INTERNATIONAL ISO/IEC
STANDARD 13522-3

First edition
1997-05-15

Information technology — Coding of

multimedia and hypermedia information —

Part 3:
MHEG script sMerchange representatip

nn

Technologies de I'information — Codage de I'information multimédia et

hypermédia <=
Partie 3: Représentation d'interéchange script MHEG

TN I
Iso EC Reference number
S g =—e ISO/IEC 13522-3:1997(E)

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

Contents
1 ESTeTo] o 1< YOS PO T PP PP PRSP PRI SRR 1
1.1 CONEXE Of thE SCOPE ..veeuveeeitieeiee ittt 1
1.2 Scope of this part of [SO/TEC 13522 e e 1
2 NOTTNALIVE TEIEIENCES ..oeeeeeeeeeeeeeeeeeieeeeeeeeuserssessrereaeeaaesesssaaaartrereeesssssensnrsnsnsnnsnenneseseansessssheiiabunencbeenennn 1
3 DLy 1110 8 TR U T T T T U U T T PP O PRSPPI . PRI SRR 2
4 A EVIATIONS ..o eeeeeeeeeeeeeeeeeeee e e eeeeseseseeaaeasssssseneaeseeeeeaseesaansrneeeessssssnnnssarangebaedunneeeanessansnnnennnndhieeinis 6
5 CONFOMMEANCE ..eeeeeeeeeeeeeeeee e e e e e eeeeeerersseeseeeeeeesseeeeesessssssnssesssssnnnnsogfaiTonennnnnnnnansnessnnnnnnnee i 7
5.1 Information object CONfOrMAaNCEcocuiriirieiiiiiieie B e 7
51.1 PrOTIES oot T 7
5.1.2 ENCOAING .ueveeeiieeericie it e 7
513 SYNAX e L L 8
5.1.4 SEMANTICS eeeeeeevirrrirrrieeeeeeeeeeeeeeeesaareeeerereeeereerseetsmnmminseeseseaaasasassssessessfoeennens 8
5.2 Implementation CoNfOrManCecooveve e Mo 8
5.2.1 Conformance reqUIrEMENtS .. 50 eceerreeeeiereeiirieeeeeesiiieeeee s e 8
5.2.2 Conformance documentation su.eeeeeeereeeeiriiiiiiiineeneeeeeeeeeeeeeeeeveeceneee i 8
5.3 Application conformancCeccovepmfhiriiniieniei e L 9
5.4 TSt MEINOAS .o eeeeeeeeeee e e e s e e e e e r e 9
6 OVEIVIEW oo e eeeeeeeeeeeeeeeeeesseahbeeseeeateeaaeesesssasasassbaseeseeseensnrarsennesnnsnnneeasaesessessnnsrnnnns[eesenins 9
6.1 Description MethOdOIOgY ... verereririieiieiie e L 9
6.2 Data processing OPEratiGNScceiuriueeriieiiiinrieie e e 10
6.3 Access to external data-and funCtionseeeveiiiiiiiiiiiiecfn 10
7 MHEG/MHEG-3 relationShiDccveeveveeeenrieeiiie ittt f e ne s 11
71 MHEG ©NIES e eeeeeeeeeeeieeeeereireeeeeeeeesssaaaassassrsrrresessssssssnssseereresrreeneeeeesesassnssnsnssssnnafieennnns 11
7.2 FUNCHONAN ERTIHIES «.oeeeeeeeeeiieerieeeeeeeeeeeeeeieeireer e e e e s s ssssbrerreeeaseseeeaeeseessssnsrnnnsnnessesesbenannee 11
7.3 MHEG-SIR SCHPt INtEIPreter....cccueeecveiiiiiiiieiiiciie e 12
8 Elements Of MHEG-SIRccviiieiieeeeeeeeeeeccisirterreesteeseee s e s ssbanreee e e e e s e sasbastbbaseaseaaaeseessssnsnnaaneneees 12
8.1 DATA LY PES ..ueeeeeeeeniereieere st 12
8.1.1 Predefined tyPesS....c.ceeivieiiiniiiiiiiiiie e 13
8111 Primitivetypes el 13
8.1.1.1.1 © VoI IYPE e 14
8.1.1.1.2 octet type ovveeiieeiieeee 14
8.1.1.1.3 Shorttype .ooovieeeeeee e 14
8.1.1.1.4 IONGIYPE e 14
8.1.1.1.5 unsigned short typeccceeveviiiiiininninnenn. 14

© ISO/IEC 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office » Case postale 56 « CH-1211 Genéve 20 ¢ Switzerland

Printed in Switzerland

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

©ISO/IEC

ISO/IEC 13522-3:1997(E)

8.1.1.1.6 unsigned long typecocc.oooiiiiiiie. 14

8.11.17 floattype ..o 14

8.1.1.1.8 double type ..o 14

8.1.1.1.9 boolean type.........ccoccoiiiiiii 14

8.1.1.1.10 character type..........ccocooveviiiiiiiiiie 14

8.1.1.1.11 data identifier typeccccoooeeeiiii 14

8.1.1.1.12 object reference type...........cccoeoiieeeiin 15

8.1.1.2 Predefined constructed types................ccooocooiiiiii 15

8.1.2 Declared constructed typesc.oooiiiiiii e 15

8.1.2.1 SEQUENCE LYPES ...oovvveeeiiieiieeeeeeeeeeeeeee A 15

8.1.2.2 StiNG YPES ..o AN 16

8.1.2.3 array types........ccooooii BT 16

8.1.24 structure types........ccoceeeevviieiiiiiie O 17

8.1.25 UNION tYPES ..o S 17

8.2 Data e e M 17
8.2.1 Immediate values ..o 18

8.2.2 CoNStaNtS ... b 18

8.2.3 Variablesoooooviiieiiiieeeeeeeee e Bl T 18

8.2.3.1 Global variables...............cc. om0\t 19

8.2.3.2 Local variables Gl b 19

8.2.3.3 Dynamic variables.......c..n e 19

8.3 FUNCHIONS ... S e e 19
8.3.1 ROULINES ... S e 20

8.3.2 SEIVICES ...vvvieieiiiiieiieeee Y e 20

8.3.3 Predefined funCtioNS 30 i 21

8.4 MESSAUES ...ttt A e ettt ettt ee ettt ba e e enee e p e 21
8.4.1 Package exceptions ... c . oo b 21

8.4.2 Predefined meSSagesocovviiiiiiceeece e 22

8.5 INSITUCHIONS ... e ettt e e e e e eaee e 22
8.6 IdENtfIErS .. o e 22
8.6.1 Type identifierS.........oooiiiiii e 22

8.6.2 Data identifierscooooiiiiiiei e 23

8.6.3 Functionidentifiers ..o 23

8.6.4 Message identifiersoccoeiiiiii e e 23

9 Thie MHEG-SIR VirtUGINMacChine.cooooiiiiiiie e o 23
9.1 Structure. of the MHEG-SIR virtual machine...............c..ccocooeiiiiiioiicccecce e e 24
9.4 Structures and NOtatioNS..........cocoeiiiiiii e e 24
9,21 DI e 24

9:22 SHACK o e 24

9.2.3 Parameter stack...............oooiiiii e L 25

9.24 QUEBUE ..o e 25

925 Data lUPI CoCt ﬁatiun LI e 25

9.3 MIEIMOTY @IS, ... ettt ettt ettt e 26
9.3.1 Mh-SCrPt MEMONY @r€aSc.c.oiiiiiiieiiie e 26

9.3.1.1 Data ar€as...........ooooiiiiii e 27

9.3.1.1.1 Type definition table 27

9.3.1.1.2 Constanttablecccoiiii 27

9.3.1.1.3 Global variable definition table 27

9.3.1.2 COAR ArBAS........oeiiiieieee e 27

9.3.1.21 Routine definition table.............................. 27

9.3.1.2.2 Package definition table 28

9.3.1.2.3 Service definition table 28

9.31.2.4 Exception definition table........................... 28

9.3.1.25 Handler definition table............................. 29

9.3.1.2.6 Programcode area...............ccccccveee 29

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC
9.3.2 Rt-SCript MEMOIY @reas.........ccoooiiiiiiiii e, 29

9.3.21 Dynamic MemOry @reas...........c.ccoeveveieiiaiieeiieieie e 29

9.3.2.1.1 Variable table...............cccccc 29

9.3.2.1.2 Callstack ..o 30

9.3.2.1.3 Parameter stack............cccoooeeiinnii 30

93214 Message qQUEUEcceevvviiiiiiiiicee, 31

9.3.21.5 Heap ., 31

9.3.22 REGISIEIS ... 31

9.32.2.1 Instruction pointer register......................... 32

93222 tstroctionTegister e 32

9.32.23 Errorregister............ccooooveem N 32

93224 Stack pointer register.......... ST 32

9.3.225 Frame pointer register ..o} 32

9.3.2.26 Queue pointer registery 2.7 o 32

9.3.2.2.7 Function register.... .7 . 32

9.4 SCript StAtUSES ..o R T 33
9.41 Mh-script StatuSesccoovviiiiii e N 33

9411 Notavailable..............ccocoovee e Nl 33

9.4.1.2 Available ... NN e 33

9.42 Rt-script statusescocovoveniiincnm b 33

9.4.2.1 Notready ..o S e 33

9422 Ready .o e fe 33

9423 RUNNING oo S L 34

9424 EITONEOUS ... o500 i o 34

9.5 Processing UNItScooorriiieriiiee et T e 34
9.5.1 Message reception ... &a i oo L 34

9.5.1.1 MHEG<3 APl operations..........ccccccvveeeeiiiiiee o 34

9512 External exceptioncococeeviiiiiiiiieicccen e 34

9.5.1.3 InstructionExecutionError exception..........ccocceei o 35

9.5.14 MHEG-3 APl exception ... e 35

9.5.2 Mh-script initialisation ... e 35

9.5.3 Rt-scriptnitialisation ... e 35

9.5.4 Rt-scripbexecution unit...............cooooiiii e 36

9.5.5 MHEG-SIR instruction execution unit................cccovoiinnii 36

10 Drovisions for run-tme environment 8CCESSooivviiiiiiiiiiiiiiiiiii e 36
0.1 GENEIAN TG ... 36
0.2 Declaration of IDL INtEITACESccveeiiiiiieiiiee e e 37
0.3 Invocation of external operations in an MHEG-SIR program.................... 38
10.4 Handling of external exceptions in an MHEG-SIR program ... b, 38
10.5 Invocation of external operations by an MHEG-3 engine ...l 38
106 Handling of external exceptions by an MHEG-3 engine ..., 38
107 Platform mapping SPeCIfiCatiONSoiiiiiiiiiie e e e e ee e ee s 39
11 Provisions for MHEG object manipulation...............cccooiiiiiiii 39
1.1 INVOKING MHEG @CHONS ...ttt 39
11.11 Sending messages to other scripts ... 39
11.1.2 Exchange of information with MHEG objects... 40
11.2 Receiving MHEG MESSAFES..........cvomiiriiiiiiies ittt 40
11.2.1 MHEG-3 API run Operations.ccouiiiiiiiiiiiii e 40
11.2.2 MHEG AP €XCEPHONS.ot 40
12 MHEG-SIR A CIAIALIONSoveeeeeeeeee ettt 40
121 TYPE AECIAMAtON ..ot 41
12.1.1 TyPE IAENfIEr.......o.vieee e 41

12.1.2 Type desCriptioNooiiiiii 41

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

13

ISO/IEC 13522-3:1997(E)

12.1.21 String description.............cocooiiiiii e 42

12.1.2.2 Sequence description...............occoooiiiiio e 42

12.1.2.3 Array desCription ..ot 42

12124 Structure description ... 42

12.1.25 Union desCription............ooooviiiiii e 42

12.2 Constant deClaration..............c.oooii i 43
12.2.1 Data ideNtifIEro 43

12.2.2 TYPE IAENHTIEI. ..o, 43

12.2.3 CONSEANE VAU ..o 43
12.3—Gtobatvarabtedectaraton o e 44
12.3.1 Data identifier........ccovveieeiie e e N L 44

12.3.2 Type identifier..........cccoooiiii D e 44

12.3.3 Constant refer&NCEc.oooiviiiiiiiiecee e e 44

12.4 Package declaration ... O AT 45
12.41 Package identifier...........cocoiiiiiiie e 45

12.4.2 NAME ..o R T e 45

12.4.3 Service desCription...........cooiiiiiiiii e 45

12.4.3.1 Function identifier................cooo 5 45

12.4.3.2 Name .o AN e 46

12.4.3.3 Calling modeoooevvvivi Sl 46

12.43.4 Type identifier...........c.o. e N 46

12.4.3.5 Parameter description .y~ v 46

12.4.3.5.1 Passingmode.............oooeeeviiii e 46

12.4.3.5.2 Type identifier............ccooooooo s 47

12.4.4 Exception desCription ..o e e 47

12.4.41 Message identifier ... 47

12.4.4.2 Parameterdescription ... 47

124 Handler declaration ... 80 e e 47
12.5.1 Message identifier. .s5h . ..o 48

12.5.2 Function identifien . ..o 48

12.4 Routing declaration........... 0 e e 48
12.6.1 Function identifier..........cccoooiiii e 48

12.6.2 Type ideRbifier............coooiiii e 48

12.6.3 Parameter description.............ocoooiiiiiiiiee e 48

12:6.3.1 Passing MOde.cooiiiiiiiiiic e 49

12.6.3.2 Type identifier...........ccooiii o 49

12.6.4 ocal variable declarationc.ccoeoi i e 49

12.6.4.1 Dataidentifier ..o L 49

12.6.4.2 Type identifier...........cocoooiiii e 49

12.6.4.3 Constantreference.............ccoooiiiiiiiiii e 49

12.6.5 Program Codeoocoiiiiiiiii 50

Vil | ST M | o TaY= f 1 s i Y a X~ UUR 50
13.1 Presentation methodologyccooiiiiiiiiii e 50
13.1.1 Error CONAItIONS ... 50

13.1.2 Formal specificationcoouieiiiiiiii 51

13.1.3 Data table Notationoooiii e 51

13.1.4 Template instruction notation ... 51

13.1.5 P IV S .o e e 52

13.2 Classification of MHEG-SIR inStruCtions ... 52
13.3 Description of INSTrUCIONS ...t 54
13.3.1 NO OPEIALION. ...t 54

13.3.2 Y BIA o 54

13.3.3 R UIN L e 54

13.3.4 BT BB oo e 55

13.3.5 N Ot o et 55

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC
13.3.6 Or e e e 56
13.3.7 EXCIUSIVE OF ...ttt 56
13.3.8 AN e e 57
13.3.9 EQUAI TEIEIENCEc.ovieiiei e 57
13.3.10 BQUAL .o 58
13.3.11 LSS TNAN ... e 58
13.3.12 GIEAEI tNAN ... ettt 59
13.3.13 AT e e 59
13.3.14 SUDITACE ...ttt e 59
13.3.15 MIUBDIY <.y [60
13.3.16 DIVIAE < oveeee e S e 60
13.3.18 REMAINAENccviiiiiiiiiee et G 61
13.3.19 DUPKCALe ... G L 62
13.3.20 CONVEI ... neeeeeeee e K M b 62
13.3.21 JUMP ONETUE ..o ah e [62
13.3.22 JUMP ON FAISE ... e L 63
13.3.23 JUMP e Lo 63
13.3.24 St oot AT et e 64
13.3.25 Get object reference..............cccoovovei G b 64
13.3.26 Long jump ON trUE ..o S S f 65
13.3.27 Long jump on falseoccooee b b 85
13.3.28 LONG JUMP.ctiieiiieec e 8 65
13.3.29 Call e S e 66
13.3.30 EXtErNal Call.........ooooviio St 67
13.3.31 PUSH oo e 68
13.3.32 PUSh referenCe...... oo i 69
13.3.33 Push immediate.....> ..o FUT TP URUUUUUUPRURUPPRRT RUPPPRP 69
13.3.34 POP cooiecees e L 70
13.3.35 POP referENCE.ocoiiiiiiiiic e L 70
13.3.36 Pop conteRtSccooeeiiiiiic e 70
13.3.37 ALOCAEE ..ot 71
13.3.38 INGFEIMIENY ..ottt ree e e e Jee 71
13.3.39 DECIEMENLottt e eaeesnae e fee e 72
13.3.40 (1= ST U TS U U OO T U PSR PUP S PUPSPPUUTOPUPRRPPRROIY RSO 72
13.3.41 GEE CONENES ..ot L 73
13.3.42 LY=L ST U U OO OO SOV TPURPPRTOPUTRURURPPPRPPURY ISUROTEROROS 74
13:3.43 St CONENTS ..ottt [75
13.4 TYPE CONVEISION TUIBS.cooviviiimiiiiciiin i 75
13.4.1 Reversible CONVEISIONScccooiiieeeiiieeriecceeiiceee e | 76
13.4.2 LOSSIESS EXEENSIONS ...ttt L 76
13.4.21 Conversions from boolean.............ccccccoovininni i 76
13422 Eonversionsfromroctettoanumedetype—e oo 76
13.4.2.3 Lossless conversions from a numeric to a larger numeric
Y P et 76
13.4.3 LOSSY EXEENSIONS.........oiiiiici et 77
13.4.4 Truncations t0 DOOIAN.............c..ooiiiiiee e 77
13.4.5 Truncations between integer or between floating-point types........................... 77
13.46 Truncations from floating-pointto integer................ooco 77
14 IDL Mapping 10 MHEG-SIR ..o 77
141 IDL SPECIFICAHIONS........eeceeiice e 77
14.2 IDL interfaces and MOGUIESc.vvi ittt ettt 78
14.3 IDL OPEIALIONS ..ttt 78
14.3.1 OPEration MAME...........eiiiiie et 78
14.3.2 Operation PAraMELErScooiiiiiiiiiie 78

Vi

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

14.3.3 IMPpliCit PAraMEter..........ooviiiee e 78

14.3.4 REtUMN VaIUB. ..o 78

14.4 IDL @ttriDULES ... 78
14.41 ACCESSOT ...ttt et 79

14.4.2 MOGIFIEN ... 79

1443 Readonly attribute ..ot 79

14.5 IDL inherited OPerationsccooiiiiiiiiii e, 79
14.6 IDL @XCEPHONS ...t 79
14.6.1 EXCEPtION NAME ... 79

1462 E)\ucpﬁuu IIICIIIbC|D .. 79

14.6.3 Implicit member..........cooiii e N 79

1417 IDLAYPES .o B e 80
14.7 .1 Char tYPe ..o e, 80

14.7.2 ENUM EYPE ..ottt e 80

14.7.3 Constructed types.......c.ooovvvevviiiiiiiieiiiieeee b A 80

14.7.4 ANY YPE ..o e e, 81

14.7.5 Restrictions on types.............ccooiiiiiinii N 81

1418 IDLconstants.............oooviiiieiiieeeee e S e 81
15 ThEMHEG-=3 APl ..o b, 81
151 Scriptinterpreter Object ... S e e, 81
15.1.1 Kill Operation..........coooiiiiiiiee e e 82

16.1.2 prepare operation.............coeeevveeeebelininiiiiiiiiiie e e 82

15)2 MRSCHIPt ODJECE. ..o N e e 83
16.2.1 destroy operationc.cccoee S e 83

15.2.2 NEW OPETAtION.viiiiiiei et ettt e 83

15)3 RESCript ODJECE ... G 84
15.3.1 delete operation ... x5 e 84

16.3.2 setPriority operationt..........ocooiiiiiiii e 84

16.3.3 getPriority operation............c.ccooiiiiiii e 84

15.3.4 setData operation.............cccoooieiiiiiiii e, 85

15.3.5 getData operation..............ccociiiiiiiiiii e, 85

16.3.6 allocate GPeration..........c.ccoovieiiiiiii e 86

15.3.7 free OPEration............cooiiiiiiiiii e 86

15.3.8 StOP OPErationoooviiiiiiiiiiee e 87

16.3.9 relnit operation ... 87

15.3.10 getRtScriptStatus operation.............cccoceeiiiiiiiii b 88

15.3.11 OPEN OPEIatioNoiiiiiiiiiiiiiiii e h 88

15)4 Routinelnvocation object ... 88
1541 ClOSE OPEratioN.........ooiiiiiiiiiiii e b 88

16.4.2 routine_id readonly attribute................ccoccii e b 89

156.4.3 setParameter operationccccociiii e 89

15.4.4 getPrototype operation...............cc...ooviiiiiiiiii i b 90

15.4.5 FUN OPEIAHION ...ttt e ettt e et e e e e, 90

15.4.6 FESE OPEratioNooiiiiiii e 91

15.4.7 getinvocationStatus operation ... 91

Annex A (normative) ASN.1 specification of interchanged SCFiptS.......ccccccveeinicirrssinncnnnne e 92
Annex B (normative) Coded representation of interchanged scriptscccovvvcminiiinicninccerccccennsceenenes 95
B.1 Coding for interchang@d SCriPSccciiiiiiiiii e 95
B.2 Coding for the program COUE ..ottt 95
B.2.1 INSETUCHION OP-COURS ...ttt e 95
B.2.2 INSErUCtioN OPEIaNAS ..o e 95

vii

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC
B.2.2.1 Data identifier Operandscooeeioiiiiiiii i 95
B.2.2.2 Function identifier Operands.............ccooveieiiiiiiiiiiii 95
B.2.2.3 Miscellaneous NUMETIC OPEraNGS...........cc.eoviiiiiiiiiiiiiit e 96
Annex C (normative) MHEG-SIR predefined elements........ccccoiiininiininiiininnnn e 101
C.1 PredefiNed tYPESo.viiiiee e 101
C.11 PrIMITIVE YPES ...ttt 101
C.1.2 IMHEG AP EYPES. ...ttt 102
C.2 Hredefined FUNCHONS.oe ettt ettt et se e o N 102
g.2.1 MHEG APl OPErationsccceerrimmmnnnnsinssneee LT 102
g.22 MHEG-3 APl OPEratioNsccoovivimrimiiiiiiinis e b 102
C.3 Aredefined MESSAGESc.cvvrverereeeiiiricirecieimnenseeesensssnssseeee o VL 103
¢.3.1 MHEG-3 APl 0perationsccccccoiiiiiiraiinieee el 103
¢.3.2 The InstructionExecutionError eXCeption............covcveiiiiiiiiii N 103
¢.3.3 MHEG-3 AP] @XCEPLIONS........cocvevvereniieiiiieieiiieneanese e b 104
¢.3.4 MHEG API @XCePHONSooveiiiiiiiiiiiimieieeee s AR b 104
Annex|D (normative) IDL Platform mapping specification form..... i s 105
Platform desCriptioncccoieiiiiiiirii e @ N 105
Package availability procedure ... i L 105
Package l0ad procedure.............ccoooovvie i e L 105
Package unload procedure.................oo.in S 105
Operation iNVOCation ProCeaUre. 45 e L 105
Parameter passing ProCedure oo e 105
Output parameter retrieval ProCeaUre. ..o e, 105
Return value retrieval ProCeAUIEN.occuiiiiiiiiriieie s [106
Data encoding FUIESin oo e 106
Exception retrieval procedUIeooiviiiiiiiii [106
SySteM EXCEPHONS. ... (.. ¥ L 106
RESOUICE lMIEAtONS 2 et ettt e 106
Annex| E (normative) MHEG API definition ProCess ... e 107
E.1 |Generic APl definition framework.ccovveiiiieiiieiiiiiii L 107
1.1 MHEG ¢€lements input to MHEG AP definition process.................cooi b 107
- 1.2 IDL elements output by MHEG API definition process ... 107
-.1.3 Requirements on the MHEG API definition process................ooo 107
E.1.3.1 POTtADIItYoveeeeee et 108
E.1.3.2 GENEIICHY ... vttt 108
E.1.33 Conformance testability..............coccovreriiiiii 108
E1.34 IMPIEMENEADIIILY ... 108
E.1.35 Fulfilment of technical requirements...............c..ocoiiiii 108
E.1.4 General structure of the MHEG AP 109
E.1.5 IDL non-object datatype definition ... 109
E.1.5.1 NEME MEPPING ..ottt 109
E1.5.1.1 DAt tYPES ...t 109
E.1.5.1.2 COMPONENES ...ttt 109
E.15.1.3 VAIUBS ...ttt 110
E.1.5.2 TYPE MIAPPING. -ttt 110
E1.5.2.1 INTEGER. ...t 110
E.1.5.22 BOOLEAN ..o 110
E.1.5.23 OCTET STRING ..ottt 111
E1524 ENUMERATED ... 111

viii

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

- NN X T W00 O~ o] [-4] — N © w0
-~

1.
T T T T T T T O OTT T v v v - (9] o (aV] N [{]
-«

e8] o ¢ [¢2] [+ nvnunvn.,n..-l._.l 4,|4I4I n/_n/_quﬂ..v
(3] N _w N o MO M®OOM M [P 2N M ep] DM
1. A. 4I

129
AU

T YT YT YT YT T OYTTOYTTOTOT YT T Y™ = <« " ~ A wnd | o - " w— A ol T T TOYTTOTIOT T = X = Al s i
= P I I
= H . . . H H H H : oonl
..m H : : : : : : Do S

ClEoite Pl - T R
: V) : : : : : : : -
: sl : : : : : : : Lo P
: = : : m : : i : R P
: a2 : : : : : : : A o
: : : : : : : : : R A
P18 e Pl I - S A
: c o : : : : : : : T A
i g e A P : SR
: £ : : : : : : : R o
o 2 : 1 : : : : : T A
Lo E Q= : . . H H H : oL F
A © T B) H . : H H H H Do oo
R = I w51 : N ‘ : : H : ERE Do
iRege B S : a
B L P2 Poob : =
L iBRE oo I - : r5 [S R R
R e Vo : | : H . H H =) N oo
C IPB & - - : £ R
L E S £ - 0O : v, 2 : : v A o
P (. : o o - H H e R -
N T “m a. (24 : = o : : g SN &) oL
Y A < b : (] 7] : : b= - Do
N ()) o) <] : = : : ¢ Do FE
o e i : oz : : P) Do
N | T] n : i} —_ : : C Y FEE
. B Ee] (U] T : b n : T)]
o ‘£ O£ :] 4 : e A ()} F =
= B L 3 Ll © : = [2 o o . o]
u, M - T —,d H" nr M ﬁu " — 2 . . m M LS
Q2 I boe s . : LL ul ¢ W = A
[c Q g @ : pd T H =] L& Ll &=
£ ‘'E=@® @ - : o = : (&) w £ P 5 D5
O Q 312 c - H == H 1] O = o2 =
— © © = o} : w " : T 55 C o= o
© c - : vt o : = B = D m@ TR =
c oL ‘ o £ w5 W j « : = c « < P E®
A ww C m" - ..h_ ./__ S e : . @< N B o] (v
) [— - = C - H ~ : . : :
£E5R2EGE © § ¥ 8 QO E & 4 S nds gL IBE
=888 0 & o 8 8 7 ¥ 8 g oWHE 5O 8D
= © m©e W S = T xg B OE) 35 5E&do g 10w
| "© o O0 I o= K] O S 49 Q 4 o ...m 83 9o 2 g : P
" chooT T B @ W W ® £ o O ® Ww JloSES 2%
cQOO0E o @ § = =T @ BT 2 & L°9°94o08LS Cp R
o s £ 4 &£ o o 9 5 9 oy T AacsdEEss fa X
g=] = = ; , w e W = 26 d o 0w 8 o
© Qa D o T O o I 3% - o/ -, = ol 4383 D
5 £ 4, T - - £ & F i L8 o5d gee g8=e
BT MNP g o x = £ = - = : : N o5 H o S o an 250
-1 DRI) @ — — 2 = o~ —_ — : . : = o~ cad m o 0 w - N
g 00 2 — ~ (] o» [17 : = QL o =) o QO o © D
e = (% 1 (7] 0 > > = - : o > 5 & 08 &8 0O a0
ohiome = 2 2 & 2 3 5 8 8 ., | 8 T 5245828 =82
—pww-= o § ® £ £ © © 3 @ w @ o 8 G duUuOoOg < —0<
<C 2 £ 7] 7 = = S S c = o ©
E € € € 5 £ 5§ ©°9 @& Q@ ®© 5 o 5
Q S o §e] RS/ = N o s 2 < o2 et 8
© ~ © o W e £ F OF E £ &£ m ¢ g £ E EZ-lmywo 9-«o
-~ - — <~ = " O O - I c 1 - T T v T e N N
PN . . = .) (] (O] 7 - ’ - — — - | [RN = B
wi = U C Y T X s = x £ : Uo i i b D o

n
n
2
n
n
n
i

N o g - o~ ©

E
A
A
G.1
G
A
A
A
K.1
K
K
K
A
IaY
L
L
L

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

L.3.4
L.3.5
L.3.6

1 27
..

L.3.8
L.3.9
L.3.10
L.3.11
L.3.12

Ease of implementation ... 133
Interpretation effiCIENCYociiiiiiii 133
Openness and eXtensibility ... 133
NOR-TEVISABIY ..o 134
Provisions for real-time interchangecc.oooiiiiiiii 134
Semantic validation for quality of Service purpoSeS...........ccccoooiiiiiiiiiini 134
Syntax checkability (with regard to contamination hazards)..................c.cco 134
Non-proprietary representation ... 134
SECUre SCIPE PrOCESSINGoviuiiiiiiiiie et 134

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialised system for worldwide standardisation. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organisation to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organisations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the figld of information technology, ISO and IEC have established a joint technical committée} ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated t¢ national

Armal QitamAAavA vamitivan Ao, s P I PO PR S, =l - VAR Y 2P Y Iy g |
Ginai olanaara requires approvai Dy at ieast /79,7 01 e nationai

n Ao arn lnt rey ti

IhAadiaa fdev vintioma Dihlinadis Arma
00aies 19i VUtllIg. rubnuvativil as aitl inmneliia

bodies cpsting a vote.

Internatipnal Standard ISO/IEC 13522-3 was prepared by Joint Technical Committee ISO/IEC JTC 1,

Informatjon technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
informatjon.

ISO/IEC| 13522 consists of the following parts, under the general title Tpformation technology - |Coding of
multimedlia and hypermedia information

— | Part 1: MHEG object representation — Base notation/(ASN.1)
— | Part 3: MHEG script interchange representation

— | Part 4: MHEG registration procedure

— | Part 5: Support for base-level interactive applications

— | Part 6: Support for enhanced interactive applications

Annexeq A to G form an integral part of this part.of ISO/IEC 13522. Annexes H to K are for information only.

Xi

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

This page intentionally left blank

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 13522-3:1997(E)

Information technology — Coding of multimedia and
hypermedia information —

Part 3:
MHEG script interchange representation

1 Scope

1.1 Context of the scope

ISO/IEC 1352 specifies the coded representation of multimedia/hypermedia information objects (MHEG
objects) for interchange as final form units within or across services and)applications, by any meaps of

interchange |ncluding local area networks, wide area telecommunication or broadcast networks, st
media, etc.

brage

MHEG objedts are usually produced by computer tools taking/as a source form multimedia applicgtions

designed usipg multimedia scripting languages. In this context; one of the MHEG object classes, the

script

class, is int¢nded to complement the other MHEG classés in expressing the functionality commonly
supported byl scripting languages. Script objects express-more powerful control mechanisms and degcribe
more complgx relationships among MHEG objects than’can be expressed by MHEG action and link objects

alone. Furthgrmore, script objects express access,and interaction with external services provided b
run-time environment.

Other parts ¢f ISO/IEC 13522 define the coded representation for script objects in an open manner s

y the

b that

script object$ may encapsulate either'standardised or proprietary script code. Script objects encapgulate

scripts that may be encoded in any encoding format as registered according to ISO/IEC 13522-4.
1.2 Scope ¢f this part of ISO/IEC 13522

The scope of this part ofISO/IEC 13522 is to extend the coded representation of the MHEG script
class defined by anothef part of ISO/IEC 13522, including ISO/IEC 13522-1 and ISO/IEC 13522-5.

This part of[ISQ/IEC 13522 specifies the MHEG script interchange representation (MHEG-SIR) fq
contents of deriptobjects, i.e. the encoding of the script data component of the MHEG script class.

bbject

r the

MHEG engines are system or application components that handle, interpret and present MHEG objects.
This part of ISO/IEC 13522 also specifies the semantics of interchanged scripts. These semantics are
defined in terms of minimum requirements on the behaviour of MHEG engines that support the

interpretation of interchanged scripts.

This part of ISO/IEC 13522 is applicable to all applications that interchange multimedia and hypermedia

information.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this
part of ISO/IEC 13522. At the time of publication, the editions indicated were valid. All standards are subject

1

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

to revision, and parties to agreements based on this part of ISO/IEC 13522 are encouraged to investigate
the possibility of applying the most recent editions of the standards indicated below. Members of ISO and
IEC maintain registers of currently valid International Standards.

(1

(2]

(3]

[4]

(8]

(6]

[7]

(8]

(9]
310

For

3.1

3.2

——ard Distinguistred-Encoding Rufes (DER):

Definitions

attribute: (1) MHEG attribute (see ISO/IEC 13522-1 [5]);

ISO/IEC 8824-1:1995|ITU-T Recommendation X.680 (1994): Information technology =~ —
Abstract Notation One (ASN.1): Specification of basic notation.

ISO/IEC 8825-1:19951ITU-T Recommendation X.690 (1994): Information technology — ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)

ISO/IEC 9646:1992-1995, Information technology — Open Systems, ‘Interconnection —
Conformance testing methodology and framework (all parts).

ISO/IEC 10646-1:1993, Information technology — Universal Multiple‘Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO/IEC 13522-1:1997, Information technology — Coding—of multimedia and hypermedia
information — Part 1: MHEG object representation — Basenotation (ASN.1).

ISO/IEC 13522-4:1996, Information technology —.-Coding of multimedia an{/ hypermedia
information — Part 4: MHEG registration procedure:

ISO/IEC 13522-5:1997, Information technology — Coding of multimedia andl hypermedia
information — Part 5: Support for base-level interactive applications

ISO/IEC 14750:—"), Information_téchnology — Open Distributed Processingl — Interface
Definition Language.

|EEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

he purposes of this part 0f ISO/IEC 13522, the definitions given in ISO/IEC 8824-1 [1], IJO/IEC 8825-1
[2] gnd the following definitions apply.

application programming interface (API): Boundary across which a software application uses
facilities of-programming languages to invoke software services. These facilities| may include
procedures or operations, shared data objects and resolution of identifiers.

(2) IDL attribute (q.v.).

3.3

3.4

3.5

conforming MHEG-3 engine: MHEG-3 engine whose implementation conforms to the provisions of
this part of ISO/IEC 13522.

conforming MHEG-3 interchanged script: Interchanged script that conforms to the provisions of this
part of ISO/IEC 13522.

conforming MHEG-3 object: MHEG script object whose coded representation conforms to the
provisions of this part of ISO/IEC 13522.

1) To be published.

2

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

3.6 frame: Record of elements on the call stack that define an execution context: one such record is pushed
onto the call stack everytime a routine is called, to memorize the current execution context; one is

popped from the call stack when the routine is returned from, to restore the execution context at the time
of calling.

3.7 hypermedia (adj.): Featuring access monomedia and multimedia information by interaction with explicit
links.

3.8 interchanged script: The coded representation of the "script data" attribute of an MHEG script object.

3.9 intelrface definition language (IDL): Formal notation that is used to specify types and objectg through
the definition of the interface that they provide, as defined by ISO/IEC 14750-1 [8].

3.10 IDL [attribute: Named, typed association between an object and a value; it is declared as part ¢f an IDL
intefface; it is made visible to clients as a pair of operations: an accessor (get) and a modifier (set); if it is
read-only, it only provides an accessor.

3.11 IDL| exception: Message that can be raised when an exceptional ‘eondition occurs dyring the
performance of the request to an IDL operation; it is defined in an IDL\module and may have members,
which are returned to the caller together with the message identifier.

3.12 IDL| instance: Object that provides the operations, signatures and semantics specified by an IDL
intefface; its creation and management is implementation-spécific.

3.13 IDL|interface: Description, using IDL, of a set of operations that a client may request of an IDL ¢bject.

3.14 IDL|object: Identifiable, encapsulated entity that(rovides one or more services which can be r¢quested
by 3 client.

3.15 IDL|operation: Service that can be requested and is provided by an IDL object; it is defined within an
IDL|interface by a name, a signaturewhich defines the type of its parameters and return value| and the
list pf exceptions that its invocation may raise.

3.16 mhiscript: Internal representation, within an MHEG engine, of an "available" MHEG script obje¢

—

3.17 MHEG action: Operation that applies to MHEG objects and consists of sequential and/of parallel
conpbinations of MHEG-elementary actions.

3.18 MHEG action©bject: MHEG object that describes MHEG actions.

3.19 MHEG application: Application that involves the interchange of MHEG objects within itself or with
another application.

3.20 MHEG conforming object: Information object whose coded representation conforms to the provisions
of another part of ISO/IEC 13522.

3.21 MHEG elementary action: One of the basic operations applying to MHEG objects; it maps one
MHEG API primitive.

3.22 MHEG engine: Process or set of processes able to interpret MHEG objects.

3.23 MHEG entity: Any MHEG object, rt-object, content data, script data, socket, channel or other
construction defined by ISO/IEC 13522.

3.24 MHEG link: MHEG object that defines spatio-temporal relationships among MHEG objects expressed in
terms of trigger conditions and actions.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

3.25 MHEG object: Coded representation of an instance of an MHEG object class.

3.26 MHEG script class: MHEG class defining a structure to interchange script data in a specified encoded
form.

3.27 MHEG script object: The coded representation of an instance of an MHEG script class.

3.28 MHEG API: The API provided by an MHEG engine to MHEG applications for the manipulation of MHEG
objects.

3.29 MHEG-3 (adj.): Applies to entities that conform to the provisions of this part of ISO/IEC 13522.
3.30 MHEG-3 application: MHEG application that interchanges scripts within itself cand/or wjith other
applications as the "script data" component of MHEG script objects, according fo‘the representation
specified by this part of ISO/IEC 13522.
3.31 MHEG-3 engine: MHEG engine that processes and interprets MHEG-SIR interchanged scripts
3.32 MHEG-3 profile: Profile of this part of ISO/IEC 13522,

3.33 MHEG-SIR: (1) The script interchange representation defined by this part of ISO/IEG 13522;
(2) (adj.) Applies to an entity defined as part of this(Script Interchange Representatign.

3.34 (MHEG-SIR) call stack: Stack that is associated with_ ach running rt-script by the MHEG-SIR virtual
makhine and that contains a call frame for each active.function invocation.

3.35 MHEG-SIR code: Encoded sequence of MHEGESIR instructions.

3.36 (MHEG-SIR) constant: Static, typed, named value which is declared within an interchanged $cript and
whpse value is globally accessible and.tinchanged throughout the execution of the script.

3.37 (MHEG-SIR) constructed type:/Type described as a combination of other types using ope of the
following constructors: sequence; string, array, union, structure.

3.38 (MHEG-SIR) data ideritifier: Integer that uniquely identifies the name of a data element of an
intgrchanged script (constant, global variable, dynamic variable, local variable).

3.39 (MHEG-SIR) exception: Message triggered during the invocation of a service.

3.40 (MHEG-SIR) function: Named code sequence whose execution may be invoked by an intgrchanged
scfipt; itmay be a routine, a predefined function or a service.

3.41 (

hanged script.
3.42 (MHEG-SIR) global variable: Variable with global scope.

3.43 (MHEG-SIR) instruction: Elementary unit of code of an MHEG-SIR interchanged script; it consists of
an op-code followed by zero or more operands.

3.44 (MHEG-SIR) instruction execution unit: Within an MHEG-SIR script interpreter, virtual processing unit
that executes an MHEG-SIR instruction.

3.45 MHEG-SIR interchanged script: Interchanged script coded according to MHEG-SIR.

3.46 (MHEG-SIR) local variable: Variable with local scope within a routine.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

3.47 (MHEG-SIR) message: Event that may be received by the script interpreter during the execution of the
script; it may be either predefined (MHEG API exception, MHEG-3 API operation and exception, internal
exception) or declared within an interchanged script (exception provided by an external interface).

3.48 (MHEG-SIR) message identifier: Integer that uniquely identifies a message within an interchanged
script.

3.49 (MHEG-SIR) message queue: Queue that is associated with each running rt-script by the MHEG-SIR
virtual machine and that contains the messages targeted at the rt-script.

3.50 (MHE[G-SIR) object reference: MHEG-SIR value that represents an IDL instance and that is-pagsed as
the pgrameter of an external call to request a service from this instance.

3.51 (MHE[G-SIR) operand: Parameter of an instruction; it is encoded next to the instruction’s op-code
3.52 (MHEG-SIR) package: Set of external functions that are provided by apmodule of the ryn-time
envirgnment and that are accessible to an rt-script and declared within an, interchanged scriIt; it is
comppsed of services and exceptions.

3.53 (MHE[G-SIR) parameter: Piece of data exchanged with a function call;a message or an instruction.

3.54 (MHEG-SIR) parameter stack: Stack that is associated with each running rt-script by the MHEG-SIR
virtua| machine and that is used to provide parameters to and fetrieve results of instructions.

3.55 (MHEG-SIR) predefined type: A type whose descriptien and identifier are predefined by this |part of
ISO/IEC 13522 and thus need not be declared withinvinterchanged scripts; it may be either a primitive
type qr a constructed type.

3.56 (MHEG-SIR) primitive type: Basic predefined-type, as opposed to constructed type.

3.57 (MHEG-SIR) routine: Function that isCdeclared within an interchanged script together with thef virtual
machjne code that defines its semantics.

3.58 (MHEG-SIR) rt-script execution unit: Within an MHEG-SIR script interpreter, virtual processing unit
that executes script code,

3.59 (MHEG-SIR) script (interpreter: The part of an MHEG-3 engine, that handles and interprets
interchanged scripts.

3.60 (MHHG-SIR) . service: External function that is declared within an interchanged script and [whose
implementation is made accessible to an rt-script by the run-time environment on the execution platform.

ead.

cope is active and whose most recent value may be r

3.61 (MHEG variable—Within ;
may be changed at any time when its s

e value

3.62 (MHEG-SIR) virtual machine: Abstract description of the memory units and instruction execution
engine of an MHEG-SIR script interpreter.

3.63 multimedia (adj.): That handles several types of representation media.

3.64 multimedia and hypermedia application: Application that features presentation of multimedia
information to the user and interactive navigation across this information by the user.

3.65 multimedia application: Application that features presentation of multimedia information to the user.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/EC 13522-3:1997(E)

© ISO/IEC

3.66 platform mapping specification: Specification of how MHEG-3 engine implementations shall map IDL
specifications to run-time environment components on one type of platform.

3.67 queue: Collection of elements that are inserted and removed in first-in first-out (FIFO) order.

3.68 rt-script: Run-time instance (or copy) of an mh-script, created by an MHEG engine.

3.69 scope: Context of reference for a variable; if it is global, the variable may be referenced by any script

instruction: if it is local, the variable may only be referenced in the local execution context.

3.70 sgripting language: Programming language intended for easy and rapid design of applicatigns by non-

pfofessional programmers.

3.71 skript interchange representation (SIR): Coded representation used by an application to interchange

sEripts for the purpose of implementing dynamic behaviour.

3.72 stack: Collection of elements that are inserted (pushed) and removed (popped) in last-in firs{-out (LIFO)

order.

4 AbRhbreviations

For the purposes of this part of ISO/IEC 13522, the following abbreviations apply.

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CORHBA Common Object Request Broker Architecture
CS Call Stack

CT Constant Table

DER Distinguished Encoding Rules

DID Data |Dentifier

DT Data Table

EBNF| Extended-Backus-Naur Form

ER Error Register

ETR ETSI Technical Report

FID Elnction IDentifier

FIFO First In First Out

FP Frame Pointer

FR Function Register

GT Global variable definition Table

HT Handler Definition Table

IDL Interface Definition Language

IEC international Electrotechnical Commission

IP Instruction Pointer

IR Instruction Register

1ISO International Organisation For Standardisation
ITU-T International Telecommunication Union, Telecommunication standardisation sector
JTC Joint Technical Committee

LIFO Last In First Out

LT Local variable Table

MHEG Multimedia and Hypermedia information coding Experts Group
MID Message IDentifier

MPEG/DSM-CC
MQ

PID

PS

PT

6

Moving Picture Experts Group - Digital Storage Media Command and Control

Message Queue
Package IDentifier
Parameter Stack
Package definition Table

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:

1997(E)

QP Queue Pointer

rt Run-time

RT Routine definition Table
SiR Script interchange Representation
SP Stack Pointer

ST Service definition Table
TID Type IDentifier

TLV Type-Length-Value

T Type definition Table

VT Variable Table

XT eXception definition Table

5 Confprmance

This part

- on
i

- on

5.1 Infogmation object conformance

A confornmiing MHEG-3 script object shall meet all of the following,criteria:

1) its
2) its

The information object conformance is evaluated .on-the information objects that are interchange
purpose gf their execution on a terminal.

5.1.1 Profiles

This part

NO[TE 1: However, MHEG-3 profiles may be defined by other standards or by other parts of ISO/IE

An MHEG-3 profile-should define all of the following:

- a grofile_of the MHEG-SIR virtual machine defined by this part of ISO/IEC 13522;
- a profile of IDL, together with its mapping to MHEG-SIR, for the expression of interface betwee

bf ISO/IEC 13522 defines conformance requirements

nformation objects, i.e. MHEG script objects

VTS —1T S VTS,

mplementations, i.e. MHEG engine implementations.

coded representation shall conform to the provisions<«f another part of ISO/IEC 13522;
coded representation shall encapsulate a conforming MHEG-3 interchanged script.

pf ISO/IEC 13522 defines no profiles.

In accordance" with the profile definition framework, standardised MHEG-3 profiles sho
least as.'constraining; information objects claiming conformance to such profiles should
conform-to this part of ISO/IEC 13522.

d in the

C 13522.
ild be at
at least

n scripts

and the external environment;
- an API for the manipulation of MHEG objects defined by another part of ISO/IEC 13522, together with
a mapping of this interface to MHEG-SIR.

NOTE 2: According to ISO recommendations, MHEG-3 profiles should ensure upward compatibil
ASN.1 encoding, so that interchanged scripts conforming to an MHEG-3 profile also conform to

this part of ISO/IEC 13522.

5.1.2 Encoding

ity of the

A conforming MHEG-3 interchanged script shall be encoded according to the encoding rules defined by

Annex B.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IE

51.3

C 13522-3:1997(E)

Syntax

A conforming MHEG-3 interchanged script shall conform to the ASN.1 syntax defined by Annex A.

514

Semantics

© ISO/IEC

A conforming MHEG-3 interchanged script shall only include semantically valid declarations and instruction
sequences as defined by Clauses 12 and 13.

5.2

An implementation of this part of ISO/IEC 13522 is an MHEG-3 engine.
A conferming MHEG-3 engine shall support the interpretation of conforming MHEG-3-script objects]

This part of ISO/IEC 13522 defines the semantics of MHEG-3 interchanged scripts- This implies cg
requirgments not on information objects, but on the behaviour of MHEG-3 engines.

5.21

A confi

5.2.2

Implementation conformance

NOTE 1: Although a conforming script might not realise the semantics implied by its design
conforming engines behave in interpreting this script is-predictable.

NOTE 2: This part of ISO/IEC 13522 does not consider conformance for a system, an engine d
as far as it is not related to the interpretation ©f interchanged scripts.

Conformance requirements
brming MHEG-3 engine shall meet all of the(following criteria:
it shall parse and interpret conformingZMHEG-3 interchanged scripts according to the virtu

pbehaviour defined in this part of ISOHEC 13522 (see Clause 9);

IDL mapping behaviour defined in this part of ISO/IEC 13522 (see Clauses 10, 11 and 14);

for the purpose-of manipulation of MHEG objects by interchanged scripts, it shall s
MHEG API _and"its mapping according to the framework defined in this part of ISO/IEC 1
Annex E);

or the)purpose of communication with the run-time environment, it shall support a platfor

nformance

er, the way

r a process

Bl machine

it shall support communication'with the run-time environment and with MHEG objects according to the

t shall provide the MHEG-3 API defined in this part of ISO/IEC 13522 (see Clause 15 and Apnex F);

support an
3522 (see

M mapping

specification according to the framework defined in this part of ISO/IEC 13522 (see Annex D

it may provide additional functions or facilities not required by this part of ISO/IEC 13522 or by the
platform mapping specification. Each such non-standard extension shall be identified as such in the

system documentation.

Conformance documentation

A conformance document with the following information shall be available for an implementation claiming
conformance to this part of ISO/IEC 13522. The conformance document shall meet all of the following criteria:

1)

it shall list all the mandatory features required by this part of ISO/IEC 13522, with reference to the

appropriate Clauses and subclauses;

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

3)

4)

5)

it shall either include the platform mapping specification to which the implementation conforms or
reference a registered platform mapping specification in an unambiguous way;

it shall contain a statement that indicates the full names, numbers, and dates of the standards that
apply;

it shall state which of the optional features defined in this part of ISO/IEC 13522 and in the platform
mapping specification are supported by the implementation;

it sthall describe the behaviour of the implementation for all implementation-defined features dédfined in
this| part of ISO/IEC 13522 and in the platform mapping specification. This requirement shalhbg met by
listing these features and by providing either a specific reference to the system documentation or full
syntax and semantics of these features. The conformance document may specify thesbehavioyr of the
implementation for those features where this part of ISO/IEC 13522 or the)platform mapping
specification states that implementations may vary or where features are identified as undefined or
ungpecified.

No specifications other than those specified by this part of ISO/IEC 13522-and the platform mapping

specificatipn shall be present in the conformance document.

5.3 Appljcation conformance

An applicgtion of this part of ISO/IEC 13522 (called MHEG:3 @pplication) is an MHEG applicafjon that
interchanges scripts within itself and/or with other applications as/the "script data" component of MHEG script

objects adcording to the encoded representation specified by. this part of ISO/IEC 13522.

5.4 Test|Methods

Any meagurement of conformance to this part of ISO/IEC 13522 shall be performed using test methpds that

conform tp ISO/IEC 9646 [3].

6 Overview

This part |of ISO/IEC 13522 extends’/the provisions of other parts of ISO/IEC 13522 so that MHEG] objects
and appligations support functionality of multimedia scripting languages in a standard way. Considgring the
functionaljty supported by other parts of ISO/IEC 13522, these extensions are divided in two main topics:

For the slipport of both topics, this part of ISO/IEC 13522 specifies

data processing.operations (see subclause 6.2);
acgess to extérnal data and functions (see subclause 6.3).

com d-detailed-provisions-for-the-encoding-ofin rged

the required behaviour of a script interpreter.

6.1 Description methodology

For the description of these provisions, this International Standard|Recommendation follows a methodology
that considers four description levels:

level a): informal text description;

level b): precise description of semantics;
level c): formal description of syntax;
level d): formal description of encoding.

These levels are used in the following Clauses as follows:

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/EC 13522-3:1997(E)

level a): Clauses 8 to 11;
level b): Clauses 12 to 15;
level c). Annexes A E, F, G;
level d): Annexes B, C.

NOTE: Informative Annexes H and J also use level c) description.

6.2 Data processing operations

To ded
of datdg

Clauss

Clausd

© ISO/IEC

I with data processing operations, MHEG-SIR defines the structure of interchanged scripts
declarations and function declarations, the latter encapsulating sequences of instructions.

8 defines the elements of the MHEG-SIR virtual machine code.

perform interpretation of MHEG-SIR script code. This virtual machine is used afterwards to d

9 specifies the MHEG-SIR virtual machine, i.e. a model of how MHEG-SIRUscript interp

hat consist

reters shall
bscribe the

semaritics of MHEG-SIR instructions. Clause 9 states requirements on the functionality that script [nterpreters
shall provide; however, it does not specify how to implement this functionality,

Clausg 12 defines the declarations of MHEG-SIR interchanged scripts- It specifies their structure, |.e. the way
they shall be represented, and their semantics, i.e. the way they. shall be interpreted by MHEG-SIR script
interpreters. The semantics are specified using the virtual machineformalism introduced in Clause|9.

Claus¢ 13 defines the MHEG-SIR instructions. It specCifies their structure, i.e. the way thgy shall be
represented, and their semantics, i.e. the way they shall be interpreted by MHEG-SIR script interpreters.
These[semantics are specified using the virtual machine formalism introduced in Clause 9.

Annex| A formally defines the precise syntax of interchanged scripts using the ASN.1 notation.

Annex|B formally defines the encoding of interchanged scripts.

Annex| C lists the predefined elements-of MHEG-SIR and defines their encoding.

Annex| G formally defines the, instantiation of this part of ISO/IEC 135622 to ISO/IEC 13522-1 and ISO/IEC
135225, i.e. the MHEG objécts in these parts to which MHEG-SIR applies, and the way it applies o them.
6.3 Access to external data and functions

To deal with accéss to external data and functions, MHEG-SIR uses IDL to describe interfaces in @an abstract,
langugge-independent way and thus unify the way external data and functions are viewed by script
interpreters.

In the

MHEG=SiR—context1Dtistsed-to-separate—ctearly-the-way-(MHEG=-SiR—specific)the—use’ of external

data or functions is expressed by interchanged scripts from the way (at least platform-dependent, and maybe
application-dependent) these data or functions are provided by the external environment. MHEG-SIR thus
defines how the interfaces are used, while the application is responsible for defining how they are provided.

To allow script interpreters to manipulate MHEG entities and exchange information with them, MHEG-3
engines provide script interpreters with access to the MHEG entities (data) and invocation of the MHEG
actions (functions) through an MHEG API defined using IDL. The MHEG types and actions are predefined in
MHEG-SIR to achieve compact coding and efficient interpretation of MHEG object manipulation.

To allow script interpreters to co-operate with the run-time environment, the run-time environment provides
access to its data and functions according to a platform mapping specification of IDL. This specification
describes how IDL operations need be provided on a particular platform so that MHEG-3 engines be able to

use th

10

em as external services.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

NOTE:

processes, telecommunication services, etc.

ISO/IEC 13522-3:1997(E)

Packages may be provided in the form of libraries, device drivers, operating system components,

Clause 7 describes assumptions on the structure of MHEG-3 engines and their relationships with their
environment.

Clause 10 describes the general mechanisms used to access to external data and functions provided by the
run-time environment.

Clause

Clause

Clause
used to

Annex 0O specifies the IDL platform mapping specification form, i.e. the template for the document

be filled

provided by the run-time environment on this platform shall fulfil, and to which MHEG-3 engines sha
so that they be able to co-operate with services provided by the run-time environment on this pla
thereforg to interpret scripts that call upon such services.

Annex H specifies the framework that shall be used to define.an’MHEG API using IDL and the procs

shall be

Annex F| defines the precise syntax of the MHEG-3 APJ using the IDL notation.
7 MHEG/MHEG-3 relationship

This Clause introduces general assumptions about MHEG-3 engines, which are used afterwards to
the perfgrmance of a script interpreter.and its relationships with its external environment.

MHEG-3 engines shall provide the ‘functionality described hereafter in some way, in order to b

expecte
Howeve

N

71 MI-1EG entities

4 -l] hanicma oo ad to
LAY |

H 4o H maniok-Hate M EC
ST SN ytrCrarTieUmarmSTmo oot Uto T anToaratc™ =

abiaat
AALILL=A == v L] X~

5 specifies the structure and semantics of the MHEG-3 API, i.e. the set of Opefations tha
manipulate scripts.

in and registered for each platform type, to specify the platform-Specific provisions that

followed to map it to MHEG-SIR.

i as far as interpretation of interchanged scripts is concerned.
. there is no requirement on MHEG-3 engines to implement this functionality as described.

DTE: For instance, the MHEG-3 engine functional components described thereafter need not (
to actual (e.g. software) components of MHEG-3 engine implementations.

14 specifies the IDL mapping for MHEG-SIR, i.e. the mechanisms used by the“MHEG-SIR
represerjtation to describe IDL packages and invoke IDL operations.

t may be

hat need
services
conform

form and

dure that

describe

ehave as

orrespond

MHEG-3 engines handle MHEG entities: MHEG objects, mh-objects, rt-objects, interchanged MHEG objects,
sockets, channels.

NOTE: MHEG entities are described in more detail in Annex K.

7.2 Functional entities

MHEG-3 engines may be viewed as consisting of the following functional components:

- MHEG object parser: parses interchanged MHEG objects and transforms them into mh-objects under
control of the mh-object manager;

- mh-object manager: controls the life cycle and allows access to all mh-objects;

- rt-object manager: controls the life cycle and allows access to all rt-objects;

11

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

- reference resolver: transforms an MHEG reference into a usable identifier or handle;

- link handler: watches active links and triggers the corresponding actions when their conditions become
true;

- action interpreter: interprets MHEG elementary actions;

- script interpreter: parses MHEG-SIR interchanged scripts and interprets rt-scripts; provides access to
the run-time environment;

- presentation agent: interface with the presentation environment; orders presentation of rt-contents;
receives user selections and modifications;

- access agent: interface with the communication environment; provides access to interchanged MHEG

Gl H $ Bt niant dats
JeLlo difu U LuTnetrit udtd.

7.3 MHEG-SIR script interpreter
Within gn MHEG-3 engine, the script interpreter shall be responsible for the following:

- parsing interchanged scripts (provided by the MHEG object parser)

- preparing the appropriate data structures for further execution of rt-scripts;

- ecuting script code,

- r¢alising the default effect of MHEG actions targeted at mh-scripts or.rt-scripts;

- invoking the appropriate handler (in the script program) for these MHEG actions;

- forwarding MHEG elementary actions invoked by the script program to the action interpreter;

- anaging interchange with the run-time environment (logating and loading packages| invoking
sprvices, receiving messages, passing data) using the/appropriate platform-specific comrpunication

echanisms.

8 Elements of MHEG-SIR

This Clause describes the main elements of MHEG-SIR and how interchanged scripts shall use them.

The entfities that are declared and manipulated by MHEG-SIR interchanged scripts are
data types;

- data;
finctions;
r

hessages.

These foncepts are defined in the following subclauses; however, the detailed structure of their d pclarations
is specified in Clause 2.

8.1 DJta types

Data tylpesare used to describe the structure of

- the script's own data (constants and variables),

- the parameters and return values of the script's routines;
- the parameters and return values of external functions;

- the parameters of messages handled by scripts.

As scripts need adapt themselves to the signature of functions that may be provided by the external
environment, MHEG-SIR defines a wide range of types corresponding to the IDL data types.

The encoding of data type definitions in an interchanged script is defined by Annex A. This part of ISO/IEC
13522 imposes no requirement on the way MHEG-3 engines represent these data types.

The MHEG-SIR uses two kinds of data types:

12

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

- predefined types (see subclause 8.1.1),
- declared types (see subclause 8.1.2).

All types may be referenced in a unique, unambiguous way by their type identifier.
8.1.1 Predefined types
Predefined types may be either primitive or constructed types.

their identifiers is given in Annex C.

8.1.1.1 Prjmitive types

The primitive types correspond to the IDL primitive types. This is the list of MHEG-SIR primitive types:
- void;
- octet,
- shott;
- long;
- unsjgned short;

- uns}gned long;

- flogt;

- douple;

- boolean;

- chatracter,

- dath identifier;
- objgct reference.

For easier feference, primitive types have individial letter codes as indicated by Table 1:

Table [1:Letter codes of primitive types

Type Letter code
octet O
short S
long L
unsigned| short W (as Word)
unsigned| long U
float F
double B
boolean B
character C
data identifier | (as Identifier)
object reference R (as Reference)

8.1.1.1.1 void type
The void type shall only be used to express the type of return value of a function. Functions whose type of

return value is void do not return any data. An interchanged script shall have no constants or variables of
void type. The void type shall not be used in the definition of constructed types.

13

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

8.1.1.1.2 octet type

Data whose type is octet shall take a numeric value within the range [0 .. 255]. Octet variables without
explicit initial value shall be initialised to 0.

8.1.1.1.3 short type

Data whose type is short shall take a signed integer value within the range [-32 768 .. 32 767]. Short
variables without explicit initial value shall be initialised to 0.

8.1.1/1.4 longtype

Data fvhose type is 1ong shall take a signed integer value within the range [-2 147 483 648-.. 2 147 483 647].
Long|variables without explicit initial value shall be initialised to 0.

8.1.1/1.5 unsigned short type

Data |whose type is unsigned short shall take an unsigned integer yalué within the range 0 .. 65 535].
Unsilgned short variables without explicit initial value shall be initialised'to 0.

8.1.111.6 unsigned long type

Data| whose type is unsigned long shall take ar, unsigned integer value within| the range
[0..4 294 967 295]. Unsigned long variables without explicit initial value shall be initialised to 0.

8.1.1{1.7 float type

Datalwhose type is f1oat shall take a single-precision floating point value within the range specified by IEEE
754 [p]. Float variables without explicit initiat:value shall be initialised to 0.

8.1.1{1.8 double type

Data|whose type is double shall.take a double-precision floating point value within the range|specified by
IEEH 754 [9]. Double variablés without explicit initial value shall be initialised to 0.

8.1.1(1.9 boolean type

Data| whose type_is. boolean shall have either ‘true’ or ‘false’ as their value. Boolean varigbles without
expliit initial valueshall be initialised to ‘false’.

8.1.1.1.10- character type

Data i value within the BMPSt ring character set as defined
by the Basic Multilingual Plane of ISO/IEC 10646-1 [4]. Character variables without explicit initial value
shall have an undefined initial value.

Conforming MHEG-3 engines may state that they only adopt a restricted set of characters, e.g. based on the
standard collections of Annex A of ISO/IEC 10646-1 [4]. In this case, they shall document these adopted
subsets and the level of implementation in the conformance document.

8.1.1.1.11 data identifier type
Data whose type is data identifier shall take an unsigned integer value within the range [0 .. 65 535].
This value is used to identify a constant, global variable, dynamic variable, local variable or routine parameter

of the script, as defined by subclause 8.6.2 below. There shall be no constants of data identifier type.
Data identifier variables without explicit initial value shall have an undefined initial value.

14

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

8.1.1.1.12 object reference type

Data whose type is object reference shall take as value a handle that references an IDL object to which
services or predefined functions apply. Encoding of object references is defined by the piatform mapping
specification. There shall be no constants of object reference type. The object reference type shall

not be used in the definition of constructed types. Object reference variables without explicit initial value
shall have an undefined initial value.

Object references are used as the implicit first parameter of all external calls to specify the object to which the
arameter
ion is used
d to refer

ypes are

declared

8.1.2. Only predefined type identifiers shall be used to express the structure of predefined constructed types.
8.1.2 Deciared constructed types

Construgted types shall be defined using one constructer.and one or several type identifiers identify|ng either
a declargd or predefined type.

The constructor of a constructed type shall be oné' of the following:
- sg¢quence (see subclause 8.1.2.1);

- sring (see subclause 8.1.2.2),

- afray (see subclause 8.1.2.3);

- sfructure (see subclause.8.1.2.4);

- urpion (see subclause 8.1.2.5).

Declared types are definéd within interchanged scripts.

MHEG-§IR types shalt not be redefined in an interchanged script. The structure of a declared type| shall not
match that of a predefined type or that of another declared type.

There shall.not be more than 16 384 types declared in an interchanged script.

8.1.2.1 sequence types
Sequence types shall be defined by

- their size (optional);
- their element type.

The size shall be an unsigned short value. It represents the maximum number of elements of the sequence. If
the type definition specifies no size, the number of elements may be any size up to the maximum. Sequence
types with an explicit size are called bounded sequence types.

The maximum size of any sequence type is 65 535 elements.

15

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

The element type may be any primitive, constructed or predefined type except void and object
reference. The element type shall be referenced using its type identifier. Sequence type definitions shall
not lead to infinite recursion.

NOTE: As a consequence, the type identifier of the sequence may be nested within the type definition
only below a union constructor.

Data whose type is a defined sequence type shall take as their value an ordered list of zero or more values
of the element type.

Variablgs of a sequence type without explicit initial value shall be initialised to a null list (sequenge of zero
element).

8.1.2.2 | string types

String types are semantically equivalent to sequence types whose element typeis’‘character.
NOTE: To optimise their handling, string values may be implemented.in‘a“different way than sequences of
character would. Therefore, strings and sequences of‘\character remain distinc{, although
semantically equivalent, types.
String types shall be defined by their size (optional).
The sizge shall be an unsigned short value. It represents the-maximum number of elements of the sfring. If the
type definition specifies no size, the number of elements.may be any size up to the maximum. Strfing types
with an[explicit size are called bounded string types!

The maximum size of any string type is 65 535°characters.

Data whose type is a defined st ring type shall take as their value a string of zero or more charactgrs.

Variablgs of a string type without explicit initial value shall be initialised to a null string (sequenfe of zero
charactgr).

8.1.2.3 | array types
Array fypes shall be defined by

- their size,
heir element type.

1
—

The size shall'be an unsigned short value. It represents the exact number of elements in the array.

The element type may be any primitive, constructed or predefined type except void and object
reference. The element type shall be referenced using its type identifier. Array type definitions shall not
lead to infinite recursion.

NOTE: As a consequence, the type identifier of the array may be nested within the type definition only
below a union constructor.

Data whose type is a defined array type shall take as their value an ordered list of values of the element
type, the length of the list being specified by the size of the array.

Variables of an array type without explicit initial value shall be initialised to a list of elements whose initial
value is determined by the element type.

16

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

8.1.2.4 structure types
Structure types shall be defined by an ordered list of 1 to 256 element types.
The element types may be any primitive, constructed or predefined type except void and object
reference. The element types shall be referenced using their type identifiers. Structure type definitions
1
1

ImamaAl $a teafimibn raAi oA~
icau o niine recuir sivit.

NOTE: As a consequence the type identifier of the structure may be nested within the type definition

r\r\r\e"rl lhfnr

bala
Ullly DetOwW-atiton

Data whode type is a defined structure type shall take as their value an ordered list of values| of the
element type that corresponds to their rank in the type definition.

Variables ¢f a structure type without explicit initial value shall be initialised to a list\of’elements [whose
initial valug is determined by their element type.

A ~

8.1.2.5 union types
Union typges shall be defined by an ordered list of element types.

There shall not be more than 256 choices (element types) in a union-type.

The elemgent flnnc mayv be anv

ypes may be rimitive, constructed or predefined type except void and db
referende. The element types s

n
AR AT G it A
all be referenced using their type identifiers.

.
[
Q
t

Data whosge type is a defined union type shall take as their value

- an !\teger which represents the index (starting at 0) in the choice list;
- a vdlue of the element type whose rank in.the type definition is the above index.

Variables ¢f a union type without explicit initial value shall have an undefined initial value.
8.2 Data
The MHEG-SIR defines three-kinds of data:

- immnediate values(see subclause 8.2.1);
- congtants (seessubclause 8.2.2);

- varigbles (see'subclause 8.2.3).

All data uged’by-an interchanged script are of a definite data type, either predefined or declared.

Two data values shall be equal if and only if

- they are of the same type, i.e. they have the same type identifier;

- if they are of a primitive type then they are identical;

- if they are of a structure, sequence or array type then every element of one list is equal to the
element of the same rank in the other list;

- if they are of a union type then their tags are identical and their values are equal to each other.

As a consequence,

- values of a st ring type shall not be compared with values of a sequence of character type,

17

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

- values of a bounded sequence type shall not be compared with values of another bounded
sequence type or with values of an unbounded sequence type, since they have different type
identifiers;

- values of a bounded string type shall not be compared with values of another bounded string type
or with values of an unbounded string type, since they have different type identifiers.

All variables and constants are referenced in a unique, unambiguous way by their data identifier.

8.2.1 Immediate values

Immetliiate values are data that are not declared within the interchanged script, and may therefpre only be
used [immediately", i.e. as they are encountered. An immediate value may be encountgred in an
interchanged script

- as a constant value;
- as the initial value of a variable;
- as the operand of a push immediate (PUSHI) instruction.

Besides, immediate values are used in the course of the script execution/through the parameter stack, as
paranmjeters for instructions or functions.

Unlesk the context restricts it otherwise, immediate values may beof any type except void.

The gncoding of data values in an interchanged script isdefined by Annex A. This part of ISQVIEC 13522
imposes no requirement on the way MHEG-3 engines represent data values of a particular type.

8.2.2 | Constants
Consfants shall be declared within the interchanged script and defined by

- a data type;
- a value of this data type.

Consfants may be of any type except

- object reference;
- data identifier,
- void.

Constants have a global scope and may be referenced using their data identifier throughout the interchanged
script

Therd_shall not he more than 4 096 constants declared in an interchanged script.

8.2.3 Variables
Variables shall be declared within the interchanged script and defined by

- a data type;
- optionally, a value of this data type, to be taken as the initial value for this constant.

Variables may be of any type except void.

Variables are referenced using their data identifier. A reference to a variable may be used with either of the
following semantics:

18

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IE

C ISO/IEC 13522-3:1997(E)

- "right-hand" semantics: the same as if the value of this variable was provided instead;

- n‘e

ft-hand" semantics: states that this variable has to be assigned a data value.

In the latter case, the value to be assigned to the variable may be an immediate value (including a computed
value), the value of a constant or the value of a variable (including the future value of a function’'s output
parameter).

The MHEG-SIR defines three kinds of variables:

- g|

Global v

using the

There sh

8.2.3.2 Local variables

Local va

they belgng. They may be referenced using their data identifier only within the code of this routine.
There ar¢ two kinds of local variables:

- iod

- ac

the routine declaration as part of theroutine signature.

There sh
8.2.3.3

Dynamic]
allocate
creation,
identifier
only kno
instructio

riables have a global scope which covers the entire interchanged script<ithey may be re

bil not be more than 28 672 global variables declared in an interéhanged script.

iables have a lexical scope which is restricted to thé.execution of the code of the routine

ual parameters of the routine, whethet’passed by value or by reference, which are declar

all not be more than 256 local variables declared in each routine of an interchanged script.
Dynamic variables

variables have a-dynamic scope which extends from the time when they are created
(aLLOC) instruction up to the time when they are released using a free (FREE) instru
they are given a data identifier by the script interpreter. They may be referenced using t
at any time ‘'during the execution of the script. However, as the data identifier of a dynamic v

n.

ferenced

ir data identifier from any routine or variable. They may be assigned a_new value at any time during
execution of the rt-script.

to which

al variables that are declared within the routine declaration as part of the local variable declaration;

bd within

using an
ction. At
heir data
briable is

vn at run-time, it can only be used as a parameter stack or a variable value, not as the operand of an

There shall not be more than 32 512 dynamic variables used at a given time during execution of an rt-script.

8.3 Functions

The MHEG-SIR defines three kinds of functions:

- routines (see subclause 8.3.1);
- services (see subclause 8.3.2),
- predefined functions (see subclause 8.3.3).

All functions shall have a signature (or prototype) which consists of

- a type of return value;

19

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

- an ordered list of formal parameters defined by their type and passing mode.
All functions are referenced in a unique, unambiguous way using their function identifier.

Functions shall be either synchronous or asynchronous. When a synchronous function is called, the caller
waits for the completion of the function execution and may therefore retrieve its result. When an
asynchronous function is called, the caller only waits for an acknowledgement of reception of the request; it
then resumes execution without waiting for the completion of the function.

Routinep are internal functions of interchanged scripts.

Routinek shall be declared within the interchanged script. Routines shall consist of

- pon reception of an exception duringsan external call (XCALL) instruction, where thel message
identifier of the received exception is mapped to the routine’s function identifier by the handlef definition
table;

- pon examining the queue of received messages, either when no routine is executing or upon
dncountering a yield (YIELD) instruction, where the message identifier of the received nessage is

apped to the routine’s fanction identifier by the handler definition table or is an MHEG-B API run
dperation targeted at the'routine.

Paramgters may be passed'to routines using either of the following modes:
- Ry value: avalue of the parameter type is passed to the routine;

- Ry reference: a data identifier referencing a global variable, dynamic variable or constant y hose type
it the same as the parameter type is passed to the routine.

In both tases, the value of the passed parameter becomes the value of the local variable whose index
corresponds to the parameter’s index. The local variable corresponding 10 @ parameter passed Dy reference
shall be of the data identifier type.

Data identifiers to local variables shall not be passed by reference.
8.3.2 Services

Services are external functions provided by the run-time environment, that an interchanged script may
invoke.

Services shall be declared within the interchanged script, as part of a package declaration, by

- their signature;

20

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

their IDL global operation name.

There shall not be more than 256 services declared in each package of an interchanged script.

There shall not be more than 192 packages declared in an interchanged script.

A service may be called by an external call (xCALL) instruction.

Parameters may be passed to services using one of the following modes:

8.3.3 Prefefined functions
Predefined functions correspond to the operations of the MHEG-3 engine’s intefface.

Predefineq functions have predefined function identifiers and therefore shall not be declared w
interchanged script.

As this pdrt of ISO/IEC 13522 is not specifically linked to anéther part of ISO/IEC 13522, the MH

operations
specifies t

In addition| this part of ISO/IEC 13522 defines the ;MHEG-3 AP, i.e. the interface that MHEG-3 engin
provide fo

Predefined functions may be called@nd passed parameters to using the same mechanisms as with se

8.4 Messages

The MHEG-SIR defines two-kinds of messages:

All messapges.shall have a signature (or prototype

in:
pass$ed to the service;

inolit: a data identifier referencing a variable whose type is the same as the parameter type is
to the service; upon returning, the variable is updated with its new value;

out] same as inout, however the value of the variable is not used by the service,

package exgeptions (see subclause 8.4.1);
preLefined messages (see subclause 8.4.2).

ISO/EC 13522-3:1997(E)

data identifier referencing a variable or constant whose type is the same as the parameétel type is

passed

thin an

EG API

used to manipulate MHEG objects are not explicitly.defined. However, this part of ISO/IEG 13522
he procedure that shall be used to define an MHEG API and to specify the mapping of opg¢rations
of this MHEG API to predefined function identifiers. This-is described in Annex E.

bs shall

" the manipulation of scripts. This intefface is described in Clause 15 and Annex F. This interface
may be uged from within scripts and is therefore mapped to predefined function identifiers. The list ¢
predefined functions and their identifiers is'given in Annex C.

f these

rvices.

) which consists of an ordered list of formal parameters

(members) defined by their type.

All messages are referenced in a unique, unambiguous way by their message identifier.

8.4.1 Package exceptions

Package exceptions are sent to an rt-script by the run-time environment as a consequence of the invocation
of a service by this rt-script.

Package exceptions shall be declared within the interchanged script, as part of a package declaration, by

their signature;
their IDL global exception name.

21

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

There shall not be more than 256 exceptions declared in each package of an interchanged script.
8.4.2 Predefined messages
Predefined messages sent to an rt-script may be one of the following:

- an exception of the MHEG-3 engine interface (i.e. the MHEG API), raised by the MHEG-3 engine as a
consequence of the invocation of a predefined function by the rt-script;

- he InstructionExecutionError exception, which is raised as the consequencé\ ¢f an error
beeurring in the execution of an instruction of the rt-script.

Predefined messages have predefined message identifiers and therefore shall not_be declared within an
interchanged script.

As thig part of ISO/IEC 13522 is not specifically linked to another part of ISO/IEC 13522, the [MHEG API
excepfions are not explicitly defined. However, this part of ISO/IEC 13522 specifies the procedure that shall
be usdd to define an MHEG API and to specify the mapping of exceptions-of this MHEG API to| predefined
messdge identifiers. This is described in Annex E.

Annex|C specifies how the InstructionExecutionError andithe messages resulting from MHEG-3 API
operatjons shall be mapped to predefined message identifiers:

8.5 Instructions
The pfogram code part of routines consists of a sequence of instructions. Unlike the rest of an interchanged
script, [which is handled upon preparation of the s€ript, instructions need only be dealt with after crgation of an

rt-scrigt, when the routine to which they belong:is activated.

An instruction shall consist of one op-codée (operation code) followed by zero or more operands. The number,
type ahd encoding of operands is fully determined by the op-code.

As a rlile, operands complete the jnstruction, whereas parameter values are taken from the parameter stack.

The pgrformance of the instrliction execution unit is described in Clause 9, whereas the precise semantics of
each ipstruction are described in Clause 13.

8.6 ldentifiers

Identifiers are~TUsed to reference MHEG-SIR entities (i.e. types, data, functions and messages) in an
unampiguous way, throughout interchanged scripts.

8.6.1 Type identifiers

Type identifiers (TIDs) shall be encoded on two bytes as follows:

- primitive types and predefined types shall have predefined TIDs as defined by Annex C;

- declared types whose index (starting at 0) in the type declaration table is X shall have (X + 4000h) as
TID.

Hence

- TIDs between 0 and 3FFFh shall reference predefined types;
- TIDs between 4000h and 7FFFh shall reference declared types.

22

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

8.6.2 Data identifiers

Data identifiers (DIDs) shall be encoded on two bytes as follows:
- constants whose index (starting at 0) in the constant declaration table is X shall have X as DID;

global variables whose index (starting at 0) in the global variable declaration table is X shall have (X +
1000h) as DID;

local variables whose index (starting at 0) in the local variable declaration table is X shall have (X +
8000h) as DID

Ay s m o
ayna

dyn

i are

[iriers 1o
emes.

amic variables is not specmed MHEG 3 engines may therefore have different allocation-sch

Hence

Dilbs
DIl
DiL
DI

s between 0 and OFFFh shall reference constants;

s between 1000h and 7FFFh shall reference global variables;
s between 8000h and 80FFh shaII reference Iocal variabIeS'

8.6.3 Fupction identifiers

Function (dentifiers (FIDs) shall be encoded on two bytes as follows:

rouftines whose index (startin
predefined functions whose
10Q0h) as FID;

services whose index (starting at 0) in a package declaration is X and whose package inds

pagkage declaration table is Y (starting at 0) shall have (((Y+64) << 8) + X) as FID.

n-
s

)

9 s
in X shall ha

=0
o,
he]
-5
[
Q =
0]
=h
3
(9]
o
—
c
3
[e]
(=4
[e]
3

ve (X +

X in the

Hence

FiC
FIC
FiO

8.6.4 Me
Message
pre

Mi
ex

s between 0 and OFFFh shall reference routines;

s between 4000h and FEFFh shall reference services.

ssage identifiers

identifiers{MIDs) shall be encoded on two bytes as follows:

D;

s between 1000h and 3FFFh_shall reference predefined functions;

defineéd-messages whose index (starting at 0) in the predefined message table is X shall have X as

teptions whose index (starting at 0) in a package declaration table is X and whose packa

je index

(starting at 0) in the package declaration table is Y shall have (((Y+64) << 8) + X) as MID.
Hence

MIDs between 0 and 3FFFh shall reference predefined messages;
MIDs between 4000h and FFFFh shall reference package exceptions.

9 The MHEG-SIR virtual machine

This Clause presents the MHEG-SIR virtual machine, i.e. the execution model for the MHEG-SIR code.

23

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

9.1 Structure of the MHEG-SIR virtual machine

© ISO/IEC

The MHEG-SIR virtual machine is a set of logical, abstract components. The description of the MHEG-SIR

virtual

machine is intended for clarification of the operational semantics of the MHEG-SIR code.

An MHEG-3 engine shall have the same interpretation behaviour for MHEG-SIR code as the described virtual
machine. It shall interpret MHEG-SIR declarations and instructions so as to produce similar external effects in

all res

Howe

pects.

The MHEG-SIR virtual machine consists of

Some
Other

Proces

same

9.2 §

9.21

memory areas (see subclause 9.3);
processing units (see subclause 9.5).

memory areas are associated with each rt-script.

ime. In this case, it shall maintain a separate run-time context for each active rt-script.

be achieved by associating each thread'with a separate rt-script.
tructures and notations

Table

be used to
the virtual

memory areas are associated with an mh-script and so shared \byall the rt-scripts created from it.

bsing units only apply to one rt-script. However, an MHEG=3 engine may run several rt-sgripts at the

NOTE: In other terms, the MHEG-SIR virtual machine is single-threaded. Multi-threaded applications can

A table T consists of an array of homogeneous entries T [1] that may be accessed via their index i. These

entries
f1d. S

given

Fange, not necessarily starting at 0 for a given table. The underlying access mechanism

have the same structure, but'not necessarily the same size. Entries consist of one or sgveral fields
ome entries may be void(Indices are MHEG-SIR identifiers, i.e. consecutive numeric valueg taken in a

(sequential

indexing, direct access, hashcoding...) is not specified. The notation uses the following primitives| to express

manip

9.2.2

LIlation of a table-T

T [1] to access entry i

T[i] =(VAL to assign value VAL to entry i;

T [1i].xf1d to access field £1d of entry i;

T [i}./f1d = VAL to assign value VAL to field £1d of entry 1.

Stack

A stack consists of an array of homogeneous elements. Elements are inserted on the top of the stack. Only
the top element (last inserted) may be accessed at any time. When it is removed from the stack, it is lost, and
the next element becomes the top of the stack. The notation uses the following primitives to express

manip

In the

24

ulation of the call stack cs:

CS.push (F): inserts frame F on the top of the stack, increments the frame pointer register (FP);

CS.pop (): decrements FP, removes the top-of-stack frame, then returns it;
CS [FP]: returns the value of the top-of-stack frame.

“w o

same way as for tables, the “.” notation is used to access stack element fields.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

9.2.3 Parameter stack

The parameter stack is a special case because it is a byte (untyped) stack used to store typed values. The
notation uses the following primitives to express manipulation of the parameter stack Ps, where tid is the
type identifier of a primitive type, as indicated by Table 1:

- PS.push (VAL): inserts value VAL on the top of the stack;
- PS.pop (tid): removes the top-of-stack value, whose type identifier is t id, then returns it;
- PS[SP] (tid): returns the value of the top-of-stack value, whose type identifier is tid.

9.24 QueLe

A queue cdnsists of an array of homogeneous elements. Elements are inserted at the end of the'queug. Only
the start element (first inserted) may be accessed at any time. When it is removed from the queue, it s lost,
and the nekt element becomes the start of the queue. The notation uses the following, primitives to ekpress
manipulatign of the message queue MQ:

- MQ. insert (M): inserts message value M at the end of the queue,;

- MOQ. remove (): increments the queue pointer register (QP), removes,the’element at the start|of the
queye, and returns it;

- MO [QP]: returns the value of the element at the start of the queue:

In the samg way as for tables, the “. " notation is used to access queue element fields.
9.2.5 Data representation
The representation of the structures and data is implementation-dependent. Although script interpretefs may

represent gach value of a data type with a minimum namber of bytes, they are not required to do so. Table 2
states this minimum number:

25

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Table 2: Minimum number of bytes to represent values

Type Minimum number of bytes to represent a value of the type

octet 1
short 2
long 4
unsigned short 2
unsigned long 4
float %
doubl¢ 8
boolegan 1
charagter 2 (1 for restricted character sets)
data identifier 2
objec{ reference implementation-dependent
string character size x (string length+1)
sequgnce size of element type x sequence length (actualnumber of elements) + 2
array size of element type x array size
structpre sum of the sizes of the element types
union size of the “biggest” element type + 1
type iflentifier 2
functipn identifier 2
messg@ge identifier 2
packdge identifier 1

NOTE: The notation makes no distinction between fixed-length values and variable-length values. Script

interpreters may store variable-length values on the heap. vT [1] .val is used to access the value
of a variable even thoagh it could actually be stored in the variable table as a handle tp the heap.

Wher] VAL is a value of a constructed type, access to its elements is noted as follows:

- VAL. tag: tag of a union;

- VAL.val: value efaunion;

- VAL [n]: value(of the nth element of a sequence, string, structure or array;
- VAL . 1g: actlallength of a sequence or string.

Execlition sefantics are expressed using a C-like syntax. Expressions within single quotes indicate the
correpponding value, e.g. ‘void’ indicates TID value 0.

9.3 Memory areas

In the MHEG-SIR virtual machine, memory areas are used to hold all the necessary information used to
interpret a particular interchanged script.

Memory areas may be associated with either an mh-script (see subclause 9.3.1) or an rt-script (see
subclause 9.3.2).

9.3.1 Mh-script memory areas

Mh-script memory areas should be completely filled at load-time, i.e. upon initialisation of an mh-script. They
shall be accessible for use by all rt-scripts created from this mh-script. Mh-script memory areas shall not be
modified at run-time until the mh-script is destroyed, unless otherwise specified (e.g. for the package
definition table). Mh-script memory areas comprise

26

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

- data areas (see subclause 9.3.1.1);
- code areas (see subclause 9.3.1.2).

9.3.1.1 Data areas

Data areas are used to store the definitions and values of the script’s global data. Data areas comprise

- the type definition table (TT) (see subclause 9.3.1.1.1);
- the constant table (CT) (see subclause 9.3.1.1.2);
- thq global variable definition table (GT) (see subclause 9.3.1.1.3).

9.3.1.1.1| Type definition table

The typd definition table maps all the script's defined types, represented by typé€ lidentifiers, [to their
descriptign:

- TT|[TID] .val: description of the type.

NQTE: The representation used for the type description is not spegcified; however, it should allow] to check
easily whether a value belongs to a type.

9.3.1.1.2| Constant table
The constant table maps all the script’'s constants, representéd by data identifiers, to their type and value:

- CT|(DID] . TID: type of the constant (expressed as.a type identifier);
- CT|[DID] .val: value of the constant (dependingon its type).

9.3.1.1.3| Global variable definition table

The globpl variable definition table maps.all the script's global variables, represented by data idenfifiers, to
their typd and initial value:

- GT|(DID] . TID: type of the glebal variable (expressed as a type identifier);
- GT|[DID] .val: initial value‘of the global variable (depending on its type).

9.3.1.2 Code areas

Code ar¢as are uSed to store the addresses and program code of the script's functions. Code areas
comprise

- the réutine definition table (RT) (see subclause 9.3.2.1),

- tl’" B kana dafinitian ¢obhla (DT (ean otilhhalaiien Q2 9 9)-
ICPatRKagCUCTimtioTT taoiC(T) (SCCSuUoTIauoC—o oz 7

- the service definition table (ST) (see subclause 9.3.2.3);

- the exception definition table (XT) (see subclause 9.3.2.4);

- the handler definition table (HT) (see subclause 9.3.2.5);

- the program code area, consisting of the sequence of instructions of each routine (see subclause
9.3.2.6).

9.3.1.2.1 Routine definition table

The routine definition table maps all the script's routines, represented by function identifiers, to their signature
description, their local variable declaration and their program code:

a) RT [FID] .TID: type of return value (expressed as a type identifier);
b) RT [FID] .nbp: number of parameters;

27

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) ©ISO/IEC

c)

RT[FID] .sig: signature description, where

1) RT[FID].sig[1i].TIDis the type (expressed as a type identifier) of the ith parameter;

2) RT[FID)] .sig[1i] .mod is the passing mode (value or reference) of the ith parameter,;

RT [FID] .LT: declaration of the routine’s local variables (whose nbp first elements are the actual
parameters of the routine);

RT [FID] . IP: pointer to the first instruction in the routine code.

Local vanables used to hoId parameters passed by reference shall have data identifier as thelr type,

while lpes

descri

9.3.1.

2.2 Package definition table

ption for the correspondmg parameter.

The package definition table maps all the script's defined packages, represented) by packageg identifiers
(PIDs)| as declared by the MHEG-SIR package declaration table, to package' names and| additional
information:

PT [PID] .name. name of the package;

PT [PID] .nbf: number of services in the package;

bT [PID] . nbm: number of exceptions defined by the package;

PT [PID] . sts: current status of the package (unchecked,-available, ready, opened);
PT [PID] . or: initial object reference of the package.

A package is initially at unchecked status. It becomes.available once the package availability| procedure
has bg¢en performed successfully. It then becomes,ready once the package load procedurg has been
perfored successfully. Finally, it is opened when>there is a valid initial object reference to the package,

stored

As an

9.3.1.4.3 Service definition table

The s

functidn identifiers, to.their signature description and to their IDL global operation name:

a)
b)
c)
d)

e)

in the PT [PID] . or field, for use by further'service invocations.
bxception to the rule stated in subclause 9.3.1,

The PT [PID] . sts fields may be-modified at run-time, each time the status of a package changes.
The PT [PID] . or fields may(be modified at run-time, when a package is loaded.

brvice definition~table maps all the script's defined external services, represented by MHEG-SIR

ST [FID(.)I'ID: type of return value (expressed as a type identifier);
ST [EFDY . syn: calling mode (synchronous, asynchronous);
ST/LFZD] . nbp: number of parameters;

STIFID] .sig: signature description, where

1) ST[FID].sig[i].TID s the type (expressed as a type identifier) of the ith parameter;
2) ST([FID].sig[i] .mod is the passing mode (in, inout or out) of the ith parameter;

ST [FID] .name: the IDL global name of the operation which the service invokes.

The IDL platform-specific mapping specification shall be used to map ST [MID] .name to a platform-specific

name.

9.3.1.2.4 Exception definition table

The exception definition table maps all the interchanged script's defined messages, represented by message

identifi

28

iers, to their signature description and their IDL global exception name:

XT [MID] .name: the IDL global name of the exception which causes the message;
XT [MID] .nbm: humber of members;

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

- XT[MID] .sig: signature description, where XT [MID].sig[i].TID is the type (expressed as a type
identifier) of the ith member.

The IDL platform-specific mapping specification is used to map XT [MID] .name to a platform-specific name.

9.3.1.2.5

Handler definition table

The handler definition table maps messages, represented by message identifiers, to routines represented by
function identifiers:

- HT [MID] . FID: identifier of routine to invoke for handling the message.

If a mess
signature

entries shall be rejected.

The handl

9.3.1.2.6

An instrugtion consists of one 1-byte op-code followed by <eéro to three operand bytes. The ¢

completely
codes and

NOT

9.3.2 Rt-script memory areas

Rt-script i
Rt-script n

- dyn
- reg

9.3.21 D

bf this message. Matching between the signatures shall be checked at load-timeland non-m

Program code area
determines the number and length of its operands, according to the instructions table. B

operands are coded in an optimised fashion sp.asto ease switching.
E: A script interpreter (especially on 32<bit' machines) may align instructions at load-time, i.
padding bytes in order to represent, each instruction on four bytes; this makes it easy to in

the instruction pointer. As a variant, a script interpreter may instead leave instructions pac
determine the number of bytes'to increment at run-time.

hemory areas Comprise

amic memory areas (see subclause 9.3.2.1);
sters (see s(ibclause 9.3.2.2).

ynamic:memory areas

Dynamic nernory areas are used to represent the data and the current execution context of the rt-scri

hge is mapped to a routine in the handler table, the signature of this routine, need mdtch the

atching

br definition table is used by the rt-script execution unit. When the rt-script execution unit removes a
message from the message queue, it invokes the routine that corresponds to:tHe’message, with the m
parameters as its parameters.

essage

p-code
oth op-

E. insert
crement
ted, and

nemory areas are initialised upon creation of the rt-script and may be modified during its exgcution.

Dynamic memory areas comprise

- the
- the
- the
- the
- the

9.3.2.1.1

variable table (VT) (see subclause 9.3.2.1.1);
call stack (CS) (see subclause 9.3.2.1.2);
parameter stack (PS) (see subclause 9.3.2.1.3);
message queue (MQ) (see subclause 9.3.2.1.4);
heap (see subclause 9.3.2.1.5).

Variable table

The variable table maps the rt-script's variables, represented by data identifiers, to their type and current

value:

29

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

VT [DID] . TID: type of the variable (expressed as a type identifier);
VT [DID] .val: current value of the variable (depending on its type).

The variable table is initialised upon creation of the rt-script. It consists of two subtables:

a copy of the global variable table associated with the mh-script;
the local variable table of the currently executing routine.

© ISO/IEC

VT [DID] .val fields are modified every time a variable is assigned by the execution of a variable

assign

When
variab
ofalo

9.3.2.1

The call stack is used to store the current invocation context.

The cIIl stack is an array of call frames. Every frame shall correspondsto the context at the time o

of an
invoca
curren

Each frame shall consist of the following elements:

The ¢
functiq
return
shall &

9.3.2.

ment instruction.

the current routine changes (following execution of a CALL, RET or YIELD instrletion
e table is stored and replaced in the VT by the local variable table of the new rodtine. The
bal variable table are the parameters passed to the function.

.2 Call stack

ctive function (routine, external function or MHEG action). Frames shall be stored on the CS
tion. The top frame of the CS, if any, shall describe the execution context of the routine tha
tly executing function.

CS[i].F1D: function identifier of the caller;

CS[i].IP: pointer to the instruction to return to after the current function returns;
CS[i].LT: local variable table of the caller (at invocation time);

CS[i].SP: pointer to the top of the-parameter stack (at invocation time).

[field of a call frame shall have-the structure of a variable table:

CS[i].LT[DID].TID: type identifier of the variable whose identifier is DID;
CS[i].LT[DID].val: value of the variable.

bll stack is modified by certain control flow instructions. Initially the call stack shall be emg
n is invoked;\a’ frame describing this call shall be pushed onto the call stack. When a
ed from, thisframe shall be popped from the call stack. The address of the top frame of th
e stored'at all times in the FP register.

1.3 Parameter stack

, the local
first entries

f invocation
5 in order of
t called the

ty. When a
function is
e call stack

‘The parameter stack is used to store the parameters and return values of instructions. The parameter stack
is an array of data values. The type of the data value is determined by the operation sequence that pushes

the va

lue on the stack.

The parameter stack is used by the MHEG-SIR instruction execution unit. Initially the parameter stack shall
be empty. It is modified by most instructions (arithmetic operators, logical operators, comparison operations,
stack manipulation, variable assignment, conditional jumps, calls). When an instruction is executed, it shall
pop its parameters from the parameter stack and push its return value back onto the parameter stack. The
address of the top frame of the parameter stack shall be stored at all times in the stack pointer (SP) register.

30

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

Q2214 Macea
J.o.4a 1.8 WOSSA

The message queue is used to buffer the messages that are received by the script interpreter. Each item in
the queue shall consist of the following elements:

- MQ[i] .MID: message identifier;
- MQ[1i].LT: list of message parameters.

The LT field of a message queue item shall have the structure of a variable table:

o

=

=
O 1O

A
A

(1].LT (73] .TID: type identifier of the jth parameter;
- [1].LT[3].va the j

£

Message$ shall be inserted into the message queue by the script interpreter asynchronously as they are
generated in the external environment. The message queue shall be processed by thé-rt<script execytion unit
when either of the following occurs:

- the rt-script is not running, i.e. there is no currently executing routine;
- a YIELD instruction is encountered.

The start|of the message queue (next message to pop) shall be stored at all times in the QP (queue| pointer)
register. Initially the message queue shall be empty.

9.3.2.1.5| Heap
The heap is used to store dynamic variables, represented.by data identifiers, as their type and current value:

- vT|[DID] . TID: type of the variable (expressed as a type identifier);
- VvT|{[DID] .val: current value of the variable (depending on its type).

Dynamic|variables are referenced by handles of an opaque type, whose representation is not specified. Data
identifierg are internally mapped to these-handles so that dynamic variables be accessed in the sam¢ way as
other varfables.

vT[DID]|.val fields are modified every time a variable is assigned by the execution of a |variable
assignment instruction.

The appl|cation is respansible for explicit allocation and deallocation of dynamic variables using the ALLOC
and FREJ instructiens:

NQTE: Script interpreters may also use the heap to store the values of global or local variables of a
variable-length type. In this case, a heap handle is stored in the table instead of the data ifself.

9.3.2.2 Registers

Registers hold specific states of the virtual machine and need be frequently modified during the execution of
an rt-script.

The registers maintained by the MHEG-SIR virtual machine are

- the instruction pointer (IP) or program counter (see subclause 9.3.2.2.1);
- the frame pointer (FP) (see subclause 9.3.2.2.2);

- the stack pointer (SP) (see subclause 9.3.2.2.3);

- the queue pointer (QP) (see subclause 9.3.2.2.4),

- the instruction register (IR) (see subclause 9.3.2.2.5);

- the error register (ER) (see subclause 9.3.2.2.6),

31

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

- the function register (FR) (see subclause 9.3.2.2.7).

The representation of data held by pointer registers is not specified. All registers shall be initialised to a null
value whose representation is not specified.

9.3.2.2.1 Instruction pointer register
The IP reglster points to the next mstructlon to be executed within a routmes program code. This register

shall b ion unit as part of the
executipn of instructions.

9.3.2.2.2 Instruction register
The IR fegister holds the code for the instruction which is currently executing. This register shall be updated
by the [rt-script execution unit each time a new instruction is loaded, and accessed by the MIHEG-SIR
instructjon execution unit.

NOTE: The IR need not be more than 4 bytes long, but its actual size'is not specified.
9.3.2.23 Error register

The ER holds the code of the last error encountered during execution of an instruction. This register shall be
update¢ by the MHEG-SIR instruction execution unit, evefyytime it encounters an error. The null value
indicatds that up to the current time no error has been encountered during the execution of the rt-sqript.

The error codes are predefined. The error codes raised\by each instruction are defined in Clause 13.
When an error is raised during execution of @n“instruction, ER shall be set to a non-null valjie and an
Instrlict ionExecutionError exception shall be raised. This results in the corresponding mesgage being
inserted into the message queue.

9.3.2.2|]4 Stack pointer register

The SR register points to the top of the parameter stack. The value of this register shall be upddted by the
MHEGHSIR instruction exeeution unit as follows:

- it shall be incremented every time data is pushed onto the parameter stack;
- it shall be decremented every time data is popped off the parameter stack.

9.3.2.2.5 Frame’pointer register

The FF[reglster points to the top frame of the call stack. The value of this register shall be updated by the
MHEG- S

- it shall be incremented every time a function is called;
- it shall be decremented every time a function is returned from.

9.3.2.2.6 Queue pointer register

The QP register points to the next message to be removed from the message queue. The value of this
register shall be decremented by the script interpreter every time a message is removed.

9.3.2.2.7 Function register

The FR register holds the FID of the currently executing function. The value of this register shall be updated
by the script interpreter every time a function is called or returned from.

32

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

©ISO/IEC ISO/IEC 13522-3:1997(E)

9.4 Script statuses
9.4.1 Mh-script statuses
The status of an mh-script shall be either available or not available.

9.4.1.1 Not available

The status of an mh-script shall he not available if it is in one of the following cases:

- mh-gcript initialisation (i.e. the effect of the MHEG-3 API prepare operation) has not beenaghieved
on fifis mh-script;
- mh-gcript destruction (i.e. the effect of the MHEG-3 API destroy operation) has been requested on
this mh-script.

9.4.1.2 Avyailable

The status|of an mh-script shall be available if mh-script initialisation has been<successfully achieved jon this
mh-script gnd if mh-script destruction has not yet been requested.

This implies that

- the interchanged script has been parsed and the mh-script memory areas fully completed accordingly;

a
- the packages referenced in the mh-script are available and have been loaded according [to the
package load procedure.

9.4.2 Rt-gcript statuses

The status|of an rt-script shall be one of the following: not ready, ready, running, erroneous.
9.4.2.1 Not ready

The status|of an rt-script shall be not'ready if it is in one of the following cases:

- rt-s‘c ript initialisation (i.e.sthe effect of the MHEG-3 API new operation) has not been achieved on this rt-
- ::;'CF’ rti'pt destruction (i-€. the effect of the MHEG-3 APl delete operation) has been requested|on this

rt-sqript.

The statug of an-t=script is initially not ready. Otherwise, it changes to not ready when a delete opergtion is
invoked or} this\rt*script.

9.4.2.2 Ready

The status of an rt-script shall be ready if all of the following conditions are met:

rt-script initialisation has been successfully achieved on this mh-script;
rt-script destruction has not yet been requested on this rt-script;

- the IP register is set to 'null’, i.e. there is no currently executing routine;
the ER register is set to 'null’.

This implies that the calling stack, message queue and parameter stack are void.

However, the global variable values need not be the same as the initial values; once it has no more
instruction to execute and no message in the message queue, an rt-script goes back to ready status.

33

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

The status of an rt-script changes

- from not ready to ready when a new operation is invoked on this rt-script;

- from running to ready when the rt-script execution unit no longer has instructions to execute or as the
result of invoking a stop or reinit operation;

- from erroneous to ready as the result of invoking a stop or reinit operation.

9.4.2.3 Running

The status of an rt-script shall be running if all of the following conditions are met:
~ rt-script initialisation has been achieved without error on this mh-script;

- rt-script destruction has not yet been requested on this rt-script;

- the IP register is not 'null’, i.e. there is a currently executing routine;

- the ER register is set to 'null’.

The status of an rt-script changes from ready to running when there is a(lmessage in the messsage queue
and the rt-script execution unit is activated. This may occur as the result.ofdnvoking a run operatipn.

9.4.24 Erroneous

The status of an rt-script shall be erroneous if the ER register.isnot ‘null’, i.e. if an error has occlirred during
the rtyscript execution.

The status of an rt-script changes from running to erroneous when an instruction execution erfor is raised
by the¢ rt-script instruction execution unit.

9.5 PRrocessing units
This gubclause describes the MHEG-SIR virtual machine’s flow of control and the semantics of instructions.

For the purposes of the virtual machine description, the script interpreter's main process is assumed to run in
paraligl with all active rt-script execution units. Scheduling of the different tasks is not specified.

9.5.1 | Message reception

The gcript interpreter's-main process receives and handles events. In the absence of any everts, it is idle.
Events received by:the script interpreter may be

- MHEG:=3"API operation invocations;
- messages corresponding to the occurrence of a exception raised as the result of invoKing either a
senvice or predefined function.

9.5.1.1 MHEG-3 API operations

MHEG-3 API operations may be invoked by an rt-script execution unit, by another component of the MHEG-3
engine or by external processes outside the MHEG-3 engine.

When an MHEG-3 API operation is invoked, the main process shall proceed as specified by the semantics of
the MHEG-3 API described in Clause 15.

9.5.1.2 External exception
When a message coming from either the action interpreter (MHEG APl exception) or the run-time

environment is targeted at an rt-script, then if this message actually corresponds to an exception raised by
the MHEG API or the run-time environment as a consequence of the invacation of an operation resulting from

34

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IE

C ISO/IEC 13522-3:1997(E)

an XCALL instruction by this rt-script, the main process shall parse the exception’s parameters and construct

an message structure consisting of the message identifier of the exception followed by its actual members
(starting with the object reference of the originating object). Then

- if the exception results from the invocation of a currently executing synchronous operation, the main
process shall request the rt-script execution unit to terminate the XCALL instruction (therefore popping
its frame from the call stack) without looking for output parameters or a return value, then immediately
afterwards to trigger the routine corresponding to the exception’s message identifier, with the
exception’s members as its actual parameters; the effect shall be the same as if this routine had been

inMoked by a CALL instruction;

- if t
su

- if t
the

9.5.1.3

When th
the main
this excel
queue of

9.5.1.4 MHEG-3 API exception

When an
main pro

he exception results from the invocation of a previously terminated synchrono
ccessfully or not), the main process shall ignore the exception;

constructed message into the message queue of the target rt-script.

[nstructionExecutionError exception

the rt-script whose execution raised the exception.

exception resulting from the invocation of anPMHEG-3 API operation is returned to an rt-s

952 M

When th
using th

-script initialisation

MHEG-3 AP| preparetoperation is invoked, the script interpreter shall access the strez
provided system identifier and parse the script. The script interpreter shall then

1 (whether

ne exception resuits from the invocation of an asynchronous operation, the main process sHali insert

e internal InstructionExecutionError exception is raised by the execution of an ingtruction,

process shall construct a message structure consisting of¢the message identifier correspgnding to
ption, followed by one member set to the value of the erroregister, then insert it into the message

cript, the

Cess shall construct a message structure consisting of the message identifier corresponding to the
exception, followed by its members, then insertit into the message queue of the rt-script that inv
operatior.

bked the

m or file

- parse the declarations part and initialize the CT, GT, TT, RT, ST, PT, XT, HT and the RT [i[. LT for
each routine i;\this includes the appropriate checks (handler verification, package availability
procedure);

- parse the structure of the instructions part to fill in the program code area of each routine;

- performthe package load procedure, establishing static links with packages according to the|platform
mapping specification;

- pu =scrt itable-status:

NOTE: The semantics of package loading need be defined by the platform mapping specification. The

MHEG-3 engine may take the responsibility to optimise its resource management strategy, e.g. by
unloading packages temporarily in order to release memory, or by loading packages only as rt-

scripts are created or even as services are invoked.

9.5.3 Rt-script initialisation

When the MHEG-3 API new operation is invoked, the script interpreter shall create a context for the target rt-
script, i.e. the script interpreter shall

- initialise the dynamic memory areas;
- initialise all registers to null values;

35

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

- create an rt-script execution unit for the rt-script;
- put the rt-script to ready status.

9.5.4 Rt-script execution unit

© ISO/IEC

When activated and unless requested to stop the current rt-script, the rt-script execution unit shall perform as
follows:

rt-script-execution-unit ()

{

FID fid = ‘null’;
if (IP |== ‘null’) // no next instruction
{
while (fid == ‘null’)
{
if (QP == ‘null’) then exit; // return
fid= HT[MQ[QP].MID].FID; // find handler for|message
if (fid !'= ‘null’) then // handler found
{
CS.push({IP, FR, SP, ‘null’}); // stack routiné call
FR = fid;
IP = RT[FR].IP; // branch™te start of routine
}
MQ.remove () ; // remove message
}
}
// endilf
while {(IP !'= ‘null’):
{
IR = *IP++; // load next imstruction and increment program countep}

}
// end
return;

}

instruction-execution-unit(); // call the MHEG-SIR instruction execution unit

hile
// retumn\to script interpreter

9.5.5 MHEG-SIR instruction execution unit

When
decode
op-cod

The ing

instruction (if any). It pushes on the parameter stack those parameters that are the result of the ins

any).
Table 3

called by the rt-script execution unit, the MHEG-SIR instruction execution unit of an rt-s
the op-code contained in-the first byte of the IR, then interpret the instruction correspong
b as specified by Clause 13, then return.

truction execution unit pops from the parameter stack those parameters that are used to p

cript shall
ing to this

erform the
truction (if

summarises the effects of the instructions on the various elements of the MHEG-SIR virtual machine
as defined by this Clause.

10

rovisions for run-time environment access

This Clause describes the mechanisms defined by this part of ISO/IEC 13522 to make it possible for rt-scripts
to access and interchange data with external functions provided by the run-time environment on the

executi

on platform.

10.1 General model

The interface that external software available in the run-time environment provides need be declared in the
interchanged script as part of its package declaration, so that the script interpreter know how to access this
interface when the script invokes it.

A package declaration describes a set of services (i.e. external functions) by their signature, i.e. the type and
passing mode of each parameter.

36

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

MHEG-SIR specifies how calling external functions, passing parameters, getting back return values and
handling exceptions shall be expressed within interchanged scripts.

lhmmm it o b

Thia Aark AfICNA/NIE ~e o~y b . e R R | I P PR I B T A -
i 1oU/1 125 TIOW LHESE SXPIESSILIIS Siidil LE IMerpreted vy ivines-o enginies.

nis pait oi EC 13522 also SpECi
This part of ISO/IEC 13522 also deals with interchange (i.e. function call, parameters passing, return value
retrieval and exception handling) between an MHEG-3 engine and the run-time environment. For this
purpose, this part of ISO/IEC 13522 contains provisions for specifying how access to these functions should

be provided to MHEG-3 engines by external software. Such a convention, called a platform mapping
specificatign, 1S dependent on the run-time platform:.

Platform mjapping specifications conforming to the provisions of this part of ISO/IEC 13522 need| to be
registered fo ensure the interoperability of run-time environment services with any complianttMHEG-3 engine
on this platform. If a platform mapping specification exists for the platform, MHEG-3 enginés’shall conform to
this platforn mapping specification in order to access run-time environment services.
MHEG-3 gngine implementations shall document in their conformance document the platform mpapping
specificatign(s) to which they conform.

NOTE: If existing software does not comply with the platform mapping-specification and need be adcessed
from MHEG-SIR scripts, it may be embedded into an interface that translates its own interface
conventions into those of the platform mapping specification.

10.2 Declaration of IDL interfaces

The interfafe of external software intended for use by an interchanged script may contain
- opergtion declarations;

- excgption declarations;

- type|declarations.

Types shall be declared in the type declaration of this interchanged script.

Operationy and exceptions shall be_declared in the package declaration of this interchanged script. This
package d¢claration shall be assigned a package identifier and shall consist of

- the mame of the packagg;
- a sef of service deseriptions;
- a se} of exception-descriptions.

Service defcriptions shall be assigned a function identifier and shall consist of

- the rame-efthe-eperation;
- the function signature, i.e. the type and passing mode of each parameter and the type of the return
value.

Exception descriptions shall be assigned a message identifier and shall consist of

- the name of the exception;
- the exception signature, i.e. the type of each member.

Identifiers (package identifiers, type identifiers, function identifiers) are used by MHEG-SIR scripts to refer to
types and functions; a function identifier for an external operation can be built from a package identifier and
the index of the service declaration in this package, while a message identifier for an external exception can
be built from a package identifier and the index of the exception declaration in this package.

37

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Names (package names, operation names, exception names) shall be used by the script interpreter to link
with the actual implementation of the external software.

An MHEG-SIR package declaration lies at the same abstraction level as an IDL specification. This part of
ISO/IEC 13522 defines the rules for mapping an IDL specification into a package declaration. Clause 14
specifies

- how an IDL data type description shall be mapped to an MHEG-SIR data type description,
- how an IDL operation description shall be mapped to an MHEG-SIR service description;

S - : T ol o annaed-taan H inti
- ow A tDtexceptionmdescription-shatt-be-mapped-to-an-MHEG-SHR-exception-deseriphion

10.3 Invocation of external operations in an MHEG-SIR program
A servlce described in a package declaration shall be invoked from an MHEG-SIR program as follgws:

- Variables of expected types corresponding to the return value (if any) and-to each parameter shall be
declared within the interchanged script (except the originating object’s object reference, which shall be
mplicit);
- the program shall assign those variables which correspond to input oF input/output parametdrs;

- the program shall push onto the stack the data identifiers of all these variables in right-to-left order (the
identifier of the variable corresponding to the return value is\pushed first, then the actual garameters,
with the object reference (implicit parameter) of the target being pushed last),
- the program shall invoke the operation using an extefnal call (xCALL) instruction with the function
identifier of the invoked operation as operand;
- the program shall exploit the function results using the variables corresponding to the returp value, the
inout parameters and the out parameters.

10.4 Handling of external exceptions in an MHEG-SIR program
An exgeption described in a package declaration shall be handled by an MHEG-SIR program as fgllows:

- variables of expected types corresponding to each member shall be declared within the interchanged
script (except the originating©bject's object reference, which shall be implicit);
- a routine whose parameters correspond to the exception members shall be declared within| the routine
declaration part of the interchanged script;
- the mapping betweén:the identifiers of this handling routine and the exception shall be deglared in the
handler declaration-part of the interchanged script.

10.5 [Invocationof external operations by an MHEG-3 engine

When| an interehanged script expresses invocation of an operation as described in subclause 10.8, the script
interpfeter-shall behave as described by the semantics of the XCALL instruction in Clause 13. Ag part of this
performarice, it shall interpret the mechanisms described in subclause 10.3 in translating them ipto the run-
time environment access mechanisms as defined by the platform mapping specifications.

NOTE: For instance, an MHEG-3 engine may translate a variable identifier pushed onto the stack as a
service parameter into either a value or a real memory address to be passed to the external
software that provides the service.

10.6 Handling of external exceptions by an MHEG-3 engine

When an exception is raised by an external service, this results in a message being transmitted to the
MHEG-3 engine according to the run-time environment access mechanisms defined by the platform mapping
specifications.

The script interpreter shall then behave as described in subclause 9.5.1.2.

38

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

10.7 Platform mapping specifications
A platform mapping specification shall contain all of the following:

- the description of the platform to which the specification applies;

- the package availability procedure, which MHEG-3 engines shall use to check the availability of a

given package within the run-time environment;

- the package load procedure, which MHEG-3 engines shall use to make the operations of a given

package accessible to an rt-script;

- the package unload procedure, which MHEG-3 engines shall use to unload a package;

- theé operation invocation procedure, which MHEG-3 engines shall use to invoke a given(operation;

- the data encoding rules, which MHEG-3 engines shall use to encode the valueng? in

FO1- 1 K- SR § 102010 1 1 4]

L1040 10

pdrameters of an operation and to decode the value of out or inout parameters f an opgration or

exception members;
- the parameter passing procedures, which MHEG-3 engines shaii use to pass in, inout
pgrameters to an operation;

and out

- the return value retrieval procedure, which MHEG-3 engines shall use-to retrieve the return] value of

ar| operation;
- the exception retrieval procedure, which MHEG-3 engines shall use'to retrieve exceptions
ar| operation.

The confents of a platform mapping specification are defined in Anriex D.

11 Prqvisions for MHEG object manipulation

This Clalise describes the mechanisms defined by this part of ISO/IEC 13522 to make it possible for
to manipulate MHEG objects.

11.1 Inyoking MHEG actions

MHEG-§IR is used to express invocation<0f MHEG actions as defined by the MHEG API.

The MHEG API is defined using-1DL. The mapping from an IDL definition to an MHEG-SIR
declaratipn and type declaration.is-defined in Clause 14. However, the MHEG API package is cons
a predefined one. So its declaration shall not be included explicitly in interchanged scripts. The

aised by

rt-scripts

package
dered as

mapping

mechanism is similar to thé external function declaration mechanism described in Clause 10, except that the

IDL typep and operations.defined by the MHEG API shall not be declared as part of the MHEG-SIR
are insteiad dealt withras' predefined types and predefined external functions.

code, but

The meghanism:used to invoke an MHEG action is similar to the invocation of a service provided by the run-
time enironment. An XCALL instruction is used. Types defined in the MHEG API package are referred to
using a predefined type identifier. Functions described in the MHEG API package are referred t¢ using a

predefined function identifier.

11.1.1 Sending messages to other scripts

The MHEG-3 API package is considered as a predefined one. Within an interchanged script, messages may
be efficiently targeted at other scripts using the predefined functions mapping MHEG-3 API operations. An rt-

script can thus pass and receive parameters and call routines from another rt-script.

NOTE: This may be used to implement the concept of "library" or "utility" scripts. This may also be used to

synchronise rt-scripts.

39

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

11.1.2 Exchange of information with MHEG objects

Exchange of information between an rt-script and other MHEG entities (including other rt-scripts) may be
expressed using the MHEG API operations mapping the MHEG "set data" and "get data" actions. MHEG
content objects embedding generic values may be used to constitute a shared memory area among MHEG
objects.

Waiting for a signal from another object may be translated by a loop including a call to the MHEG API
operation mapping the MHEG "get data" action until the expected value is retrieved.

Generating a signal may be translated by a call to the MHEG API operation corresponding to_the'set data”
MHEG aLtion.

NOTE: As far as exchange of information among rt-scripts is concerned, use of thé)mechanism described
in subclause 11.1.1 is recommended.

11.2 Regceiving MHEG messages

MHEG-$IR is used to express handling of messages resulting from MHEG actions. These messages may be
either of|the following:

- MHEG-3 API run operations;
- MHEG API exceptions.

11.2.1 MHEG-3 API run operations

The MHEG "set parameters" and "run" actions that’may be targeted to an rt-script should resjlt in the
MHEG-3 APl setParameter and run operations: Invocation of the run operation results in a|message
being ingerted into the rt-script's message queug:with

- a$ message identifier, a predefined message identifier which is mapped to the routine identifier of the
targeted routine;
- a$ members, the parameters-previously set by the set Parameter operation.

11.2.2 MHEG API exceptions

The MHEG API exceptiéns are considered as messages which are sent to the script interpreter as the result
of involing an MHEG'API operation. These exceptions have predefined message identifiers. The script
interprefer shall process these messages in the same way as it would process an exception coming from the
run-timg environment, as described in subclause 9.5.1.2.

12 MHEG-SIR declarations

This Clause defines the structure of interchanged scripts. This Clause also specifies the way the virtual
machine deals with parsing of an interchanged script.

The following notations conventions are used:

- non-terminals are written as normal text;

- terminal types are written in uppercase;

- enumerated values are enclosed in single quotes;

- “: =" indicates a definition;

- “|” indicates a choice in a production;

- “+” indicates zero or more occurrences of the preceding type;

- “+” indicates one or more occurrences of the preceding type;

- “>" indicates zero or one occurrence of the preceding type (optional type).

40

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

NOTE: The complete grammar of interchanged scripts is described in Annex H.

- a sequence of type declarations;

- a sequence of constant declarations;

- a sequence of global variable declarations;

- a sequence of package declarations;

- a sefjuence of message handler declarations;
- a seguence of routine declarations.

InterchangedScript ti= TypeDeclaration*
ConstantDeclaration*
VariableDeclaration¥®

PackageDeclaration*
HandlerDeclaration*

. -
RoutineDeclaration

12.1 Type¢ declaration
Type declgrations are used to describe the types of the interchanged script.
A type dedlaration shall consist of

- a type identifier (optional);
- a type description.

TypeDeclaration D= Typeldentifier?
Typebegscription

12.1.1 Tylpe identifier

Type idenfifiers are used to reference the type description throughout the interchanged script.
The type ilentifier shall be a positive integer within the range allowed for declared types. It shall correspond
to the mayimum number of predefined types incremented by the index (starting at 0) of the declaratiop in the

type declafations part.

If the type|identifieris ot provided, it shall be computed by the script parser.

|Typeldefptifier ::= INTEGER

12.1.2 Type description

Type descriptions describe the structure of a declared type.
The type description shall be one of the following:

- a string description;

- a sequence description;

- an array description;

- a structure description;
- a union description.

41

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IE

C 13522-3:1997(E)

© ISO/IEC

TypeDescription = SequenceDescription

StringDescription
ArrayDescription
StructureDescription
UnionDescription

12.1.2.1 String description

A string description shall consist of an integer (optional).

|Strin

gDescription 1= INTEGER? // String (max) &itke

The infeger represents the maximum size of the string; if it is not provided, the string shall be.unboyinded.

121.2

2 Sequence description

A seqyence description shall consist of

hn integer (optional);
A type identifier.

SequgnceDescription = INTEGER? // Sequence (max) pize
Typeldentifier

The irfteger represents the maximum size of the sequénce; if it is not provided, the sequence shall be

unbounded.

The type identifier represents the type of elementofthe sequence.

12.1.2

An arr

3 Array description
ay description shall consist of

an integer,
a type identifier.

Array

INTEGER // Array size
Typeldentifier

rDescription

The integer represents the size of the array.

The t

pe identifier represents the type of element of the array.

121.2

.4 Structure description

A structure description shall consist of a sequence of type identifiers.

IStructureDescription 1= TypeIdentifier+

Each type identifier represents the type of one of the fields of the structure.

12.1.2.5 Union description

A union description shall consist of a sequence of one or more type identifiers.

lUnionDescription 1= Typeldentifier+

42

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Each type identifier represents the type of one of the choices of the union.

12.2 Constant declaration

ISO/IEC 13522-3:1997(E)

Constant declarations are used to describe the types and values of the constants of the interchanged script.

A constant declaration shall consist of

- a

data identifier (optional);

- a typedentifier;

- a ¢onstant value.

ConstanptDeclaration = Dataldentifier?
Typeldentifier
ConstantValue

12.2.1 Data identifier

Data ide

The datq identifier shall be a positive integer within the range allowedfof)constants. It shall correspo
index (sthrting from 0) of the declaration in the constant declarations-part.

If the data identifier is not provided, it shall be computed by the.script parser.

htifiers are used to reference data throughout the interchanged script;

nd to the

IDataId@ntifier

I

INTEGER

12.2.2 Type identifier

The type identifier represents the type to whichithe value of the constant belongs.

12.2.3 Constant value

The constant value represents the value to which the constant corresponds throughout the script.

If the type of the constant ista“primitive or string type, the constant value shall consist of an in

value ex

If the tyge of the constant is a sequence type, the constant value shall consist of a sequence of
values, whose length is less or equal to the size of the sequence type and whose type is the eleme
the sequence description.

If the ty

bressed in this type.

nmediate

constant

nt type of

constant

peof the constant is an array type, the constant value shall consist of a sequence of

values, whose length equal to the size of the array type and whose type is the element type of the array

descripti

on.

If the type of the constant is a structure type, the constant value shall consist of a sequence of constant
values, whose length is equal to the number of elements in the structure type; each of these values shall
be of the same type as the corresponding element type in the structure description.

If the type of the constant is a union type, the constant value shall consist of an integer representing the
index (starting from 0) of the choice in the union type and a constant value whose type is the type of

element

of the corresponding rank in the union description.

43

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

ConstantValue R BOOLEAN
| OCTET
| INTEGER // all numeric types
| REAL // float or double
| STRING // character or string
| Dataldentifier
| ConstantValue* // sequence, array or structure
| UnionValue
UnionValue 1i= INTEGER // Tag index

LoNstaltvalue

12.3 Global variable declaration

Global jariable declarations are used to describe the types and initial values of the glebal varialbles of the
interchanged script.

A globgdl variable declaration shall consist of
data identifier (optional);

type identifier;
constant reference (optional).

1
Q Q) o)

Dataldentifier?
Typeldentifiepr
ConstantReferénce? // Initial value

VarialpleDeclaration

12.3.1 |Data identifier

Data identifiers are used to reference data throughout the interchanged script.
The data identifier shall be a positive integer within the range allowed for global variables. It shall qorrespond
to the maximum number of constants incremented by the index (starting from 0) of the declaration in the
global yariable declarations part.

If the data identifier is not provided, it shall be computed by the script parser.
12.3.2 | Type identifier

The type identifieprepresents the type to which the value of the global variable belongs.

12.3.3 | Constant reference

The copstant reference represents the initial value of the global variable.

The constant reference shall be one of the following:

- a data identifier referencing a constant;
- a constant value as described in subclause 12.2.3.

In any case, the value to which this constant reference refers shall be of the type of the global variable.

If the constant reference is not provided, the script interpreter shall assign the global variable a default value if
its type allows for it. Otherwise, it shall remain undefined until assigned by an instruction.

ConstantReference = Dataldentifier
ConstantValue

44

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

12.4 Package declaration

Package declarations are used to describe the external services and exceptions used by the interchanged
script.

A package declaration shall consist of
- a package identifier (optional);

- a string representing the package name;
- a setuence of Service descriptions;

- a seqluence of exception descriptions.
PackageDgpclaration tr= PackageIdentifier?
VisibleString // Package name

ServiceDescription*
ExceptionDescription*

12.4.1 Package identifier
Package identifiers are used to reference packages throughout the interchanged script.

The package identifier shall be a positive integer within the range allowed for packages. It shall corresgond to
the index (starting at 0) of the declaration in the package declarations part.

If the package identifier is not provided, it shall be computed by<¢he script parser.

|Packageldentifier INTEGER

12.4.2 Name

A package] name is used by the script interpreter to access the package within the run-time enviropnment,
according fo the package availability procédure described by the platform mapping specification.

12.4.3 Sefvice description

Service depcriptions describe external function prototypes.
A service description shall censist of

- a fu:luction identifier (optional),

- a strfing representing the operation name;

- a calling'mode (optional);

- a type.dentifier (optional),
- a sequence of parameter descriptions.

ServiceDescription 1= FunctionIdentifier?
VisibleString? // IDL global name
CallingMode?
Typeldentifier? // return value
ServiceParameterDescription*

12.4.3.1 Function identifier
Function identifiers are used to reference functions throughout the interchanged script.

The function identifier shall be a positive integer within the range allowed for services. It shall correspond to
the maximum number of routines plus the maximum number of predefined functions plus the package

45

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

identifier multiplied by 256, incremented by the index (starting from 0) of the service in the package
declaration.

If the function identifier is not provided, it shall be computed by the script parser.

[FunctionIdentifier ::= INTEGER]

12.4.3.2 Name

The dperation name is used by the SCTIpt INterpreter 1o access the operation within the run-ume gnvironment,
according to the operation invocation procedure described by the platform mapping specificatiof.

12.4.3.3 Calling mode
The qalling mode represents the way the operation shall be invoked.
The dalling mode shall be either ‘synchronous’ or ‘asynchronous’.

If the|value is not specified, the calling mode shall be ‘synchronous’.

ICallingMode S ‘SYNCHRONOUS” | ‘ASYNCHRONOUS']

12.4.3.4 Type identifier
The type identifier represents the type of return value ofthe service.

If the| type identifier is not specified, it shall be interpreted as a void type, i.e. the function shall have no
return value.

If the|calling mode of the operation is ‘asynchronous’, the type identifier shall be either ‘void’ or not specified.
12.4.3.5 Parameter description

Parameter descriptions are used'to specify the type and passing mode of service parameters.
A parfameter descriptionshall consist of

- a passing mode;
- a type idéntifier.

ServicefParameterDescription ::= ServicePassingMode?
Typeldentifier

12.4.3.5.1 Passing mode

The passing mode indicates whether the value of the parameter at the time of invocation of the service is
used by the service (input parameter) and whether this parameter is modified by the service for use by its
caller (output parameter).

The passing mode shall be one of the following: ‘in’, ‘inout’ or ‘out’.

If the passing mode is not specified, it shall be interpreted as an in parameter.

NOTE: The object reference parameter is implicit, so it should not be specified as part of the declaration. It
is dealt with as an in parameter.

46

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

If the calling mode of the operation is ‘asynchronous’, the passing mode shall be either ‘in’ or not specified.

!ServicePassingMode tr= ‘IN” | ‘OUT’ | “MINOUT'

12.4.3.5.2 Type identifier
The type identifier represents the type of the considered service parameter.

12.4.4 Exception-description

Exceptidn descriptions describe prototypes of exceptions that may be raised during the execution of external
functions.

An exception description shall consist of
- a message identifier (optional);

- a string representing the exception name;
- a sequence of type identifiers representing the members of the exception.

ExceptfionDescription = Messageldentifier?
VisibleString? / /ADL exception global name
Typeldentifier* //Parameter types

12.4.4.1] Message identifier

Messagg identifiers are used to reference messages threaghout the interchanged script.
The mes$sage identifier shall be a positive integer within the range allowed for exceptions. It shall cgrrespond
to the maximum number of predefined messages plus the package identifier multiplied by 256, incfemented

by the irdex (starting at 0) of the exception inithe package declaration.

If the mgssage identifier is not provided;-it shall be computed by the script parser.

|MessagleIdentifier *v= INTEGER

12.4.4.21 Name

An exception name _is-Used by the script interpreter to retrieve the exception within the run-time environment,
according to the exception retrieval procedure described by the platform mapping specification.

12.4.4.3 Parameter description
Each plmm—mw-mmgemmmﬂﬂwm—ww —H f y its type

identifier.

12.5 Handler declaration
Handler declarations are used to associate a message with the function that handles it.
A handler declaration shall consist of

- a message identifier;
- a function identifier.

HandlerDeclaration = Messageldentifier
FunctionIdentifier

47

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

12.5.1 Message identifier
The message identifier indicates the message to be handled.

The message identifier shall be a positive integer within the whole range allowed to messages, representing
either a predefined message or an exception.

12.5.2

The fundtion identifier indicates the function to be triggered when the message is removed fropi-the message
queue.

The funttion identifier shall be a positive integer within the whole range allowed to function, representing a
routine, ja predefined function or a service.

The description of the formal parameter types for the function shall be the same as for the messagg, so that
the funclion may be called with the message actual parameters as its parameters. If signatures do not match,
the handller shall be rejected by the script parser.

12.6 Routine declaration

Routine| declarations are used to describe the structure and program code of the internal functigns of the
interchanged script.

A routink declaration shall consist of

- alfunction identifier (optional);
- a|type identifier (optional);
- a|sequence of parameter descriptions;
- alsequence of local variable declarations;
- MHEG-SIR program code.
RoutirnleDeclaration = FunctionIdentifier?
Typeldentifier? // for return value

RoutineParameterDescription*
LocalVariableDeclaration*
OCTET STRING // program code

12.6.1 |Function identifier

The furlctioni-identifier shall be a positive integer within the range allowed for routines. It shall corfespond to
the indextstarting from 0) of the routine in the routine declarations part. 1

If the function identifier is not provided, it shall be computed by the script parser.
12.6.2 Type identifier
The type identifier represents the type of return value of the routine.

If the type identifier is not specified, it shall be interpreted as a void type, i.e. the function shall have no
return value.

12.6.3 Parameter description

Parameter descriptions are used to specify the type and passing mode of routine parameters.

48

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

A parameter description shall consist of

- a passing mode (optional);
- a type identifier.

RoutineParameterDescription ::= RoutinePassingMode?
Typeldentifier

12.6.3.1 Passing mode

The passing mode indicates whether the parameter shall be passed to the routine using itscvalue (input

parameter) or a reference to the variable that holds its value (input/output parameter).

The passing mode shall be one of the following: ‘value’ or ‘reference’.

IRoutineIassingMode ::= ‘“WALUE’ | ‘REFERENCE’

12.6.3.2 Type identifier
The type iflentifier represents the type of the considered routine parameter,

12.6.4 Lqcal variable declaration

Local varigble declarations are used to describe the types ‘and initial values of variables whose sfope is

limited to ¢ne execution of a routine.

A local vgriable declaration shall have the same structure as a global variable declaration, as defined in

subclause] 12.3. 1t shall consist of

- a data identifier (optional);
- a type identifier;
- a constant reference (optional).

12.6.4.1 Data identifier

The data identifier shall be apositive integer within the range allowed for local variables. It shall corregpond to
the maxinpum number of constants plus the maximum number of global variables incremented by the index

(starting fiom 0) of the«declaration in the local variable declarations of the routine, incremented by the
of formal parameters-of-the routine.

If the datalidentifier is not provided, it shall be computed by the script parser.

number

The type identifier represents the type to which the value of the local variable belongs.
12.6.4.3 Constant reference

The constant reference represents the initial value of the local variable.

The constant reference shall be one of the following:

- a data identifier referencing a constant;
- a constant value as defined in subclause 12.2.3.

In any case, the value to which this constant reference refers shall be of the type of the local variable.

49

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

If the constant reference is not provided, the script interpreter shall assign the local variable a default value if
its type allows for it. Otherwise, it shall remain undefined until assigned by an instruction.

12.6.5 Program code
The program code consists of the sequence of instructions of the routine, intended for execution by the script

interpreter when the routine is triggered. The syntax and semantics of the MHEG-SIR instructions is
described in Clause 13.

The last instruction of a routine shall be a RET instruction.

13 MHEG-SIR instructions

This Clause defines the semantics of the MHEG-SIR instructions.
13.1 Presentation methodology

Each ihstruction is defined in the corresponding subclause by a set of entries-as follows:

Short description: A brief description of the instruction’s semantics.
Synopsis: Mnemonic Operandl ... OperandN
Operands: A description of the types and semantics of each operand carried with the

instruction (if any).

Stack A visual synopsis of the jmstruction's effect on the parameter stack, e.g.
., Parameter]);, Parameter2 = ..., Result
Types A list of the typés of parameters to which the instruction applies (if it is a tgmplate
instruction):
Paranpeters: A description of the semantics of each element of the parameter stack which is

pepped, pushed or otherwise effected by the instruction (if any).
Effect A textual specification of the interpretation semantics of the instruction.

Formal specification: A formal specification of the interpretation semantics of the instruction uging the
notation described in this subclause.

Errorg: A list of the errors that may be raised during execution of the instruction.

13.1.1 Error conditions

The semantics of the instruction, as described by the formal specification, shall apply only if the operands are
valid. Otherwise, an InstructionExecutionError exception shall be raised and the error register shall
be set to Tnvalidoperand. The result of the instruction execution is unspecified.

When the parameter stack is looked up, i.. on a PS.pop or a PS[SP] primitive, if the parameter stack does
not hold enough parameters then an InstructionExecutionError exception shall be raised and the
error register shall be set to StackUnderflow. The resulting state of the parameter stack is unspecified.

If the result of an arithmetic operation falls in a range that exceeds that of the target type, arithmetic
operations shall raise an InstructionExecutionError exception and the error register shall be set to
ArithmeticOverflow or DivisionByZero, as applicable.

50

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

If a identifier does not refer to a valid entity (type, data, function, message, package) then when its value in
the corresponding table is accessed (e.g. using DT[i]), an InstructionExecutionError exception
shall be raised and the error register shall be setto InvalidIdentifier.

If IP is set to an invalid pointer then an InstructionExecutionError exception shall be raised and the
error register shall be set to JumpOutOfRange.

When a dynamic variable is allocated and allocation is impossible due to lack of memory space or data
identifiers then the new () primitive shall raise an InstructionExecutionError exception and set the
error registertoxTiocartonFarIed:

Triggering of the other error conditions is specified explicitly throughout subclause 13.3. The erfor code
values ar¢ defined in Annex C.

13.1.2 Fprmal specification

The "formal specification" entry of an instruction description gives a concise formal*notation of the effect that
the instruction execution unit shall produce as it interprets the instruction; however, as this specifigation is
expressefl in terms of a sequence of operations, there may be other methods+to lead to the same result, so
this formdl specification does not require the instruction execution unit to_perform as expressed as long as the
effect is the same.

The error|cases described in subclause 13.1.1 are implicit and ate not expressed in the formal spedfication.
The othef error cases are explicitly mentioned.

To specify the semantics of an instruction in a formal way,a C-like syntax is used. It uses the notations and
concepts|defined in Clauses 8 and 9, plus the following:notations:

- data table (DT) notation (see subclause 13:1.3);
- template instruction notation (see subclatse 13.1.4);
- primitives (see subclause 13.1.5).

13.1.3 ta table notation
The notafion DT (i), where i stands for a data identifier, corresponds to:

- thg entry whose key-is-4 in the constant table, if 1 is the data identifier of a constant;
- the entry whose key-is i in the global variable table, if i is the data identifier of a global variablg;
- thg entry whosetkey is i in the local variable table of the currently executing routine, if i is the data

idgntifier of@Vocal variable;
- thg dynamic variable whose handle is mapped to i, if i is the data identifier of a dynamic variap

e.

This macyo\may be expressed as follows:

#define DT (i) (i < 4096) 2 CT[i] : VT[i])
13.1.4 Template instruction notation

A number of instructions (e.g. arithmetic and logical instruction) operate on values of a given type and
produce a result with the same type. The <T> notation is used to express a template instruction.
<Mnemonic> <T> represents all instructions <Mnemonic> with <T> being replaced by the type letter of any
primitive type to which the instruction is applicable, as described by the "Types" entry in the instruction
description.

NOTE: Operations on mixed types should be handled by explicitly inserting type conversion instructions in
the instruction sequence.

51

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

13.1.5 Primitives

The following primitive notations are used in the formal specification of the instructions:

13.2 Classification of MHEG-SIR instructions

The MH
the var
accept:

a)

d)

The effect.'of instructions is summarised in Table 3. The operations are listed in canonical org
ascending”op-code number. Some mnemonics represent template instructions and therefore

DID new (tid): allocates a dynamic variable of the type identifier by tid;

void raise (exc):raises an InstructionExecutionError exception and sets ER to
exc,

void delete (did): releases the dynamic variable identified by did;

© ISO/IEC

error code

int sizeof (tid): returns the size of values of the type identified by tid, expressed in the same

H oo DO ity S AA ac-
Mo Ao UITUC T 'J HU"'l\J. L= A= A= LS A]

tlype (<T>): macro to be replaced by the C type name.

structions that affect the control flow:

) unconditional jump instructions: JMP, LIMP;

) conditional jump instructions: JT, JF, LJT, LJF,

) function invocations: CALL, XCALL;

) miscellaneous control flow instructions: RET, YIELD;

instructions that do not affect the control flow, but affect the value of variables:
complex variable modifiers: SET, SETC;

arithmetic operators on variables: INC, DEC;

stack pop instructions: POPR, POP, POPE;

memory management instructions: ALLOC, FREE;

) conversion instructions: CVT;

) arithmetic operators: ADD, SUB, MUL, DIV, REM, NEG;

) logical operators: AND, OR, %OR, NOT;

) logical shift operators; SHIFT,

) comparison operators:*EQ, GT, LT, EQR;

) complex data accessors: GET, GETC,

) miscellaneousstack manipulation instructions: PUSHI, PUSHR, PUSH, DUP, GETOR;
ihstructions that have no effect: NOP.

OTE: Most instructions only operate on primitive type values. Only the following instructions
manipulate constructed values: EQR, GET, GETC, SET, SETC, ALLOC, FREE, CALL, XCAI

EG-SIR instructions may be clustered into categories according to their effectjor the contrpl flow, on
able tables or on the parameter stack, and according to the types of stack parameters) that they

are used to
L.

er, i.e. by

suffixes.

52

have type

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/NIEC

ISO/IEC 13522-3:1997(E)

Table 3: Synopsis of MHEG-SIR instructions and their effect

Mnemonics Ref. Opcode | Op. size |[Op. type |Parameter types | PS effect | VT |Control

(hexa) effect | flow
effect

NOP 14.3.1 |00 0

YIELD 14.32 |02 0 X

RET 14.3.3 |03 0 0|1 = 0]1 X

FREE 1434 |08 0 120 X

NOT <T> 1435 |10-13 0 BOWU 121

OR <T> 1436 |14-17 0 BOWU 221

XOR <T> 1437 |18-1B 0 BOWU 21

AND <T> 1438 |1C-1F 0 BOWU 21

EQR 1439 |20 0 221

EQ <T> 14.3.10 | 21-2B 0 OSLWUFDBCIR {221

LT <T> 14.3.11 | 30 - 37 0 COSLWUFD 231

GT <T> 14.3.12 | 38 - 3F 0 COSLWUFD 2 1

ADD <T> 14.3.13 | 40 - 47 0 OSLWUFD 21

SUB <T> 14.3.14 | 48 - 4F 0 OSLWUFD 221

MUL <T> 14.3.15 | 50 - 57 0 OSLWUFD 21

DIV <T> 14.3.16 | 58 — 5F 0 OSLWUED 221

NEG <T> 14.3.17 | 62 - 67 0 SLED 121

REM <T>| 14318 | 79-7D 0 QSLWU 221

DUP <T>| 14.3.19 | 81 -8B 0 OSLWUFDBCIR |1 > 2

CVT <TTp |14.3.20 | 94 - BE 0 OSLWUFDBC 121

JT 14.3.21 | CO 1 offset 120

JF 14.3.22 | C1 1 offset 120

JMP 14.3.23 | C2 1 offset K

SHIFT <r> |14.3.24 | C5-C7 1 offset owu 121

GETOR 14.3.25 | C9 1 PID 0= 1

LJT 14.3.26 | DO 2 offset 120 K

LJF 14.3.27 | D1 2 offset 120 K

LJMP 14.3.28 | D2 2 offset K

CALL 14.3.29.\D4 2 FID n= 0|1 K

XCALL 14.3:307| D6 2 FID n= 0|1 K

PUSH 1423731 | EO 2 DID 0=1

PUSHR 14.3.32 | E1 2 DID 0= 1

PUSHI 14333 | E3 2 value 0= 1

POP 14.3.34 | E4 2 DID 120 X

POPR 14.3.35 | E5 2 DID 120 X

POPC 14.3.36 | E6 2 DID 120 X

ALLOC 14.3.37 | E8 2 TID 0=1 X

INC 14.3.38 | EA 2 DID 120 X

DEC 14.3.39 | EB 2 DID 120 X

GET 14.3.40 | FO 3 DID, idx idx = 1

GETC 14.3.41 | F2 3 DID, idx idx+1 =0 X

SET 14.3.42 | F4 3 DID, idx idx+1 =0 X

SETC 14.3.43 | F6 3 DID, idx idx+1 =0 X

53

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

13.3 Description of instructions

13.3.1 No operation

Short description: Do nothing.
Synopsis: NOP
Operands: None.
Types Not applicable.
Paramjeters: None.
Stack: .. B oL
Effect: None.
Formdl specification: 0/
Errors|
13.3.2 Yield
Short gescription: Handle pending messages.
Synopsis: YIELD
Operands: None.
Stack: N
Types Not applicable.
Parameters: None:
Effect If-there is a pending message in the message queue, handle it by call
corresponding routine.
Upon returning, iterate the process until the message queue is empty.
Form3l specification: V{’hile (QP != ‘null”)
FID fid = HT[MQ[QP].MID].FID;
if (fid == ‘null’) then raise(‘HandlerNotFound’);
else
{
CS.push({IP-1, FR, SP, LT});
// IP-1: allows to re-iterate the YIELD instruction
FR = fid;
IP = RT[FR].IP;
LT = MQ[QP]).LT;
}
MQ.remove () ;
}
Errors: HandlerNotFound
13.3.3 Return
Short description: Return to caller.

54

© ISO/IEC

ng the

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:

Synopsis: RET

Operands: None.

Stack: ., (val) = ..., (vVal)

Types Not applicable.

Parameters If the current routine signature has a return value val shall be interpreted s
the type of this return value.
Otherwise, no stack parameter shall be considered.

Effect: Return to the calling routine. Pop the call stack and restore the context of

Formal specification:

Errors:
13.3.4 Hree

Short degcription:
Synopsid

Operand

Uy

Stack:
Types:
Parameters:

Effect:

Formal specification:

previous frame. If the current routine has a return value, checkithat there
value of the same type on the top of the parameter stack.
If there is no calling function to return to, stop and go back’to-ready status.

if (sizeof (RT[FR].TID) != (SP - CS[FP].SP))
then raise(‘InvalidReturnvValue’);

IP = CS[FP].IP;

FR = CS[FP].FR;

LT = CS[FP].LT;

CS.pop();

InvalidReturnValue

Release dynamic variable.

FREE
None

., Digr®
Not applicable.

Did shall be interpreted as a data identifier.

1997(E)

n
Q
=

the
is a

Check that Did is the data identifier of a dynamic variable. Release the dynamic

memory associated with Did, and make the data identifier invalid.

if (did < 8100h) then raise(‘InvalidParameter’);

dalat uplLng [N Ao+ sdanti fiaor? V1) -

A WA T S S W T T

Errors: StackUnderflow
InvalidIdentifier

13.3.5 Not

Short description: Logical negation.

Synopsis: NOT <T>

Operands: None.

Stack: ., Val = ..., Neg

55

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/EC

Types: Boolean or any unsigned integer (B, O, W, U).

Parameters: val shall be interpreted as of type <T>.
Neg shall be of type <T>.

Effect: Replace the top element of the parameter stack by its logical negation if <T> is
B, its bitwise negation otherwise (i.e. its complement-to-one):
Neg = ~Val

Formal gpecification: ~ type(<T>) buf = PS.pop(<T>);
if (<T> == ‘boolean’) then PS.push(! buf);

else PS.push(~ buf);

Errors: StackUnderflow

13.3.6 Or

Short dgscription: Logical disjunction.

Synopsik: OR <T>

Operands: None.

Stack: ..., Vall, val2 = ..., Disj

Types: Boolean or any unsigned integer(B, O, W, U).
Parameters: vall and val2 shall be intefpreted as of type <T>.

Dis7j shall be of type <Tx.

Effect: Replace the top two-elements of the parameter stack by their logical disjunction
if <T> is B, theirbitwise disjunction otherwise:
Disgp\= Vall | ValZ

Formal ppecification: ~ type(<T>J—buf = PS.pop (<T>);
if («T> == ‘boolean’) then buf = buf || PS.pop(‘boolean’);

elsé&-buf |= PS.pop (<T>);
PS.push (buf) ;

Errors: StackUnderflow

13.3.7 |Exclusiveor

Short dgscription: Logical exclusion.

Synopsis: XOR <T>

Operands: None.

Stack: ..., Vall, val2 = ..., Excl

Types: Boolean or any unsigned integer (B, O, W, U).
Parameters: vall and val2 shall be interpreted as of type <T>.

Excl shall be of type <T>.

56

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Effect:

Formal specification:

Errors:

ISO/IEC 13522-3:1997(E)

Replace the top two elements of the parameter stack by their logical exclusion if
<T> is B, their bitwise exclusion otherwise:
Excl = Vall ©~ Val2

type (<T>) buf = PS.pop(<T>);

if (<T> == ‘boolean’) then buf = (buf != PS.pop(‘boolean’));
else buf "= PS.pop(<T>);

PS.push (buf) ;

StackUnderflow

13.3.8 And
Short descfiption:
Synopsis:
Operands:
Stack:
Types:

Parameters:

Effect:

Formal spgcification:

Errors:

13.3.9 Edqual reference

Short desdription:
Synopsis:

Operands:

Stack:

Logical conjunction.
AND <T>
None.
., Vall, val2 = ..., Conj
Boolean or any unsigned integer (B, O, W, U).

vall and val2 shall be interpreted as oftype <T>.
Conj shall be of type <T>.

Replace the top two elements of the parameter stack by their logical conjunctio
if <T> is B, their bitwise conjunctjon otherwise:
Conj = Vall & Val2

=

type (<T>) buf = PS.pop(<T>);

if (<T> == ‘boolean’)~then buf = buf && PS.pop(‘boolean’);
else buf &= PS.pop (<T>);

PS.push (buf);

StackUndexrflow

Compare constructed values.

EQR

2N

©
9

Types:

Parameters:

Effect:

—bBtdt—bie ——
Not applicable.

Did1l and Did2 shall be interpreted as of data identifier type.
Bool shall be of boolean type.

Check that Did1 and Did2 identify data of the same type.

Return ‘true’ if the data identified by Didl and Did2 are equal (see subclause

8.2), ‘false’ otherwise:
Bool = (DT (Didl) == DT (Did2))

57

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

Formal specification:

Errors:

13.3.10 Equal

DID did2 = PS.pop(‘data identifier’);

DID didl = PS.pop(‘data identifier’);

if (DT(didl).tid != DT(did2).tid) then raise (‘TypeMismatch’);
if (DT(didl).val == DT(did2).val) then PS.push(‘true’);

else PS.push(‘false’);

TypeMismatch
StackUnderflow
InvalidIdentifier

© ISO/IEC

Short flescription:
Synopsis:
Operands:

Stack
Typed

Parameters:

Effect

Formal specification:

Errorqg:

13.3.11 Less than

Equality.
EQ <T>
None.

., Vall, Vval2 = ..., Comp

Any primitive type except void (O, S, L, W, U E\D, B, C, I, R)

Vall and val2 shall be interpreted as of type <T>.
Comp shall be of boolean type.

Replace the top two elements of the'parameter stack by ‘true’ if they are €
and ‘false’ otherwise:
Comp = (Vall ==%Val2)

type (<T>) buf = PS.pop(T>);
if (buf == PS.pop<T>)y\then PS.push(‘true’);
else PS.push(‘fals&”);

StackUnderfdow

qual

Short|description: Strigt inferiority.
Synopsis: 5T <T>
Operands: None.
Stack ., Vall, val2 = ..., Comp
Types: Characteroranynumerc(C O S L W U F D)
Parameters: vall and valz2 shall be interpreted as of type <T>.
Comp shall be of boolean type.
Effect: Replace the top two elements of the parameter stack by ‘true’ if the top element is

Formal specification:

Errors:

58

greater than the next, and ‘false’ otherwise:
Comp = (Vall < ValZ2)
To compare characters, the numeric order shall be used.

type (<T>) buf = PS.pop (<T>);
if (PS.pop<T> < buf) then PS.push(‘true’);
else PS.push(‘false’);

StackUnderflow

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

13.3.12 Greater than

Short description: Strict superiority.

Synopsis: GT_<T>

Operands: None.

Stack: ..., Vall, val2 = ..., Comp

Types: Character or any numeric (C, O, S, L, W, U, F, D).
Parametgrs: Vall and val2 shall be interpreted as of type <T>.

Comp shall be of boolean type.

Effect: Replace the top two elements of the parameter stack by ‘true!-if the top elemgnt
is less than the next, and ‘false’ otherwise:

Comp = (Vall > Val2)
To compare characters, the numeric order shall be\used.

D

Formal gpecification: ~ type(<T>) buf = PS.pop(<T>);
if (PS.pop<T> > buf) then PS.push(‘true’);

else PS.push(‘false’);

Errors: StackUnderflow

13.3.13 |Add

Short defcription: Arithmetic addition.

Synopsis: ADD <T>

Operands: None.

Stack: ..., Numly» Num2 = ..., Sum

Types: Anysaumeric (O, S, L, W, U, F, D).

Paramefters: Numl and Num?2 shall be interpreted as of type <T>.

Sum shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their sum:
Sum = Numl + Num?2

Formal specification: TypeT<T>7 DUl = F5.popi=i=77
buf += PS.pop (<T>);

PS.push (buf) ;

Errors: StackUnderflow
ArithmeticOverflow

13.3.14 Subtract

Short description: Arithmetic subtraction.
Synopsis: SUB_<T>
Operands: None.

59

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

Stack: ., Numl, Num2 = ..., Diff
Types: Any numeric (O, S, L, W, U, F, D).
Parameters: Numl and Num2 shall be interpreted as of type <T>.
Di ff shall be of type <T>.
Effect: Replace the top two elements of the parameter stack by their difference:
Diff = Numl - Num2
Formal ppecification: ~ type(<T>) buf = PS.pop (<T>);
buf = PS.pop(<T>) - buf;
PS.push (buf) ;
Errors: StackUnderflow
ArithmeticOverflow
13.3.15(Multiply
Short déscription: Arithmetic multiplication.
Synopsis: MUL <T>
Operanfls: None.
Stack: ., Numl, Num2 = ..., Prod
Types: Any numeric (O, S, L, W, U, F'D).
Paramgters: Numl and Num2 shall be\interpreted as of type <T>.
Prod shall be of typexT>.
Effect: Replace the top«{wo elements of the parameter stack by their product:
Prodi= Numl * Num2
Formal [specification: ~ type (<T>)buf = PS.pop (<T>);
buf *= BS.pop(<T>);
PS.push (buf) ;
Errors: StackUnderflow
ArithmeticOverflow
13.3.16 Divide
Short deseription: Arithmetic division.
Synopsis: DIV <T>
Operands: None.
Stack: ., Numl, Num2 = ..., Quot
Types: Any numeric (O, S, L, W, U, F, D).
Parameters: Numl and Num2 shall be interpreted as of type <T>.

60

Quot shall be of type <T>.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Effect:

Formal specification:

ISO/IEC 13522-3:1997(E)

Replace the top two elements of the parameter stack by their quotient:
Quot = Numl / Num?2

type (<T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) / buf;
PS.push (buf) ;

Errors: StackUnderflow
DivisionByZero

13.3.17 Negate

Short desqription: Sign change.

Synopsis: NEG <T>

Operands: None.

Stack: ., Num = ..., Opp

Types: Any signed numeric (S, L, F, D).

Parameters: Num shall be interpreted as of type <T>.
Opp shall be of type <T>.

Effect: Replace the top element of the parametéristack by its opposite:

Formal spécification:
Errors:

13.3.18 Remainder

Opp = -Numl

type (<T>) buf = PS.pop<T>;
PS.push (- buf);

StackUnderflow

Short desgription: Arithmetic remainder.
Synopsis: REM <T>
Operands None,
Stack: ., Numl, Num2 @ ..., Rem
Types: Any integer (O, S, L, W, U).
Parameters: Numl and Num?2 shall be interpreted as of type <T>.
Rem shall be of type <T>.
Effect: Replace the top two elements of the parameter stack by their remainder:

Formal specification:

Errors:

)

Rem = Numl % Num2

type (<T>) buf = PS.pop (<T>);
buf = PS.pop(<T>) % buf;
PS.push (buf) ;

StackUnderflow
DivisionByZero

61

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/NEC

13.3.19 Duplicate

Short description: Duplicate value

Synopsis: DUP_<T>

Operands: None

Stack: ..., Val ® ..., Val, Val

Types: Any primitive type except void (O, S, L, W, U, F, D, B, C, I, R)
Paramgters: val shall be interpreted as of type <T>.

Effect: Duplicate the value on the top of stack.

Forma| specification: ~ type(<T>) buf = PSISE](<T>);
PS.push (buf) ;

Errors StackUnderflow

13.3.20 Convert

Short description: Convert value

Synoppis: CVT_<T1><T2>

Operapds: None

Stack: ..., vVal = ..., -Res

Types Boolean, character or any numeric (O, S, L, W, U, F, D, B, C); see allqwed

combinations in“subclause 13.4.

Parameters: val shallbe interpreted as of type <T1> (source type).
Res.shall be of type <T2> (destination type).

Effect; Reéplace the value on the top of stack by an equivalent value in the destination
type. Conversion rules defined in subclause 13.4 apply.

Formdl specifiéation: ~ type(<T2>) buf = (type(<T2>)) (PS.pop(<T1>));
PS.push (buf) ;

Errorg; StackUnderflow

13.3.21 Jump on true

Short description: “If" conditional short jump.

Synopsis: JT Off

Operands: off shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: ..., Test = ...

62

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Types:
Parameters:

Effect;

Formal specification:

ISO/IEC 13522-3:1997(E)

Not applicable.
Test shall be interpreted as of boolean type.
If the top element of the stack is ‘true’ then

if Of f is positive, jump Of £ instructions forwards;
if Of f is negative, jump -Of £ instructions backwards.

if (PS.pop(‘boolean’)) then IP += Off;

Errors:

13.3.22 [Jump on false

Short degcription:
Synopsig:

Operand

)

Stack:
Types:
Parameters:

Effect:

StackUnderflow
JumpOutOfRange

“Else” conditional short jump.

JF Off

Of £ shall be a one-byte signed offset (in complenient-to-two notation) specify
the number of instructions to move forwards orbackwards within the current
routine.

ing

., Test &
Not applicable.
Test shall be interpreted ascefboclean type.
If the top element of therstack is ‘false’ then

if Of f is positive, jump O£ £ instructions forwards;
if Of £ is negative; jump -Of £ instructions backwards.

Formal specification: ~ if ! (PS.popl*boolean’)) then IP += Off;

Errors: StackUnderflow
Jump@utOfRange

13.3.23 [Jump

Short depcriptiont Unconditional short jump.

Synopsis$: JMP Off

Operands: 0f £ shall be a one-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: 2 ...

Types: Not applicable.

Parameters: None.

Effect: If Of £ is positive, jump Of £ instructions forwards;

if Of f is negative, jump -Of £ instructions backwards.

63

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

© ISO/IEC

Formal specification: TP += Off;

Errors: JumpOutOfRange

13.3.24 Shift

Short description: Logical shift.

Synopsis: SHIFT <T> Off

Operanfs: Of £ shall be a one-byte signed offset (in complement-to-two notation) spec
the number of bit places to shift the parameter leftwards or rightwards:

Stack: ., Val ® ..., Pwr

Types: Any unsigned integer (O, W, U).

Paramgters: val shall be interpreted as of type <T>.
pPwr shall be of type <T>.

Effect: Replace the top element of the stack by its yalue shifted right Of £ bits if Of

Formal [specification:

fying

F is

positive, or left ~Of £ bits if Of £ is negative)If Of f is beyond range, the restilt is

unspecified.

type (<T>) buf = PS.pop(<T>);
if (Off >=0) then buf >>= Off;
else if (buf < 0)

buf = -(-buf << -0ff);

g the

else buf <<= -0ff;
PS.push (buf) ;
Errors: StackUnderflow
ShiftOutOfRange
13.3.25| Get object reference
Short description: Get initial object reference to package.
Synopsis: GETOR Pid
Operangds: Pid shall be the one-byte representation of a package identifier specifyin
package to access.
Stack: = ..., Obref
Types: Not appiicable.
Parameters: Obref shall be of object reference type.
Effect: Retrieve an object reference to the initial object of the package.

Formal specification:

Errors:

64

if (PT[PID].sts = ‘not available’)
PS.push (PT[PID].or);

then raise(‘BadPackageStatus’);

InvalidIdentifier
BadPackageStatus

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

13.3.26 Long jump on true

Short description:
Synopsis:

Operands:

“If" conditional long jump.

LJT Off

Of f shall be a two-byte signed offset (in complement-to-two notation) specifying

the number of instructions to move forwards or backwards within the current
routine.

Stack:
Types:

Parameter

a7

Effect:

Formal specification:

Errors:

., Test & ...
Not applicable.
Test shall be interpreted as of boolean type.
If the top element of the stack is ‘true’ then

if Of f is positive, jump Of £ instructions forwards;
if Of £ is negative, jump -Of £ instructions backwards:

if (PS.pop(‘boolean’)) then IP += Off;

StackUnderflow
JumpOutOfRange

13.3.27 Long jump on false

Short desgription:
Synopsis:

Operands

Stack:
Types:
Parametefs:

Effect:

“Else” conditional long jump.

LJF Off

Of £ shall be a twobyte signed offset (in complement-to-two notation) specifyi
the number of instructions to move forwards or backwards within the current
routine.

L Test & ...
Not-applicable.
Test shall be interpreted as of boolean type.

If the top element of the stack is ‘false’ then
if Of f is positive, jJump Of £ instructions forwards;

'9

Formal specification:

Errors:

13.3.28 Long jump
Short description:

Synopsis:

if O£ f is negative, jump -Of £ instructions backwards.

if ! (PS.pop(‘boolean’)) then IP += Off;

StackUnderflow
JumpOutOfRange

Unconditional long jump.

LJMP Off

65

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Operands: 0f £ shall be a two-byte signed offset (in complement-to-two notation) specifying
the number of instructions to move forwards or backwards within the current
routine.

Stack: R =

Types: Not applicable.

Parameters: None.

Effect: If O£ £ is positive, jump Of £ instructions forwards;

if Of £ is negative, jump -O£ £ instructions backwards.

Formal| specification: 1P = Off;

Errors JumpOutOfRange

13.3.29 Call

Short dlescription: Call routine.

Synopkgis: CALL Fid

Operapds: Fid shall be the two-byte representation of a function identifier specifyjng the

routine to invoke.

Stack: ..., ParN, ... , Pard =
* Types Not applicable.
Parameters: parl, ..., ParN-(where N is the number of parameters of the routine)ﬁtre the
actual parameters of the routine. They shall be interpreted as of the sane type

as the formal parameters of the routine when those are passed by valde, and
they shallbe interpreted as of data identifier type and reference a Variable
of the' same type of the formal parameters of the routine when those are passed
bysreference.

Effect Pop the top elements of the parameter stack and invoke the routine specffied by
Fid with these elements as actual parameters. For parameters passed by
reference, check that the data identifier does not reference a local variable and
points to data of the same type as in the signature. Push one frame onto the call
stack with the current context. Initialise the local variable table for the foutine.
Set the instruction pointer to the first instruction of the routine.

66

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Formal specification:

ISO/IEC 13522-3:1997(E)

TID tid;

CS.push(IP, FR, SP, LT);

FR = Fid;

LT = RT([Fid].LT;

for (short i = 0; i < RT[Fid].nbp; i--;)
{

Errors:

13.3.30 |External cali

Short defcription:

Synopsis:

Operands:

Stack:
Types:

Parameters:

Effect:

switch (RT[Fid].sig[i].mod)
{
case ‘value’:
tid = RT[Fid].sig[i].TID;
break;
case ‘reference’:
tid == ‘data identifier’;
1T (8000h <= PS[SPJ(tid) BI00n)

then raise(‘InvalidParameter’);

if (RT[Fid].sig[i1].TID != DT(PS[SP] (tid)).TID)
then raise(‘'TypeMismatch’);

break;

)i
LT[i+0x8000].val = PS.pop(tid);
I

IP = RT[Fid].IP;

InvalidIdentifier
StackUnderflow
TypeMismatch
InvalidParameter

XCALL Fid

Fid shall be the two-byte representation of a function identifier specifying
service or predefined fungtion to invoke.

., ParN, ... Parl = ..., (Ret)
Not applicable.
Parl shall be interpreted as of object reference type. It indicateg

reference of the IDL instance to which to apply the operation.
pax2, ..., ParN (where N is the number of parameters of the function, plus 1

the

the

) are

the actual parameters of the function. Whatever the passing mode, they shall be

interpreted as of data identifier type.
If the function has a return value type other than void, Ret shall be of this t

Check that the parameters reference data of the same type as in the func
signature. Pop the top elements of the parameter stack and invoke the ext

ype.

ion’s
ernal

function specified by Fid with these elements as actual parameters. Push
frame onto the call stack with the current context. Pass parameters to

one
and

invoke the external function. If the invocation is asynchronous, pop the call stack

as soon as the request is acknowledged. If the invocation is synchronous,

wait

for completion of the request. If an exception is raised, activate the handler of the

exception. Otherwise, retrieve the function’s output parameters and return v
push the return value onto the parameter stack and pop the call stack.

alue,

67

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

Formal specification:

DID buf[ST([Fid] .nbpl;

Object obref PS.pop(‘object reference’);
for (short i 0; i < ST[Fid].nbp; i++;)

{

© ISO/IEC

if (ST[Fid].sig[i].TID != DT(PS[SP] (‘data identifiexr’).TID))
then raise(‘TypeMismatch’);
buf[i] = PS.pop(‘data identifier’);
}i
CS.push(IP, FR, SP, LT);
FR = Fid;
LT(0].tid = ‘object reference’;
LT[0].val = obref;
for (short i = 1;i < ST[Fid].nbp; i++}
LT[{i].TID = ‘data identifier’;
LT(i].val = buf[i];
}
short Pid = (Fid>>8)-64;
if (PT[Pid].sts !'= ‘available’) then raise(‘BadPackageStatus’,):

_open_package (PT[Pid] .name);
// open a context to invoke the service
_pass_in_parameter (LT[0]);
// according to the platform mapping specification prgeegdure
for (short i=1; i<ST([Fid].nbp; i++;)
switch(ST[Fid].sig[i] .mod)
{

\ ’

case ‘in’: _pass_in_parameter (LT[i)) s
case ‘out’: _pass_out_parameter (LT [139
case ‘inout’: _pass_inout parameter ~(LT[1]);
}i

if (ST[Fid].mod == ‘asynchronous’) then

{
_invoke_operation(PT[Pid].name; ST([Fid].name);
{1p, FR, SP, LT} = CS.pop ()¢

else

result = _invoke_operation(PT[Pid].name, ST[Fid].name);
if (result == ‘ok’) then
{

_retrieye out_parameter();

(1P, FRy SP, LT} = CS.pop();
if (ST{Fid].TID != ‘void’) then
PS.push(_retrieve_return_value());

}
else /7 the result is an exception formatted as a message
{

FR = HT[result.MID];

LT = result.LT;

IP = RT[FT].IP;

}
}
_close_package(PT[Pid].name);
7/ close service invocation context

Errors: InvalidIdentifier
StackUnderflow
TypeMismatch
BadPackageStatus
InvalidObjectReference

13.3.31 Push

Short description: Push data value.

Synopsis: PUSH Did

Operands: Did shall be the two-byte representation of a data identifier holding the value to
push onto the stack.

Stack: = ., Vval

Types: Not applicable.

68

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Parameters:

Effect:

Formal specification:

Errors:

ISO/IEC 13522-3:1997(E)

val shall be of the same type as the constant or variable identified by Did.

Check that Did identifies a constant or variable of a primitive type. Push the
valiia nf tha constant or vari ahla whanca data idantifiar ic N1 A anta tha narametar
vaiu€ O tne€ CoNSiant Of varnaii€ wWinlise Gawa IGENUNET IS U1a ONMC NE parameicl

stack.

if (DT (Did).tid > ‘object reference’) then raise(‘Invalidlype’);
PS.push (DT (Did) .val);

InvalidIdentifier

13.3.32 Hush reference

Short desg¢ription:
Synopsis:

Operands

Stack:
Types:
Parametefs:

Effect:

Formal specification:

Errors:

13.3.33 Push immediate

ITTvaIIadType

Push data identifier.

PUSHR Did
—_— ,n | U P R L ..-..___-..L-J. -.. Py SN P SN PRI I SRR Ry FUE Y W § Sy
bid S nail ine wo- Uy represerndtorn Ol d udia iJueiiiner o pusi ono uie
stack.

= ..., Val

Not applicable.
Val shall be of data identifientype.
Push Did onto the parameter stack.

PS.push(Did) ;

None.

Short desgription: Push short integer.

Synopsis: PUSHI Int

Operandsg: Tnt shall be the two-byte representation of a signed short integer value (in
complement-to-two notation) specifying the value to push onto the stack.

Stack: = ., Val

Types: Not applicable.

Parameters: val shall be of short type.

Effect: Push Int onto the parameter stack.

Formal specification:

Errors:

PS.push(Int);

None.

69

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

13.3.34 Pop

Short description: Pop value and assign it to a variable.

Synopsis: POP Did

Operands: Did shall be the two-byte representation of the data identifier of the variable to
which to assign the top element of the stack.

Stack: ———l

Types: Not applicable.

Paramegters: val shall be interpreted as of the type of the variable identified by-Did.

Effect: Check that Did identifies a variable of a primitive type. Pop@al from the

parameter stack into the variable identified by Did.

Formal specification: ~ TID tid = VT (Did).TID; , :
if (tid > ‘object reference’) then raise(‘'IpwalidType’)

VT (Did) .val = PS.pop(tid);

Errors; InvalidIdentifier
StackUnderflow
InvalidType

13.3.35 Pop reference

Short gescription: Pop value and assign it to the variable referenced by a variable.
Synoppis: POPR Did
Operapds: Did shall be the two-byte representation of the data identifier of a variable|of

data identiifier type, whose value identifies the variable to which to gssign
the value-of-the top element of the stack.

Stack: LN Val ® oL,

Types Not applicable.

Parameters: val shall be interpreted as of the type of VT (Did) . val.

Effect Check that Did identifies a variable of data identifier type.

Pop Val from the parameter stack and assign it to the variable identified By Did.

Formal specification: ~ T1D tid = type (VT (Did).val.TiD);
if (tid !'= ‘data identifier’) then raise(‘InvalidType’);

VT (VT (Did) .val).val = PS.pop(tid);

Errors: InvalidIdentifier
StackUnderflow
InvalidType

13.3.36 Pop contents
Short description: Pop variable and assign its value to a variable.

Synopsis: POPC Didl

70

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

Operands: Did1 shall be the two-byte representation of the data identifier of the variable to
which to assign the vaiue of the data identified by the top element of the stack.

Stack: ., Did2 = ...

Types: Not applicable.

Parameters: Did2 shall be interpreted as of data identifier type. The data identified by
Did2 shall be interpreted as of the type of the data identified by Did1.

Effect: Check that Did1 and Did2 identify data of the same type.

Formal specification:

13.3.37 [Allocate
Short degcription:
Synopsis:

Operand

[

Stack:
Types:
Parameters:

Effect:

Formal gpecification;

Errors:

Pop pid2 from the parameter stack and assigns the value of Did2 to the
variabie identified by Did1.

DID did2 = PS.pop(‘data identifier’);
if (VT (Didl).TID i= DT(did2).TID) then raise(‘TypeMismatwchi);
VT (Didl) .val = DT (did2).val;

InvalidIdentifier
StackUnderflow
TypeMismatch

Create dynamic variable.

ALLOC Tid

Tid shall be the two-byte représentation of a type identifier specifying the type of
the dynamic variable to allocate.

= ..., Did

Not applicable.
Did shall'lbe of data identifier type.

Generate a dynamic variable whose type is identified by Tid. Push its |data
identifier onto the parameter stack.

DID did = new(Tid);
VT[did].val = ‘null’; // default value for the type

VT [{did] .TID Tid;
PS.push(did);
AllocationFailed

13.3.38 Increment
Short description:
Synopsis:

Operands:

Stack:

InvaridIdentifier

Increment variable.

INC Did

Did shall be the two-byte representation of the data identifier of the variable
which to increment.

., Val » ...,

71

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/EC

Types:
Parameters:

Effect:

Formal specification:

Not applicable.
val shall be interpreted as of the type of the variable identified by Did.

Check that Did identifies a variable of a numeric type. Pop the parameter stack
and increment the value of the variable identified by Did by the popped value.

TID tid = VT (Did).TID;
if (VT(Did).TID > ‘double’) raise(‘InvalidType’);
VT (Did) .val += PS.pop (<T>);

Errors:

13.3.39 | Decrement

Short description:

o

Synopsi

Operandgs:

Stack:
Types:
Parameters:

Effect:

Formal $pecification:

InvalidIdentifier
StackUnderflow
InvalidType
ArithmeticOverflow

Decrement variable.

DEC Did

Did shall be the two-byte representation of.the data identifier of the variable
which to decrement. The variable identified-by Did shall be of a numeric typg.

., Val = ...,
Not applicable.
val shall be interpreted as of the type of the variable identified by Did.

Check that Did identifies a variable of a numeric type. Pop the parameter ptack
and decrement the, value of the variable identified by Did by the popped valje.

TID tid = VT(Did) .TID;
if (VT (DidMWTID > ‘double’) raise(‘InvalidType’);

VT (Did) .wal -= PS.pop(<T>);
Errors: InvalidIdentifier
StackUnderflow
InvalidType
ArithmeticOverflow
13.3.40(Get
Short dgscription: Get value of element of data of constructed type.
Synopsis: GET Did Lvl
Operands: Did shall be the two-byte representation of the data identifier of the data to
access.
Lvl shall be a one-byte unsigned quantity representing the number of nested
levels to go to access the sought value.
Stack: ., Idx(Lvl), ..., Idx(l) = ..., Val
Types: Not applicable.

72

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Paramete

Effect:

rs:

ISO/IEC 13522-3:1997(E)

Idx (1), .. Idx(Lvl) shall be interpreted as of unsigned short type.
Val shall be of the same type as the accessed element.

Replace a list of indices on the parameter stack by the value of the element
addressed by the popped indices within the constructed type data identified by

Did:
Val = DT (Did) [Idx (1), ..., Idx(Lvl)]

Check that the accessed element is of a primitive type. If Lv1 equals 0, perform

as a PUSH instruction.

Formal spgcification:

Errors:

13.3.41 Get contents

Short desgription:

Synopsis:

Operands

Stack:
Types:
Paramete

Effect:

[S:

void *buf = &DT(Did);
unsigned short idx;
for (;Lv1>0; Lvl--;)
{
if (buf->TID <= ‘object reference’) then raise(‘Invalidlievel’);
idx = PS.pop(‘unsigned short’);
if (buf->lg < idx) then raise (‘InvalidIndex’);
buf = &buf->.val(idx];
}
if (buf->TID > ‘object reference’) then raise(‘InvalidType’):;
PS.push(buf->val);

InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
InvalidType

Set data contents to element of data of constructed type.

GETC Didl Lvl

Didl shall be the two-byte representation of the data identifier of the datg to

access.

Lv1 shall be as¢ne-byte unsigned quantity representing the number of nested

levels to go taraccess the element to access.
., Bid2, Idx(Lvl), ..., Idx(l) = ...,
Not applicable.
Tdx (1), ... Idx (Lvl) shall be interpreted as of unsigned short type.

Pop a list of indices and a data identifier Did2 from the parameter stack. Wi

the constructed type data identified by Did1, assign the variable identified| by
, heof i by i | list of indices.

VT (Did2).vVal = DT (Didl) [Idx(1l),...,Idx(Lvl)]

hin

Check that the element to access is of the same type as the data identified by

Didz2.

73

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Formal specification: ~ void *buf = &DT(Didl);
unsigned short idx;
for (;Lv1>0; Lvl--;)

{
if (buf->TID <= ‘object reference’) then raise(‘InvalidLevel’);
idx = PS.pop(‘unsigned short');
if (buf->lg < idx) then raise (‘InvalidIndex’);
buf = gbuf->.vall[idx];
}
DID did2 = PS.pop(‘data identifier’);
if (VT(did2).TID !'= buf->TID) then raise(‘TypeMismatch’);
VT (did2).val = buf->val;

Errors: Trvalidldentilier
InvalidLevel
StackUnderflow
InvalidIndex
TypeMismatch

13.3.42 Set

Short description: Set element of variable of constructed type to value.

Synopgis: SET Did Lvl

Operapds: Did shall be the two-byte representation ©of the data identifier of the varigble to
modify.

Lvl shall be a one-byte unsigned.quantity representing the number of pested
levels to go to access the element to modify.

Stack: ., Val, Idx(Lvl), .8y Idx(l) = ...,

Types Not applicable.

Parameters: Idx (1), .. Idx¥Lvl) shall be interpreted as of unsigned short type.
val shall be interpreted as of the same type as the element to modify.

Effect: Pop a listofindices and a value from the parameter stack. Within the stryictured
variable-identified by Did, assign the element addressed by the popped list of
indices to the popped value:

VT (Did) [Idx(1),...,Idx(Lvl)] = Val
Check that the element to modify is of a primitive type. If Lv1 equals 0, perform
as a POP instruction.

Formal specification: ~ void *buf = &VT(Did);
unsigned short idx;
for (;Lv1>0; Lvl--;)

{

if (puf->TID <= ‘obiject reference’) then raise(‘InvalidLevell)’

Errors:

74

idx = PS.pop(‘unsigned short’);

if (buf->lg < idx) then raise (‘InvalidIndex’);

buf = &buf->.vallidx];
}
if (buf->TID > ‘object reference’) then raise (‘InvalidType’)
buf->val = PS.pop (buf->TID);

Invalid Identifier
InvalidLevel
StackUnderflow
InvalidIndex
InvalidType

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

13.3.43 Set contents

ISO/IEC 13522-3:1997(E)

Short description: Set element of variable of constructed type to data contents.

Synopsis: SETC Didl Lvl

Operands: Did.l shall be the two-byte representation of the data identifier of the variable to
Tx?flfs}lﬁall be a one-byte unsigned quantity representing the number of nested
levels to go to access the element to modify.

Stack: .., Did2, Idx(Lvl), ..., Idx(l) = ...,

Types: Not applicable.

Parametérs: Idx (1), .. Idx (Lvl) shall be interpreted as of unsigned.short type.
Did2 shall be interpreted as of data identifier type

Effect: Pop a list of indices and a data identifier from the\parameter stack. Within

Formal specification:

Errors:

13.4 Type conversion rules

This subclause defines the rules that shall apply when a convert (CvT) instruction is used to d

structured variable identified by Did1, assign_the element addressed by
popped list of indices to the value identified by the popped data:

VT (Didl) [Idx (1), ..., Idx(LwD)] = DT (Did2).
Check that Did2 identifies a data of the type of the element to modify. If
equals 0, perform as a POPC instruction-

void *buf = VT (Didl):

unsigned short idx;

for (;Lvl>0; Lvl--;)

{
if (buf->TID <=%\\object reference’) then raise(‘InvalidLevel’) ;
idx = PS.pop(fdnsigned short’);
if (buf->lg.X“1idx) then raise (‘InvalidIndex’);
buf = &buf=>.val[idx];

}

DID did2 = PS.,pep(‘data identifier’);

if (DT (did2}\TID != buf->TID) then raise(‘TypeMismatch’);

buf->val & DT (did2).val;

InvalidIdentifier
InvalidLevel
FtackUnderflow
InvalidIndex
TypeMismatch

parameter stack value (hence a value of a primitive type) from a source type to a destination type.

the
the

Lvl

onvert a

Values of the data identifier and object reference types shall not be converted to or from a value

of another type.

As regards the other primitive types, not all type conversions are allowed; however, any of them can be
converted to any other using sequences of conversions.

Table 4 shows the allowed type conversions together with the number of the subclause in which they are

defined:

75

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Table 4: Type conversions

Source/Destination (0] S L w U F D B C
o] N/A 14.4.2.2 | N/A 14422 N/A N/A N/A 14.4.4 |N/A
S N/A N/A 144231441 |1443 ([N/A N/A 14.4.4 |N/A
L N/A 1445 [N/A N/A 1441 [14.423[N/A 1444 |N/A
w 1445 |1441 |14423|N/A 14.4.2.3|N/A N/A 1444 |14.41
U N/A N/A 1441 (1445 |N/A 14.4.2.3|N/A 14.4.4 |N/A
F N/A N/A 1446 |[N/A 14456 |[N/A T4 2 3[NIA /A
D N/A N/A N/A N/A N/A 1445 |[N/A N/A IN/A
B 14.42.1114.4.2.1|N/A N/A N/A N/A N/A N/A N/A
C N/A N/A N/A 1441 |[N/A N/A N/A N/A IN/A

13.4.1 Reversible conversions

The follpwing conversions are lossless (i.e. preserve information) when reversed:
- btween unsigned short and character (WC, CW);
btween short and unsigned short (SW, WS),
stween long and unsigned long (LU, UL).

OO O

For all these conversions, the result of the conversion shall e the value of the target type that has|the same
comple]nent-to-two notation as the source value.

13.4.2 [Lossless extensions

The follpwing conversions extend the source value in a lossless fashion:

Iom boolean (BO, BS) (see subclause 13.4.2.1);

om octet to a numeric type (OS; OW) (see subclause 13.4.2.2);
om a signed numeric type to @ signed numeric type with a larger range (SL, LF, FD) (see jsubclause
3.4.2.3);
om an unsigned numeric type to any numeric type with a larger range (WL, WU, UF) (see [subclause
3.4.2.3).

1
— —h

- —h . —=h

13.4.2.1 Conversions from boolean
If the value of the'source boolean is false, the value in the destination type shall be 0.

If the Value-of the source boolean is true, the value in the destination type shall be the value which
corresponds to all bits set at 1 (in complement-to-two notation), i.e.

- 255 for an octet destination type;
- -1 for a short destination type.

13.4.2.2 Conversions from octet to a numeric type
The value in the destination type shall be the octet value.
13.4.2.3 Lossless conversions from a numeric to a larger numeric type

The value in the destination type shall be the same numeric value as the value in the source type.

76

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

13.4.3 Lossy extensions

The conversion from short to unsigned long (SU) shall perform as follows:

- if the source value is positive or null, the destination value shall be the same numeric value as the
source value;

- if the source value is strictly negative, the destination value is unspecified.

13.4.4 Truncations to boolean

Truncations$ from an octet or numeric type to boolean (OB, SB, WB, LB, UB) shall perform as follow

ur

- if thd source value is 0, the destination value shall be ‘false’;
- if thd source value is different from 0, the destination value shall be ‘true’.

13.4.5 Truncations between integer or between floating-point types

Truncation$ from an integer type to an octet or integer type (WO, LS, UW) or'\from a floating-point fype to
another floating-point type (DF) shall perform as follows:

- if the source value is within the range of the destination type, then-the destination value shall |be the
samp numeric value as the source value;

- otherwise, the destination value is unspecified.

13.4.6 Truincations from floating-point to integer

Truncationk from a floating-point type to an integer type (FL, FU) shall perform as follows:

- first the decimal part of the source value shall‘be truncated to an integer value (rounding down);
- then the rules defined in subclause 13.4.5.shall apply to the truncated vaiue.

14 IDL mapping to MHEG-SIR

This Clause specifies how an IDL spetification shall be mapped to the declarations of an interchangeq script,
when this |DL specification is intended for use by the script as an external service provider.

This Clause defines the mapping to MHEG-SIR declarations for

- IDL jinterfaces and modules;
- IDL ftypes;

- IDL [constants;

- refererdees to IDL objects;

- IDL loperations:

- IDL attributes;

- IDL exceptions.

14.1 IDL specifications

An IDL specification shall be mapped to an MHEG-SIR PackageDeclaration declared as a component of
an external-package-declarations component of the InterchangedScript. The name of the IDL
specification shall be mapped to the name component of this package declaration.

NOTE: Examples of IDL specifications are MHEG API, MPEG/DSM-CC.

77

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

If the number of operations or exceptions of an IDL specification exceed the size of a package, the
specification shall be splitted into several packages sharing the same name, but having different MHEG-SIR
identifiers.

14.2 IDL interfaces and modules

As the package declaration is a "flat" organisation, there is neither a mapping for an IDL module nor for an
IDL interface. However, a reference to the embedding interface (i.e. a parameter of type Object) shall be

provided as an implicit parameter to each invocation of function describing an IDL operation.

14.3 l)L operations

An IDL operation shall be mapped to an MHEG-SIR services component of the package decl
maps the IDL specification to which the operation belongs.
14.3.1| Operation name

obal name for an IDL operation shall be mapped to the MHEG-SIR name component of
btion.

The g
descri

14.3.2| Operation parameters

The parameters of an IDL operation shall be mapped to the-pérameters-description compg
servicg description. In a ServiceParameterDescriptdor, each IDL parameter type shall be
the type component which identifies a type declared according to the type mapping rules def
Clausg. The IDL passing mode for a parameter shall:be mapped to the passing-mode compg
corresponding MHEG-SIR service parameter desgription.

If the loperation has neither an output parameter nor a return value and is specifically designe
several exceptions in sequence (e.g. for fotification purposes), the value of its calling-mode
should be ‘asynchronous’. Otherwise, the value of the calling-mode component shall be ‘synch

If a s¢mantically synchronous operation is intended to raise several exceptions in sequence, i
splittefl into two MHEG-SIR operations: a synchronous one and an asynchronous one.

14.3.3 Implicit parameter
When| an IDL opetation is mapped to an MHEG-SIR service description, the object instance t

operation applie§hall remain an implicit parameter, i.e. shall not be expressed as part of the sign
service.

NOTE:

However, upon invoking the operation, this parameter is provided as the leading actu

hration that

his service

nent of the
mapped to
ned in this
nent of the

d to return
component
ronous’.

t should be

b which the
ature of the

al parameter

N Sarfors. b £ 3 it . AL S
as 11 1(s type were” oojettTererenie—ana s pasS STy moteworc

14.3.4 Return value

The return value type of an IDL operation shall be mapped to the return-value-type component of the

service description.

14.4 IDL attributes

An IDL attribute shall be mapped to two service descriptions within a package declaration: one accessor

service, whose function is to get the value of the attribute, and one modifier service, whose funct
the value of the attribute.

78

jon is to set

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/EC ISO/IEC 13522-3:1997(E)

14.41 Accessor

As concerns the accessor service, the global IDL attribute name whose final identifier is prefixed with “get_”
shall be mapped to the MHEG-SIR name component of the service description. An accessor service shall
have no explicit parameter. The IDL attribute type shall be mapped to the return-value-type component
of the service description.

EXAMPLE: In the MHEG-3 API, the routine id attribute of the RoutineInvocation object
shall be mapped to the IDL global name

MABEG ST TRoutinelnvocatlon. . .get Routlleld

14.4.2 Modifier
As concerns the modifier service, the global IDL attribute name whose final identifier is prefixed with “set_”
shall be [mapped to the MHEG-SIR name component of the service description. A modifier service ghall have
one parameter with in passing mode and such that the IDL attribute type shalh-be mapped to fhe type
component of the parameters description for this service. A modifier service shall have no return valjie.

14.4.3 Readonly attribute

If an IDL attribute is defined as readonly, only the accessor service shall be provided as part of the
packaged declaration.

14.5 IDL inherited operations
Inherited IDL operations shall be mapped as if they were.defined in the specific interface.
14.6 IDL exceptions

An IDL gxception shall be mapped to an MHEG-SIR exception-description component of thg package
declaratfon that maps the IDL specification-to which the exception belongs.

14.6.1 Exception name

The IDL| global name of the exception shall be mapped to the MHEG-SIR name component of this pxception
descriptfon.

14.6.2 Exception members

Members of an(TDL exception shall be mapped to the parameters-description component of this
exceptidn deseription. In this parameters description, each IDL member type shall be mapped to fthe type
compongnt which identifies a type declared according to the type mapping rules defined in this Clause.

14.6.3 Implicit member

When an IDL exception is mapped to an MHEG-SIR exception description, the object instance from which the
exception originates shall remain an implicit member, i.e. shall not be expressed as part of the signature of
the exception.

NOTE: However, upon raising the exception, this member is provided as the leading actual member as if
its type were ‘object reference’.

79

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/EC

14.7 IDL types

An IDL type shall be mapped to an MHEG-SIR TypeDeclaration declared as a component of the
type-declarations component of the InterchangedScript. A type declaration shall have a global
scope in the interchanged script.

IDL basic types and constructors shall be mapped to MHEG-SIR primitive types and constructors as
summarised in Table 4:

Tabte4—Fypemapping

IDL MHEG-SIR
void void
octet octet
short short
unsigned short unsigned short
long long
unsigned long unsigned long
float float
double double
boolean boolean
char character
enum unsigned long
string string
sequerjce sequence
array array
struct structure
union union
(object object reference
any data identifier (see below)
14.7.1 |char type
Mapping IDL char types to MHEG-SIR character types shall involve transcoding vaiues from I$0O 8859-1
to ISO [10646-1.
14.7.2 | enum'type
The ramge checking of enum values need not be preserved.

14.7.3 Constructed types

An IDL type definition shall be mapped to an MHEG-SIR TypeDescription. If the IDL type is a basic type
or if it has already been the subject of another type declaration, this type description shall consist of a type
identifier. Otherwise, it shall be constructed according to the following mapping rules:

- an IDL struct field shall be mapped to its rank in the MHEG-SIR structure description; its name
shall not be preserved,

- an IDL union tag value shall be mapped to its rank in the MHEG-SIR union description; its name and
value shall not be otherwise preserved;

- a multidimensional IDL array shall be mapped to an MHEG-SIR array whose eiement type is
array.

80

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

14.7.4 any type

The IDL any type shall be mapped to MHEG-SIR data identifier provided that the any type is used
with an associated key to determine the actual type:

struct { Key the key; any value }

where Key is @ string, numeric or enum type whose value completely determines the type of the value
field.

The above |DL type shall be mapped to an MHEG-SIR structure of two elements:

- an usigned short representing a valid TID within the script, to map the key;

- a dafta identifier representing a variable of the type identified by the firstcelement and (which
holdg the value.

Any other yse of the any type is not guaranteed to have its semantics preserveéd when mapped to MHEG-
SIR.

14.7.5 Regtrictions on types
If two IDL cpnstructed types have the same structure, they shall becmapped to a single MHEG-SIR type.
14.8 IDL gonstants
IDL constapts shall be mapped to an MHEG-SIR ConstantDeclaration declared as a component|of the
constantfdeclarations component of the IntexchangedScript. A constant declaration shall have a
global scope in the interchanged script.
15 The MHEG-3 API

This Claus¢ specifies the syntax and semantics of the MHEG-3 API.

Interchangéd scripts shall use the MHEG-3 API according to the IDL interface syntax defined in this Clause
and in Annex F.

MHEG-SIR script interpréters shall provide the MHEG-3 API according to the IDL interface syntax defjned in
this Clausd and in Anfiex F, with the semantics defined in this Clause. The invocation of the operatiorfs shall
have the effect specified in this Clause.

All MHEG-BIR predefined functions that map MHEG-3 API operations shall be synchronous.

The MHEG-3 API definition consists of a unique IDL module called MHEG 3. This module defines predefined
types, three exceptions and four object interfaces; there is no inheritance relationship among the four objects.

151 ScriptInterpreter object

The ScriptInterpreter object represents the script interpreter. It shall be unique. It is used as a factory
for MhScript objects.

To invoke operations on the ScriptInterpreter object, interchanged scripts shall use ‘null’ as the value
of the implicit object reference parameter.

81

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

15.1.1 kill operation

Synopsis:

Interface: ScriptInterpreter
Operation: kill

Result: void

Description:

© ISO/IEC

The kill operation is used to kill the ScriptInterpreter object and terminate the sefi
process.

When the operation is invoked, the main process shall invoke a destroy operation on
MhSdript objects then terminate the script interpreter process.

pt interpreter

all available

Unlike the other MHEG-3 API operations, this operation is not an MHEG-SIR predefined function. Therefore,

it shdll not be available for use by MHEG-SIR interchanged scripts.

15.12 prepare operation

Syngpsis

Interface: ScriptInterpreter

Operation: prepare

Resuit: MhScript

In: ContentReference content reference
Exception: InvalidParameter

Exception: InvalidScript

Exception: OperationFailed

The prepare operation is used to create an MhScript object from an interchanged script anq request the

The [content reference parameter specifies the location of the interchanged script. It co
strings: a public identifier and a system identifier. If any one of these strings is null, it shall b
leas{ one of bothystring field values shall be non-null.

Wh
spedified'by subclause 9.5.2. As soon as this has been achieved, the status of the mh-script
available.

sists of two
ignored. At

the “operation is invoked, the main process shall perform the mh-script initialisation gperations as

shall become

The result of the operation shall be an object reference to the created MhScript.

The InvalidParameter exception shall be raised if the content reference parameter does not allow

to access an interchanged script. Then the rank member shall be 1.

The InvalidScript exception shall be raised if an illegal statement is detected during p
interchanged script. Then the the entity member shall represent the type of the first

arsing of the
entity in the

declarations part on which an error has been detected, whereas the identifier member shall represent

the identifier of this entity as follows:

- a TID for a type declaration;
- a DID for a constant declaration or a variable declaration;

82

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

- a FID for a service declaration or a routine declaration;
- a MID for an exception declaration or a handler declaration;
- a PID for a package declaration.

The OperationFailed exception shall be raised if the mh-script initialisation operations cannot be
completed although no error has been detected in the syntax of the interchanged script.

Whenever an exception is raised, the MhScript object shall not be created and the status of the mh-script
shall remain not available.

15.2 MhScript object

The Mhsleript object represents an available mh-script. It is used as a factory for Rt Script. object

L'

15.2.1 dlestroy operation

Synopsis:

Interfacq: MhScript
Operatign: destroy
Result: void
Description:

The dedtroy operation is used to kill the MhScript object and destroy the corresponding mh-scripf.
When th operation is invoked, the main process shall’perform the following steps in the specified orfier:
- pyt the target mh-script to not available status;
- injoke a delete operation on all existing Rt Script objects that have been created by this mh-script;
- perform the package unload procedure for all packages;

- reJease all the mh-script memory aréas attached to the mh-script.

15.2.2 new operation

Synopsjs:

Interface: MhScxipt
Operatign: néw

Result: RtScript
Exceptign: OperationFailed
Description:

The new operation is used to create an RtScript object from the mh-script and request the script
interpreter to initialise that rt-script.

When the operation is invoked, the main process shall perform the rt-script initialisation operations as
specified by subclause 9.5.3. After successful initialisation, the status of the rt-script shall become ready.

The result of the operation shall be an object reference to the created Rt Script.
The OperationFailed exception shall be raised if the rt-script initialisation operations cannot be

completed. Then the RtScript object shall not be created and the status of the rt-script shall remain not
ready.

83

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

15.3 RtScript object

The RtScript object represents an rt-script whose status is ready, running or erroneous. It is used as a
factory for RoutineInvocation objects.

156.3.1 delete operation

Synopsis:

Interface: RTSCTipT
Operatign: delete
Result: void

When the operation is invoked, the main process shall perform the following steps in the specified onder:

- plit the target rt-script to not ready status;
- invoke a close operation on all Rout ineInvocation objegtsithat have been created by the rt-script;

15.3.2 ketPriority operation

Synopslis

Interface: RtScript

Operatipn: setPriority

Result: void

In: unsigned short priority

Description:
The setpriority operationis used to modify the scheduling priority associated with the rt-script.

The priority parameter specifies the new priority value.

When the operation is invoked, the main process may modify its scheduling policy accordingly. The precise
effect of this-operation is not specified by this part of ISO/IEC 13522. Depending on the implem ntation, it
may haveino effect. However, the execution unit of an rt-script with a lower priority value than another rt-

script shat-retbe-giverrmore CRU time than the execution unit of the |atter

15.3.3 getPriority operation

Synopsis:

Interface: RtScript
Operation: getPriority
Result: unsigned short
Description:

84

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

The getPriority operation is used to retrieve the current value of the scheduling priority associated with

the rt-script. If no priority has been explicitly set to this rt-script, the default value specified by the script
interpreter shall be used.

15.3.4 setData operation

Synopsis:

Interface: RtScript

Operation: setData

Resuit: void

In: DID variable id

In: any variable value

Exception: InvalidParameter

Exception: OperationFailed

Descriptioh:

The setDalta operation is used to assign a value to a global or dynamic variable of the rt-script.

The variaple id parameter specifies the data identifier of the data to. modify.

The varia
parameter

When the g
variable to

The Invall

ble value parameter specifies the value to assign‘to the variable. The type of the

s determined by the type of the variable.

peration is invoked, the main process shall request the rt-script execution unit to assign the
the provided value.

idParameter exception shall be raised

actual

target

of the

- if the¢ variable id parameter references a constant, a local variable or a non-existing consgant or
varigble. Then the rank member shall be 1;

- if the¢ variable value parameter is not of an IDL type that matches the MHEG-SIR type
target variable. Then the rank~member shall be 2.

The OoperdtionFailed exdeption shall be raised if the status of the rt-script is running or erroneous,

15.3.5 gefkData operation

Synopsis:

Interface: RtScript

Operation: getData

Result: any

In: DID data_id

Exception: InvalidParameter

Exception: OperationFailed

Description:

The getData operation is used to retrieve the current value of a constant or variable.

The data_id parameter specifies the data identifier of the data to access.

When the operation is invoked, the rt-script execution unit shall return the current value of the constant or

variable.

85

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

© ISO/IEC

The result of the operation shall be the requested value and shall be of an IDL type that matches the MHEG-
SIR type of the target constant or variable.

The InvalidParameter exception shall be raised if the data id parameter references a non-existing
constant or variable. Then the rank member shall be 1.

The OperationFailed exception shall be raised if the status of the rt-script is running or erroneous.

15.3.6 allocate operation

Synopsis:

Interface: RtScript

Opergtion: allocate

Resul}: DID

In: TID variable typgflid
Exception: InvalidParameter

Exception: OperationFailed

Desctiption:

The d11locate operation is used to create a dynamic variable of’a given type within the rt-script.

The Yariable type id parameter specifies the MHEG-SIR type identifier of the target
decla

When
instru
new [

The

The 1

red within the rt-script.

DID and return it.

bsult of the operation shall be the 'data identifier of the new dynamic variable.

ariable, as

the operation is invoked, the rt-script execation unit shall perform as if it would execut¢ an ALLOC
ction with variable type id as operand, i.e. it shall reserve appropriate heap memory| generate a

nvalidParameter exception shall be raised if the value of the variable type_id parameter is
neithgr a predefined type nor.a type declared within the rt-script. Then the rank member shall be

-

|S€ an error.

The QperationFailéd)exception shall be raised wherever the ALLOC instruction would rai
Thenlthe variable shallLnot be allocated and the error register shall not be modified.

15.3.f free operation

Syndpsis:

Interface: RTSCript

Operation: free

Result: void

In: DID variable id

Exception: InvalidParameter

Description:

The free operation is used to destroy a dynamic variable of the rt-script.

The variable id parameter specifies the data identifier of the variable to be released.

86

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

When the operation is invoked, the rt-script execution unit shall perform as if it would execute a FREE
instruction with variable id as parameter, i.e. it shall release the dynamic variable and make its identifier
invalid.

The InvalidParameter exception shall be raised if the variable id parameter does not refer to an
existing dynamic variable previously allocated through the MHEG-3 API. Then the rank member shall be 1.

NOTE: A script interpreter may use a data identifier allocation policy that allows to distinguish easily
variables allocated through the MHEG-3 API from variables allocated using an instruction, for

——————instance-by-therange-to-which-theirdata-identiier-belongs:

D

15.3.8 dtop operation

Synopsis:

Interface RtScript
Operatioh: stop

Result: void

Exceptiop: OperationFailed
Descriptiion:

The st op operation is used to put the rt-script back into ready status.
When th¢ operation is invoked, the script interpreter shall request the rt-script execution unit to stop, [flush the
calling sfack, message queue and parameter stack and‘reset all registers. It shall then put the rttscript to
ready status. Unlike the reInit operation, the globaland dynamic variables shall not be changed.

The OpefrationFailed exception shall be raised if the operation could not be performed successfully, for
instance|if the rt-script memory areas have beéncorrupted due to an execution error.

15.3.9 geInit operation

Synopsis:

Interfacel RtScript
Operatioh: relnit

Result: void,

Exceptiop: OperationFailed
Description:

The reIpitroperation is used to put the rt-script back into its initial state, i.e. just after initialisation.

When the operation is invoked, the script interpreter shall

- terminate the rt-script execution unit;

- release all dynamic variables;

- set the global variables back to their initial values (as in the mh-script global variable definition table);
- flush the parameter stack, the message queue and the calling stack, releasing local variable tables;
- reset all registers;

- finally, put the rt-script to ready status.

The OperationFailed exception shall be raised if the operation could not be performed successfully, for
instance if the rt-script memory areas have been corrupted due to an execution error.

87

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

15.3.10 getRtScriptStatus operation

Synopsis:

Interface: RtScript

Operation: getRtScriptStatus
Result: RtScriptStatus

Description:

The ge

© ISO/EC

Rt ScriptStatus operation is used to retrieve the current status of the rt-script.

The resplt of the operation shall be one of the following: READY, RUNNING or ERRONEOUS,

15.3.11| open operation

Synopsis:

Interfage: RtScript

Operatipn: open

Result; RoutineInvocation

in: FID routine_id

Exception: InvalidParameter

Description:

The open operation is used to create an RoutineIpyocation object from the rt-script.

The r
Routi

The sc

a) 1

butine id parameter specifies the:function identifier of the routine with which
heInvocation object is associated,

fipt interpreter may opt for either of the following policies:

alidity of the passed parameters “on the fly”, i.e. as soon as a setParameter operation is

b) {o check the validity-of parameters only upon invocation of the run operation.

The rebult of the operation shall be an object reference to the created RoutineInvocation.

the new

b retrieve the signature of the target routine when the open operation is invoked, so as to check the

nvoked;

The ThvalidParameter exception shall be raised if the routine_id parameter does not identify a valid

routing

ofthe’rt-script. In this case, the rank member shall be 1.

15.4 RoutineInvocation object

The RoutineInvocation object represents an invocation context of a routine. This invocation context is
used to pass parameters to and to request execution of a given routine of the rt-script.

15.41 close operation

Synopsis:

Interface: RoutineInvocation
Operation: close

Result: void

88

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

Description:

The close operation is used to kill the RoutineInvocation object and close the corresponding routine

3 43 Anmembat
IIIVUdeIU I COUTILTC AL

15.4.2 routine_id readonly attribute

Synopsis:

Interface: Routinelnvocation

Attribute: FID routine id

Description:

The routiphe id attribute is a readoni y ribute that is set at creation of the Routineinvocation pbject
by the open operation. Its value shall b functlon identifier of the routine that the RoutineInvocgtion
object addresses.

Interchanggd scripts shall access the value of this attribute using the get ReutineId predefined function.

15.4.3 setParameter operation

Synopsis:

Interface: RoutinelInvocation

Operation: setParameter

Result: void

In: unsigned short rank

In: TID parameter type id
In: any parameter value
Exception: InvalidParameter

Description:

The setP3rameter operation is.used to pass the value of a parameter of the routine for use by the next
run operafion.

The rank parameter specifies the rank of the passed parameter in the routine signature description, where 0
indicates the first patameter. It therefore corresponds to the index of the parameter in the routine’s local
variable table.

The parafeer type id parameter specifies the MHEG-SIR type identifier of the passed parameer, as
declared within the Tt-script.

The parameter value parameter specifies the value of the passed parameter. The type of the value is
determined by the parameter type id parameter.

When the operation is invoked, the script interpreter shall buffer the parameter for use by the next run
operation on this routine. If the script interpreter opts for policy a) defined in subclause 15.3.11, it shall check

the validity of the parameter type id and parameter_ value parameters with regard to the routine’s
signature.

If the script interpreter opts for policy a) defined in subclause 15.3.11, the InvalidParameter exception
shall be raised

89

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

if the operation's rank parameter exceeds the number of the last parameter of the routine. Then the
exception’s rank member shall be 1;

if the parameter type id parameter does not correspond to the type of parameter in the routine’s
signature. Then the exception’s rank member shall be 2;

if the parameter value parameter is not of an appropriate type, i.e. an IDL type that matches the
type described by the parameter type id parameter, when the passing mode is by value, and a
DID type when the passing mode is by reference. Then the exception’s rank member shall be 3;
when the passing mode is by reference, if the parameter value parameter is a DID that does not
identify an existing global or dynamic variable whose type matches the parameter type defined by the

[TOULNE'S signature. Then the exception’ s rank member shall be 3.
15.4/4 getPrototype operation
Synopsis:
Interface: RoutinelInvocation
Opetfation: getPrototype
Resilt: Prototype
Desg¢ription:
The getPrototype operation is used to retrieve the signature©f'the routine.
Whe the operation is invoked, the script interpreter shallreturn the signature of the routine.
The [esult of the operation shall be a description of the routine signature:
a) the return value type field shall be'setto RT [routine id].TID;
b) the nth item of the signature field shall-correspond to RT [routine id].sig[n]:
1) the passing mode field shall be set to BY VALUE, or BY REFERENCE respectively, when
RT [routine id].sig(n].mod is ‘value’, ‘reference’ respectively;
2) the parameter type._id field shall be setto RT [routine id].sig[n].TID.
15.4}5 run operation
Synopsis:
Interface: RoutineInvocation
Opefation: run
Resuylt: void
Exception: OperationFailed
Deseription:
The run operation is used to request the execution of the routine with the parameter values previously

provided using the set Parameter operation.

Whe

90

n the operation is invoked, the main process shall

create a message whose message identifier is the index of the routine (i.e. the value of the
routine id attribute) and whose parameters are the parameters set by the preceding
setParameter operations;

insert this message into the message queue of the target rt-script;

if the current status of the rt-script is ready, put it to running.

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:

1997(E)

If the script interpreter opts for policy b) defined in subclause 15.3.11, it shall check the validity, with regard to
the routine’s signature, of all the type identifiers and values of the parameters previously provided using the
setParameter operation.

The OperationFailed exception shall be raised if any of the provided parameters does not map the

routine’s

signature.

15.4.6 reset operation

Synopsis:

Interface: RoutineInvocation
Operatiory}: reset

Result: void

Description:

The res

4t operation is used to clear the routine invocation context to prepare-a.new invocation.

When th¢ operation is invoked, the parameters previously buffered as the result of a setParjameter

operation|shall be cleared.

NQTE: Using this operation after each run avoids any.fisk of collision. Not using it allows to r¢peat the

15.4.7 gptInvocationStatus operation

Synopsis:

Interface RoutineInvocation

Operation: getInvocationStatus

Result: InvocationStatus

Descriptjon:

The getInvocationStatus.operation is used to retrieve the current routine invocation status.

The result of the operation shall be one of the following values:

- NQT STARTED: no run operation has been invoked since the creation of the object or since
relsetoperation;

same invocation without supplying the parameters’again.

the last

execution);
- TERMINATED: the routine execution triggered by the last invoked run operation has been completed
by the rt-script execution unit,
- ABORTED: the routine execution triggered by the last invoked run operation has resulted in an
instruction execution error.

pleted by
ly under

91

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Annex A
(normative)
ASN.1 specification of interchanged scripts

This Annex specifies the ASN.1 notation, according to ISO/IEC 8824-1 [1], for the syntax of the "script data"
component of the MHEG "script” class.

Interchgnged scripts shall have the syntax defined by the ASN.T ISOMAEG-s1t modute. |
MHEG-SIR (sir)--

-- Modujle:

-- Copylright statement:

(c) International Organization for Standardization, 1996.
Permission to copy in any form is granted for use with conforming
MHEG-3 engines and applications as defined by ISO/IEC 13522-3
provided this notice is included in all copies.

ISOMHEd-sir {joint-iso-itu-t (2) mheg (19) version (1) script-interchafige-representation (1)}

DEFINITIONS IMPLICIT TAGS ::= BEGIN
EXPORTY InterchangedScript;
IntercHangedScript ti= SEQUENCE
{
type-declarations SEQUENCE (SIZE (1.4 max-nb-declared-types)) OF
TypeDeclaration OPTIONAL,
constant-declarations [0] SEQUENCE (SIZE (1 .. max-nb-constants)) OF

ConstantDeclaration OPTIONAL,
[1] SEQUENCE™\(SIZE (1 max-nb-global~-variables))
VariableDeCliaration OPTIONAL,

global-variable-declarations OF

external-package-declarations [2] SEQUENEGE (SIZE (1 max-nb-packages)) OF
PackageDetlaration OPTIONAL,
handler-declarations [3] SEQUENCE (SIZE (1 .. max-nb-messages)) OF
HandlerDeclaration OPTIONAL,
routine-declarations [41 SEQUENCE (SIZE (1 .. max-nb-routines)) OF
RoutineDeclaration OPTIONAL
}
TypeDe¢laration = SEQUENCE
{
identifier [0] Typeldentifier OPTIONAL,
description TypeDescription
}
TypeDegcription = CHOICE
{
string-déseription [1] INTEGER (0..max-size-string) OPTIONAL,
sequence-description [2] SequenceDescription,
array=description [3] ArrayDescription,
structure-description [4] StructureDescription,
uhiodn-description [5] UnionDescription
}
SequenceDescription = SEQUENCE
{
bound INTEGER (0 .. max-size-sequence),
element-type Typeldentifier
}
ArrayDescription = SEQUENCE
{
size INTEGER (1 .. max-size-array),
element-type Typeldentifier
}
UnionDescription 1= SEQUENCE (SIZE (1 .. max-size-union)) OF Typeldentifier
StructureDescription ii= SEQUENCE (SIZE (1 .. max-size-structure)) OF Typeldentifier

ConstantDeclaration HEES

{

SEQUENCE

92

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

}
{
id
se
ex
}
ServiceDed
{
id
na
ca
re
}
{
pa

ty
}

{

}

{

PackageDed

naf

ExceptionDescription

HandlerDeclaration

laration
bntifier
he

Fvices

teptions

cription

bntifier
e
L 1ing-mode

furn-value-type

identifier [0] Dataldentifier OPTIONAL,
type TypeIdentifier ALL EXCEPT O
value Constantvalue
}
ConstantValue = CHOICE
{
octet [1] Octetvalue,
short (2] Shortvalue,
1T Armer r T AnaUalna
long [3] LongValue,
unsigned-short [4] UnsignedShortvValue,
unsigned-long [5] UnsignedLongValue,
float [6] FloatValue,
double [7] DoubleValue,
bodlean [8] BooleanValue,
chgracter [9] CharacterValue,
datla-identifier [10] DataIdentifier (0..<max-nb-constants),
stying [11] StringValue,
sequence [12] SequenceValue,
arygay (13] ArrayValue,
stqucture [14]) StructurevValue,
unijon {15] Unionvalue
}
SequenceValjue = SEQUENCE (SIZE (0 max-size-sequence)) OEsComstantValue
ArrayValue = SEQUENCE (SIZE (1 max-size-array)) OF-~ConstantValue
UnionValue = SEQUENCE
{
tag INTEGER (0 < max-size-uhion),
value Constantvalue
}
StructureVplue = SEQUENCE (SIZE (1 max-sizé-structure)) OF ConstantValue
VariableDeflaration = SEQUENCE
{
idgntifier [0] DataIdentifier OPTIONAL,
type Typeldentifier,
injtial-value ConstantReference OPTIONAL

SEQUENCE

[0] Packageldentifier OPTIONAL,
VisibleString OPTIONAL,

SEQUENCE (SIZE (O max-nb-services)) OF
ServiceDescription,
SEQUENCE (SIZE (O max-nb-exceptions)) OF
ExceptionDescription
SEQUENCE
[0] FunctionIdentifier OPTIONAL,
VisibleString OPTIONAL,
ENUMERATED {synchronous (0), asynchronous (1)}

DEFAULT synchronous,
Typeldentifier DEFAULT O,

parameters-description

ServiceParameterDescription

ssing-mode
pe

identifier
name
parameters-description

message-identifier

SEQUENCE OF ServiceParameterDescription OPTIONAL

SEQUENCE

ENUMERATED {in (1), out (2), inout (3)} DEFAULT in,

Typeldentifier ALL EXCEPT O
SEQUENCE

[0] MessageIdentifier OPTIONAL,

VisibleString OPTIONAL,

SEQUENCE OF TypeIdentifier OPTIONAL
SEQUENCE

Messageldentifier,

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOII

EC 13522-3:1997(E)

© ISO/IEC

}

function-identifier

RoutineDeclaration =

{

}

routine-description
program-code

RoutineDescription ti=

{

}

Routi

{

}

identifier
return-value-type

FunctionIdentifier

SEQUENCE

RoutineDescription,
OCTET STRING

SEQUENCE

[0] FunctionIdentifier OPTIONAL,
Typeldentifier DEFAULT O,

local-variable-table

heParameterDescription

passing-mode
type

ConstpntReference =

{

}

identifier
value

max-sfize-sequence
max-sfize-string
max-sfize-array
max-sfize-union
max-sfize-structure
max-np-global-variables
max-np-constants
max-np-local-variables
max-np-dynamic-variables
max-np-data

-- variables

max-npb-packages
max-np-services
max-np-routines
max-np-predef-functions
max-np-functions

max-np-exceptions
max-npb-predef-messages

max-nb-messages

max-npb-declared-types
max-nb-predef-types

max-nb-types

parameters-description

:= SEQUENCE

~- max-nb-predef-types + max- nb -declared-types

[T] SEQUENCE OF RoutineParameterDescription OPTIONAT
[2] SEQUENCE (SIZE (O max-nb-local-variables))’ OF
VariableDeclaration OPTIONAL

ENUMERATED {value (1), reference
Typeldentifier ALL EXCEPT O

(3)} ,DEEAULT value,

OctefValu€ = OCTET STRING (SIZE (1))

Shorfvalue = INTEGER (-32768 32767)

LongYalue INTEGER (-2147483648 2147483647)
UUSi(:lleubIlULl_VdLuU INFEGER—t u553r/
UnsignedLongValue = INTEGER (O 4294967295)
Floatvalue = REAL

DoubleValue REAL

BooleanValue = BOOLEAN

CharacterValue = BMPString (SIZE (1)

StringValue = BMPString (SIZE (0.. max-size-string))
Typeldentifier = INTEGER (0 < max-nb-types)
DatalIdentifier = INTEGER (0O < max-nb-data)
FunctionIdentifier = INTEGER (O < max-nb-functions)
MessageIdentifier INTEGER (O < max-nb-messages)
Packageldentifier = INTEGER (O < max-nb-packages)
END

CHOICE
[16] Dataldentifier,
ConstantValue
INTEGER = 65535
INTEGER L= 65535
INTEGER = 65536
INTEGER = 256
INTEGER = 256
INTEGER = 28672
INTEGER S 4096
INTEGER %] 256
INTEGER Y= 32512
INTEGER Ti= 65536
-- max-nb-constants+max-ni~global-variables+max-nb-local-variables+max-nb-flynamic-
INTEGER] 192
INTEGER HEES 256
INTEGER HEE 4096
INTEGER HEES 12288
INTEGER = 65536
-- max-nb-packagesxmax-nb- serv1ces+max -nb-predef-functions+max-nb-routines
INTEGER HE 256
INTEGER = 16384
INTEGER HiH 65536
-- max-nb-packagesxmax-nb- exceptlons+max -nb-predef-messages
INTEGER 16384
INTEGER 16384
INTEGER 32768

94

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3

Annex B
(normative)
Coded representation of interchanged scripts

B.1 Coding for interchanged scripts

Intercha

:1997(E)

ged scripts shall be encoded according to the ASN.1 Distinquished Encoding Rules (DER) as

specified|by ISO/IEC 8825-1 [2].

NQTE: This is intended to make the MHEG-3 engine’s decoding task as efficient as possible by

all ASN.1 encoding options that might delay or complicate it.

B.2 Coding for the program code

The valu

(see Annkx A) shall be encoded according to the rules defined in this Clause.

The sequ
octets. T
executed.

Each ins

operandg, depending on the op-code.

B.2.1

Instruction op-codes

The op-dodes shall be encoded using the bitstring defined by Table B.1.

removing

b of the program-code component of the RoutineDeclaration type defined by ISOMHEG-sir

ence of instructions that make up the program code of a routine shall be encoded as a sequence of
he order of encoding will be the same as the order in which the instructions are intended to be

lruction shall be encoded using one octet for the op-code, followed by zero to three octets for the

efined by

B.2.2 Instruction operands

According to the op-code of the (instruction, the operands shall have the length and encoding d¢
Table B.[i. All multiple-byte operands shall be encoded in big-endian order, i.e. most significant byte first.
B.2.2.1 Data identifier operands

DID opefands shall.be:encoded using two octets as follows:

- if

bit 16<is~1’ and bits 15 to 9 are ‘0Q’, the DID shall reference a local variable, where bi

represent the local variable index (from 0 to 255)

- if

bit 46 is ‘1’ otherwise, the DID shall reference a dynamic variable, where bits 15 to 1 repr.

s 8 to 1

psent the

dynamic variable index (from 0 to 32511) incremented by 256;
- if bits 16 to 13 are ‘0000’, the DID shall reference a constant, where bits 12 to 1 represent the constant
index (from O to 4095);
- otherwise, the DID shall reference a global variable, where bits 15 to 1 represent the global variable
index (from 0 to 28671) incremented by 4096.

B.2.2.2

Function identifier operands

FID operands shall be encoded on two octets as follows:

in

dex (from 0 to 4095);

if bits 16 to 13 are ‘0000’, the FID shall reference a routine, where bits 12 to 1 represent the routine

- if bits 16 and 15 are ‘00’ otherwise, the FID shall reference a predefined function, where bits 14 to 1
represent the predefined function index (from 0 to 12287) incremented by 4096;

95

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

- otherwise, the FID shall reference a service, where bits 16 to 9 represent the package identifier (from 0
to 191) incremented by 64, and where bits 8 to 1 represent the service index (from 0 to 255) within this
package.

B.2.2.3 Miscellaneous numeric operands

1-octet "offset" operands shall be encoded in complement-to-one notation on 1 octet: bit 8 represents the
direction of movement, bits 7 to 1 represent the number of units to shift in that direction.

2-octet "mmmmmmmﬁmmﬁmﬂ%%%sents the
directior| of movement, bits 15 to 1 represent the number of units to shift in that direction.

"Value" pperands shall be encoded in complement-to-two notation on two octets, for interpretation @s signed
integer yalues.

"Index" pperands shall be encoded on one octet, for interpretation as unsigned integervalues.

96

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

Table B.1: Encoding of MHEG-SIR instructions

ISO/IEC 13522-3:1997(E)

Instruction Op-code | Opcode | Op1 Op1 encoding Op2 Op2 encoding
mnemonics (binary) (hexa) | length length
NOP 0000 0000 00 0
YIELD 0000 0010 02 0
RET 0000 0011 03 0
FREE 0000 1000 08 0
NOT_B 00010000 1Y) Y]
NOT_O 0001 0001 11 0
NOT_W 0001 0010 12 0
NOT_U 0001 0011 13 0
OR_B 0001 0100 14 0
OR_O 0001 0101 15 0
OR_W 0001 0110 16 0
OR_U 0001 0111 17 0
XOR_B 0001 1000 18 0
XOR_O 0001 1001 19 0
XOR_W 0001 1010 1A 0
XOR_U 0001 1011 1B 0
AND_B 0001 1100 1C 0
AND_O 0001 1101 1D 0
AND_W 0001 1110 1E 0
AND_U 0001 1111 1F 0
EQR 0010 0000 20 0
EQ_O 0010 0001 21 0
EQ_S 0010 0010 22 0
EQ_L 0010 0011 23 0
EQ_W 0010 0100 24 0
EQ_U 0010 0101 25 0
EQ_F 0010 0110 26 0
EQ_D 0010 0111 27 0
EQ_B 0010 1000 28 0
EQ_C 00499001 29 0
EQ_I 0010 1010 2A 0
EQ_R 0010 1011 2B 0
LT _C 0011 0000 30 0
LT_O 00TT 000t 31 0
LT_S 0011 0010 32 0
LT L 0011 0011 33 0
LT W 0011 0100 34 0
LT_U 0011 0101 35 0
LT_F 0011 0110 36 0
LT_D 0011 0111 37 0
GT_C 0011 1000 38 0
GT_O 0011 1001 39 0
GT_S 0011 1010 3A 0
GT_L 0011 1011 3B 0
GT_W 0011 1100 3C 0

97

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

© ISO/IEC

GT_U 0011 1101 3D 0
GT_F 0011 1110 3E 0
GT_D 0011 1111 3F 0
ADD_O 0100 0001 41 0
ADD_S 0100 0010 42 0
ADD_L 0100 0011 43 0
ADD_W 0100 0100 44 0
ADD U 0100 0101 45 0
ADD| F 0100 0110 46 0
ADD| D 0100 0111 47 0
SUB| O 0100 1001 49 0
SUB| S 0100 1010 4A 0
SUB| L 0100 1011 4B 0
SUB[W 0100 1100 4C 0
SUB| U 0100 1101 4D 0
SUB| F 0100 1110 4E 0
SuB| D 0100 1111 4F 0
MUL| O 0101 0001 51 0
MUL] S 0101 0010 52 0
MuL L 0101 0011 53 0
MUy w 0101 0100 54 0
MuL U 0101 0101 55 0
MUL| F 0101 0110 56 0
MuL D 0101 0111 57 0
DIV_|O 0101 1001 59 0
DIV S 0101 1010 5A 0
DIV L 0101 1011 5B 0
DIV_W 0101 1100 5C 0
DIV U 0101 1101 5D 0
DIV [F 0101 1110 5E 0
DIV D 0101 4411 5F 0
NEGQ_ S 01100010 62 0
NEGQG L 0110 0011 63 0
NEG_F 0110 0110 66 0
NEGQ_D 0110 0111 67 0
REM_O 0111 1001 79 0
REM_S 01111010 7A 0
REM_L 0111 1011 7B 0
REM_W 0111 1100 7C 0
REM_U 0111 1101 7D 0
DUP_O 1000 0001 81 0
DUP_S 1000 0010 82 0
DUP_L 1000 0011 83 0
DUP_W 1000 0100 84 0
DUP_U 1000 0101 85 0
DUP_F 1000 0110 86 0
DUP_D 1000 0111 87 0
DUP_B 1000 1000 88 0

98

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC

ISO/IEC 13522-3:1997(E)

DUP_C 1000 1001 89 0

DUP_I 1000 1010 8A 0

DUP_R 1000 1011 8B 0

CVT_SW 1001 0100 94 0

CVT_WS 1001 0101 95 0

CVT_LU 1001 0110 96 0

CVT_UL 1001 0111 97 0

CVT_CW 1001 1010 9A 0

CVT_W(1001 1011 9B 0

CVT_BS 1010 0000 A0 0

CVT_OS 1010 0001 A1 0

CVT_SL 1010 0010 A2 0

CVT_LF 1010 0011 A3 0

CVvT_WU 1010 0100 A4 0

CVT_UF 1010 0101 A5 0

CVT_FD 1010 0110 AB 0

CVT_BO 1010 1000 A8 0

CVT_OW 1010 1001 A9 0

CVT_SU 1010 1010 AA 0

CVT_WU 1010 1100 AC 0

CVT_OB 1011 0001 B1 0

CVT_SB 1011 0010 B2 0

CVT_LB 1011 0011 B3 0

CVT_WH 1011 0100 B4 0

CVT_UB 1011 0101 B5 0

CVT_WO 1011 1001 B9 0

CVT_LS 1011 1010 BA 0

CVT_FL 1011 1011 BB 0

CVT_UuV 1011 1100 BC 0

CVT_FU 1011 1101 BD 0

CVT_DFH 1011 1110 BE 0

JT 1100 0000 Cco 1 (signed) offset
JF 11000001 C1 1 (signed) offset
JMP 11000010 C2 1 (signed) offset
SHIFT_O 1+100 0101 C5 1 (signed) offset
SHIFT_WV 1100 0110 Ccé 1 (signed) offset
SHIFT_U 1100 0111 C7 1 (signed) offset
GETOR 1100 1001 C9 1 package identifier
LJT 1101 0000 DO 2 (signed) offset
LJF 1101 0001 D1 2 (signed) offset
LJMP 1101 0010 D2 2 (signed) offset
CALL 1101 0100 D4 2 function identifier
XCALL 1101 0110 D6 2 function identifier
PUSH 1110 0000 EO 2 data identifier
PUSHR 1110 0001 E1 2 data identifier
PUSHI 1110 0011 E3 2 (signed) value
POP 1110 0100 E4 2 data identifier
POPR 1110 0101 E5 2 data identifier

99

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISOI/IEC 13522-3:1997(E)

© ISO/IEC

POPC 1110 0110 E6 2 data identifier
ALLOC 1110 1000 E8 2 type identifier
INC 1110 1100 EA 2 data identifier
DEC 1110 1101 EB 2 data identifier
GET 1111 0000 FO 2 data identifier 1 (unsigned) index
GETC 1111 0010 F2 2 data identifier 1 (unsigned) index
SET 1111 0100 F4 2 data identifier 1 (unsigned) index
SETC 1111 0110 F6 2 data identifier 1 (unsigned) index

100

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

Annex C
(normative)
MHEG-SIR predefined elements

This Annex lists the predefined types, functions and messages of MHEG-SIR, together with their
corresponding indices.

Predefined types, functions and messages may be referenced by their identifier and used within intercﬁanged
scripts in the same way types, functions and messages declared within the global declarations |part of
interchanggd scripts would.

C.1 Predefined types
MHEG-SIR predefined types comprise

- primfitive types
- MHEG API types.

C11 Rrimitive types

The primitive types defined by this part of ISO/IEC 13522 shall<be ‘encoded using predefined type identifiers
as listed in| Table C.1:

Table C.1: Predefined type identifiers for primitive types

Type name Type identifier

void

octet

short

long

unsignefd short

unsignefl long

float

double

boolean

charactper

data idpntifger

Alajolo|N|O|OD|WIN|—=|O

0
1

object [eférence

All types that may be expressed in MHEG-SIR (including predefined MHEG types) can be built using the
MHEG-SIR primitive types and the following constructors:

- string;

- sequence;
- array,

- structure
- union.

By convention, the unbounded string type (the only constructed type without an element or a parameter)
shall be predefined and shall have 12 as its type identifier.

101

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

C.1.2 MHEG API types
The MHEG API types defined by the MHEG API shall be encoded using predefined type identifiers.

NOTE: MHEG AP types are intended for use by interchanged scripts to express information which is
exchanged between the script interpreter and MHEG entities.

The IDL definition of these types, as provided by an MHEG API, shall be mapped to MHEG-SIR type
descriptions using the general IDL mapping rules defined in Clause 14 and the specific MHEG AP! mapping
rules defined in Clause E.2.

C.2 | Predefined functions
MHEQ-SIR predefined functions comprise

- MHEG API operations;
- MHEG-3 API operations.

c.21 MHEG API operations
The MHEG API operations defined by the MHEG API shall be encoded using predefined function identifiers.
Predefined message identifiers for the MHEG API operations'shall start at 1100h.
The IDL definition of these operations, as provided by:the MHEG-3 API, shall be mapped to [MHEG-SIR
functi¢n descriptions using the general IDL mapping‘rules defined in Clause 14 and the specificl MHEG API
mapping rules defined in Clause E.2.

c.2.2 MHEG-3 API operations

The MHEG-3 API operations defined y’the MHEG-3 API, as defined in Clause 15, shall be en¢oded using
predefined function identifiers according to Table C.2:

102

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)
Table C.2: Predefined function identifiers for MHEG-3 API operations

Operation name Predefined function index Function identifier

prepare 0 1000h

destroy 1 1001h

new 2 1002h

delete 3 1003h

setPriority 4 1004h

getPriprity 5 4005k

setDatla 6 1006h

getDatfa 7 1007h

allocalte 8 1008h

free 9 1009h

stop 10 100Ah

relnit 11 100Bh

getRtYcriptStatus 12 100Ch

open 13 100Dh

close 14 100Eh

getRoytinelId 15 100Fh

setParfameter 16 1010h

getPrdtotype 17 1011h

run 18 1012h

reset 19 1013h

getInvocationStatus 20 1014h

The IDY definition of these operations, as defined in Annex F, shall be mapped to MHEG-SIR| function

descriptipns using the IDL mapping rules defined in Clause 14.

C.3 Predefined messages

MHEG-$IR predefined messages targeted at an rt-script result from

- injocation of the MHEG-3 APl run operation;

- the InstructionEkecutionError exception;

- MHEG-3 API| exceptions;

- MHEG APJ)-éxceptions.

C.31 MHEG-3 API operations

The idehtifier of the message Tesutting—from—the—invocation—ofa—rumroperatiom,—as—defined—in—subclause

15.4.5, shall be equal to the function identifier of the target routine.

Messages resulting from MHEG-3 API operations shall therefore have a message identifier value between 0
and OFFFh.

C.3.2

The InstructionExecutionError exception

The InstructionExecutionError exception, as defined in subclause 9.5.2, shall have 1000h as its

messag

e identifier.

The InstructionExecutionError exception shall have one member of type unsigned long, whose
value shall be set to the value of the ER.

103

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

© ISO/IEC

The major error code shall determine the least significant byte of the member (and the ER) as defined by by

Table C.3:
Table C.3: Instruction execution error codes
Error name Error code
InvalidOperand 1
InvalidParameter 2
InvalidType 3
InvallfidIdentifier 4
InvallidLevel S
InvalfidIndex 6
StacklUnderflow 7
ArithmeticOverflow 8
DivislionByZero 9
HandllerNotFound 10
InvallidReturnValue 11
BadPalckageStatus 12
InvallidObjectReference 13
TypeMismatch 14
JumpQutOfRange 15
AllodationFailed 16
C.3.3 MHEG-3 API exceptions

The MHEG-3 API exceptions, as defined in Clause 15, shall have the message identifiers defined by Table

C.4:
Table C.4: Predefined‘message identifiers for the MHEG-3 API exceptions
Exception name Predefined message index Message identifier|
InvallidScript 1 1001h
InvallidParameter 2 1002h
OperdtionFailed 3 1003h

The IDL definition<{of these exceptions, as defined in Annex F, shall be mapped to MHEG-SIR

descriptions using the IDL mapping rules defined in Clause 14.

C.34

MHEG API exceptions

message

The MHEG API exceptions defined by the MHEG API shall be encoded using predefined message identifiers.

Predefined message identifiers for the MHEG API exceptions shall start at 1100h.

The IDL definition of these exceptions, as provided by the MHEG API, shall be mapped to MHEG-SIR
message descriptions using the general IDL mapping rules defined in Clause 14 and the specific MHEG API

mapping rules defined in Clause E.2.

104

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3:1997(E)

Annex D
(normative)
IDL Platform mapping specification form
MHEG-3 engines shall allow access to the services provided by the run-time environment of a given platform,

provided this run-time environment complies with the registered “platform mapping specification” for this
platform.

The registefed “platform mapping specifications” shall be provided according to the template specified (in this
Annex, witH all fields being completed.

This MHEG-SIR platform-mapping specification defines the mechanisms that need be used by MHEG-3
engines to fccess the services provided by the run-time environment on the platform.

Platform dpscription
The platform to which this specification applies is <platform_description>.
Package ayailability procedure

To know Whether an IDL specification is available within the rdn-time environment and to locate| it, an
MHEG-3 engine shall proceed as follows. <package_availability-‘procedure>

Package lgad procedure

To make the operations of an available IDL specification accessible, an MHEG-3 engine shall proc¢ed as
follows. <package_load_procedure>

Package unload procedure

To stop the operations of an availableCIDL specification from being accessible, an MHEG-3 enging shall
proceed ag follows. <package_unlodd_jprocedure>

Operation|invocation procedure

To invoke |an operation «of-an accessible IDL specification, an MHEG-3 engine shall proceed as fpllows.
<operation| invocatiopyprocedure>

Parameter passing procedure

When inoking an IDL operation, an MHEG-3 engine shall pass in parameters as follows.
<in_parameter_passing _procedure>

When invoking an IDL operation, an MHEG-3 engine shall pass out parameters as follows.
<out_parameter_passing _procedure>

When invoking an IDL operation, an MHEG-3 engine shall pass inout parameters as follows.
<inout_parameter_passing _procedure>

Output parameter retrieval procedure

To retrieve the values of out or inout parameters after invoking an IDL operation, an MHEG-3 engine shall
proceed as follows. <output_parameter_retrieval_procedure>

105

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E) © ISO/IEC

Return value retrieval procedure

To retrieve the return value of a previously invoked IDL operation, an MHEG-3 engine shall proceed as
follows. <return_value _retrieval_procedure>

Data encoding rules

The values of data that are interchanged between the MHEG-3 engine and the run-time environment shall be
encoded as follows. <data_encoding_rules>

Exception retrieval procedure

To refrieve exceptions that are raised by the run-time environment, an MHEG-3 engine shall proceed as
followfs. <exception_retrieval_procedure>

System exceptions

The dystem exceptions that may be raised by the run-time environment and retrieved by an MHIEG-3 engine
are défined as follows. <system_exception_definitions>

Resource limitations

Wher] using the run-time environment on the platforh, the following resource limitations apply.
<resqurce_limitations_statement>

106

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

© ISO/IEC ISO/IEC 13522-3

Annex E
(normative)
MHEG API definition process

:1997(E)

As exposed in subclause 8.3.3, this generic part of ISO/IEC 13522 does not define a specific MHEG API. It
defines instead a generic set of rules and procedures applicable to the definition of the MHEG API to be
provided by any part of ISO/IEC 13522 that describes presentation objects. This comprises

- th
- th

E.1

i rules that shall be used to produce the MHEG API definition (see Clause E.1);
procedure that shall be used to define the MHEG-SIR mapping of this MHEG API (see’Cla

Generic API definition framework

Producing an MHEG API specification from another part of ISO/IEC 13522 that’describes pre

objects (

MHEG e|lements.

The MHE
produceq

elementd from the MHEG elements are described in subclause E:1.3’sq.

se E.2).

Sentation

hereafter called an MHEG specification) is a process that consists in‘producing IDL eleménts from

FG elements on which this process applies are described in subelause E.1.1. The IDL elemgnts to be
from these MHEG elements are described in subclause E.1:2. The rules used to producg the IDL

E.1.1 MHEG elements input to MHEG API definition process

The different parts of ISO/IEC 13522 share a number of‘key features. The following MHEG elementy must be

present ih the source MHEG specification:

- MHEG data types, described using ASN¢1 or Extended Backus-Naur Form (EBNF);

- MHEG entities (i.e. objects targeted\'by MHEG elementary actions), related to each pther by
inheritance relationships;

- static and dynamic attributes of MHEG entities;

- MHEG elementary actions applying to MHEG entities;

- MHEG exceptions raised as-the MHEG effect of elementary actions.

E.1.2 IDL elements output by MHEG API definition process

The API (definition process should consist in mapping these elements to a set of IDL elements:

non-object types shall map MHEG data types;
L object interfaces, related to each other by inheritance relationships, shall map MHEG entit

es;

- DL ‘attributes, provided by IDL object interfaces, shall map static and dynamic attributes 1)f MHEG

e

did: N
nracS,

- IDL operations, provided by IDL object interfaces, shall map MHEG elementary actions;
- IDL exceptions shall map MHEG exceptions raised as the effect of elementary actions.

E.1.3

Requirements on the MHEG API definition process

According to ISO/IEC JTC1 guidelines for API standardisation, the MHEG API shall be defined as an abstract
API specification, i.e. a language-independent description of the semantics of a set of functionality in an

abstract

syntax using abstract data types.

As an enforcement of the recommendations of ETR 225 "APl and script representation for MHEG -
Requirements and framework", an MHEG API definition shall meet the following requirements:

- portability (see subclause E.1.3.1);

107

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

ISO/IEC 13522-3:1997(E)

genericity (see subclause E.1.3.2);
- conformance testability (see subclause E.1.3.3);
- implementability (see subclause E.1.3.4).

E.1.3.1 Portability

© ISO/IEC

The portability requirement states that MHEG applications need use the MHEG object manipulation and

interchange service provided by MHEG engines (i.e. an MHEG API) in a way independent of

- he programming language used for the MHEG application;
- he underlying operating system.

To me¢t the portability requirement, an MHEG API shall be defined as an abstract API specification).

E.1.3.2 Genericity

The g’Enericity requirement states that all the common requirements of- MHEG applicationg need be

suppofted by an MHEG API.

To megt the genericity requirement, an MHEG API shall be defined at'the most primitive level, i.e.

n terms of

primitiyes that match MHEG elementary actions and data types-that match MHEG data types. This

guararjtees to maximise the range of MHEG object manipulations‘made available to applications.
E.1.3.3 Conformance testability

The cqgnformance testability requirement states thatit-should be as easy as possible to test

- the conformance of an MHEG engine to,an MHEG API specification, i.e. the correct provi
APl by an MHEG engine under test;

- the conformance of an MHEG application to an MHEG API specification, i.e. the correct use
by an MHEG application under test

sion of this

of this AP!

To mept the conformance testability-requirement, an MHEG API shall express formally its requirements on
conforming implementations and-conforming applications and it shall use a formal description te¢hnique for

the definition of the MHEG _ARI.

E.1.3.4 Implementability

plementability requirement states that implementation of MHEG engines that confgrm to the

MHEQ API specification need be as easy as possible. For this purpose, the MHEG API definition ghould take

To meetthe—impiementab Hity—reauirement—an—M AR halt-previde—or—refer—to—gtidetines
language mapping specifications and message encoding rules from the abstract API specification.

E.1.3.5 Fulfilment of technical requirements

o produce

The use of IDL contributes to the fulfilment of the portability and implementability technical requirements:

- IDL is independent from a programming language. Moreover, there are public specifications of IDL

mappings to common programming languages such as C and C++;

- IDL provides a complete formal description language which allows a very concise, readab

le, efficient

specification of an MHEG API. Moreover, IDL is also appropriate for automatic compilation, so that
MHEG API implementations may be automatically generated for a given language and operating

system using appropriate IDL compilers.

108

https://iecnorm.com/api/?name=f431dc8258733232ca859bf219671ecc

