be referenced using its type identifier. Sequence type definitions shall
not lead to infinite recursion.

NOTE: As a consequence, the type identifier of the sequence may be nested within the type definition
only below a union constructor.

Data whose type is a defined sequence type shall take as their value an ordered list of zero or more values
of the element type.

Variables
element).

Of a sequence type without explicit initial value shall be initialised to a null list (sequence of zero

8.1.2.2 string types

String types are semantically equivalent to sequence types whose element type is character.

NOTE: To optimise their handling, string values may be implemented in a different way than sequences of
character would. Therefore, strings and sequences of character remain distinct, although
semantically equivalent, types.

String types shall be defined by their size (optional).

The size shall be an unsigned short value. It represents the maximum number of elements of the string. If the
type definition specifies no size, the number of elements may be any size up to the maximum. String types
with an explicit size are called bounded string types.

The maximum size of any string type is 65 535 characters.

Data whose type is a defined string type shall take as their value a string of zero or more characters.

Variables of a string type without explicit initial value shall be initialised to a null string (sequence of zero
character).

8.1.2.3 array types

Array types shall be defined by

their size;
their element type.

The size shall be an unsigned short value. It represents the exact number of elements in the array.

The element type may be any primitive, constructed or predefined type except void and object
reference. The element type shall be referenced using its type identifier. Array type definitions shall not
lead to infinite recursion.

NOTE: As a consequence, the type identifier of the array may be nested within the type definition only
below a union constructor.

Data whose type is a defined array type shall take as their value an ordered list of values of the element
type, the length of the list being specified by the size of the array.

Variables of an array type without explicit initial value shall be initialised to a list of elements whose initial
value is determined by the element type.

16

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522-3: 1997(E)

8.1.2.4 structure types

Structure types shall be defined by an ordered list of 1 to 256 element types.

The element types may be any primitive, constructed or predefined type except void and object
reference. The element types shall be referenced using their type identifiers. Structure type definitions
shall not lead to infinite recursion.

NOTE: As a consequence, the type identifier of the structure may be nested within the type definition
only below a union constructor.

Data whose type is a defined structure type shall take as their value an ordered list of values of the
element type that corresponds to their rank in the type definition.

Variables of a structure type without explicit initial value shall be initialised to a list of elements whose
initial value is determined by their element type.

8.1.2.5 union types

Union types shall be defined by an ordered list of element types.

There shall not be more than 256 choices (element types) in a union type.

The element types may be any primitive, constructed or predefined type except void and obj ect
reference. The element types shall be referenced using their type identifiers.

Data whose type is a defined union type shall take as their value

an integer which represents the index (starting at 0) in the choice list;
a value of the element type whose rank in the type definition is the above index.

Variables of a union type without explicit initial value shall have an undefined initial value.

8.2 Data

The MHEG-SIR defines three kinds of data:

immediate values (see subclause 8.2. I);
constants (see subclause 8.2.2);
variables (see subclause 8.2.3).

All data used by an interchanged script are of a definite data type, either predefined or declared.

Two data values shall be equal if and only if

they are of the same type, i.e. they have the same type identifier;
if they are of a primitive type then they are identical;
if they are of a structure, sequence or array type then every element of one list is equal to the
element of the same rank in the other list;
if they are of a union type then their tags are identical and their values are equal to each other.

As a consequence,

values of a string type shall not be compared with values of a sequence of character type;

17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) 0 lSO/IEC

values of a bounded sequence type shall not be compared with values of another bounded
sequence type or with values of an unbounded sequence type, since they have different type
identifiers;
values of a bounded string type shall not be compared with values of another bounded string type
or with values of an unbounded string type, since they have different type identifiers.

All variables and constants are referenced in a unique, unambiguous way by their data identifier.

8.2.1 Immediate values

Immediate values are data that are not declared within the interchanged script, and may therefore only be
used “immediately”, i.e. as they are encountered. An immediate value may be encountered in an
interchanged script

as a constant value;
as the initial value of a variable;
as the operand of a push immediate (PUSHI) instruction.

Besides, immediate values are used in the course of the script execution through the parameter stack, as
parameters for instructions or functions.

Unless the context restricts it otherwise, immediate values may be of any type except void.

The encoding of data values in an interchanged script is defined by Annex A. This part of lSO/IEC 13522
imposes no requirement on the way MHEG-3 engines represent data values of a particular type.

8.2.2 Constants

Constants shall be declared within the interchanged script and defined by

a data type;
a value of this data type.

Constants may be of any type except

object reference;
data identifier;
void.

Constants have a global scope and may be referenced using their data identifier throughout the interchanged
script.

There shall not be more than 4 096 constants declared in an interchanged script.

8.2.3 Variables

Variables shall be declared within the interchanged script and defined by

a data type;
optionally, a value of this data type, to be taken as the initial value for this constant.

Variables may be of any type except void.

Variables are referenced using their data identifier. A reference to a variable may be used with either of the
following semantics:

18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522=3:1997(E)

“right-hand” semantics: the same as if the value of this variable was provided instead;
“left-hand” semantics: states that this variable has to be assigned a data value.

In the latter case, the value to be assigned to the variable may be an immediate value (including a computed
value), the value of a constant or the value of a variable (including the future value of a function’s output
parameter).

The MHEG-SIR defines three kinds of variables:

global variables;
local variables;
dynamic variables.

8.2.3.1 Global variables

Global variables have a global scope which covers the entire interchanged script. They may be referenced
using their data identifier from any routine or variable. They may be assigned a new value at any time during
execution of the t-t-script.

There shall not be more than 28 672 globa

8.2.3.2 Local variables

I variables dec lared in an interchanged script.

Local variables have a lexical scope which is restricted to the execution of the code of the routine to which
they belong. They may be referenced using their data identifier only within the code of this routine.

There are two kinds of local variables:

local variables that are declared within the routine declaration as part of the local variable declaration;
actual parameters of the routine, whether passed by value or by reference, which are declared within
the routine declaration as part of the routine signature.

There shall not be more than 256 local variables declared in each routine of an interchanged script.

8.2.3.3 Dynamic variables

Dynamic variables have a dynamic scope which extends from the time when they are created using an
allocate (ALLOC) instruction up to the time when they are released using a free (FREE) instruction. At
creation, they are given a data identifier by the script interpreter. They may be referenced using their data
identifier at any time during the execution of the script. However, as the data identifier of a dynamic variable is
only known at run-time, it can only be used as a parameter stack or a variable value, not as the operand of an
instruction.

There shall not be more than 32 512 dynamic variables used at a given time during execution of an r&script.

8.3 Functions

The MHEG-SIR defines three kinds of functions:

routines (see subclause 8.3. I);
services (see subclause 8.3.2);
predefined functions (see subclause 8.33).

All functions shall have a signature (or prototype) which consists of

a type of return value;

19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522=3:1997(E) 0 lSO/IEC

an ordered list of formal parameters defined by their type and passing mode.

All functions are referenced in a unique, unambiguous way using their function identifier.

Functions shall be either synchronous or asynchronous. When a synchronous function is called, the caller
waits for the completion of the function execution and may therefore retrieve its result. When an
asynchronous function is called, the caller only waits for an acknowledgement of reception of the request; it
then resumes execution without waiting for the completion of the function.

As a consequence, asynchronous functions shall not have output parameters or a return value.
always synchronous.

Routines are

8.3.1 Routines

Routines are internal functions of interchanged scripts.

Routines shall be declared within the interchanged script. Routines shall consist of

a signature;
local variables;
program code.

There shall not be more than 4 096 routines declared in an interchanged script.

Execution of a routine may be triggered

by an explicit call (CALL) instruction, with the routine’s function identifier being the operand of the
instruction;
upon reception of an exception during an external call (XCALL) instruction, where the message
identifier of the received exception is mapped to the routine’s function identifier by the handler definition
table;
upon examining the queue of received messages, either when no routine is executing or upon
encountering a yield (YIELD) instruction, where the message identifier of the received message is
mapped to the routine’s function identifier by the handler definition table or is an MHEG-3 API run
operation targeted at the routine.

Parameters may be passed to routines using either of the following modes:

by value: a value of the parameter type is passed to the routine;
by reference: a data identifier referencing a global variable, dynamic variable or constant whose type
is the same as the parameter type is passed to the routine.

In both cases, the value of the passed parameter becomes the value of the local variable whose index
corresponds to the parameter’s index. The local variable corresponding to a parameter passed by reference
shall beofthe data identifier type.

Data identifiers to local variables shall not be passed by reference.

8.3.2 Services

Services are external functions provided by the run-time environment, that an interchanged script may
invoke.

Services shall be declared within the interchanged script, as part of a package declaration, by

their signature;

20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOIIEC 13522=3:1997(E)

their IDL global operation name.

There shall not be more than 256 services declared in each package of an interchanged script.

There shall not be more than 192 packages declared in an interchanged script.

A service may be called by an external call (XCALL) instruction.

Parameters may be passed to services using one of the following modes:

in: a data identifier referencing a variable or constant whose type is the same as the parameter type is
passed to the service;
inout: a data identifier referencing a variable whose type is the same as the parameter type is passed
to the service; upon returning, the variable is updated with its new value;
out: same as inout, however the value of the variable is not used by the service.

8.3.3 Predefined functions

Predefined functions correspond to the operations of the MHEG-3 engine’s interface.

Predefined functions have predefined function identifiers and therefore shall not be declared within an
interchanged script.

As this part of ISO/IEC 13522 is not specifically linked to another part of lSO/IEC 13522, the MHEG API
operations used to manipulate MHEG objects are not explicitly defined. However, this part of ISO/IEC 13522
specifies the procedure that shall be used to define an MHEG API and to specify the mapping of operations
of this MHEG API to predefined function identifiers. This is described in Annex E.

In addition, this part of lSO/IEC 13522 defines the MHEG-3 API, i.e. the interface that MHEG-3 engines shall
provide for the manipulation of scripts. This interface is described in Clause 15 and Annex F. This interface
may be used from within scripts and is therefore mapped to predefined function identifiers. The list of these
predefined functions and their identifiers is given in Annex C.

Predefined functions may be called and passed parameters to using the same mechanisms as with services.

8.4 Messages

The MHEG-SIR defines two kinds of messages:

package exceptions (see subclause 8.4.1);
predefined messages (see subclause 8.4.2).

All messages shall have a signature (or prototype) which consists of an ordered list of formal parameters
(members) defined by their type.

All messages are referenced in a unique, unambiguous way by their message identifier.

8.4.1 Package exceptions

Package exceptions are sent to an
of a service by this r-t-script.

&script by the run-time environment as a consequence of the invocation

Package exceptions shall be declared within the interchanged script, as part of a package declaration, by

their signature;
their IDL global exception name.

21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 lSO/IEC

There shall not be more than 256 exceptions declared in each package of an interchanged script.

8.4.2 Predefined messages

Predefined messages sent to an rt-script may be one of the following:

an exception of the MHEG-3 engine interface (i.e. the MHEG API), raised by the MHEG-3 engine as a
consequence of the invocation of a predefined function by the r&script;
the consequence of invocation of an operation of the MHEG-3 API targeted at the t-t-script;
the InstructionExecutionError exception, which is raised as the consequence of an error
occurring in the execution of an instruction of the rt-script.

Predefined messages have predefined message identifiers and therefore shall not be declared within an
interchanged script.

As this part of ISO/IEC 13522 is not specifically linked to another part of ISO/IEC 13522, the MHEG API
exceptions are not explicitly defined. However, this part of lSO/IEC 13522 specifies the procedure that shall
be used to define an MHEG API and to specify the mapping of exceptions of this MHEG API to predefined
message identifiers. This is described in Annex E.

Annex C specifies how the InstructionExecutionError and the messages resulting from MHEG-3 API
operations shall be mapped to predefined message identifiers.

8.5 Instructions

The program code part of routines consists of a sequence of instructions. Unlike the rest of an interchanged
script, which is handled upon preparation of the script, instructions need only be dealt with after creation of an
r&script, when the routine to which they belong is activated.

An instruction shall consist of one op-code (operation code) followed by zero or more operands. The number,
type and encoding of operands is fully determined by the op-code.

As a rule, operands complete the instruction, whereas parameter values are taken from the parameter stack.

The performance of the instruction execution unit is described in Clause 9, whereas the precise semantics of
each instruction are described in Clause 13.

8.6 Identifiers

Identifiers are used to reference MHEG-SIR entities (i.e. types, data, functions and messages) in an
unambiguous way, throughout interchanged scripts.

8.6.1 Type identifiers

Type identifiers (TIDs) shall be encoded on two bytes as follows:

primitive types and predefined types shall have predefined TlDs as defined by Annex C;
declared types whose index (starting at 0) in the type declaration table is X shall have (X + 4000h) as
TID.

Hence

TlDs between 0 and 3FFFh shall reference predefined types;
TlDs between 4000h and 7FFFh shall reference declared types.

22

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522-3: 1997(E)

8.6.2 Data identifiers

Data identifiers (DIDs) shall be encoded on two bytes as follows:

constants whose index (starting at 0) in the constant declaration table is X shall have X as DID;
global variables whose index (starting at 0) in the global variable declaration table is X shall have (X +
IOOOh) as DID;
local variables whose index (starting at 0) in the local variable declaration table is X shall have (X +
8000h) as DID;
dynamic variables shall have DIDs starting at 8100h. The procedure for allocating data identifiers to
dynamic variables is not specified; MHEG-3 engines may therefore have different allocation schemes.

Hence

DlDs between 0 and OFFFh shall reference constants;
DlDs between IOOOh and 7FFFh shall reference global variables;
DIDs between 8000h and 80FFh shall reference local variables;
DIDs between 8100h and FFFFh shall reference dynamic variables.

8.6.3 Function identifiers

Function identifiers (FIDs) shall be encoded on two bytes as follows:

routines whose index (starting at 0) in the routine declaration table is X shall have X as FID;
predefined functions whose index (starting at 0) in the predefined function table is X shall have (X +
IOOOh) as FID;
services whose index (starting at 0) in a package declaration is X and whose package index in the
package declaration table is Y (starting at 0) shall have (((Y+64) cc 8) + X) as FID.

FIDs between 0 and OFFFh shall reference routines;
FIDs between IOOOh and 3FFFh shall reference predefined functions;
FIDs between 4000h and FFFFh shall reference services.

8.6.4 Message identifiers

Message identifiers (MIDs) shall be encoded on two bytes as follows:

predefined messages whose index (starting at 0) in the predefined message table is X shall have X as
MID;
exceptions whose index (starting at 0) in a package declaration table is X and whose package index
(starting at 0) in the package declaration table is Y shall have (((Y+64) << 8) + X) as MID.

Hence

MIDs between 0 and 3FFFh shall reference predefined messages;
MIDs between 4000h and FFFFh shall reference package exceptions.

9 The MHEG-SIR virtual machine

This Clause presents the MHEG-SIR virtual machine, i.e. the execution model for the MHEG-SIR code.

23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 lSO/lEC

9.1 Structure of the MHEG-SIR virtual machine

The MHEG-SIR virtual machine is a set of logical, abstract components. The description of the MHEG-SIR
virtual machine is intended for clarification of the operational semantics of the MHEG-SIR code.

An MHEG-3 engine shall have the same interpretation behaviour for MHEG-SIR code as the described virtual
machine. It shall interpret MHEG-SIR declarations and instructions so as to produce similar external effects in
all respects.

However, this implies no requirements on the technology or organisation that may actually be used to
implement an MHEG-3 engine. An actual script interpreter need not be designed as described by the virtual
machine, as long as it provides equivalent functionality.

The MHEG-SIR virtual machine consists of

memory areas (see subclause 9.3);
processing units (see subclause 9.5).

Some memory areas are associated with an mh-script and so shared by all the t-t-scripts created from it.
Other memory areas are associated with each r-t-script.

Processing un its only app ly to one r&script. However, an M HEG-3 engine may run several r-t-scripts at the
same time. In this case, it shall maintain a separate run-time context for each active t-t-script.

NOTE: In other terms, the MHEG-SIR virtual machine is single-threaded. Multi-threaded applications can
be achieved by associating each thread with a separate t-t-script.

9.2 Structures and notations

9.2.1 Table

A table T consists of an array of homogeneous entries T [i] that may be accessed via their index i. These
entries have the same structure, but not necessarily the same size. Entries consist of one or several fields
f Id. Some entries may be void. Indices are MHEG-SIR identifiers, i.e. consecutive numeric values taken in a
given range, not necessarily starting at 0 for a given table. The underlying access mechanism (sequential
indexing, direct access, hashcoding...) is not specified. The notation uses the following primitives to express
manipulation of a table T:

T [i] to access entry i;
vi1 = VAL to assign value VAL to entry i;
T [i] . f Id to access field f Id of entry i;
T[i] .fld = VAL to assign value VAL to field f Id of entry i.

9.2.2 Stack

A stack consists of an array of homogeneous elements. Elements are inserted on the top of the stack. Only
the top element (last inserted) may be accessed at any time. When it is removed from the stack, it is lost, and
the next element becomes the top of the stack. The notation uses the following primitives to express
manipulation of the call stack CS:

cs . push (F) : inserts frame F on the top of the stack, increments the frame pointer register (FP);
cs . POP (> : decrements FP, removes the top-of-stack frame, then returns it;
cs [FP] : returns the value of the top-of-stack frame.

In the same way as for tables, the I‘. ” notation is used to access stack element fields.

24

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522=3:1997(E)

9.2.3 Parameter stack

The parameter stack is a special case because it is a byte (untyped) stack used to store typed values. The
notation uses the following primitives to express manipulation of the parameter stack PS, where tid is the
type identifier of a primitive type, as indicated by Table 1:

PS . push (VAL) : inserts value VAL on the top of the stack;
PS . pop (tid) : removes the top-of-stack value, whose type identifier is tid, then returns it;
PS [SP] (t id) : returns the value of the top-of-stack value, whose type identifier is t id.

9.2.4 Queue

A queue consists of an array of homogeneous elements. Elements are inserted at the end of the queue. Only
the start element (first inserted) may be accessed at any time. When it is removed from the queue, it is lost,
and the next element becomes the start of the queue. The notation uses the following primitives to express
manipulation of the message queue MQ:

MQ. insert (M) : inserts message value M at the end of the queue;
MQ. remove (> : increments the queue pointer register (QP), removes the element at the start of the
queue, and returns it;
MQ [QP] : returns the value of the element at the start of the queue.

In the same way as for tables, the “ .” notation is used to access queue element fields.

9.2.5 Data representation

The representation of the structures and data is implementation-dependent. Although script interpreters may
represent each value of a data type with a minimum number of bytes, they are not required to do so. Table 2
states this minimum number:

25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISOAEC

Table 2: Minimum number of bytes to represent values

Type Minimum number of bytes to represent a value of the type
I octet I 1 I
Ishort

long

unsigned short

I 2 I
4

2

unsigned long

I float

4

I4 I
double 8

boolean 1

character 2 (1 for restricted character sets)

data identifier 2

object reference implementation-dependent

string character size x (string length+l)

sequence size of element type x sequence length (actual number of elements) + 2

array size of element type x array size

structure sum of the sizes of the element types

union size of the “biggest” element type + 1

2 -\ type identifier

function identifier 2

messaae identifier 2
package identifier 1

NOTE: The notation makes no distinction between fixed-length values and variable-length values. Script
interpreters may store variable-length values on the heap. VT [i] . val is used to access the value
of a variable even though it could actually be stored in the variable table as a handle to the heap.

When VAL is a value of a constructed type, access to its elements is noted as follows:

VAL . tag: tag of a union;
VAL. val:V&E Of a Union;
VAL [n] : value of the nth element of a sequence, string, structure or array;
VAL. lg: actual length of a sequence or string.

Execution semantics are expressed using a C-like syntax. Expressions within single quotes indicate the
corresponding value, e.g. ‘void’ indicates TID value 0.

9.3 Memory areas

In the MHEG-SIR virtual machine, memory areas are used to hold all the necessary information used to
interpret a particular interchanged script.

Memory areas may be associated with either an mh-script (see subclause 9.3.1) or an &script (see
subclause 9.3.2).

9.3.1 Mh-script memory areas

Mh-script memory areas should be completely filled at load-time, i.e. upon initialisation of an mh-script. They
shall be accessible for use by all r&scripts created from this mh-script. Mh-script memory areas shall not be
modified at run-time until the mh-script is destroyed, unless otherwise specified (e.g. for the package
definition table). Mh-script memory areas comprise

26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522-3: 1997(E)

data areas (see subclause 9.3.1 .I);
code areas (see subclause 9.3.1.2).

9.3.1.1 Data areas

Data areas are used to store the definitions and values of the script’s global data. Data areas comprise

the type definition table (TT) (see subclause 9.3.1 .I .I);
the constant table (CT) (see subclause 9.3.1 .I .2);
the global variable definition table (GT) (see subclause 9.3.1 .I .3).

9.3.1 .I .I Type definition table

The type definition table maps all the script’s defined types, represented by type identifiers, to their
description:

TT [TID] m val: description of the type.

NOTE: The representation used for the type description
easi ly whether a value belongs to a type.

is not specified; however, it should allow to check

9.3.1 .I .2 Constant table

The constant table maps all the script’s constants, represented by data identifiers, to their type and value:

CT [DID] . T ID: type of the constant (expressed as a type identifier);
CT [DID] . val: value of the constant (depending on its type).

9.3.1 .I .3 Global variable definition table

The global variable definition table maps all the script’s global variables, represented by data identifiers, to
their type and initial value:

GT [DID] . TID: type of the global variable (expressed as a type identifier);
GT [DID] . val: initial value of the global variable (depending on its type).

9.3.1.2 Code areas

Code areas are used to store the addresses and program code of the script’s functions. Code areas
comprise

the routine definition table (RT) (see subclause 9.3.2.1);
the package definition table (PT) (see subclause 9.3.2.2);
the service definition table (ST) (see subclause 9.3.2.3);
the exception definition table (XT) (see subclause 9.3.2.4);
the handler definition table (HT) (see subclause 9.3.2.5);
the program code area, consisting of the sequence of instructions of each routine (see subclause
9.3.2.6).

9.3.1.2.1 Routine definition table

The routine definition table maps all the script’s routines, represented by function identifiers, to their signature
description, their local variable declaration and their program code:

a> RT [FI D] . TI D: type of return value (expressed as a type identifier);
W RT [FID] . nbp: number of parameters;

27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 lSO/IEC

C>

d)

e)

RT [FID] . sig: signature description, where
I> RT [FID] . sig [i] . TID is the type (expressed as a type identifier) of the ith parameter;
2) RT [FID] . sig [i] . mod is the passing mode (value or reference) of the ith parameter;
RT [FID] . LT: declaration of the routine’s local variables (whose nbp first elements are the actual
parameters of the routine);
RT [FID] . IP: pointer to the first instruction in the routine code.

Local variables used to hold parameters passed by reference shall have data ident if ier as their type,
while local variable used to hold parameters passed by value shall have the same type as in the signature
description for the corresponding parameter.

9.3.1.2.2 Package definition table

The package definition table maps all the script’s defined packages, represented by package identifiers
(PIDs) as declared by the MHEG-SIR package declaration table, to package names and additional
information:

PT [PID] . name: name of the package;
PT [PID] . nbf: number of services in the package;
PT [PID] . nbm: number of exceptions defined by the package;
PT [PID] . s t s: current status of the package (unchecked, available, ready, opened);
PT [PID] . or: initial object reference of the package.

A package is initially at unchecked status. It becomes available once the package availability procedure
has been performed successfully. It then becomes ready once the package load procedure has been
performed successfully. Finally, it is opened when there is a valid initial object reference to the package,
stored in the PT [PID] . or field, for use by further service invocations.

As an exception to the rule stated in subclause 9.3.1,

The PT [PID] . St s fields may be modified at run-time, each time the status of a package changes.
The PT [PID] . or fields may be modified at run-time, when a package is loaded.

9.3.1.2.3 Service definition table

The service definition table maps all the script’s defined external services, represented by MHEG-SIR
function identifiers, to their signature description and to their IDL global operation name:

a>
W
C>
a

e>

ST [FI D] . TID: type of return value (expressed as a type identifier);
ST [FID] . syn: calling mode (synchronous, asynchronous);
ST [FID] . nbp: number of parameters;
ST [FID] . sig: signature description, where
1) ST[FID]. sig [i] . TID is the type (expressed as a type identifier) of the ith parameter;
2) ST [FID] . sig [i] .mod is the passing mode (in, inout or out) of the ith parameter;
ST [FID] . name: the IDL global name of the operation which the service invokes.

The IDL platform-specific mapping specification shall be used to map ST [MID] . name to a platform-specific
name.

9.3.1.2.4 Exception definition table

The exception definition table maps all the interchanged script’s defined mess
I to their signature description and their IDL global exception name: identifiers

XT [MID] . name: the IDL global name of the exception which causes the message;
XT [MID] . nbm: number of members;

28

ages, re prese nted by message

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOAEC 13522-3: 1997(E)

XT [MID] . sig: signature description, where XT [MID] . sig [i] . TID is the type (expressed as a type
identifier) of the ith member.

The IDL platform-specific mapping specification is used to map XT [MI D 1 . name to a platform-specific name.

9.3.1.2.5 Handler definition table

The handler definition table maps messages,
function identifiers:

represented by message identifiers, to routines represented bY

HT [MID] . FID: identifier of routine to invoke for handling the message.

If a message is mapped to a routine in the handler table, the signature of this routine need- match the
signature of this message. Matching between the signatures shall be checked at load-time and non-matching
entries shall be rejected.

The handler definition table is used by the t-t-script execution unit. When the r-t-script execution unit removes a
message from the message queue, it invokes the routine that corresponds to the message, with the message
parameters as its parameters.

9.3.1.2.6 Program code area

An instruction consists of one l-byte op-code followed by zero to three operand bytes. The op-code
completely determines the number and length of its operands, according to the instructions table. Both op-
codes and operands are coded in an optimised fashion so as to ease switching.

NOTE: A script interpreter (especially on 32-bit machines) may align instructions at load-time, i.e. insert
padding bytes in order to represent each instruction on four bytes; this makes it easy to increment
the instruction pointer. As a variant, a script interpreter may instead leave instructions packed, and
determine the number of bytes to increment at run-time.

9.3.2 R&script memory areas

Rt-script memory areas are initialised upon creation of the t-t-script and may be modified during its execution.
Rt-script memory areas comprise

dynamic memory areas (see subclause 9.3.2.1);
registers (see subclause 9.3.2.2).

9.3.2.1 Dynamic memory areas

Dynamic memory areas are used to represent the data and the current execution context of the t-t-script.

Dynamic memory areas comprise

the variable table (VT) (see subclause 9.3.2.1 .I);
the call stack (CS) (see subclause 9.3.2.1.2);
the parameter stack (PS) (see subclause 9.3.2.1.3);
the message queue (MQ) (see subclause 9.3.2.1.4);
the heap (see subclause 9.3.2.1.5).

9.3.2.1 .I Variable table

The variable table maps the r-t-script’s variables, represented by data identifiers, to their type and current
value:

29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3:1997(E) 0 ISOAEC

VT [DID] . TI D: type of the variable (expressed as a type identifier);
VT [DID] . val: current value of the variable (depending on its type).

The variable table is initialised upon creation of the t-t-script. It consists of two subtables:

a copy of the global va riable table associated with the mh-
the local variable table of the currently executing routine.

script;

VT[DID] . val fields
assignment instruction

are modified every time a variable is assigned by the execution of a variable

When the current routine changes (following execution of a CALL, RET or YIELD instruction), the local
variable table is stored and replaced in the VT by the local variable table of the new routine. The first entries
of a local variable table are the parameters passed to the function.

9.3.2.1.2 Call stack

The call stack is used to store the current invocation context.

The call stack is an array of call frames. Every frame shall correspond to the context at the time of invocation
of an active function (routine, external function or MHEG action). Frames shall be stored on the CS in order of
invocation. The top frame of the CS, if any, shall describe the execution context of the routine that called the
currently executing function.

Each frame shall consist of the following elements:

cs [i] . FID: function identifier of the caller;
cs [i] . I P: pointer to the instruction to return to after the current function returns;
cs [i] . LT: local variable table of the caller (at invocation time);
cs [i] . SP: pointer to the top of the parameter stack (at invocation time).

The LT field of a call frame shall have the structure of a variable table:

CS [i] . LT [DID] . TID: type identifier of the variable whose identifier is DID;
cs [i] . LT [DID] . val: value of the variable.

The call stack is modified by certain control flow instructions. Initially the call stack shall be empty. When a
function is invoked, a frame describing this call shall be pushed onto the call stack. When a function is
returned from, this frame shall be popped from the call stack. The address of the top frame of the call stack
shall be stored at all times in the FP register.

9.3.2.1.3 Parameter stack

The parameter stack is used to store the parameters and return values of instructions. The parameter stack
is an array of data values. The type of the data value is determined by the operation sequence that pushes
the value on the stack.

The parameter stack is used by the MHEG-SIR instruction execution unit. Initially the parameter stack shall
be empty. It is modified by most instructions (arithmetic operators, logical operators, comparison operations,
stack manipulation, variable assignment, conditional jumps, calls). When an instruction is executed, it shall
pop its parameters from the parameter stack and push its return value back onto the parameter stack. The
address of the top frame of the parameter stack shall be stored at all times in the stack pointer (SP) register.

30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOAEC 13522=3:1997(E)

9.3.2.1.4 Message queue

The message queue is used to buffer the messages that are received by the script interpreter. Each item in
the queue shall consist of the following elements:

MQ [i] . MID: message identifier;
MQ [i] . LT: list of message parameters.

The LT field of a message queue item shall have the structure of a variable table:

MQ [i] . LT [j] . TID: type identifier of the jth parameter;
MQ [i] . LT [j] . val: value of the jth parameter.

Messages shall be inserted into the message queue by the script interpreter asynchronously as they are
generated in the external environment. The message queue shall be processed by the r-t-script execution unit
when either of the following occurs:

the &script is not running, i.e. there is no currently executing routine;
a YIELD instruction is encountered.

The start of the message queue (next message to pop) shall be stored at all times in the QP (queue pointer)
register. Initially the message queue shall be empty.

9.3.2.1.5 Heap

The heap is used to store dynamic variables, represented by data identifiers, as their type and current value:

VT [DID] . TID: type of the variable (expressed as a type identifier);
VT [DID] . val: current value of the variable (depending on its type).

Dynamic variables are referenced by handles of an opaque type, whose representation is not specified. Data
identifiers are internally mapped to these handles so that dynamic variables be accessed in the same way as
other variables.

VT [DID] . val fields are modified every time a variable is assigned by the execution of a variable
assignment instruction.

The application is responsible for explicit allocation and deallocation of dynamic variables using the ALLOC
and FREE instructions.

NOTE: Script interpreters may also use the heap to store the values of global or local variables of a
variable-length type. In this case, a heap handle is stored in the table instead of the data itself.

9.3.2.2 Registers

Registers hold specific states of the virtual machine and need be frequently modified during the execution of
an t-t-script.

The registers maintained by the MHEG-SIR virtual machine are

the instruction pointer (IP) or program counter (see subclause 9.3.2.2.1);
the frame pointer (FP) (see subclause 9.3.2.2.2);
the stack pointer (SP) (see subclause 9.3.2.2.3);
the queue pointer (QP) (see subclause 9.3.2.2.4);
the instruction register (IR) (see subclause 9.3.2.2.5);
the error register (ER) (see subclause 9.3.2.2.6);

31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) @ ISO/IEC

the function register (FR) (see subclause 9.3.2.2.7).

The representation of data held by pointer registers is not specified. All registers shall be initialised to a null
value whose representation is not specified.

9.3.2.2.1 Instruction pointer register

The IP register points to the next instruction to be executed within a routine’s program code. This register
shall be modified by the r&script execution unit and by the MHEG-SIR instruction execution unit as part of the
execution of instructions.

9.3.2.2.2 Instruction register

The IR register holds the code for the instruction which is currently executing. This register shall be updated
by the t-t-script execution unit each time a new instruction is loaded, and accessed by the MHEG-SIR
instruction execution unit.

NOTE: The IR need not be more than 4 bytes long, but its actual size is not specified.

9.3.2.2.3 Error register

The ER holds the code of the last error encountered during execution of an instruction. This register shall be
updated by the MHEG-SIR instruction execution unit, every time it encounters an error. The null value
indicates that up to the current time no error has been encountered during the execution of the r&script.

The error codes are predefined. The error codes raised by each instruction are defined in Clause 13.

When an error is raised during execution of an instruction, ER shall be set to a non-null value and an
Instruct ionExecut ionError exception shall be raised. This results in the corresponding message being
inserted into the message queue.

9.3.2.2.4 Stack pointer register

The SP register points to the top of the parameter stack. The value of this register shall be updated by the
MHEG-SIR instruction execution unit as follows:

it shall be incremented every time data is pushed onto the parameter stack;
it shall be decremented every time data is popped off the parameter stack.

9.3.2.2.5 Frame pointer register

The FP register points to the top frame of the call stack. The value of this register shall be updated by the
MHEG-SIR instruction execution unit as follows:

it shall be incremented every time a function is called;
it shall be decremented every time a function is returned from.

9.3.2.2.6 Queue pointer register

The QP register points to the next message to be removed from the message queue. The value of this
register shall be decremented by the script interpreter every time a message is removed.

9.3.2.2.7 Function register

The FR register holds the FID of the currently executing function. The value of this register shall be updated
by the script interpreter every time a function is called or returned from.

32

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISO/IEC 13522=3:1997(E)

9.4 Script statuses

9.4.1 Mh-script statuses

The status of an mh-script shall be either available or not available.

9.4.1 .I Not available

The status of an mh-script shall be not available if it is in one of the following cases:

mh-script initialisation (i.e. the effect of the MHEG-3 API prepare operation) has not been achieved
on this mh-script;
mh-script destruction (i.e. the effect of the MHEG-3 API destroy operation) has been requested on
this mh-script.

9.4.1.2 Available

The status of an mh-script shall be available if mh-script initialisation has been successfully achieved on this
mh-script and if mh-script destruction has not yet been requested.

This implies that

the interchanged script has been parsed and the mh-script memory areas fully completed accordingly;
the packages referenced in the mh-script are available and have been loaded according to the
package load procedure.

9.4.2 R&script statuses

The status of an &script shall be one of the following: not ready, ready, running, erroneous.

9.4.2.1 Not ready

The status of an t-t-script shall be not ready if it is in one of the following cases:

r-t-script initialisation (i.e. the effect of the MHEG-3 API new operation) has not been achieved on this rt-
script;
r&script destruction (i.e. the effect of the MHEG-3 API delete operation) has been requested on this
r-t-script.

The status of an r&script is initially not ready. Otherwise, it changes to not ready when a delete operation is
invoked on this r-t-script.

9.4.2.2 Ready

The status of an r&script shall be ready if all of the following conditions are met:

&script initialisation has been successfully achieved on this mh-script;
t-t-script destruction has not yet been requested on this r-t-script;
the IP register is set to ‘null’, i.e. there is no currently executing routine;
the ER register is set to ‘null’.

This implies that the calling stack, message queue and parameter stack are void.

However, the global variable values need not be the same as the initial values; once it has no more
instruction to execute and no message in the message queue, an rt-script goes back to ready status.

33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 lSO/IEC

The status of an r-t-script changes

from not ready to ready when a new operation is invoked on this r-t-script;
from running to ready when the t-t-script execution unit no longer has instructions to execute or as the
result of invoking a stop or reinit operation;
from erroneous to ready as the result of invoking a stop or reinit operation.

9.4.2.3 Running

The status of an &script shall be running if all of the following conditions are met:

r-t-script initialisation has been achieved without error on this mh-script;
r&script destruction has not yet been requested on this &script;
the IP register is not ‘null’, i.e. there is a currently executing routine;
the ER register is set to ‘null’.

The status of an &script changes from ready to running when there is a message in the message queue
and the &script execution unit is activated. This may occur as the result of invoking a run operation.

9.4.2.4 Erroneous

The status of an r-t-script shall be erroneous
the &script execution.

if the ER register is not ‘null’, i.e. if an error has occurred during

The status of an r-t-script changes from running to erroneous when an instruction execution error is raised
by the r&script instruction execution unit.

9.5 Processing units

This subclause describes the MHEG-SIR virtual machine’s flow of control and the semantics of instructions.

For the purposes of the virtual machine description, the script interpreter’s main process is assumed to run in
parallel with all active t-t-script execution units. Scheduling of the different tasks is not specified.

9.51 Message reception

The script interpreter’s main process receives and handles events. In the absence of any events, it is idle.
Events received by the script interpreter may be

MHEG-3 API operation invocations;
messages corresponding to the occurrence of a exception raised as the result of invoking either a
service or predefined function.

9.5.1 .I MHEG-3 API operations

MHEG-3 API operations may be invoked by an t-t-script execution unit, by another component of the MHEG-3
engine or by external processes outside the MHEG-3 engine.

When an MHEG-3 API operation is invoked, the main process shall proceed as specified by the semantics of
the MHEG-3 API described in Clause 15.

9.5.1.2 External exception

When a message coming from either the action interpreter (MHEG API exception) or the run-time
environment is targeted at an r&script, then if this message actually corresponds to an exception raised by
the MHEG API or the run-time environment as a consequence of the invocation of an operation resulting from

34

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522-3: 1997(E)

an XCALL instruction by this &-script, the main process shall parse the exception’s parameters and construct
an message structure consisting of the message identifier of the exception followed by its actual members
(starting with the object reference of the originating object). Then

if the exception results from the invocation of a currently executing synchronous operation, the main
process shall request the t-t-script execution unit to terminate the XCALL instruction (therefore popping
its frame from the call stack) without looking for output parameters or a return value, then immediately
afterwards to trigger the routine corresponding to the exception’s message identifier, with the
exception’s members as its actual parameters; the effect shall be the same as if this routine had been
invoked by a CALL instruction;

if the exception results from the invocation of a previously terminated synchronous operation (whether
successfully or not), the main process shall ignore the exception;

if the exception results from the invocation of an asynchronous operation, the main process shall insert
the constructed message into the message queue of the target t-t-script.

9.5.1.3 InstructionExecutionErroreXCt?pfiOl'l

When the internal InstructionExecutionError exception is raised by the execution of an instruction,
the main process shall construct a message structure consisting of the message identifier corresponding to
this exception, followed by one member set to the value of the error register, then insert it into the message
queue of the r&script whose execution raised the exception.

9.5.1.4 MHEG-3 API exception

When an exception resulting from the invocation of an MHEG-3 API operation is returned to an r-t-script, the
main process shall construct a message structure consisting of the message identifier corresponding to the
exception, followed by its members, then insert it into the message queue of the t-t-script that invoked the
operation.

9.5.2 Mh-script initialisation

When the MHEG-3 API prepare operation is invoked, the script interpreter shall access the stream or file
using the provided system identifier and parse the script. The script interpreter shall then

parse the declarations part and initialize the CT, GT, TT, RT, ST, PT, XT, HT and the RT [i] . LT for
each routine i; this includes the appropriate checks (handler verification, package availability
procedure);
parse the structure of the instructions part to fill in the program code area of each routine;
perform the package load procedure, establishing static links with packages according to the platform
mapping specification;
put the mh-script to available status.

NOTE: The semantics of package loading need be defined by the platform mapping specification. The
MHEG-3 engine may take the responsibility to optimise its resource management strategy, e.g. by
unloading packages temporarily in order to release memory, or by loading packages only as r-t-
scripts are created or even as services are invoked.

9.5.3 R&script initialisation

When the MHEG-3 API new operation is invoked, the script interpreter shall create a context for the target rt-
script, i.e. the script interpreter shall

in
in

itialise the dy namic me mv area
itialise all reg isters to n ull va lues;

s;

35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISO/IEC

create an &script execution unit for the r&script;
put the t-t-script to ready status.

9.5.4 Rt-script execution unit

When activated and unless requested to stop the current t-t-script, the t-t-script execution unit shall perform as
follows:

rt-script-execution-unit 0

FID fid = 'null';
if (IP == 'null')
{

while (fid == 'null')
1

if (QP == ‘null') then exit;
fid= HT[MQ[QP].MID].FID;
if (fid != 'null') then

// no next instruction

// return
// find handler for message
// handler found

CS.push({IP, FR, SP, 'null'});
FR = fid;
IP = RT[FR].IP;

// stack routine call

// branch to start of routine
1
MQ.remove(); // remove message

while (IP != 'null'):
{

IR = *IP++; // load next instruction and increment program counter
instruction-execution-unit(); // call the MHEG-SIR instruction execution unit

// endwhile
return;
>

// return to script interpreter

9.5.5 MHEG-SIR instruction execution unit

When called by the r-t-script execution unit, the MHEG-SIR instruction execution unit of an rt-script shall
decode the op-code contained in the first byte of the IR, then interpret the instruction corresponding to this
op-code as specified by Clause 13, then return.

The instruction execution unit pops from the parameter stack those parameters that are used to perform the
instruction (if any). It pushes on the parameter stack those parameters that are the result of the instruction (if
any).

Table 3 summarises the effects of the instructions on the various elements of the MHEG-SIR virtual machine
as defined by this Clause.

10 Provisions for run-time environment access

This Clause describes the mechanisms defined by this part of ISOIIEC 13522 to make it possible for r&scripts
to access and interchange data with external functions provided by the run-time environment on the
execution platform.

10.1 General model

The interface that external software available in the run-time environment provides need be declared in the
interchanged script as part of its package declaration, so that the script interpreter know how to access this
interface when the script invokes it.

A package declaration describes a set of services (i.e. external functions) by their signature, i.e. the type and
passing mode of each parameter.

36

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522=3:1997(E)

MHEG-SIR specifies how calling external functions, passing parameters, getting back return values and
handling exceptions shall be expressed within interchanged scripts.

This part of ISOAEC 13522 also specifies how these expressions shall be interpreted by MHEG-3 engines.

This part of ISOAEC 13522 also deals with interchange (i.e. function call, parameters passing, return value
retrieval and exception handling) between an MHEG-3 engine and the run-time environment. For this
purpose, this part of ISO/IEC 13522 contains provisions for specifying how access to these functions should
be provided to MHEG-3 engines by external software. Such a convention, called a platform mapping
specification, is dependent on the run-time platform.

Platform mapping specifications conforming to the provisions of this part of ISOAEC 13522 need to be
registered to ensure the interoperability of run-time environment services with any compliant MHEG-3 engine
on this platform. If a platform mapping specification exists for the platform, MHEG-3 engines shall conform to
this platform mapping specification in order to access run-time environment services.

MHEG-3 engine implementations shall document in their conformance document the platform mapping
specification(s) to which they conform.

NOTE: If existing software does not comply with the platform mapping specification and need be accessed
from MHEG-SIR scripts, it may be embedded into an interface that translates its own interface
conventions into those of the platform mapping specification.

10.2 Declaration of IDL interfaces

The interface of external software intended for use by an interchanged script may contain

operation declarations;
exception declarations;
type declarations.

Types shall be declared in the type declaration of this interchanged script.

Operations and exceptions shall be declared in the package declaration of this
package declaration shall be assigned a package identifier and shall consist of

interchanged script. This

the name of the package;
a set of service descriptions;
a set of exception descriptions.

Service descriptions shall be assigned a function identifier and shall consist of

the name of the operation;
the function signature, i.e. the type and passing mode of each parameter and the type of the return
value.

Exception descriptions shall be assigned a message identifier and shall consist of

the name of the exception;
the exception signature, i.e. the type of each member.

Identifiers (package identifiers, type identifiers, function identifiers) are used by MHEG-SIR scripts to refer to
types and functions; a function identifier for an external operation can be built from a package identifier and
the index of the service declaration in this package, while a message identifier for an external exception can
be built from a package identifier and the index of the exception declaration in this package.

37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3: 1997(E) 0 ISO/IEC

Names (package names, operation names, exception names) shall be used by the script interpreter to link
with the actual implementation of the external software.

An MHEG-SIR package declaration lies at the same abstraction level as an IDL specification. This part of
ISO/IEC 13522 defines the rules for mapping an IDL specification into a package declaration. Clause 14
specifies

how an IDL data type description shall be mapped to an MHEG-SIR data type description;
how an IDL operation description shall be mapped to an MHEG-SIR service description;
how an IDL exception description shall be mapped to an MHEG-SIR exception description.

10.3 Invocation of external operations in an MHEG-SIR program

A service described in a package declaration shall be invoked from an MHEG-SIR program as follows:

variables of expected types corresponding to the return value (if any) and to each parameter shall be
declared within the interchanged script (except the originating object’s object reference, which shall be
implicit);
the program shall assign those variables which correspond to input or input/output parameters;
the program shall push onto the stack the data identifiers of all these variables in right-to-left order (the
identifier of the variable corresponding to the return value is pushed first, then the actual parameters,
with the object reference (implicit parameter) of the target being pushed last);
the program shall invoke the operation using an external call (XCALL) instruction with the function
identifier of the invoked operation as operand;
the program shall exploit the function results using the variables corresponding to the return value, the
inout parameters and the out parameters.

10.4 Handling of external exceptions in an MHEG-SIR program

An exception described in a package declaration shall be handled by an MHEG-SIR program as follows:

variables of expected types corresponding to each member shall be declared within the interchanged
script (except the originating object’s object reference, which shall be implicit);
a routine whose parameters correspond to the exception members shall be declared within the routine
declaration part of the interchanged script;
the mapping between the identifiers of this handling routine and the exception shall be declared in the
handler declaration part of the interchanged script.

10.5 Invocation of external operations by an MHEG-3 engine

When an interchanged script expresses invocation of an operation as described in subclause 10.3, the script
interpreter shall behave as described by the semantics of the XCALL instruction in Clause 13. As part of this
performance, it shall interpret the mechanisms described in subclause 10.3 in translating them into the run-
time environment access mechanisms as defined by the platform mapping specifications.

NOTE: For instance, an MHEG-3 engine may translate a variable identifier pushed onto the stack as a
service parameter into either a value or a real memory address to be passed to the external
software that provides the service.

10.6 Handling of external exceptions by an MHEG-3 engine

When an exception is raised by an external service, this results in a message being transmitted to the
MHEG-3 engine according to the run-time environment access mechanisms defined by the platform mapping
specifications.

The script interpreter shall then behave as described in subclause 9.5.1.2.

38

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOllEC 13522-3: 1997(E)

10.7 Platform mapping specifications

A platform mapping specification shall contain all of the following:

the description of the platform to which the specification applies;
the package availability procedure, which MHEG-3 engines shall use to check the availability of a
given package within the run-time environment;
the package load procedure, which MHEG-3 engines shall use to make the operations of a given
package accessible to an r&script;
the package unload procedure, which MHEG-3 engines shall use to unload a package;
the operation invocation procedure, which MHEG-3 engines shall use to invoke a given operation;
the data encoding rules, which MHEG-3 engines shall use to encode the value of in or inout
parameters of an operation and to decode the value of out or inout parameters of an operation or
exception members;
the parameter passing procedures, which MHEG-3 engines shall use to pass in, inout and out
parameters to an operation;
the return value retrieval procedure, which MHEG-3 engines shall use to retrieve the return value of
an operation;
the exception retrieval procedure, which MHEG-3 engines shall use to retrieve exceptions raised by
an operation.

The contents of a platform mapping specification are defined in Annex D.

II Provisions for MHEG object manipulation

This Clause describes the mechanisms defined by this part of ISO/IEC 13522 to make it possible for t-t-scripts
to manipulate MHEG objects.

11.1 Invoking MHEG actions

MHEG-SIR is used to express invocation of MHEG actions as defined by the MHEG API.

The MHEG API is defined using IDL. The mapping from an IDL definition to an MHEG-SIR package
declaration and type declaration is defined in Clause 14. However, the MHEG API package is considered as
a predefined one. So its declaration shall not be included explicitly in interchanged scripts. The mapping
mechanism is similar to the external function declaration mechanism described in Clause 10, except that the
IDL types and operations defined by the MHEG API shall not be declared as part of the MHEG-SIR code, but
are instead dealt with as predefined types and predefined external functions.

The mechanism used to invoke an MHEG action is similar to the invocation of a service provided by the run-
time environment. An XCALL instruction is used. Types defined in the MHEG API package are referred to
using a predefined type identifier. Functions described in the MHEG API package are referred to using a
predefined function identifier.

11 .I .I Sending messages to other scripts

The MHEG-3 API package is considered as a predefined one. Within an interchanged script, messages may
be efficiently targeted at other scripts using the predefined functions mapping MHEG-3 API operations. An t-t-
script can thus pass and receive parameters and call routines from another t-t-script.

NOTE: This may be used to implement the concept of “library” or “utility” scripts. This may also be used to
synchronise t-t-scripts.

39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) 0 ISO/IEC

11 .I .2 Exchange of information with MHEG objects

Exchange of information between an r-t-script and other MHEG entities (including other t-t-scripts) may be
expressed using the MHEG API operations mapping the MHEG “set data” and “get data” actions. MHEG
content objects embedding generic values may be used to constitute a shared memory area among MHEG
objects.

Waiting for a signal from another object may be translated by a loop including a call to the MHEG API
operation mapping the MHEG “get data” action until the expected value is retrieved.

Generating a signal may be translated by a call to the MHEG API operation corresponding to the “set data”
MHEG action.

NOTE: As far as exchange of information among t-t-scripts is concerned,
in subclause 11 .I .I is recommended.

use of the mechanism described

11.2 Receiving MHEG messages

MHEG-SIR is used to express handling of messages resulting from MHEG actions. These messages may be
either of the following:

MHEG-3 API run operations;
MHEG API exceptions.

11.2.1 MHEG-3 API run operations

The MHEG “set parameters” and “run” actions that may be targeted to an r&script should result in the
MHEG-3 API setparameter and run operations. Invocation of the run operation results in a message
being inserted into the &script’s message queue with

as message identifier, a predefined message identifier which is mapped to the routine identifier of the
targeted routine;
as members, the parameters previously set by the set Paramet er operation.

11.2.2 MHEG API exceptions

The MHEG API exceptions are considered as messages which are sent to the script interpreter as the result
of invoking an MHEG API operation. These exceptions have predefined message identifiers. The script
interpreter shall process these messages in the same way as it would process an exception coming from the
run-time environment, as described in subclause 9.5.1.2.

12 MHEG-SIR declarations

This Clause defines the structure of interchanged scripts. This Clause also specifies the way the virtual
machine deals with parsing of an interchanged script.

The following notations conventions are used:

non-terminals are written as normal text;
terminal types are written in uppercase;
enumerated values are enclosed in single quotes;
Ll - =“ indicates a definition;
“ ; ” indicates a choice in a production;
I‘*‘” indicates zero or more occurrences of the preceding type;
“+” indicates one or more occurrences of the preceding type;
I‘?” indicates zero or one occurrence of the preceding type (optional type).

40

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522=3:1997(E)

NOTE: The complete grammar of interchanged scripts is described in Annex H.

An interchanged script shall consist of

a sequence of type declarations;
a sequence of constant declarations;
a sequence of global variable declarations;
a sequence of package declarations;
a sequence of message handler declarations;
a sequence of routine declarations.

Interchangedscript
1 . .- . .- TypeDeclaration*

ConstantDeclaration*
VariableDeclaration*
PackageDeclaration*
HandlerDeclaration*
RoutineDeclaration*

12.1 Type declaration

Type declarations are used to describe the types of the interchanged script.

A type declaration shall consist of

a type identifier (optional);
a type description.

TypeDeclaration . .- . .- TypeIdentifier?
TypeDescription

12.1 .+I Type identifier

Type identifiers are used to reference the type description throughout the interchanged script.

The type identifier shall be a positive integer within the range allowed for declared types. It shall correspond
to the maximum number of predefined types incremented by the index (starting at 0) of the declaration in the
type declarations part.

If the type identifier is not provided, it shall be computed by the script parser.

TypeIdentifier

12.1.2 Type description

. .- . .- INTEGER

Type descriptions describe the structure of a declared type.

The type description shall be one of the following:

a string description;
a sequence description;
an array description;
a structure description;
a union description.

41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522=3:1997(E) 0 ISO/IEC

TypeDescription . .-
. l - SequenceDescription
I StringDescription
I ArrayDescription
I StructureDescription
I UnionDescription

12.1.2.1 String description

A string description shall consist of an integer (optional).

IStringDescription . .- . .- INTEGER? // String (max) size I

The integer represents the maximum size of the string; if it is not provided, the string shall be unbounded.

12.1.2.2 Sequence description

A sequence description shall consist of

an integer (optional);
a type identifier.

SequenceDescription . .-
. l - INTEGER?

TypeIdentifier
// Sequence (max) size

The integer represents the maximum size of the sequence; if it is not provided, the sequence shall be
unbounded.

The type identifier represents the type of element of the sequence.

12.1.2.3 Array description

An array description shall consist of

an integer;
a type identifier.

ArrayDescription
1 . .-

. l - INTEGER // Array size
TypeIdentifier

The integer represents the size of the array.

The type identifier represents the type of element of the array.

12.1.2.4 Structure description

A structure description shall consist of a sequence of type identifiers.

StructureDescription ::= TypeIdentifier+ A

Each type identifier represents the type of one of the fields of the structure.

12.1.2.5 Union description

A union description shall consist of a sequence of one or more type identifiers.

IUnionDescription . .- . .- TypeIdentifier+ I

42

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/lEC 13522=3:1997(E)

Each type identifier represents the type of one of the choices of the union.

12.2 Constant declaration

Constant declarations are used to describe the types and values of the constants of the interchanged script.

A constant declaration shall consist of

a data identifier (optional);
a type identifier;
a constant value.

ConstantDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantValue

12.2.1 Data identifier

Data identifiers are used to reference data throughout the interchanged script.

The data identifier shall be a positive integer within the range allowed for constants. It shall correspond to the
index (starting from 0) of the declaration in the constant declarations part.

If the data identifier is not provided, it shall be computed by the script parser.

[DataIdentifier . .- . .- INTEGER I

12.2.2 Type identifier

The type identifier represents the type to which the value of the constant belongs.

+I 2.2.3 Constant value

The constant value represents the value to which the constant corresponds throughout the script.

If the type of the constant is a primitive or string type, the constant value shall consist of an immediate
value expressed in this type.

If the type of the constant is a sequence type, the constant value shall consist of a sequence of constant
values, whose length is less or equal to the size of the sequence type and whose type is the element type of
the sequence description.

If the type of the constant is an array type, the constant value shall consist of a sequence of constant
values, whose length equal to the size of the array type and whose type is the element type of the array
description.

If the type of the constant is a structure type, the constant value shall consist of a sequence of constant
values, whose length is equal to the number of elements in the structure type; each of these values shall
be of the same type as the corresponding element type in the structure description.

If the type of the constant is a union type, the constant value shall consist of an integer representing the
index (starting from 0) of the choice in the union type and a constant value whose type is the type of
element of the corresponding rank in the union description.

43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3: 1997(E) 0 ISO/IEC

ConstantValue . .-
. l - BOOLEAN
I OCTET
I INTEGER // all numeric types
I REAL // float or double
I STRING // character or string
I DataIdentifier
I ConstantValue* // sequence, array or structure
I UnionValue

UnionValue . .-
. l -- INTEGER // Tag index

ConstantValue

12.3 Global variable declaration

Global variable declarations are used to describe the types and initial values of the global variables of the
interchanged script.

A global variable declaration shall consist of

a data identifier (optional);
a type identifier;
a constant reference (optional).

VariableDeclaration ::= DataIdentifier?
TypeIdentifier
ConstantReference ? // Initial value

12.3.1 Data identifier

Data identifiers are used to reference data throughout the interchanged script.

The data identifier shall be a positive integer within the range allowed for global variables. It shall correspond
to the maximum number of constants incremented by the index (starting from 0) of the declaration in the
global variable declarations part.

If the data identifier is not provided, it shall be computed by the script parser.

12.3.2 Type identifier

The type identifier represents the type to which the value of the global variable belongs.

12.3.3 Constant reference

The constant reference represents the initial value of the global variable.

The constant reference shall be one of the following:

a data identifier referencing a constant;
a constant value as described in subclause 12.2.3.

In any case, the value to which this constant reference refers shall be of the type of the global variable.

If the constant reference is not provided, the script interpreter shall assign the global variable a default value if
its type allows for it. Othewise, it shall remain undefined until assigned by an instruction.

ConstantReference . .- . .- DataIdentifier
I ConstantValue

44

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522-3: 1997(E)

12.4 Package declaration

Package declarations are used to describe the external services and exceptions used by the interchanged
script.

A package declaration shall consist of

a package identifier (optional);
a string representing the package name;
a sequence of service descriptions;
a sequence of exception descriptions.

PackageDeclaration . .- . .- PackageIdentifier?
VisibleString // Package name
ServiceDescription*
ExceptionDescription*

12.4.1 Package identifier

Package identifiers are used to reference packages throughout the interchanged script.

The package identifier shall be a positive integer within the range allowed for packages. It shall correspond to
the index (starting at 0) of the declaration in the package declarations part.

If the package identifier is not provided, it shall be computed by the script parser.

PackageIdentifier . .- . .- INTEGER ,

12.4.2 Name

A package name is used by the script interpreter to access the package within the run-time environment,
according to the package availability procedure described by the platform mapping specification.

12.4.3 Service description

Service descriptions describe external function prototypes.

A service description shall consist of

a function identifier (optional);
a string representing the operation name;
a calling mode (optional);
a type identifier (optional);
a sequence of parameter descriptions.

ServiceDescription . .- . .- FunctionIdentifier?
VisibleString? // IDL global name
CallingMode?
TypeIdentifier? // return value
ServiceParameterDescription+

12.4.3.1 Function identifier

Function identifiers are used to reference functions throughout the interchanged script.

The function identifier shall be a positive integer within the range allowed for services. It shall correspond to
the maximum number of routines plus the maximum number of predefined functions plus the package

45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 lSO/IEC

identifier multiplied by 256, incremented by the index (starting from 0) of the service in the package
declaration.

If the function identifier is not provided, it shall be computed by the script parser.

IFunctionIdentifier . .- . .- INTEGER

12.4.3.2 Name

The operation name is used by the script interpreter to access the operation within the run-time environment,
according to the operation invocation procedure described by the platform mapping specification.

12.4.3.3 Calling mode

The calling mode represents the way the operation shall be invoked.

The calling mode shall be either ‘synchronous’ or ‘asynchronous’.

If the value is not specified, the calling mode shall be ‘synchronous’.

ICallingMode . .- . .- 'SYNCHRONOUS' 1 'ASYNCHRONOUS' I

12.4.3.4 Type identifier

The type identifier represents the type of return value of the service.

If the type identifier is not specified, it shall be interpreted as a void type, i.e. the function shall have no
return value.

If the calling mode of the operation is ‘asynchronous’, the type identifier shall be either ‘void’ or not specified.

12.4.3.5 Parameter description

Parameter descriptions are used to specify the type and passing mode of service parameters.

A parameter description shall consist of

a passing mode;
a type identifier.

ServiceParameterDescription ::= ServicePassingMode?
TypeIdentifier

12.4.3.5.1 Passing mode

The passing mode indicates whether the value of the parameter at the time of invocation of the service is
used by the service (input parameter) and whether this parameter is modified by the service for use by its
caller (output parameter).

The passing mode shall be one of the following: ‘in’, ‘inout’ or ‘out’.

If the passing mode is not specified, it shall be interpreted as an in parameter.

NOTE: The object reference parameter is implicit, so it should not be specified as part of the declaration. It
is dealt with as an in parameter.

46

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOAEC 13522-3:1997(E)

If the calling mode of the operation is ‘asynchronous’, the passing mode shall be either ‘in’ or not specified.

IServicePassingMode . .- . .- 'IN' I 'OUT' I 'INOUT' I

12.4.3.5.2 Type identifier

The type identifier represents the type of the considered service parameter.

12.4.4 Exception description

Exception descriptions describe prototypes of exceptions that may be raised during the execution of external
functions.

An exception description shall consist of

a message identifier (optional);
a string representing the exception name;
a sequence of type identifiers representing the members of the exception.

::= MessageIdentifier?
VisibleString? //IDL exception global name
TypeIdentifier* //Parameter types

12.4.4.1 Message identifier

Message identifiers are used to reference messages throughout the interchanged script.

The message identifier shall be a positive integer within the range allowed for exceptions. It shall correspond
to the maximum number of predefined messages plus the package identifier multiplied by 256, incremented
by the index (starting at 0) of the exception in the package declaration.

If the message identifier is not provided, it shall be computed by the script parser.

IMessaaeIdentifier . .- . .- INTEGER I

12.4.4.2 Name

An exception name is used by the script interpreter to retrieve the exception within the run-time environment,
according to the exception retrieval procedure described by the platform mapping specification.

12.4.4.3 Parameter description

Each parameter of the message corresponds to one member of the exception. It is described by its type
identifier.

12.5 Handler declaration

Handler declarations are used to associate a message with the function that handles it.

A handler declaration shall consist of

a message identifier;
a function identifier.

HandlerDeclaration . .- . .- MessageIdentifier
FunctionIdentifier

47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISO/IEC

12.5.1 Message identifier

The message identifier indicates the message to be handled.

The message identifier shall be a positive integer within the whole range allowed to messages representing
either a predefined message or an exception.

12.5.2 Function identifier

The function identifier indicates the function to be triggered when the message is removed from the message
queue.

The function identifier shall be a positive integer within the whole range allowed to function, representing a
routine, a predefined function or a service.

The description of the formal parameter types for the function shall be the same as for the message, so that
the function may be called with the message actual parameters as its parameters. If signatures do not match,
the handler shall be rejected by the script parser.

12.6 Routine declaration

Routine declarations are used to describe the structure and program code of the internal functions of the
interchanged script.

A routine declaration shall consist of

a function identifier (optional);
a type identifier (optional);
a sequence of parameter descriptions;
a sequence of local variable declarations;
MHEG-SIR program code.

RoutineDeclaration . .- . .- FunctionIdentifier?
TypeIdentifier? // for return value
RoutineParameterDescription*
LocalVariableDeclaration*
OCTET STRING // program code

12.6.1 Function identifier

The function identifier shall be a positive integer within the range allowed for routines. It shall correspond to
the index (starting from 0) of the routine in the routine declarations part.

If the function identifier is not provided, it shall be computed by the script parser.

12.6.2 Type identifier

The type identifier represents the type of return value of the routine.

If the type identifier is not specified, it shall be interpreted as a void type, i.e. the function shall have no
return value.

12.6.3 Parameter description

Parameter descriptions are used to specify the type and passing mode of routine parameters.

48

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522=3:1997(E)

A parameter description shall consist of

a passing mode (optional);
a type identifier.

RoutineParameterDescription ::= RoutinePassingMode?
TypeIdentifier

12.6.3.1 Passing mode

The passing mode indicates whether the parameter shall be passed to the routine using its value (input
parameter) or a reference to the variable that holds its value (input/output parameter).

The passing mode shall be one of the following: ‘value’ or ‘reference’.

IRoutinePassingMode . .- . .- 'VALUE' 1 'REFERENCE' ~~ --I

12.6.3.2 Type identifier

The type identifier represents the type of the considered routine parameter.

12.6.4 Local variable declaration

Local variable declarations are used to describe the types and initial values of variables whose scope is
limited to one execution of a routine.

A local variable declaration shall have the same structure as a global variable declaration, as defined in
subclause 12.3. It shall consist of

a data identifier (optional);
a type identifier;
a constant reference (optional).

12.6.4.1 Data identifier

The data identifier shall be a positive integer within the range allowed for local variables. It shall correspond to
the maximum number of constants plus the maximum number of global variables incremented by the index
(starting from 0) of the declaration in the local variable declarations of the routine, incremented by the number
of formal parameters of the routine.

If the data identifier is not provided, it shall be computed by the script parser.

12.6.4.2 Type identifier

The type identifier represents the type to which the value of the local variable belongs.

12.6.4.3 Constant reference

The constant reference represents the initial value of the local variable.

The constant reference shall be one of the following:

a data identifier referencing a constant;
a constant value as defined in subclause 12.2.3.

In any case, the value to which this constant reference refers shall be of the type of the local variable.

49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISO/lEC

If the constant reference is not provided, the script interpreter shall assign the local variable a default value if
its type allows for it. Otherwise, it shall remain undefined until assigned by an instruction”

12.6.5 Program code

The program code consists of the sequence of instructions of the routine, intended for execution by the script
interpreter when the routine is triggered. The syntax and semantics of the MHEG-SIR instructions is
described in Clause 13.

The last instruction of a routine shall be a RET instruction.

13 MHEG-SIR instructions

This Clause defines the semantics of the MHEG-SIR instructions.

13.1 Presentation methodology

Each instruction is defined in the corresponding subclause by a set of entries as follows:

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification

Errors:

A brief description of the instruction’s semantics.

Mnemonic Operand1 . . . OperandN

A description of the types and semantics of each operand carried with the
instruction (if any).

A visual synopsis of the instruction’s effect on the parameter stack, e.g.

. . . , Parameterl, Parameter2 Q Result

A list of the types of parameters to which the instruction applies (if it is a template
instruction).

A description of the semantics of each element of the parameter stack which is
popped, pushed or otherwise effected by the instruction (if any).

A textual specification of the interpretation semantics of the instruction.

A formal specification of the interpretation semantics of the instruction using the
notation described in this subclause.

A list of the errors that may be raised during execution of the instruction.

13.1 .I Error conditions

The semantics of the instruction, as described by the formal specification, shall apply only if the operands are
valid. Otherwise, an InstructionExecutionError exception shall be raised and the error register shall
be set to InvalidOperand. The result of the instruction execution is unspecified.

When the parameter stack is looked up, i.e. on a PS . pop or a PS [SP] primitive, if the parameter stack does
not hold enough parameters then an InstructionExecutionError exception shall be raised and the
error register shall be set to StackUnderf low. The resulting state of the parameter stack is unspecified.

If the result of an arithmetic operation falls in a range that exceeds that of the target type, arithmetic
operations shall raise an InstructionExecutionError exception and the error register shall be set to
ArithmeticOverflowOrDivisionByZero, asapplicable.

50

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522=3:1997(E)

If a identifier does not refer to a valid entity (type, data, function, message, package) then when its value in
the corresponding table is accessed (e.g. using DT [i]), an InstructionExecutionError exception
shall be raised and the error register shall be set to Invalidldent if ier.

If IP is set to an invalid pointer then an InstructionExecutionError exception shall be raised and the
error register shall be set to JumpOutOfRange.

When a dynamic variable is allocated and allocation is impossible due to lack of memory space or data
identifiers then the new (> primitive shall raise an InstructionExecut ionError exception and set the
error registerto AllocationFailed.

Triggering of the other error
values are defined in Annex C

conditions is specified explicitly throughout subclause 13.3. The error code

13.1.2 Formal specification

The “formal specification” entry of an instruction description gives a concise formal notation of the effect that
the instruction execution unit shall produce as it interprets the instruction; however, as this specification is
expressed in terms of a sequence of operations, there may be other methods to lead to the same result, so
this formal specification does not require the instruction execution unit to perform as expressed as long as the
effect is the same.

The error cases described in subclause 13.1 .I are implicit and are not expressed in the formal
The other error cases are explicitly mentioned.

specification.

To specify the semantics of an instruction in a formal way, a C-like syntax is used. It uses the notations and
concepts defined in Clauses 8 and 9, plus the following notations:

data table (DT) notation (see subclause 13.1.3);
template instruction notation (see subclause 13.1.4);
primitives (see subclause 13.15).

13.1.3 Data table notation

The notation DT (i) , where i stands for a data identifier, corresponds to:

the entry whose key is i in the constant table, if i is the data identifier of a constant;
the entry whose key is i in the global variable table, if i is the data identifier of a global variable;
the entry whose key is i in the local variable table of the currently executing routine, if i is the data
identifier of a local variable;
the dynamic variable whose handle is mapped to i, if i is the data identifier of a dynamic variable.

This macro may be expressed as follows:

#define DT(i) (i < 4096) ? CT

13.1.4 Template instruction notation

[1 i : VT[i]

A number of instructions (e.g. arithmetic and logical instruction) operate on values of a given type and
produce a result with the same type. The CT> notation is used to express a template instruction.
<Mnemonic> CT> represents all instructions <Mnemonic> with CT> being replaced by the type letter of any
primitive type-to which the instruction is applicable, as described by the “Types” entry in the instruction
description.

NOTE: Operations on mixed types
the instruct .ion sequence.

should be handled by explicitly inserting type conversion instructions in

51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISOAEC

13.1.5 Primitives

The following primitive notations are used in the formal specification of the instructions:

DID new (tid) : allocates a dynamic variable of the type identifier by tid;
void raise(exc) :raisesan InstructionExecutionError exception and sets ERtoerrorcode
exe;
void delete (did) : releases the dynamic variable identified by did;
int sizeof (tid) : returns the size of values of the type identified by tid, expressed in the same
units as the PS pointer addresses;
type (CT>) : macro to be replaced by the C type name.

13.2 Classification of MHEG-SIR instructions

The MHEG-SIR instructions may be clustered into categories according to their effect on the control flow, on
the variable tables or on the parameter stack, and according to the types of stack parameters that they
accept:

a>

W

C>

d)

-1

instructions that affect the control flow:
I> unconditional jump instructions: JMP, L JMP;
2) conditional jump instructions: JT, JF, LJT, LJF;
3) function invocations: CALL, XCALL;
4) miscellaneous control flow instructions: RET, YIELD;
instructions that do not affect the control flow, but affect the value of variables:
1) complex variable modifiers: SET, SETC;
2) arithmetic operators on variables: INC, DEC;
3) stack pop inStWCti0nS: POPR, POP, POPC;
4) memory management instructions: ALLOC, FREE;
instructions that do not affect the control flow or the variables, but affect the parameter stack:
I> conversion instructions: CvT;
2) arithmetic operators: ADD, SUB, MuL, DIV, REM, NEG;
3) logical operators: AND, OR, XOR, NOT;
4) logical shift operators: SHIFT;
5) comparison operators: EQ, GT, LT, EQR;
6) complex data accessors: GET, GETC;
7) miscellaneous stack manipulation instructions: PUSHI, PUSHR, ma, Dw, GETOF.;
instructions that have no effect: NOP.

NOTE: Most instructions only operate on primitive type values. Only the following instructions are used to
manipulate constructed values: EQR, GET, GETC, SET, SEX, ALLOC, FREE, CALL,XCALL.

I ne effect of instructions is summarised in Table 3. The operations are listed in canonical order, i.e. by
ascending op-code number. Some mnemonics represent template instructions and therefore have type
suffixes.

52

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOAEC 13522-3: 1997(E)

Table 3: Synopsis of MHEG-SIR instructions and their effect

Mnemonics Ref. Opcode Op. size Op. type Parameter types PS effect VT Control
(hexa) effect flow

effect
NOP 14.3.1 00 0
YIELD 14.3.2 02 0 X

RET 14.3.3 03 0 011 * 011 X

FREE 14.3.4 08 0 I*0 X

NOT <T> 14.3.5 IO-13 0 BOWU IQ1 -
OR <T> 14.3.6 14-17 0 BOWU 2Ql -
XOR <T> 14.3.7 18-IB 0 BOWU 2Ql -
AND <T> 14.3.8 IC-IF 0 BOWU 2+1 -
EQR 14.3.9 20 0 2Ql
EQ <T> 14.3.10 21 -2B 0 OSLWUFDBCIR 2 + 1 -
LT <T> 14.3.11 30 - 37 0 COSLWUFD 2+1 -
GT <T> 14.3.12 38 - 3F 0 COSLWUFD 2e1 -
ADD <T> 14.3.13 40 - 47 0 OSLWUFD 2@1 -
SUB <T> 14.3.14 48 - 4F 0 OSLWUFD 2Ql -
MUL <T> 14.3.15 50 - 57 0 OSLWUFD 2c=>l -
DIV <T> 14.3.16 58 - 5F 0 OSLWUFD 2al -
NEG <T> 14.3.17 62 - 67 0 SLFD lc=>l -
REM <T> 14.3.18 79 - 7D 0 OSLWU 2@1 -
DUP <T> 14.3.19 81 -8B 0 OSLWUFDBCIR 1 c3 2 -
CVT <TT> 14.3.20 94 - BE 0 OSLWUFDBC 161 -
JT 14.3.21 CO 1 offset IeO X

JF 14.3.22 Cl 1 offset I+0 X

JMP 14.3.23 C2 1 offset X

SHIFT <T> 14.3.24 C5-C7 1 offset owu IQ1 -
GETOR 14.3.25 C9 1 PID 0*1
LJT 14.3.26 DO 2 offset Ia0 X

LJF 14.3.27 Dl 2 offset Id0 X

LJMP 14.3.28 D2 2 offset X

CALL 14.3.29 D4 2 FID n Q 011 X

XCALL 14.3.30 D6 2 FID n c3 011 X

PUSH 14.3.31 EO 2 DID O*l
PUSHR 14.3.32 El 2 DID 061
PUSH1 14.3.33 E3 2 value Oc=>l
POP 14.3.34 E4 2 DID I+0 X

POPR 14.3.35 E5 2 DID IQ0 X

POPC 14.3.36 E6 2 DID I*0 X

ALLOC 14.3.37 E8 2 TID OQI X

INC 14.3.38 EA 2 DID I*0 X

DEC 14.3.39 EB 2 DID IeO X

GET 14.3.40 FO 3 DID, idx idx Q 1
GETC 14.3.41 F2 3 DID, idx idx+l c3 0 x
SET 14.3.42 F4 3 DID, idx idx+l c3 0 x
SETC 14.3.43 F6 3 DID, idx idx+l rS 0 x

53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522=3:1997(E)

13.3 Description of instructions

13.3.1 No operation

Short description:

Synopsis:

Operands:

Types:

Parameters:

Stack:

Effect:

Formal specification:

Errors:

13.3.2 Yield

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.3 Return

Short description:

Do nothing.

NOP

0 ISO/IEC

None.

Not applicable.

None.

. . . @ . . .

None.

0;

Handle pending messages.

YIELD

None.

. . . e . . .

Not applicable.

None.

If there is a pending message in the message queue, handle it by calling the
corresponding routine.
Upon returning, iterate the process until the message queue is empty.

while (QP != 'null')

FID fi
if (fi
else

d = HT[MQ[QP].MID].FID;
d == "null') then raise('HandlerNotFound');

CS.push({IP-1, FR, SP, LT));
// IP-1: allows to re-iterate the YIELD instruction
FR = fid;
IP = RT[FR].IP;
LT = MQ[QP].LT;

MQ.remove();

HandlerNotFound

Return to caller.

54

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522=3:1997(E)

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.4 Free

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.5 Not

Short description:

Synopsis:

Operands:

Stack:

RET

None.

. . . , Val *

Not applicable.

Wal)

If the current routine signature has a return value, Val shall be interpreted as of
the type of this return value.
Otherwise, no stack parameter shall be considered.

Return to the calling routine. Pop the call stack and restore the context of the
previous frame. If the current routine has a return value, check that there is a
value of the same type on the top of the parameter stack.
If there is no calling function to return to, stop and go back to ready status.

if (sizeof(RT[FR].TID) != (SP - CS[FP].SP))
then raise('InvalidReturnValue');

IP = CS[FP].IP;
FR = CS[FP].FR;
LT = CS[FP].LT;
cs.popo;

InvalidReturnValue

Release dynamic variable.

FREE

None

. . ., Did Q . . .

Not applicable.

Did shall be interpreted as a data identifier.

Check that Did is the data identifier of a dynamic variable. Release the dynamic
memory associated with Did, and make the data identifier invalid.

if (did < 8100h) then raise(‘InvalidParameter');
delete(VT[PS.pop('data identifier')]);

StackUnderflow
InvalidIdentifier

Logical negation.

NOT <T> -

None.

. . . , Val r3

55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISO/IEC

Types: Boolean or any unsigned integer (B, 0, W, U).

Parameters: Val shall be interpreted as of type CT>.
Neg shall be of type -CT>.

Effect:

Formal specification:

Errors:

13.3.6 Or

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

Replace the top element of the parameter stack by its logical negation if CT> is
B, its bitwise negation otherwise (i.e. its complement-to-one):

Neg = -Val

type(<T>) buf = PS.pop(<T>);
if (<T> == 'boolean') then PS.push(! buf);
else PS.push(- buf);

StackUnderflow

Logical disjunction.

OR <T> -

None.

. . . , Vail, Va12 6 Disj

Boolean or any unsigned integer (B, 0, W, U).

Vail and Va12 shall be interpreted as of type CT>.
Dis j shall be of type CT>.

Replace the top two elements of the parameter stack by their logical disjunction
if CT> is B, their bitwise disjunction otherwise:

Disj = Vail 1 Va12

type&T>) buf = PS.pop(<T>);
if (<T> == 'boolean') then buf = buf 1 I PS.pop('boolean');
else buf I= PS.pop(<T>);
PS.push(buf);

StackUnderflow

13.3.7 Exclusive or

Short description: Logical exclusion.

Synopsis: XOR CT> -

Operands: None.

Stack: . . . , Vail, Va12 @ Excl

Types: Boolean or any unsigned integer (B, 0, W, U).

Parameters: Vail and Val2 shall be interpreted as of type -CT>.
EXC~ shall be of type -CT>.

56

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522-3: 1997(E)

Effect:

Formal specification:

Errors:

13.3.8 And

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

Replace the top two elements of the parameter stack by their logical exclusion if
CT> is B, their bitwise exclusion otherwise:

Excl = Vall A Va12

type&T>) buf = PS.pop(<T>);
if (-CT> == 'boolean') then buf = (buf != PS.pop('boolean'));
else buf A= PS.pop(<T>);
PS.push(buf);

StackUnderflow

Logical conjunction.

AND CT> -

None.

. . . , Vail, Va12 Q Conj

Boolean or any unsigned integer (B, 0, W, U).

Vail and Va12 shall be interpreted as of type <TX
Conj shall be of type <TX

Replace the top two elements of the parameter stack by their logical conjunction
if CT> is B, their bitwise conjunction otherwise:

Conj = Vall & Va12

type(<T>) buf = PS.pop(<T>);
if (<T> == 'boolean') then buf = buf && PS.pop('boolean');
else buf &= PS.pop(<T>);
PS.push(buf);

StackUnderflow

13.3.9 Equal reference

Short description: Compare constructed values.

Synopsis: EQR

Operands:

Stack:

Types: Not applicable.

Parameters:

. . ., Didl, Did2 c3 Boo1

Did1 and Did2 shall be interpreted as of data identifier type.
Boo1 shallbeof boolean type.

Effect: Check that Did1 and Did2 identify data of the same type.
Return ‘true’ if the data identified by Did1 and Did2 are equal (see subclause
8.2) ‘false’ otherwise:

Boo1 = (DT(Did1) == DT(Did2))

57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISOllEC

Formal specification:

Errors:

13.3.10 Equal

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.11 Less than

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

DID did2 = PS.pop('data identifier');
DID did1 = PS.pop('data identifier');
if (DT(didl).tid != DT(did2).tid) then raise('TypeMismatch');
if (DT(didl).val == DT(did2).val) then PS.push('true');
else PS.push('false');

TypeMismatch
Stacktlnderflow
InvalidIdentifier

Equality.

EQ CT> -

None.

. . ., Vail, Va12 c3 Comp

Any primitive type except void (0, S, L, W, U, F, D, B, C, I, R)

Vail and Va12 shall be interpreted as of type <TX
Comp shall beof boolean type.

Replace the top two elements of the parameter stack by ‘true’ if they are equal
and ‘false’ otherwise:

Comp = (Vail == Va12)

type(<T>) buf = PS.pop(<T>);
if (buf == PS .pop<T>) then PS.push('true');
else PS.push('false');

StackUnderflow

Strict inferiority.

LT <T> -

None.

. . . , Vail, Va12 @ Comp

Character or any numeric (C, 0, S, L, W, U, F, D).

Vail and Va12 shall be interpreted as of type <TX
Comp shall beof boolean type.

Replace the top two elements of the parameter stack by ‘true’ if the top element is
greater than the next, and ‘false’ otherwise:

Comp = (Vail < Va12)
To compare characters, the numeric order shall be used.

type(<T>) buf = PS.pop(<T>);
if (PS.pop<T> < buf) then PS.push('true');
else PS.push('false');

StackUnderflow

58

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522=3:1997(E)

13.3.12 Greater than

Short description: Strict superiority.

Synopsis: GT <T> -

Operands: None.

Stack: . . ., Vail, Va12 Q Comp

Types: Character or any numeric (C, 0, S, L, W, U, F, D).

Parameters: Vail and Va12 shall be interpreted as of type CT>.
Comp shall beof boolean type.

Effect: Replace the top two elements of the parameter stack by ‘true’ if the top element
is less than the next, and ‘false’ otherwise:

Comp = (Vail > Va12)
To compare characters, the numeric order shall be used.

Formal specification: type(<T>) buf = PS.pop(<T>);
if (PS.pop<T> > buf) then PS.push('true');
else PS.push('false');

Errors: StackUnderflow

13.3.13 Add

Short description: Arithmetic addition.

Synopsis: ADD <T> -

Operands: None.

Stack: . . . , Numl, Num2 e Sum

Types: Any numeric (0, S, L, W, U, F, D).

Parameters: Numl and Num2 shall be interpreted as of type <TX
Sum shall be of type -CT>.

Effect: Replace the top two elements of the parameter stack by their sum:
Sum = Numl + Num2

Formal specification: type(<T>) buf = PS.pop(<T>);
buf += PS.pop(<T>);
PS.push(buf);

Errors: StackUnderflow
ArithmeticOverflow

13.3.14 Subtract

Short description: Arithmetic subtraction.

Synopsis: SUB <T> -

Operands: None.

59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 lSO/IEC

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.15 Multiply

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification

Errors:

13.3.16 Divide

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

. . ., Numl, Num2 * Diff

Any numeric (0, S, L, W, U, F, D).

Numl and Num2 shall be interpreted as of type <TX
Diff shall be of type <TX

Replace the top two elements of the parameter stack by their difference:
Diff = Numl - Num2

type(<T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) - buf;
PS.push(buf);

StackUnderflow
ArithmeticOverflow

Arithmetic multiplication.

MUL <T> -

None.

. . . , Numl, Num2 c3 Prod

Any numeric (0, S, L, W, U, F, D).

Numl and Num2 shall be interpreted as of type CT>.
Prod shall be of type <TX

Replace the top two elements of the parameter stack by their product:
Prod = Numl * Num2

type(<T>) buf = PS.pop(<T>);
buf *= PS.pop(<T>);
PS.push(buf);

StackUnderflow
ArithmeticOverflow

Arithmetic division.

DIV <T> -

None.

. . . , Numl, Num2 e Quot

Any numeric (0, S, L, W, U, F, D).

Numl and Num2 shall be interpreted as of type CT>.
Quot shall be of type <TX

60

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522-3: 1997(E)

Effect: Replace the top two elements of the parameter stack by their quotient:
Quot = Numl / Num2

Formal specification: type&T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) / buf;
PS.push(buf);

Errors:

13.3.17 Negate

StackUnderflow
DivisionByZero

Short description: Sign change.

Synopsis: NEG CT> -

Operands: None.

Stack: . . ., Num @ Opp

Types: Any signed numeric (S, L, F, D).

Parameters: Num shall be interpreted as of type <TX
opp shall be of type -CT>.

Effect: Replace the top element of the parameter stack by its opposite:
Opp = -Numl

Formal specification: type&T>) buf = PS.pop<T>;
PS.push(- buf);

Errors: StackUnderflow

13.3.18 Remainder

Short description: Arithmetic remainder.

Synopsis: REM <T> -

Operands: None.

Stack: . . . , Numl, Num2 e Rem

Types: Any integer (0, S, L, W, U).

Parameters: Numl and Num2 shall be interpreted as of type <TX
Rem shall be of type CT>.

Effect: Replace the top two elements of the parameter stack by their remainder:
Rem = Numl % Num2

Formal specification: type&T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) % buf;
PS.push(buf);

Errors: StackUnderflow
DivisionByZero

61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISO/IEC

13.3.19 Duplicate

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.20 Convert

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

Duplicate value

DUP <T> -

None

. . . , Val c3 Val, Val

Any primitive type except void (0, S, L, W, U, F, D, B, C, I, R)

Val shall be interpreted as of type -CT>.

Duplicate the value on the top of stack.

type(<T>) buf = PS[SP] (CT>);
PS.push(buf);

StackUnderflow

Convert value

CVT <Tl><T2> -

None

. . . , Val c3 Res

Boolean, character or any numeric (0, S, L, W, U, F, D, B, C); see allowed
combinations in subclause 13.4.

Val shall be interpreted as of type CT~> (source type).
Res shall be of type <~2> (destination type).

Replace the value on the top of stack by an equivalent value in the destination
type. Conversion rules defined in subclause 13.4 apply.

type(<T2>) buf = (type(<T2>)) (PS.pop(<Tl>));
PS.push(buf);

StackUnderflow

13.3.21 Jump on true

Short description: “If conditional short jump.

Synopsis: JT Off

Operands: off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: . . ., Test * . . .

62

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522=3:1997(E)

Types:

Parameters:

Effect:

Not applicable.

Test shall be interpreted as of boolean type.

If the top element of the stack is ‘true’ then
if off is positive, jump off instructions forwards;
if off is negative, jump -off instructions backwards.

Formal specification: if (PS.pop('boolean')) then IP += Off;

Errors: StackUnderflow
JumpOutOfRange

13.3.22 Jump on false

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.23 Jump

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

“Else” conditional short jump.

JF Off

off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

. . ., Test @ . . .

Not applicable.

Test shall be interpreted as of boolean type.

If the top element of the stack is ‘false’ then
if off is positive, jump off instructions forwards;
if off is negative, jump -off instructions backwards.

if ! (PS.pop('boolean')) then IP += Off;

StackUnderflow
JumpOutOfRange

Unconditional short jump.

JMP Off

off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

h . . . y . . .

Not applicable.

None.

If off is positive, jump off instructions forwards;
if off is negative, jump -off instructions backwards.

63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

Formal specification:

Errors:

13.3.24 Shift

Short description:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

ISO/IEC 13522-3: 1997(E) 0 ISO/IEC

IP += Off;

JumpOutOfRange

Logical shift.

SHIFT <T> Off -

off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of bit places to shift the parameter leftwards or rightwards.

. . ., Val * Pwr

Any unsigned integer (0, W, U).

Val shall be interpreted as of type CT>.
Pwr shall be of type <TX

Replace the top element of the stack by its value shifted right off bits if off is
positive, or left -Off bits if off is negative. If off is beyond range, the result is
unspecified.

type&T>) buf = PS.pop(<T>);
if (Off >=O) then buf >>= Off;
else if (buf < 0)

buf = -(-buf << -Off);
else buf CC= -Off;
PS.push(buf);

StackUnderflow
ShiftOutOfRange

13.3.25 Get object reference

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification

Errors:

Get initial object reference to package.

GETOR Pid

Pid shall be the one-byte representation of a package identifier specifying the
package to access.

. . . c3 Obref

Not applicable.

Obref shallbeof object referencetype.

Retrieve an object reference to the initial object of the package.

if (PT[PID].sts = 'not available') then raise('BadPackageStatu.9);
PS.push(PT[PID].or);

InvalidIdentifier
BadPackageStatus

64

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOllEC 13522=3:1997(E)

13.3.26 Long jump on true

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

“If” conditional long jump.

LJT Off

off shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

. . ., Test @ . . .

Not applicable.

Test shall be interpreted as of boolean type.

If the top element of the stack is ‘true’ then
if off is positive, jump off instructions forwards;
if off is negative, jump -Off instructions backwards.

if (PS.pop('boolean') > then IP += Off;

StackUnderflow
JumpOutOfRange

Stack: . . . , Test 6 . . .

Types: Not applicable.

Parameters: Test shall be interpreted as of boolean type.

Effect: If the top element of the stack is ‘false’ then
if off is positive, jump off instructions forwards;
if off is negative, jump --off instructions backwards.

Formal specification: if ! (PS.p~p('boolean')) then IP += Off;

Errors: StackUnderflow
JumpOutOfRange

13.3.28 Long jump

Short description: Unconditional long jump.

Synopsis: LJMP Off

13.3.27 Long jump on false

Short description: “Else” conditional long jump.

Synopsis: LJF Off

Operands: off shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISOAEC

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification

Errors:

13.3.29 Call

Short description:

Synopsis:

Operands:

Stack:

L Types:

Parameters:

Effect:

Off shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

. . . + . . .

Not applicable.

None.

If off is positive, jump off instructions forwards;
if off is negative, jump -off instructions backwards.

IP += Off;

JumpOutOfRange

Call routine.

CALL Fid

Fid shall be the two-byte representation of a function identifier specifying the
routine to invoke.

. . . , ParN, . . . , Par1 e . . .

Not applicable.

Parl, ParN (where N is the number of parameters of the routine) are the
actual parameters of the routine. They shall be interpreted as of the same type
as the formal parameters of the routine when those are passed by value, and
they shall be interpreted as of data ident if ier type and reference a variable
of the same type of the formal parameters of the routine when those are passed
by reference.

Pop the top elements of the parameter stack and invoke the routine specified by
Fid with these elements as actual parameters. For parameters passed by
reference, check that the data identifier does not reference a local variable and
points to data of the same type as in the signature. Push one frame onto the call
stack with the current context. lnitialise the local variable table for the routine.
Set the instruction pointer to the first instruction of the routine.

66

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522=3:1997(E)

Formal specification: TID tid;
CS.push(IP, FR, SP, LT);
FR = Fid;
LT = RT[Fid].LT;
for (short i = 0; i < RT[Fid].nbp; i--;)
1

switch (RT[Fid].sig[i].mod)
{
case Pvalue':

tid = RT[Fid].sig[i].TID;
break;

case 'reference':
t-d == 'data identifier';
if (8000h <= PS[SP](tid) < 8100h)
then raise('InvalidParameter');
if (RT[Fid].sig[i].TID != DT(PS[SP](tid)).TID)
then raise('TypeMismatch');
break;

1;
LT[i+Ox8000].val = PS.pop(tid);

1;
IP = RT[Fid].IP;

Errors: InvalidIdentifier
StackUnderflow
TypeMismatch
InvalidParameter

13.3.30 External call

Short description:

Synopsis:

Call external function.

XCALL Fid

Operands: Fid shall be the two-byte representation of a function identifier specifying the
service or predefined function to invoke.

Stack: . . . , ParN, . . . , Par1 e (Ret)

Types: Not applicable.

Parameters: Par1 shall be interpreted as of object reference type. It indicates the
reference of the IDL instance to which to apply the operation.
Par2, ParN (where N is the number of parameters of the function, plus 1) are
the actual parameters of the function. Whatever the passing mode, they shall be
interpreted as of data identifier type.
If the function has a return value type other than void, Ret shall be of this type.

Effect: Check that the parameters reference data of the same type as in the function’s
signature. Pop the top elements of the parameter stack and invoke the external
function specified by Fid with these elements as actual parameters. Push one
frame onto the call stack with the current context. Pass parameters to and
invoke the external function. If the invocation is asynchronous, pop the call stack
as soon as the request is acknowledged. If the invocation is synchronous, wait
for completion of the request. If an exception is raised, activate the handler of the
exception. Otherwise, retrieve the function’s output parameters and return value,
push the return value onto the parameter stack and pop the call stack.

67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOllEC 1352203:1997(E) 0 ISOAEC

Formal specification: DID buf [ST[Fid].nbp];
Object obref = PS.pop('object reference');
for (short i = 0; i < ST[Fid].nbp; i++;)
{

if (ST[Fid].sig[i].TID != DT(PS[SP] (‘data identifier').TID))
then raise('TypeMismatch');
buf[i] = PS.pop('data identifier');

1;
CS.push(IP, FR, SP, LT);
FR = Fid;
LT[O].tid = 'object reference';
LT[O].val = obref;
for (short i = l;i < ST[Fid].nbp; i++}

LT[i].TID = 'data identifier';
LT[i].val = buf[il;

short Pid = (Fid>>8)-64;
if (PT[Pid].sts != 'available') then raise('BadPackageStatus');

open package(PT[Pid].name);
// open a context to invoke the service

pass in parameter(LT[O]);
// according to the platform mapping specification procedure
for (short i=l; i<ST[Fid].nbp; i++;)

switch(ST[Fid].sig[i].mod)

case 'in': pass in parameter (LT[i]); -
case 'out': pass out parameter (LT[i]);
case 'inout'f pass inout parameter (LT[i]); - - - \ .
I f

if (ST[Fid].mod == 'asynchronous') then

invoke operation(PT[Pid].name, ST[Fid].name);
TIP, FR, SP, LT} = CS.pop();

Errors:

else
{

result = invoke operation(PT[Pid].name, ST[Fid] .name);
if (result == 'ok') then

retrieve-out-parametero;
TIP, FR, SP, LT} = CS.pop();
if (ST[Fid].TID != ‘void') then

PS.push(retrieve return-value()); - -

else // the result is an exception formatted as a message

FR = HT[result.MID];
LT = result.LT;
IP = RT[FT].IP;

close package(PT[Pid].name);
7/ close service invocation context

InvalidIdentifier
StackUnderflow
TypeMismatch
BadPackageStatus
InvalidObjectReference

13.3.31 Push

Short description: Push data value.

Synopsis: PUSH Did

Operands: Did shall be the two-byte representation of a data identifier holding the value to
push onto the stack.

Stack: . . . r3 Val

Types: Not applicable.

68

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522-3:1997(E)

Parameters:

Effect:

Formal specification:

Errors:

Val shall be of the same type as the constant or variable identified by Did.

Check that Did identifies a constant or variable of a primitive type. Push the
value of the constant or variable whose data identifier is Did onto the parameter
stack.

if (DT(Did).tid > 'object reference') then raise('InvalidType');
PS.push(DT(Did).val);

InvalidIdentifier
InvalidType

13.3.32 Push reference

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification

Errors:

Push data identifier.

PUSHR Did

Did shall be the two-byte representation of a data identifier to push onto the
stack.

. . . + Val

Not applicable.

Val shallbeof data identifier type.

Push Did onto the parameter stack.

PS.push(Did);

None.

13.3.33 Push immediate

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

Push short integer.

PUSH1 Int

Int shall be the two-byte representation of a signed short integer value (in
complement-to-two notation) specifying the value to push onto the stack.

. . . c3 ...I Val

Not applicable.

Val shall be of short type.

Push Int onto the parameter stack.

PS.push(Int);

None.

69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISOAEC

13.3.34 Pop

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

Pop value and assign it to a variable.

POP Did

Did shall be the two-byte representation of the data identifier of the variable to
which to assign the top element of the stack.

. . . , Val + . . .

Not applicable.

Val shall be interpreted as of the type of the variable identified by Did.

Check that Did identifies a variable of a primitive type. Pop Val from the
parameter stack into the variable identified by Did.

TID tid = VT(Did).TID;
if (tid > 'object reference') then raise ('InvalidType')
VT(Did).val = PS.pop(tid);

InvalidIdentifier
StackUnderflow
InvalidType

13.3.35 Pop reference

Short description:

Synopsis:

Operands:

Pop value and assign it to the variable referenced by a variable.

POPR Did

Did shall be the two-byte representation of the data identifier of a variable of
data ident if ier type, whose value identifies the variable to which to assign
the value of the top element of the stack.

Stack:

Types:

Parameters:

Effect:

. . . , Val c3 . . .

Not applicable.

Val shall be interpreted as of the type of VT (Did) . val.

Check that Did identifies a variable of data ident if ier type.
Pop Val from the parameter stack and assign it to the variable identified by Did.

Formal specification: TID tid = type(VT(Did).val.TID);
if (tid != 'data identifier') then raise('InvalidType');
VT(VT(Did).val) .val = PS.pop(tid);

Errors: InvalidIdentifier
StackUnderflow
InvalidType

13.3.36 Pop contents

Short description: Pop variable and assign its value to a variable.

Synopsis: POPC Did1

70

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522-3: 1997(E)

Operands: Did1 shall be the two-byte representation of the data identifier of the variable to
which to assign the value of the data identified by the top element of the stack.

Stack: . . . , Did2 0 . . .

Types: Not applicable.

Parameters: Did2 shall be interpreted as of data identifier type. The data identified by
Did2 shall be interpreted as of the type of the data identified by Didl.

Effect: Check that Did1 and Did2 identify data of the same type.
Pop Did2 from the parameter stack and assigns the value of Did2 to the
variable identified by Didl.

Formal specification: DID did2 = PS.pop('data identifier');
if (VT(Didl).TID != DT(did2).TID) then raise('TypeMismatch');
VT(Didl).val = DT(did2).val;

Errors: InvalidIdentifier
StackUnderflow
TypeMismatch

13.3.37 Allocate

Short description: Create dynamic variable.

Synopsis: ALLOC Tid

Operands: Tid shall be the two-byte representation of a type identifier specifying the type of
the dynamic variable to allocate.

Stack: . . ., t=> Did

Types: Not applicable.

Parameters: Did shallbeof data identifier type.

Effect: Generate a dynamic variable whose type is identified by Tid. Push its data
identifier onto the parameter stack.

Formal specification: DID did = new(Tid);
VT[did].val = 'null'; // default value for the type
VT[did].TID = Tid;
PS.push(did);

Errors: AllocationFailed
InvalidIdentifier

13.3.38 Increment

Short description: Increment variable.

Synopsis: INC Did

Operands: Did shall be the two-byte representation of the data identifier of the variable
which to increment.

Stack: . . . , Val Q

71

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) 0 ISOAEC

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.39 Decrement

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

13.3.40 Get

Short description:

Synopsis:

Operands:

Stack:

Types:

Not applicable.

Val shall be interpreted as of the type of the variable identified by Did.

Check that Did identifies a variable of a numeric type. Pop the parameter stack
and increment the value of the variable identified by Did by the popped value.

TID tid = VT(Did).TID;
if (VT(Did).TID > 'double') raise
VT(Did).val += PS.pop(<T>);

InvalidIdentifier
StackUnderflow
InvalidType
ArithmeticOverflow

Decrement variable.

DEC Did

(‘InvalidType')

Did shall be the two-byte representation of the data identifier of the variable
which to decrement. The variable identified by Did shall be of a numeric type.

. . . r Val Q ...1

Not applicable.

Val shall be interpreted as of the type of the variable identified by Did.

Check that Did identifies a variable of a numeric type. Pop the parameter stack
and decrement the value of the variable identified by Did by the popped value.

TID tid = VT(Did).TID;
if (VT(Did).TID > 'double') raise('InvalidType');
VT(Did).val -= PS.pop(<T>);

InvalidIdentifier
StackUnderflow
InvalidType
ArithmeticOverflow

Get value of element of data of constructed type.

GET Did Lvl

Did shall be the two-byte representation of the data identifier of the data to
access.
LV~ shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the sought value.

. . . , Idx(Lvl), Idx(1) @ Val

Not applicable.

72

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522=3:1997(E)

Parameters:

Effect:

Idx(l), . . . Idx (Lvl) shallbeinterpreted as of unsigned short type.
Val shall be of the same type as the accessed element.

Replace a list of indices on the parameter stack by the value of the element
addressed by the popped indices within the constructed type data identified by
Did:

Val = DT(Did)[Idx(l),...,Idx(Lvl)]
Check that the accessed element is of a primitive type. If Lvl equals 0, perform
as a PusH instruction.

Formal specification: void *buf = &DT(Did);
unsigned short idx;
for (;Lvl>O; Lvl--;)

if (buf->TID <= 'object reference') then raise('InvalidLeve1');
idx = PS.pop(‘unsigned short');
if (buf->lg < idx) then raise ('InvalidIndex');
buf = &buf->.val[idx];

1
if (buf->TID > 'object reference') then raise('InvalidType');
PS.push(buf->val);

Errors:

13.3.41 Get contents

Short description:

InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
InvalidType

Set data contents to element of data of constructed type.

Synopsis:

Operands:

GETC Did1 Lvl

Did1 shall be the two-byte representation of the data identifier of the data to
access.
LV~ shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the element to access.

Stack:

Types:

Parameters:

Effect:

. . . , Did2, Idx(Lvl), Idx(1) Q

Not applicable.

Idx(l),... Idx (Lvl) shall be interpreted as of unsigned short type.

Pop a list of indices and a data identifier Did2 from the parameter stack. Within
the constructed type data identified by Didl, assign the variable identified by
Did2 to the element addressed by the popped list of indices:

VT(Did2).Val = DT(Didl)[Idx(l),...,Idx(Lvl)]
Check that the element to access is of the same type as the data identified by
Did2.

73

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522-3: 1997(E) 0 ISOAEC

Formal specification:

Errors:

13.3.42 Set

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification:

Errors:

void *buf = &DT(Didl);
unsigned short idx;
for (;Lvl>O; Lvl--;)

if (buf->TID <= 'object reference') then raise('InvalidLeve1');
idx = PS.pop('unsigned short');
if (buf->lg < idx) then raise ('InvalidIndex');
buf = &buf->.val[idx];

DID did2 = PS.pop('data identifier');
if (VT(did2).TID != buf->TID) then raise('TypeMismatch');
VT(did2).val = buf->val;

InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
TypeMismatch

Set element of variable of constructed type to value.

SET Did Lvl

Did shall be the two-byte representation of the data identifier of the variable to
modify.
LV~ shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the element to modify.

. . . , Val, Idx(Lvl), Idx(1) e

Not applicable.

Idx(l), . . . Idx (Lvl) shall be interpreted as of unsigned short type.
Val shall be interpreted as of the same type as the element to modify.

Pop a list of indices and a value from the parameter stack. Within the structured
variable identified by Did, assign the element addressed by the popped list of
indices to the popped value:

VT(Did)[Idx(l),...,Idx(Lvl)] = Val
Check that the element to modify is of a primitive type. If LV~ equals 0, perform
as a Pop instruction.

void *buf = &VT(Did);
unsigned short idx;
for (;Lvl>O; Lvl--;)
t

if (buf->TID <= 'object reference') then raise('InvalidLeve1');
idx = PS.pop('unsigned short');
if (buf->lg < idx) then raise ('InvalidIndex');
buf = &buf->.val[idx];

1
if (buf->TID > 'object reference') then raise('InvalidType');
buf->val = Ps.pop(buf->TID);

Invalid Identifier
InvalidLevel
StackUnderflow
InvalidIndex
InvalidType

74

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522=3:1997(E)

13.3.43 Set contents

Short description:

Synopsis:

Operands:

Stack:

Types:

Parameters:

Effect:

Formal specification

Errors:

Set element of variable of constructed type to data contents.

SETC Did1 Lvl

Did1 shall be the two-byte representation of the data identifier of the variable to
modify.
LV~ shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the element to modify.

. . . , Did2, Idx(Lvl), Idx(1) e

Not applicable.

Idx(l), . . . Idx (Lvl) shall be interpreted as of unsigned short type.
Did2 shall be interpreted as of data identifier type

Pop a list of indices and a data identifier from the parameter stack. Within the
structured variable identified by Didl, assign the element addressed by the
popped list of indices to the value identified by the popped data:

VT(Didl)[Idx(l),...,Idx(Lvl)] = DT(Did2).
Check that Did2 identifies a data of the type of the element to modify. If LV~
equals 0, perform as a POPC instruction.

void *buf = VT(Did1);
unsigned short idx;
for (;Lvl>O; Lvl--;)
1

if (buf->TID <= 'object reference') then raise('InvalidLeve1');
idx = PS.pop('unsigned short');
if (buf->lg < idx) then raise ('InvalidIndex');
buf = &buf->.val[idx];

1
DID did2 = PS.pop('data identifier');
if (DT(did2).TID != buf->TID) then raise('TypeMismatch');
buf->val = DT(did2).val;

InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
TypeMismatch

13.4 Type conversion rules

This subclause defines the rules that shall apply when a convert (CVT) instruction is used to convert a
parameter stack value (hence a value of a primitive type) from a source type to a destination type.

Values of the data identifier and object reference types shall not be converted to or from a value
of another type.

As regard s the other
converted to any othe

Table 4
defined:

shows the allowed type conversions together with the number of the subclause in

r
primitive types, not
using sequences of

all type co
conversion

nversions
S.

are allowed; however, any of them can be

they are

75

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522-3:1997(E) 0 ISO/IEC

Table 4: Type conversions

Source/Destination 0 S L W U F D B C
0 N/A 74.4.2.2 N/A 14.4.2.2 N/A N/A N/A 14.4.4 N/A
S N/A N/A 14.4.2.3 14.4.1 14.4.3 N/A N/A 14.4.4 N/A
L N/A 14.4.5 N/A N/A 14.4.1 14.4.2.3 N/A 14.4.4 N/A
W 14.4.5 14.4.1 14.4.2.3 N/A 14.4.2.3 N/A N/A 14.4.4 14.4.1
U N/A N/A 14.4.1 14.4.5 N/A 14.4.2.3 N/A 14.4.4 N/A
F N/A N/A 14.4.6 N/A 14.4.6 N/A 14.4.2.3 N/A N/A
D N/A N/A N/A N/A N/A 14.4.5 N/A N/A N/A
B 14.4.2.1 14.4.2.1 N/A N/A N/A N/A N/A N/A N/A
C N/A N/A N/A 14.4.1 N/A N/A N/A N/A N/A

13.4.1 Reversible conversions

The following conversions are lossless (i.e. preserve information) when reversed:

between unsigned short and character(WC,CVV);
between short and unsigned short (SW,WS);
between long and unsigned long (LU, UL).

For all these conversions, the result of the conversion shall be the value of the target type that has the same
complement-to-two notation as the source value.

13.4.2 Lossless extensions

The following conversions extend the source value in a lossless fashion:

from boolean (BO, BS) (see subclause 13.4.2.1);
from octet to a numeric type (OS, OW) (see subclause 13.4.2.2);
from a signed numeric type to a signed numeric type with a larger range (SL, LF, FD) (see subclause
13.4.2.3);
from an unsigned numeric type to any numeric type with a larger range (WL, WU, UF) (see subclause
13.4.2.3).

13.4.2.1 Conversions from boolean

If the value of the source boolean is false, the value in the destination type shall be 0.

If the value of the source boolean is true, the value in the destination type shall be the value which
corresponds to all bits set at 1 (in complement-to-two notation), i.e.

255 for an act et destination type;
-1 for a short destination type.

13.4.2.2 Conversions from octet to a numeric type

The value in the destination type shall be the octet value.

13.4.2.3 Lossless conversions from a numeric to a larger numeric type

The value in the destination type shall be the same numeric value as the value in the source type.

76

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522=3:1997(E)

13.4.3 Lossy extensions

The conversion from short to unsigned long (SU) shall perform as follows:

if the source value is positive or null, the destination value shall be the same numeric value as the
source value;
if the source value is strictly negative, the destination value is unspecified.

13.4.4 Truncations to boolean

Truncations from an octet or numeric type to boolean (OB, SB, WB, LB, Us> shall perform as follows:

if the source value is 0, the destination value shall be ‘false’;
if the source value is different from 0, the destination value shall be ‘true’.

13.4.5 Truncations between integer or between floating-point types

Truncations from an integer type to an octet or integer type (WO, LS, UW) or from a floating-point type to
another floating-point type (DF) shall perform as follows:

if the source value is within the range of the destination type, then the destination value shall be the
same numeric value as the source value;
otherwise, the destination value is unspecified.

13.4.6 Truncations from floating-point to integer

Truncations from a floating-point type to an integer type (FL, FU) shall perform as follows:

first the decimal part of the source value shall be truncated to an integer value (rounding down);
then the rules defined in subclause 13.4.5 shall apply to the truncated value.

14 IDL mapping to MHEG-SIR

This Clause specifies how an IDL specification shall be mapped to the declarations of an interchanged script,
when this IDL specification is intended for use by the script as an external service provider.

This Clause defines the mapping to MHEG-SIR declarations for

IDL interfaces and modules;
IDL types;
I DL constants;
references to IDL objects;
I DL operations;
I DL attributes;
I DL exceptions.

14.1 IDL specifications

An IDL specification shall be mapped to an MHEG-SIR PackageDeclaration declared as a component of
an external-package-declarations componentofthe Interchangedscript. The name of the IDL
specification shall be mapped to the name component of this package declaration.

NOTE: Examples of IDL specifications are MHEG API, MPEG/DSM-CC.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISO/IEC

If the number of operations or exceptions of an IDL specification exceed the size of a package, the
specification shall be splitted into several packages sharing the same name, but having different MHEG-SIR
identifiers.

14.2 IDL interfaces and modules

As the package declaration is a “flat” organisation, there is neither a mapping for an IDL module nor for an
IDL interface. However, a reference to the embedding interface (i.e. a parameter of type Object) shall be
provided as an implicit parameter to each invocation of function describing an IDL operation.

14.3 IDL operations

An IDL operation shall be mapped to an MHEG-SIR services component of the package declaration that
maps the IDL specification to which the operation belongs.

14.3.1 Operation name

The global name for an IDL operation shall be mapped to the MHEG-SIR name component of this service
description.

14.3.2 Operation parameters

The parameters of an IDL operation shall be mapped to the parameters -description component of the
service description. In a ServiceParameterDescription, each IDL parameter type shall be mapped to
the type component which identifies a type declared according to the type mapping rules defined in this
Clause. The IDL passing mode for a parameter shall be mapped to the passing-mode component of the
corresponding MHEG-SIR service parameter description.

If the operation has neither an output parameter nor a return value and is specifically designed to return
several exceptions in sequence (e.g. for notification purposes), the value of its calling-mode component
should be ‘asynchronous’. Othewise, the value of the calling-mode component shall be ‘synchronous’.

If a semantically synchronous operation is intended to raise several exceptions in sequence, it should be
splitted into two MHEG-SIR operations: a synchronous one and an asynchronous one.

14.3.3 Implicit parameter

When an IDL operation is mapped to an MHEG-SIR service description, the object instance to which the
operation applies shall remain an implicit parameter, i.e. shall not be expressed as part of the signature of the
service.

NOTE: However, upon invoking the operation, this parameter is provided as the leading actual parameter
as if its type were ‘object reference’ and its passing-mode were ‘in’.

14.3.4 Return value

The return value type of an IDL operation shall be mapped to the return-value-type component of the
service description.

14.4 IDL attributes

An IDL attribute shall be mapped to two service descriptions within a package declaration: one accessor
service, whose function is to get the value of the attribute, and one modifier service, whose function is to set
the value of the attribute.

78

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

@ lSO/lEC ISO/IEC 13522-3: 1997(E)

14.4.1 Accessor

As concerns the accessor service, the global IDL attribute name whose final identifier is prefixed with “get ”
shall be mapped to the MHEG-SIR name component of the service description. An accessor service shall
have no explicit parameter. The IDL attribute type shall be mapped to the return-value-type component
of the service description.

EXAMPLE: In the MHEG-3 API, the routine id attribute of the RoutineInvocation object
shall be mapped to the IDL globalname
MHEG 3::RoutineInvocation::get RoutineId - -

14.4.2 Modifier

As concerns the modifier service, the global IDL attribute name whose final identifier is prefixed with “set ”
shall be mapped to the MHEG-SIR name component of the service description. A modifier service shall hai
one parameter with in passing mode and such that the IDL attribute type shall be mapped to the type
component of the parameters description for this service. A modifier service shall have no return value.

14.4.3 Readonly attribute

If an IDL attribute is defined as readonly, only the accessor service shall be provided as part of the
package declaration.

14.5 IDL inherited operations

Inherited IDL operations shall be mapped as if they were defined in the specific interface.

14.6 IDL exceptions

An IDL exception shall be mapped to an MHEG-SIR exception-description componentofthe package
declaration that maps the IDL specification to which the exception belongs.

14.6.1 Exception name

The IDL global name of the exception shall be mapped to the MHEG-SIR name component of this exception
description.

14.6.2 Exception members

Members of an IDL exception shall be mapped to the parameters -description component of this
exception description. In this parameters description, each IDL member type shall be mapped to the type
component which identifies a type declared according to the type mapping rules defined in this Clause.

14.6.3 Implicit member

When an IDL exception is mapped to an MHEG-SIR exception description, the object instance from which the
exception originates shall remain an implicit member, i.e. shall not be expressed as part of the signature of
the exception.

NOTE: However, upon raising the exception, this member is provided as the leading actual member as if
its type were ‘object reference’.

79

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 lSO/IEC

14.7 IDL types

An IDL type shall be mapped to an MHEG-SIR TypeDeclaration declared as a component of the
type-declarations component of the Interchangedscript. A type declaration shall have a global
scope in the interchanged script.

IDL basic types and constructors shall be mapped to MHEG-SIR primitive types and constructors as
summarised in Table 4:

Table 4: Type mapping

void
octet

IDL
void
octet

1

MHEG-SIR

short
unsigned short
long

short
unsigned short
long

unsigned long
float

unsigned long
float

double double
boolean
char

boolean
character

enum
strina

unsigned long
string

sequence
array
struct

sequence
array
structure

union union
[(object)
I anv

1 object reference
1 data identifier (see below)

14.7.1 char type

Mapping IDL char types to MHEG-SIR character types shall involve transcoding values from OS0 8859-2
to IS0 10646-I.

14.7.2 enuxn type

The range checking of enum values need not be preserved.

14.7.3 Constructed types

An IDL type definition shall be mapped to an MHEG-SIR TypeDescription. If the IDE, type is a basic type
or if it has already been the subject of another type declaration, this type description shall consist of a type
identifier. Otherwise, it shall be constructed according to the following mapping rules:

an IDL struct field shall be mapped to its rank in the MHEG-SIR structure description; its name
shall not be preserved;
an IDL union tag value shall be mapped to its rank in the MHEG-SIR union description; its name and
value shall not be otherwise preserved;
a multidimensional IDL array shall be mapped to an MHEG-SIR array whose element type is
array.

80

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522=3:1997(E)

14.7.4 any type

The IDL any type shall be mapped to MHEG-SIR data identifier provided that the any type is used
with an associated key to determine the actual type:

struct { Key the key; any value } -

where Key
field.

The above

is a string ’ numeric or enum type whose value completely determines the type of the value 1

IDL type shal I be mapped to an MHEG-SIR structure of two elements:

an unsigned short representing a valid TID within the script, to map the key;
a data identifier representing a variable of the type identified by the first element and which
holds the value.

Any other use of the any type is not guaranteed to have its semantics preserved when mapped to MHEG-
SIR.

14.7.5 Restrictions on types

If two IDL constructed types have the same structure, they shall be mapped to a single MHEG-SIR type.

14.8 IDL constants

IDL constants shall be mapped to an MHEG-SIR ConstantDeclaration declared as a component of the
constant-declarations componentofthe Interchangedscript. Aconstantdeclaration shall havea
global scope in the interchanged script.

15 The MHEG-3 API

This Clause specifies the syntax and semantics of the MHEG-3 API.

Interchanged scripts shall use the MHEG-3 API according to the IDL interface syntax defined in this Clause
and in Annex F.

MHEG-SIR script interpreters shall provide the MHEG-3 API according to the IDL interface syntax defined in
this Clause and in Annex F, with the semantics defined in this Clause. The invocation of the operations shall
have the effect specified in this Clause.

All MHEG-SIR predefined functions that map MHEG-3 API operations shall be synchronous.

The MHEG-3 API definition consists of a unique IDL module called MHEG 3. This module defines predefined
types, three exceptions and four object interfaces; there is no inheritance 6lationship among the four objects.

15.1 ScriptInterpreter object

The ScriptInterpreter object represents the script interpreter. It shall be unique. It is used as a factory
for MhScript objects.

TO invoke operations on the Script-Interpreter
of the implicit object reference parameter.

object, interchanged scripts shall use ‘null’ as the value

81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 lSO/IEC

15.1 .I kill operation

Synopsis:

Interface:
Operation:
Resu It:

ScriptInterpreter
kill
void

Description:

The kil
process.

1 operation is used to kill the ScriptInterpreter object and terminate the script interpreter

When the operation is invoked, the main process shall invoke a destroy operation on all available
MhScript objects then terminate the script interpreter process.

Unlike the other MHEG-3 API operations, this operation is not an MHEG-SIR predefined function. Therefore,
it shall not be available for use by MHEG-SIR interchanged scripts.

15.1.2 prepare operation

Synopsis:

Interface: ScriptInterpreter
Operation: prepare
Result: MhScript
In . ContentReference .
Exception: InvalidParameter
Exception: InvalidScript
Exception: OperationFailed

Description:

The prepare operation is used to create
script interpreter to initialise that mh-script.

content reference -

an MhScript object from an interchanged script request the

The content reference parameter specifies the location of the interchanged script. It consists of two
strings: a public identifier and a system identifier. If any one of these strings is null, it shall be ignored. At
least one of both string field values shall be non-null.

When the operation is invoked, the main process shall perform the mh-script initialisation operations as
specified by subclause 9.52. As soon as this has been achieved, the status of the mh-script shall become
available.

The result of the operation shall be an object reference to the created MhScript.

The InvalidParameter exception shall be raised if the content reference parameter does not allow
to access an interchanged script. Then the rank member shall be 1.-

The InvalidScript exception shall be raised if an illegal statement is detected during parsing of the
interchanged script. Then the the entity member shall represent the type of the first entity in the
declarations part on which an error has been detected, whereas the identifier member shall represent
the identifier of this entity as follows:

a TID for a type declaration;
a DID for a constant declaration or a variable declaration;

82

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISOllEC 13522-3: 1997(E)

a FID for a service declaration or a routine declaration;
a MID for an exception declaration or a handler declaration;
a PID for a package declaration.

The OperationFailed exception shall be raised if the mh-script initialisation operations cannot be
completed although no error has been detected in the syntax of the interchanged script.

Whenever an exception is
shall remain not available.

raised, the MhScript object shall not be created and the status of the mh-script

15.2 MhScript object

The MhScript object represents an available mh-script. It is used as a factory for RtScript objects.

15.2.1 destroy operation

Synopsis:

Interface: MhScript
Operation: destroy
Result: void

Description:

The destroy operation is used to kill the MhScript object and destroy the corresponding mh-script.

When the operation is invoked, the main process shall perform the following steps in the specified order:

put the target mh-script to not available status;
invoke a delete operation on all existing RtScript objects that have been created by this mh-script;
perform the package unload procedure for all packages;
release all the mh-script memory areas attached to the mh-script.

15.2.2 new operation

Synopsis:

Interface: MhScript
Operation: new
Result: RtScript
Exception: OperationFailed

Description:

The new operation is used to create an RtScript object from the mh-script and request the script
interpreter to initialise that t-t-script.

When the operation is invoked, the main process shall perform the t-t-script initialisation operations as
specified by subclause 9.5.3. After successful initialisation, the status of the t-t-script shall become ready.

The result of the operation shall be an object reference to the created RtScript.

The OperationFailed exception shall be raised if the t-t-script initialisation operations cannot be
completed. Then the RtScript object shall not be created and the status of the r&script shall remain not
ready.

83

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

lSO/IEC 13522=3:1997(E) 0 lSO/IEC

15.3 RtScript object

The RtScript object represents an t-t-script whose status is ready, running or erroneous. It is used as a
factory for RoutineInvocation objects.

15.3.1 delete OpWatiOrI

Synopsis:

Interface: RtScript
Operation: delete
Result: void

Description:

The delete operation is used to kill the RtScript object and destroy the corresponding r&script.

When the operation is invoked, the main process shall perform the following steps in the specified order:

put the target r&script to not ready status;
invoke a close operation on all RoutineInvocation objects that have been created by the r-t-script;
terminate all processing units;
release all r&script memory areas attached to the &script.

15.3.2 setpriority operation

Synopsis:

Interface: RtScript
Operation: setPriority
Result: void
In . unsigned short priority .

Description:

The setpriority operation is used to modify the scheduling priority associated with the t-t-script.

The priority parameter specifies the new priority value.

When the operation is invoked, the main process may modify its scheduling policy accordingly. The precise
effect of this operation is not specified by this part of ISOAEC 13522. Depending on the implementation, it
may have no effect. However, the execution unit of an rt-script with a lower priority value than another rt-
script shall not be given more CPU time than the execution unit of the latter.

15.3.3 getPriori ty operation

Synopsis:

Interface: RtScript
Operation: getpriority
Result: unsigned short

Description:

84

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISO/IEC 13522=3:1997(E)

The getpriority operation is used to retrieve the current value of the scheduling priority associated with
the t-t-script. If no priority has been explicitly set to this r&script, the default value specified by the script
interpreter shall be used.

15.3.4 setData operation

Synopsis:

Interface:
Operation:
Result:
In . .
In . .
Exception:
Exception:

RtScript
setData
void
DID
any
InvalidParameter
OperationFailed

variable id -
variabl e v -

Description:

The setData operation is used to assign a value to a global or dynamic variable of the &script.

The variable id parameter specifies the data identifier of the data to modify. -

The variable value parameter specifies the value to assign to the variable. The type of the actual
parameter is de&mined by the type of the variable.

When the operation is invoked, the main process shall request the rt-script execution unit to assign the target
variable to the provided value.

The InvalidParameter exception shall be raised

if the variable id parameter references a constant, a local variable or a non-existing constant or
variable. Then the rank member shall be I;
if the variable value parameter is not of an IDL type that matches the MHEG-SIR type of the
target variable. Then the rank member shall be 2.

The OperationFailed exception shall be raised if the status of the rt-script is running or erroneous.

15.3.5 getData operation

Synopsis:

Interface:
Operation:
Result:
In . .
Exception:
Exception:

RtScript
getData
any
DID
InvalidParameter
OperationFailed

data id -

Description:

The getData operation is used to retrieve the current value of a constant or variable.

The data id parameter specifies the data identifier of the data to access. -

When the operation is invoked, the t-t-script execution unit shall return the current value of the constant or
variable.

85

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISOAEC

The result of the operation shall be the requested value and shall be of an IDL type that matches the MHEG-
SIR type of the target constant or variable.

The InvalidParameter exception shall be raised if the data id parameter references a non-existing -
constant or variable. Then the rank member shall be 1.

The OperationFailed exception shall be raised if the status of the t-t-script is running or erroneous.

15.3.6 allocate operation

Synopsis:

Interface: RtScript
Operation: allocate
Result: DID
In . TID .
Exception: InvalidParameter
Exception: OperationFailed

variable type id - -

Description:

The allocate operation is used to create a dynamic variable of a given type within the t-t-script.

The variable type id parameter specifies the MHEG-SIR type identifier of the target variable, as
declared within the r-t-script.

When the operation is invoked, the &script execution unit shall perform as if it would execute an ALLOC
instruction with variable type id as operand, i.e. it shall reserve appropriate heap memory, generate a

- - new DID and return it.

The result of the operation shall be the data identifier of the new dynamic variable.

The InvalidParameter exception shall be raised if the value of the variable type id parameter is
neither a predefined type nor a type declared within the t-t-script. Then the rank member shall be I.

The OperationFailed exception shall be raised wherever the ALLOC instruction would raise an error.
Then the variable shall not be allocated and the error register shall not be modified.

15.3.7 free operation

Synopsis:

Interface: RtScript
Operation: free
Result: void
In . DID .
Exception: InvalidParameter

variable id -

Description:

The free operation is used to destroy a dynamic variable of the rt-script.

The variable id - parameter specifies the data identifier of the variable to be released.

86

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/lEC ISOAEC 13522-3: 1997(E)

When the operation is invoked, the r-t-script execution unit shall perform as if it would execute a FREE
instruction with variable id as parameter, i.e. it shall release the dynamic variable and make its identifier -
invalid.

The InvalidParameter exception shall be raised if the variable id parameter does not refer to an
existing dynamic variable previously allocated through the MHEG-3 API.>hen the rank member shall be 1.

NOTE: A script interpreter may use a data identifier allocation policy that allows to distinguish easily
variables allocated through the MHEG-3 API from variables allocated using an instruction, for
instance by the range to which their data identifier belongs.

153.8 stop operation

Synopsis:

Interface: RtScript
Operation: stop
Result: void
Exception: OperationFailed

Description:

The stop operation is used to put the r-t-script back into ready status.

When the operation is invoked, the script interpreter shall request the r-t-script execution unit to stop, flush the
calling stack, message queue and parameter stack and reset all registers. It shall then put the r&script to
ready status. Unlike the reInit operation, the global and dynamic variables shall not be changed.

The OperationFailed exception shall be raised if the operation could not be performed successfully, for
instance if the rt-script memory areas have been corrupted due to an execution error.

15.3.9 reIni t operation

Synopsis:

Interface: RtScript
Operation: reInit
Result: void
Exception: OperationFailed

Description:

The reInit. operation is used to put the r&script back into its initial state, i.e. just after initialisation.

When the operation is invoked, the script interpreter shall

terminate the t-t-script execution unit;
release all dynamic variables;
set the global variables back to their initial values (as in the mh-script global variable definition table);
flush the parameter stack, the message queue and the calling stack, releasing local variable tables;
reset all registers;
finally, put the rt-script to ready status.

The OperationFailed exception shall be raised if the operation could not be performed successfully, for
instance if the t-t-script memory areas have been corrupted due to an execution error.

87

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISOAEC

15.3.10 getRtScriptStatus operation

Synopsis:

Interface: RtScript
Operation: getRtScriptStatus
Result: RtScriptStatus

Description:

The get Rt Script S t at us operation is used to retrieve the current status of the r&script.

The result of the operation shall be one of the following: READY, RUNNING or ERRONEOUS.

15.3.11 open operation

Synopsis:

Interface: RtScript
Operation: open
Result: RoutineInvocation
In . FID .
Exception: InvalidParameter

routine id -

Description:

The open operation is used to create an RoutineInvocation object from the r&script.

The routine id parameter specifies the function identifier of the routine with which the new
RoutineInvocation object is associated.

The script interpreter may opt for either of the following policies:

a> to retrieve the signature of the target routine when the open operation is invoked, so as to check the
validity of the passed parameters “on the fly”, i.e. as soon as a set Parameter operation is invoked;

b) to check the validity of parameters only upon invocation of the run operation.

The result of the operation shall be an object reference to the created RoutineInvocation.

The InvalidParameter exception shall be raisedifthe routine id parameter does not identify a valid
- routine of the &script. In this case, the rank member shall be 1.

15.4 RoutineInvocation object

The RoutineInvocation object represents an invocation context of a routine. This invocation context is
used to pass parameters to and to request execution of a given routine of the &script.

15.4.1 close operation

Synopsis:

Interface: RoutineInvocation
Operation: close
Result: void

88

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522-3:1997(E)

Description:

The close operation
invocation context.

154.2 routine id -

is used to kill the RoutineInvocation object and close the corresponding routine

readonly attribute

Synopsis:

Interface:
Attribute:

RoutineInvocation
FID routine id

Description:

The routine id attribute is a readonly attribute that is set at creation of the RoutineInvocation object -
by the open operation. Its value shall be the function identifier of the routine that the RoutineInvocation
object addresses.

Interchanged scripts shall access the value of this attribute using the get RoutineId predefined function. -

15.4.3 setParameter operation

Synopsis:

Interface:
Operation:
Result:
In . .
In . .
In . .
Exception:

RoutineInvocation
setparameter
void
unsigned short
TID
any
InvalidParameter

rank
parameter type id
parameter-value -

Description:

The setparameter operation is used to pass the value of a parameter of the routine for use by the next
run operation.

The rank parameter specifies the rank of the passed parameter in the routine signature description, where 0
indicates the first parameter. It therefore corresponds to the index of the parameter in the routine’s local
variable table.

The parameter type id parameter specifies the MHEG-SIR type identifier of the passed parameter, as
declared within the &script.

The parameter value parameter specifies the value of the passed parameter. The type of the value is
determined by theparameter type id parameter. - -

When the operation is invoked, the script interpreter shall buffer the parameter for use by the next run
operation on this routine. If the script interpreter opts for policy a) defined in subclause 15.3.11, it shall check
the validity of the parameter type id and parameter value parameters with regard to the routine’s - - -
signature.

If the script interpreter opts for policy a) defined in subclause 153.11, the InvalidParameter exception
shall be raised

89

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISOAEC

if the operation’s rank parameter exceeds the number of the last parameter of the routine. Then the
exception’s rank member shall be 1;
if the parameter type id parameter does not correspond to the type of parameter in the routine’s
signature. Then the exception’s rank member shall be 2;
if the parameter value parameter is not of an appropriate type, i.e. an IDL type that matches the
type described bythe parameter type id parameter, when the passing mode is by value, and a
DID type when the passing mode is-by ref&-ence. Then the exception’s rank member shall be 3;
when the passing mode is by reference, if the parameter value parameter is a DID that does not
identify an existing global or dynamic variable whose type matches the parameter type defined by the
routine’s signature. Then the exception’s rank member shall be 3.

15.4.4 getprototype operation

Synopsis:

Interface: RoutineInvocation
Operation: getPrototype
Result: Prototype

Description:

The getprototype operation is used to retrieve the signature of the routine.

When the operation is invoked, the script interpreter shall return the signature of the routine.

The result of the operation shall be a description of the routine signature:

a> the return value type field shallbeset fORT[routine id].TID;
W the nth item%f the signature field shall correspond to RT [routine id] . sig [n] :

1) the passing mode field shall be set to BY VALUE, or I?Y REFERENCE respectively, when
RT [rout ineid] . sig [n] . mod is ‘value’, ‘reT&ence respectively;

2) the parameter type id field shall beset to RT[routine id] .sig[n] .TID. - - -

15.4.5 run operation

Synopsis:

Interface: RoutineInvocation
Operation: run
Result: void
Exception: OperationFailed

Description:

The run operation is used to request the execution of the routine
provided using the set Parameter operation.

When the operation is invoked, the main process shall

with the parameter values previously

create a message whose message identifier is the index of the routine (i.e. the value of the
routine id attribute) and whose parameters are the parameters set by the preceding
setparameter operations;
insert this message into the message queue of the target r&script;
if the current status of the r-t-script is ready, put it to running.

90

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522=3:1997(E)

If the script interpreter opts for policy b) defined in subclause 153.11, it shall check the validity, with regard to
the routine’s signature, of all the type identifiers and values of the parameters previously provided using the
setparameter operation.

The OperationFailed exception shall be raised if any of the provided parameters does not map the
routine’s signature.

15.4.6 reset operation

Synopsis:

Interface: RoutineInvocation
Operation: reset
Result: void

Description:

The reset operation is used to clear the routine invocation context to prepare a new invocation.

When the operation is invoked,
operation shall be cleared.

the parameters previously buffered as the result Of a setparameter

NOTE: Using this operation after each run avoids any risk of collision. Not using it allows to repeat the
same invocation without supplying the parameters again.

15.4.7 getInvocationStatus operation

Synopsis:

Interface: RoutineInvocation
Operation: getInvocationStatus
Result: InvocationStatus

Description:

The get Invocationstatus operation is used to retrieve the current routine invocation status.

The result of the operation shall be one of the following values:

NOT STARTED: no run operation has been invoked since the creation of the object or since the last
r e set operation;
PROCESSING: a run operation has been invoked but the routine execution has not been completed by
the r-t-script execution unit (either the request is in the message queue or the routine is currently under
execution);
TERMINATED: the routine execution triggered by the last invoked run operation has been completed
by the t-t-script execution unit;
ABORTED: the routine execution triggered by the last invoked run operation has resulted in an
instruction execution error.

91

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 lSO/IEC

Annex A
(normative)

ASN.l specification of interchanged scripts

This Annex specifies the ASN.l notation’ according to ISO/IEC 8824-1 [I], for the syntax of the “script data”
component of the MHEG “script” class.

Interchanged scripts shall have the syntax defined by the ASN.l ISOMHEG-sir module.

-- Module: MHEG-SIR (sir)--
--
-- Copyright statement:
-- ---__----__---_-----
-- (c) International Organization for Standardization, 1996.
-- Permission to copy in any form is granted for use with conforming
-- MHEG-3 engines and applications as defined by ISO/IEC 13522-3
-- provided this notice is included in all copies.

ISOMHEG-sir {joint-iso-itu-t (2) mheg (19) version (1) script-interchange-representation (ll)}
DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS Interchangedscript;

Interchangedscript ::= SEQUENCE

type-declarations SEQUENCE (SIZE (1.. max-nb-declared-types)) OF
TypeDeclaration OPTIONAL,

constant-declarations [O] SEQUENCE (SIZE (1 . . max-nb-constants)) OF
ConstantDeclaration OPTIONAL,

global-variable-declarations [l] SEQUENCE (SIZE (1 . . max-nb-global-variablesj) OF
VariableDeclaration OPTIONAL,

external-package-declarations [2] SEQUENCE (SIZE (1 . . max-nb-packages)) OF
PackageDeclaration OPTIONAL,

handler-declarations [3] SEQUENCE (SIZE (1 . . max-nb-messages)) OF
HandlerDeclaration OPTIONAL,

routine-declarations [4] SEQUENCE (SIZE (1 . . max-nb-routines)) OF
RoutineDeclaration OPTIONAL

TypeDeclaration . .= . . SEQUENCE

identifier [0] TypeIdentifier OPTIONAL,
description TypeDescription

TypeDescription : : = CHOICE

string-description
sequence-description
array-description
structure-description
union-description

[1] INTEGER (0.. max-size-string) OPTIONAL,
[2] SequenceDescription,
[3] ArrayDescription,
[4] StructureDescription,
[5] UnionDescription

SequenceDescription : : = SEQUENCE

bound
element-type

INTEGER (0 . . max-size-sequence),
TypeIdentifier

ArrayDescription . .= . . SEQUENCE

size
element-type

INTEGER (1 . . max-size-array),
TypeIdentifier

UnionDescription . .= . . SEQUENCE (SIZE (1 . . max-size-union)) OF TypeIdentifier

StructureDescription : : = SEQUENCE (SIZE (1 . . max-size-structure)) OF TypeIdentifier

ConstantDeclaration ::= SEQUENCE

92

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522=3:1997(E)

identifier
type
value

onstantvalue . .= . .

octet
short
long
unsigned-short
unsigned-long
float
double
boolean
character
data-identifier
string
sequence
array
structure
union

[0] DataIdentifier OPTIONAL,
TypeIdentifier ALL EXCEPT 0,
ConstantValue

CHOICE

[l] OctetValue,
(21 ShortValue,
[3] LongValue,
[4] UnsignedShortValue,
[5] UnsignedLongValue,
[6] FloatValue,
[7] DoubleValue,
[8] BooleanValue,
[9] CharacterValue,
[lo] DataIdentifier (O..<max-nb-constants),
[ll] StringValue,
[12] SequenceValue,
[13] ArrayValue,
[14] StructureValue,
[15] UnionValue

)equenceValue

rrayvalue

1nionValue

tag
value

tructurevalue

'ariableDeclaration

identifier
type
initial-value

)ackageDeclaration

identifier
name
services

exceptions

;erviceDescription

identifier
name
calling-mode

. .= . .

. .= . .

: : =

. .= . .

. .= . .

. .= . .

. .= . .

return-value-type
parameters-description

SEQUENCE (SIZE (0 . . max-size-sequence)) OF ConstantValue

SEQUENCE (SIZE (1 . . max-size-array)) OF ConstantValue

SEQUENCE

INTEGER (0 . . < max-size-union),
ConstantValue

SEQUENCE (SIZE (1 . . max-size-structure)) OF ConstantValue

SEQUENCE

[0] DataIdentifier OPTIONAL,
TypeIdentifier,
ConstantReference OPTIONAL

SEQUENCE

[0] PackageIdentifier OPTIONAL,
VisibleString OPTIONAL,
SEQUENCE (SIZE (0 . . max-nb-services)) OF
ServiceDescription,
SEQUENCE (SIZE (0 . . max-nb-exceptions)) OF
ExceptionDescription

SEQUENCE

[0] FunctionIdentifier OPTIONAL,
VisibleString OPTIONAL,
ENUMERATED {synchronous (O), asynchronous (1))
DEFAULT synchronous,
TypeIdentifier DEFAULT 0,
SEQUENCE OF ServiceParameterDescription OPTIONAL

<erviceParameterDescription ::= SEQUENCE

passing-mode
type

ENUMERATED {in (l), out (2), inout
TypeIdentifier ALL EXCEPT 0

(3) } DEFAULT in,

ExceptionDescription ::= SEQUENCE
1

identifier [0] MessageIdentifier OPTIONAL,
name VisibleString OPTIONAL,
parameters-description SEQUENCE OF TypeIdentifier OPTIONAL

HandlerDeclaration ::= SEQUENCE
1

message-identifier MessageIdentifier,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3: 1997(E) 0 ISOAEC

function-identifier FunctionIdentifier

RoutineDeclaration ::= SEQUENCE

routine-description
program-code

RoutineDescription,
OCTET STRING

RoutineDescription ::= SEQUENCE

identifier
return-value-type
parameters-description
local-variable-table

[0] FunctionIdentifier OPTIONAL,
TypeIdentifier DEFAULT 0,
[1] SEQUENCE OF RoutineParameterDescription OPTIONAL,
[2] SEQUENCE (SIZE (0 . . max-nb-local-variables)) OF
VariableDeclaration OPTIONAL

RoutineParameterDescription ::= SEQUENCE

passing-mode
type

ENUMERATED {value (l), reference (3)
TypeIdentifier ALL EXCEPT 0

} DEFAULT value,

ConstantReference . .= . . CHOICE

identifier
value

[16] DataIdentifier,
ConstantValue

max-size-sequence
max-size-string
max-size-array
max-size-union
max-size-structure
max-nb-global-variables
max-nb-constants
max-nb-local-variables
max-nb-dynamic-variables
max-nb-data

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

. .= . .

. .= . .

. .= . .

. .= . .
: : =
. .= . .
. .= * .
. .= . .
. .= . .
. .= . .

65535
65535
65536
256
256
28672
4096
256
32512
65536

-- max-nb-constants+max-nb-global-variables+max-nb-local-variables+max-nb-dynamic-
-- variables

max-nb-packages INTEGER . .= . . 192
max-nb-services INTEGER . .= . . 256
max-nb-routines INTEGER : : = 4096
max-nb-predef-functions INTEGER - : :- 12288
max-nb-functions INTEGER . .= . . 65536

-- max-nb-packagesxmax-nb-services+max-nb-predef-functions+max-nb-ro
max-nb-exceptions INTEGER : : = 256
max-nb-predef-messages INTEGER . .= . . 16384
max-nb-messages INTEGER . .= 65536

-- max-nb-packagesxmax-nb-exceptions+max-nb-predef-messages
max-nb-declared-types INTEGER . .= . . 16384
max-nb-predef-types INTEGER . .= . . 16384
max-nb-types INTEGER . .= . . 32768

-- max-nb-predef-types + max-nb-declared-types

OctetValue : : = OCTET STRING (SIZE (1))
ShortValue . .= . . INTEGER (-32768 . . 32767)
LongValue : : = INTEGER (-2147483648 . . 2147483647)
UnsignedShortValue . .= . . INTEGER (0 . . 655351)
UnsignedLongValue . .= . . INTEGER (0 . . 4294967295)
FloatValue : : = REAL
DoubleValue . .= . . REAL
BooleanValue . .= . . BOOLEAN
CharacterValue . .= . . BMPString (SIZE (1))
StringValue : : = BMPString (SIZE (0.. max-size-string))

utines

TypeIdentifier
DataIdentifier
FunctionIdentifier
MessageIdentifier
PackageIdentifier

: : = INTEGER (0 . . < max-nb-types)
. .= . . INTEGER (0 . . < max-nb-data)

- : :- INTEGER (0 . . < max-nb-functions)
. .= . . INTEGER (0 . . < max-nb-messages)
. .= . . INTEGER (0 . . < max-nb-packages)

END

94

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOAEC 13522=3:1997(E)

Annex B
(normative)

Coded representation of interchanged scripts

B.1 Coding for interchanged scripts

Interchanged scripts shall be encoded according to the ASN.1 Distinguished Encoding Rules (DER) as
specified by lSO/IEC 8825-l 121.

NOTE: This is intended to make the MHEG-3 engine’s decoding task as efficient as possible by removing
all ASN.1 encoding options that might delay or complicate it.

B.2 Coding for the program code

Thevalue ofthe program-code component ofthe RoutineDeclaration typedefined by ISOMHEG-sir
(see Annex A) shall be encoded according to the rules defined in this Clause.

The sequence of instructions that make up the program code of a routine shall be encoded as a sequence of
octets. The order of encoding will be the same as the order in which the instructions are intended to be
executed.

Each instruction shall be encoded using one octet for the op-code, followed by zero to three octets for the
operands, depending on the op-code.

B.2.1 Instruction op-codes

The op-codes shall be encoded using the bitstring defined by Table B.l .

B.2.2 instruction operands

According to the op-code of the instruction, the operands shall have the length and encoding defined by
Table B.I. All multiple-byte operands shall be encoded in big-endian order, i.e. most significant byte first.

B.2.2.1 Data identifier operands

DID operands shall be encoded using two octets as follows:

if bit 16 is ‘1’ and bits 15 to 9 are ‘O’, the DID shall reference a local variable, where bits 8 to 1
represent the local variable index (from 0 to 255)
if bit 16 is ‘1’ otherwise, the DID shall reference a dynamic variable, where bits 15 to 1 represent the
dynamic variable index (from 0 to 32511) incremented by 256;
if bits 16 to 13 are ‘OOOO’, the DID shall reference a constant, where bits 12 to 1 represent the constant
index (from 0 to 4095);
otherwise, the DID shall reference a global variable, where bits 15 to 1 represent the global variable
index (from 0 to 28671) incremented by 4096.

8.2.2.2 Function identifier operands

FID operands shall be encoded on two octets as follows:

if bits 16 to 13 are ‘OOOO’, the FID shall reference a routine, where bits 12 to 1 represent the routine
index (from 0 to 4095);
if bits 16 and 15 are ‘00’ otherwise, the FID shall reference a predefined function, where bits 14 to 1
represent the predefined function index (from 0 to 12287) incremented by 4096;

95

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISOAEC

otherwise, the FID shall reference a service, where bits 16 to 9 represent the package identifier (from 0
to 191) incremented by 64, and where bits 8 to 1 represent the service index (from 0 to 255) within this
package.

B.2.2.3 Miscellaneous numeric operands

l-octet “offset” operands shall be encoded in complement-to-one notation on 1 octet: bit 8 represents the
direction of movement, bits 7 to 1 represent the number of units to shift in that direction.

2-octet “offset” operands shall be encoded in complement-to-one notation on 2 octets: bit 16 represents the
direction of movement, bits 15 to 1 represent the number of units to shift in that direction.

“Value” operands shall be encoded in complement-to-two notation on two octets, for interpretation as signed
integer values.

“Index” operands shall be encoded on one octet, for interpretation as unsigned integer values.

96

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC

Table B.l: Encoding of MHEG-SIR instructions

ISOAEC 13522-3:1997(E)

L

Instruction Op-code Opcode OPI Opl encoding OP2 Op2 encoding
mnemonics (binary) (hexa) length length

NOP 0000 0000 00 0
YIELD 0000 0010 02 0
RET 0000 0011 03 0
FREE 0000 1000 08 0
NOT B 0001 0000 10 0
NOT-O 0001 0001 11 0
NOT-W 00010010 12 0
NOT-U 0001 0011 13 0
OR i 0001 0100 14 0
OR-O 0001 0101 15 0
OR-W 0001 0110 16 0
OR-U 00010111 17 0
XOi B 0001 1000 18 0
XOR-0 0001 1001 19 0
XOR-W 0001 1010 IA 0
XOR-U 0001 1011 IB 0
AND-B 0001 1100 1c 0
AND-O 0001 1101 ID 0
AND-W 0001 1110 1E 0
AND-U 0001 1111 IF 0
EQR- 0010 0000 20 0
EQ 0 0010 0001 21 0
EQ-S 0010 0010 22 0
EQ-L 0010 0011 23 0
EQ-W 0010 0100 24 0
EQ-U 0010 0101 25 0
EQ-F 0010 0110 26 0
EQ-D 00100111 27 0
EQ-B 0010 1000 28 0
EQ-C 0010 1001 29 0
EQ-I 0010 1010 2A 0
EQ-R 0010 1011 2B 0
LT -k 0011 0000 30 0
LT-0 0011 0001 31 0
LT-S 0011 0010 32 0
LT-L 00110011 33 0
LTW 0011 0100 34 0
LT-U 0011 0101 35 0
LT-F 0011 0110 36 0
LT-D 00110111 37 0
Gf- C 0011 1000 38 0
GT-0 0011 1001 39 0
GT-S 0011 1010 3A 0
GT-L 0011 1011 3B 0
GTW 0011 1100 3c 0 -

97

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISO/IEC

r GT U - 0011 1101 3D 0 1 (1 1
1 GT F 1 0011 1110 1 3E 1 0 t I I I
I G-LB , 0011 1111 ,

3F ,~ o _~~ I~~ _ ~ ~~~ , ,
I

1 ADD 0 - 1 01000001 1 41 1 0 1
1 ADD S - 1 01000010 Imm 42 , 0 , I I I
] ADD L - 1 01000011 1 43 1 0 1

ADD W 01000100 44 0 - I
I ADD U - 1 01000101 1 45 1 0 1

ADD F 01000110 46 0
ADD-D 01000111 47 0

1 SUB 0 I 0100 1001 I 49 I 0 I I I I
1 SUB S 1 0100 1010 1 4A 1 0 I
1 SUB L 1 01001011 1 4B I 0 I I I I
1 SUB W
1 SUB U 1 01001101 1 4D 1 0 1 I I I

-1 01001110 1 4E 1 0 1 1 SUB F
1 SUB D 1 01001111 1 4F I 0 I I I I
I- , -01010001 , 51 , 0 , I I I
I MUL S 1 0101 0010 1 52 1 0 1 I I I
, MUL L - , 01010011 , 53 , 0 ,
I MUL W I 01010100 I 54 I 0 I I I I

MUL U 0101 0101 55 0
MUL-F 0101 0110 56 0

1 MUL D - , 01010111 , 57 I 0
DIV 0 0101 1001 59 0
DIV-S 0101 1010 5A 0
DIV-L 0101 1011 5B 0
DIV-W 0101 1100 5c 0
DIV-U 0101 1101 5D 0
DIV-F 0101 1110 5E 0
DIV-D 0101 1111 5F 0
NE< S 0110 0010 62 0
NEG-L 0110 0011 63 0
NEG-F 0110 0110 66 0
NEG-D 01100111 67 0
REM-O 0111 1001 79 0
REM-S 0111 1010 7A 0
REM-L 0111 1011 78 0
REM-W 01111100 7c 0
REM-U 0111 1101 7D 0
DUP-0 1000 0001 81 0
DUP-S 1000 0010 82 0
DUP-L 1000 0011 83 0
DUP-W 1000 0100 84 0
DUP-U 1000 0101 85 0
DUP-F 1000 0110 86 0
DUP-D 1000 0111 87 0
DUP-B 10001000 88 0 -

98

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC lSO/IEC 13522-3: 1997(E)

!

DUP C 1000 1001 89 0
DUP-I 1000 1010 8A 0
DUP-R 1000 1011 88 0
CVT-SW 1001 0100 94 0
CVT-WS 1001 0101 95 0
CVT-LU 1001 0110 96 0
CVT-UL 10010111 97 0
CVT-CW 1001 1010 9A 0
CVT-WC 1001 1011 9B 0
CVT-BS 1010 0000 A0 0
CVT-OS 1010 0001 Al 0
CVT-SL 1010 0010 A2 0
CVT-LF 1010 0011 A3 0
CVT-WL 1010 0100 A4 0
CVT-UF 1010 0101 A5 0
CVT-FD 1010 0110 A6 0
CVT-BO 1010 1000 A8 0
CVT-OW 1010 1001 A9 0
CVT-SU 1010 1010 AA 0
CVT-WU 1010 1100 AC 0
CVT-OB 1011 0001 Bl 0
CVT-SB 1011 0010 B2 0
CVT-LB 10110011 B3 0

1011 0160 B4 0
CVT-U B 1011 0101 B5 0
CVTWO 1011 1001 B9 0
CVT-LS 1011 1010 BA 0
CVT-FL 1011 1011 BB 0
CVT-UW 1011 1100 BC 0
CVT-FU 1011 1101 BD 0
CVT-DF 1011 1110 BE 0 -
JT 1100 0000 co 1 (signed) offset
JF 1100 0001 Cl 1 (signed) offset
JMP 1100 0010 c2 1 (signed) offset
SHIFT 0 1100 0101 c5 1 (signed) offset
SHIFT-W 1100 0110 C6 1 (signed) offset
SHIFT-U 1100 0111 c7 1 (signed) offset
GET06 1100 1001 c9 1 package identifier
LJT 1101 0000 DO 2 (signed) offset
LJF 1101 0001 Dl 2 (signed) offset
LJMP 1101 0010 D2 2 (signed) offset
CALL 1101 0100 D4 2 function identifier
XCALL 11010110 D6 2 function identifier
PUSH 1110 0000 EO 2 data identifier
PUSHR 1110 0001 El 2 data identifier
PUSHI +l110 0011 E3 2 (signed) value
POP 1110 0100 E4 2 data identifier
POPR 1110 0101 E5 2 data identifier

99

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISO/IEC

I POPC 1 11100110 I E6 I 2 I data identifier I I 1
1 ALLOC
1 INC

1 11101000 1 E8 I 2 I type identifier
1 111011~ I 2 I data identifier I I 1

1 DEC
1 GET

1 11101101 1 EB I 2 I data identifier
I 1111 0000 1 FO I 2 I data identifier I 1 I (unsigned) index I

GETC . 1111 0010 F2 2 data identifier 1 (unsigned) index
SET 1111 0100 F4 2 data identifier 1 (unsigned) index _

1 SETC 1 1111 Olil F6 I 2 I data identifier I I I (unsigned) index I

100

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISOIIEC 13522=3:1997(E)

Annex C
(normative)

MHEG-SIR predefined elements

This Annex lists the predefined types, functions and messages of MHEG-SIR, together with their
corresponding indices.

Predefined types, functions and messages may be referenced by their identifier and used within interchanged
scripts in the same way types, functions and messages declared within the global declarations part of
interchanged scripts would.

CA Predefined types

MHEG-SIR predefined types comprise

primitive types
MHEG API types.

c.1 .I Primitive types

The primitive types defined by this part of ISO/IEC 13522 shall be encoded using predefined type identifiers
as listed in Table C.1:

Table C.l: Predefined type identifiers for primitive types

Type name Type identifier

I void I 0
I octet I 1 I
I short I 2 I

I

long 3
unsigned short 4
unsigned long 5 1

I float 16 I
1 double I 7 I
1 boolean I 8 I
I character I 9 I

data identifier
obiect reference

10
11

All types that may be expressed in MHEG-SIR (including predefined MHEG types) can be built using the
MHEG-SIR primitive types and the following constructors:

string;
sequence;
array;
structure;
union.

By convention, the unbounded string type (the only constructed type without an element or a parameter)
shall be predefined and shall have 12 as its type identifier.

101

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522=3:1997(E) 0 ISO/IEC

c.1.2 MHEG API types

The MHEG API types defined by the MHEG API shall be encoded using predefined type identifiers

NOTE: MHEG API types are intended for use by interchanged scripts to express information which is
exchanged between the script interpreter and MHEG entities.

The IDL definition of these types, as provided by an MHEG API, shall be mapped to MHEG-SIR type
descriptions using the general IDL mapping rules defined in Clause 14 and the specific MHEG API mapping
rules defined in Clause E.2.

C.2 Predefined functions

MHEG-SIR predefined functions comprise I .

MHEG API operations;
MHEG-3 API operations.

c.2.1 MHEG API operations

The MHEG API operations defined by the MHEG API shall be encoded using predefined function identifiers.

Predefined message identifiers for the MHEG API operations shall start at 11 OOh.

The IDL definition of these operations, as provided by the MHEG-3 API, shall be mapped to MHEG-SIR
function descriptions using the general IDL mapping rules defined in Clause 14 and the specific MHEG API
mapping rules defined in Clause E.2.

c.2.2 MHEG-3 API operations

The MHEG-3 API operations defined by the MHEG-3 API, as defined in Clause 15, shall be encoded using
predefined function identifiers according to Table C.2:

102

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISO/IEC ISO/IEC 13522=3:1997(E)

Table C.2: Predefined function identifiers for MHEG-3 API operations

Operation name I Predefined function index I Function identifier

I prepare lo , IOOOh I
I destrov I 1 1 IOOlh
I new 12 1 1002h I
1 delete I 3 1 1003h

setpriority 4
getpriority 5
setData 6
getData 7
allocate 8
free 9
stop 10
reInit 11
getRtScriptStatus 12
open 13
close 14
getRoutineId 15
setparameter 16
cretPrototvDe 17

1004h
1005h
1006h
1007h
1008h
1009h
1 OOAh
IOOBh
IOOCh
IOODh
IOOEh
IOOFh
IOlOh
IOllh

I run I 18 1 1012h
reset I 19 1 1013h

I cretInvocationStatus I 20 1 1014h I

The IDL definition of these operations, as defined in Annex F, shall be mapped to MHEG-SIR function
descriptions using the IDL mapping rules defined in Clause 14.

6.3 Predefined messages

MHEG-SIR predefined messages targeted at an t-t-script result from

invocation of the MHEG-3 API run operation;
the InstructionExecutionErroreXCeptiOn;
MHEG-3 API exceptions;
MHEG API exceptions.

c.3.1 MHEG-3 API operations

The identifier of the message resulting from the invocation of a run operation, as defined in subclause
154.5, shall be equal to the function identifier of the target routine.

Messages resulting from MHEG-3 API operations shall therefore have a message identifier value between 0
and OFFFh.

C.3.2 The InstructionExecutionError exception

The InstructionExecutionError exception, as defined in subclause 9.5.2, shall have IOOOh as its
message identifier.

The InstructionExecutionError exception shall have one member of type unsigned long, whose
value shall be set to the value of the ER.

103

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3: 1997(E) 0 lSO/IEC

The major error code shall determine the least significant byte of the member (and the ER) as defined by by
Table C.3:

Table C.3: Instruction execution error codes

Error name Error code
I InvalidOperand I 1 I
I InvalidParameter I 2 I
I InvalidType I 3 I

InvalidIdentifier 4
InvalidLevel 5 I

I InvalidIndex 16 I
I StackUnderflow I 7 I
I ArithmeticOverflow I 8 I
1 D ivisionBvZero I 9 I
I HandlerNotFound I 10
I InvalidReturnValue I 11 I
I BadPackageStatus I 12 I
I InvalidObiectReference I 13 I

TypeMismatch 14
JumpOutOfRange 15
AllocationFailed 16

c.3.3 MHEG-3 API exceptions

The MHEG-3 API exceptions, as defined in Clause 15, shall have the message identifiers defined by Table
c4 . . .

Table C.4: Predefined message identifiers for the MHEG-3 API exceptions

Exception name Predefined message index Message identifier
InvalidScript 1 1001h
InvalidParameter 2 1002h
OperationFailed 3 1003h

The IDL definition of these exceptions, as defined in Annex F, shall be mapped to MHEG-SIR message
descriptions using the IDL mapping rules defined in Clause 14.

c.3.4 MHEG API exceptions

The MHEG API exceptions defined by the MHEG API shall be encoded using predefined message identifiers.

Predefined message identifiers for the MHEG API exceptions shall start at 11 OOh.

The IDL definition of these exceptions, as provided by the MHEG API, shall be mapped to MHEG-SIR
message descriptions using the general IDL mapping rules defined in Clause 14 and the specific MHEG API
mapping rules defined in Clause E.2.

104

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 ISOAEC ISOAEC 13522=3:1997(E)

Annex D
(normative)

IDL Platform mapping specification form

MHEG-3 engines shall allow access to the services provided by the run-time environment of a given platform,
provided this run-time environment complies with the registered “platform mapping specification” for this
platform.

The registered “platform mapping specifications” shall be provided according to the template specified in this
Annex, with all fields being completed.

rhis MHEG-SIR platform-mapping specification defines the mechanisms that need be used by MHEG-3
=ngines to access the services provided by the run-time environment on the platform. d

)latform description

The platform to which this specification applies is <platform - description>.

‘ackage availability procedure

To know whether an IDL specification is available within the run-time environment and to locate it, an
VlHEG-3 engine shall proceed as follows. <package-availability - procedure>

‘ackage load procedure

To make the operations of an available IDL specification accessible, an MHEG-3 engine shall proceed as
‘allows. <package-load-procedure>

Package unload procedure

To stop the operations of an available IDL specification from being access
xoceed as follows. <package-unload-procedure>

ible, an MHEG-3 engine shall

Operation invocation procedure

To invoke an operation of an accessible IDL specification, an MHEG-3 engine shall proceed as follows.
<operation - invocation procedure> -

Parameter passing procedure

A/hen invoking an IDL operation, an MHEG-3 engine shall pass in parameters as follows.
<in parameter passing - - - procedure>

When invoking an IDL operation, an MHEG-3 engine shall pass out parameters as follows.
<out parameter passing - - - procedure>

When invoking an IDL operation, an MHEG-3 engine shall pass inout parameters as follows
cinout parameter passing - - - procedure>

Output parameter retrieval procedure

To retrieve the values of out or inout parameters after invoking an IDL operation, an MHEG-3 engine shal
proceed as follows. <output - parameter retrieval - - procedure>

105

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522-3: 1997(E) 0 ISOAEC

Return value retrieval procedure

To retrieve the return value of a previously invoked
follows. <return value retrieval procedure> - - -

IDL operation, an MHEG-3 engine shall proceed as

Data encoding rules

The values of data that are interchanged between the MHEG-3 engine and the run-time environment shall be
encoded as follows. <data-encoding-rules>

Exception retrieval procedure

To retrieve exceptions that are raised by the run-time environment, an MHEG-3 engine shall proceed as
follows. <exception-retrieval - procedure>

System exceptions

The system exceptions that may be raised by the run-time environment and retrieved by an MHEG-3 engine
are defined as follows. <system-exception-definitions>

Resource limitations

When using the run-time environment on the platform, the following resource limitations apply.
<resource limitations statement> - -

106

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

0 lSO/IEC ISO/IE@ 13522-3: 1997(E)

Annex E
(normative)

MHEG API definition process

As exposed in subclause 8.3.3, this generic part of lSO/IEC 13522 does not define a specific MHEG API. It
defines instead a generic set of rules and procedures applicable to the definition of the MHEG API to be
provided by any part of ISO/IEC 13522 that describes presentation objects. This comprises

the rules that shall be used to produce the MHEG API definition (see Clause E.l);
the procedure that shall be used to define the MHEG-SIR mapping of this MHEG API (see Clause E.2).

El . Generic API definition framework

Producing an MHEG API specification from another part of lSO/IEC 13522 that describes presentation
objects (hereafter called an MHEG specification) is a process that consists in producing IDL elements from
MHEG elements.

The MHEG elements on which this process applies are described in subclause E.l .I. The IDL elements to be
produced from these MHEG elements are described in subclause E.1.2. The rules used to produce the IDL
elements from the MHEG elements are described in subclause E.1.3 sq.

E.1 .I MHEG elements input to MHEG API definition process

The different parts of ISO/IEC 13522 share a number of key features. The following MHEG elements must be
present in the source MHEG specification:

MHEG data types, described using ASN.l or Extended Backus-Naur Form (EBNF);
MHEG entities (i.e. objects targeted by MHEG elementary actions), related to each other by
inheritance relationships;
static and dynamic attributes of MHEG entities;
MHEG elementary actions applying to MHEG entities;
MHEG exceptions raised as the MHEG effect of elementary actions.

E.l.2 IDL elements output by MHEG API definition process

The API definition process should consist in mapping these elements to a set of IDL elements:

IDL non-object types shall map MHEG data types;
IDL object interfaces, related to each other by inheritance relationships, shall map MHEG entities;
IDL attributes, provided by IDL object interfaces, shall map static and dynamic attributes of MHEG
entities;
IDL operations, provided by IDL object interfaces, shall map MHEG elementary actions;
IDL exceptions shall map MHEG exceptions raised as the effect of elementary actions.

E.l.3 Requirements on the MHEG API definition process

According to ISO/IEC JTCI guidelines for API standardisation, the MHEG API shall be defined as an abstract
API specification, i.e. a language-independent description of the semantics of a set of functionality in an
abstract syntax using abstract data types.

As an enforcement of the recommendations of ETR 225 “API and script representation for MHEG -
Requirements and framework”, an MHEG API definition shall meet the following requirements:

portability (see subclause E. 1.3.1);

107

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOAEC 13522=3:1997(E) 0 ISO/IEC

genericity (see subclause E. 1.3.2);
conformance testability (see subclause E. 1.3.3);
implementability (see subclause E. 1.3.4).

E.l.3.1 Portability m

The portability requirement states that MHEG applications need use the MHEG object manipulation and
interchange service provided by MHEG engines (i.e. an MHEG API) in a way independent of

the programming language used for the MHEG application;
the underlying operating system.

To meet the portability requirement, an MHEG API shall be defined as an abstract API specification.

E.l.3.2 Genericity

The genericity requirement states that all the common requirements of MHEG applications need be
supported by an MHEG API.

To meet the genericity requirement, an MHEG API shall be defined at the most primitive level, i.e. in terms of
primitives that match MHEG elementary actions and data types that match MHEG data types. This
guarantees to maximise the range of MHEG object manipulations made available to applications.

E.l.3.3 Conformance testability

The conformance testability requirement states that it should be as easy as possible to test

the conformance of an MHEG engine to an MHEG API specification, i.e. the correct provision of this
API by an MHEG engine under test;
the conformance of an MHEG application to an MHEG API specification, i.e. the correct use of this API
by an MHEG application under test.

To meet the conformance testability requirement, an MHEG API shall express formally its requirements on
conforming implementations and conforming applications and it shall use a formal description technique for
the definition of the MHEG API.

E.l.3.4 Implementability

The implementability requirement states that implementation of MHEG engines that conform to the
MHEG API specification need be as easy as possible. For this purpose, the MHEG API definition should take
into account simplicity and clarity both in the definition and the formulation.

To meet the implementability requirement, an MHEG API shall provide or refer to guidelines to produce
language mapping specifications and message encoding rules from the abstract API specification.

E.l.3.5 Fulfilment of technical requirements

The use of IDL contributes to the fulfilment of the portability and implementability technical requirements:

IDL is independent from a programming language. Moreover, there are public specifications of IDL
mappings to common programming languages such as C and C++;

IDL provides a complete formal description language which allows a very concise, readable, efficient
specification of an MHEG API. Moreover, IDL is also appropriate for automatic compilation, SO that
MHEG API implementations may be automatically generated for a given language and operating
system using appropriate IDL compilers.

108

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
52

2-3
:19

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

