
INTERNATIONAL
STANDARD

ISO/IEC

First edition
1996-04-01

Information technology - Processing
languages - Document Style Semantics
and Specification Language (DSSSL)

Technologies de I’information - Langages de traitement - Semantique
de prbentation de documents et langage de specifications (DSSSL)

Reference number
ISO/IEC 10179:1996(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179: 1996(E)

C3 ISO/IEC

Contents Page

1 Scope ... 1
2 Conformance ... 2
3 Normative References ... 3
4 Definitions ... 4
5 Notation and Conventions ... 7
5.1 Syntax Productions ... 7
5.2 Procedure Prototypes .. 8
6 DSSSL Overview .. 8
6.1 Areas of Standardization .. 9
6.2 Conceptual Model ... 10
6.3 DSSSL Languages .. 11
6.3.1 The Transformation Language .. 11
6.3.1.1 Components of the Transformation Process 12
6.3.1.2 Model for Coded Characters, Characters, and Glyph Identifiers 13
6.3.2 The Style Language ... 14
6.3.2.1 Components of the Formatting Process 15
6.3.2.2 Grove Building ... 15
6.3.2.3 Flow Object Tree .. 15
6.3.2.4 Flow Object Classes ... 16
6.3.2.5 Areas ... 17
6.3.2.6 Page and Column Geometry ... 18
6.3.2.7 Expression Language .. 18
6.3.2.8 Model for Coded Characters, Characters, and Glyph Identifiers 19
7 DSSSL Specifications .. 19
7.1 DSSSL Document Architecture .. 20
7.1.1 Features .. 24
7.1.2 SGML Grove Plan ... 24
7.1.3 Character Repertoire .. 25
7.1.4 Standard Characters ... 25
7.1.5 Other Characters .. 26
7.1.6 Baseset Encoding ... 26
7.1.7 Litera1 Described Character ... 26
7.1.8 Sdata Entity Mapping .. 27
7.1.9 Separator Characters .. 27
7.1.10 Name Characters .. 27
7.1.11 Character Combination .. 27
7.2 Public Identifiers ... 27
7.3 Lexical Conventions ... 27
7.3.1 Case Sensitivity ... 27

0 ISOAEC 1996
All rights reserved. Unless otherwise specified, no gart of this publication may be reproduced
or utilized in any form or by any means, electronie or mechanical, including photocopying
and microfilm, without Permission in writing from the publisher.

ISO/IEC Copyright Office l Case Postale 56 l CH-121 1 Geneve 20 l Switzerland
Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISOIEC 10179: 1996(E)

7.3.2 Identifiers ... 28
7.3.3 Tokens, Whitespace, and Comments ... 28
8 Expression Language ... 29
8.1 Overview of the Expression Language ... 30
8.2 Basic Concepts .. 30
8.2.1 Variables and Regions .. 30
8.2.2 True and False .. 31
8.2.3 Extemal Representations .. 31
8.2.4 Disjointness of Types ... 31
8.3 Expressions ... 32
8.3.1 Primitive Expression Types ... 32
8.3.1.1 Variable Reference .. 32
8.3.1.2 Literals ... 33
8.3.1.3 Procedure Cal1 ... 34
8.3.1.4 Lambda Expression ... 34
8.3.1.5 Conditional Expression ... 36
8.3.2 Derived Expression Types ... 36
8.3.2.1 Cond-expression .. 36
8.3.2.2 Case-expression ... 37
8.3.2.3 And-expression ... 37
8.3.2.4 Or-expression .. 38
8.3.2.5 Binding expressions .. 38
8.3.2.6 Named-let .. 39
8.3.2.7 Quasiquotation .. 40
8.4 Definitions ... 41
8.5 Standard Procedures .. 43
8.5.1 Booleans ... 43
8.5.1.1 Negation .. 43
8.5.1.2 Boolean Type Predicate .. 44
8.5.2 Equivalence .. 44
8.5.3 Pairs and Lists .. 45
8.5.3.1 Pair Type Predicate ... 46
8.5.3.2 Pair Construction Procedure ... 46
8.5.3.3 car Procedure ... 46
8.5.3.4 cdr Procedure .. 47
8.5.3.5 c ... r Procedures ... 47
8.5.3.6 Empty List Type Predicate .. 48
8.5.3.7 List Type Predicate ... 48
8.5.3.8 List Construction ... 48
8.5.3.9 List Length .. 48
8.5.3.10 Lists Appendance .. 49
8.5.3.11 List Reversal .. 49
8.5.3.12 Sublist Extraction .. 49
8.5.3.13 List Access .. 49
8.5.3.14 List Membership ... 50
8.5.3.15 Association Lists ... 50
8.5.4 Symbols .. 50
8.5.4.1 Symbol Type Predicate ... 51

. . .
111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

8.5.4.2 Symbol to String Conversion ... 51
8.5.4.3 String to Symbol Conversion ... 51
8.5.5 Keywords ... 51
8.5.5.1 Keyword Type Predicate .. 52
8.5.5.2 Keyword to String Conversion ... 52
8.5.5.3 String to Keyword Conversion ... 52
8.5.6 Named Constants ... 52
8.5.7 Quantities and Numbers .. 52
8.5.7.1 Numerital Types ... 52
8.5.7.2 Exactness .. 53
8.5.7.3 Implementation Restrittions ... 54
8.5.7.4 Syntax of Numerital Constants .. 55
8.5.7.5 Number Type Predicates .. 56
8.5.7.6 Exactness Predicates ... 56
8.5.7.7 Comparison Predicates ... 56
8.5.7.8 Numerital Property Predicates ... 57
8.5.7.9 Maximum and Minimum .. 57
8.5.7.10 Addition .. 57
8.5.7.11 Multiplication ... 58
8.5.7.12 Subtraction .. 58
8.5.7.13 Division .. 58
8.5.7.14 Absolute Value ... 58
8.5.7.15 Number-theoretic Division ... 59
8.5.7.16 Real to Integer Conversion ... 59
8.5.7.17 en and Natura1 Logarithm ... 60
8.5.7.18 Trigonometrie Functions .. 60
8.5.7.19 Inverse Trigonometrie Functions .. 60
8.5.7.20 Square Root .. 61
8.5.7.21 Exponentiation .. 61
8.5.7.22 Exactness Conversion ... 61
8.5.7.23 Quantity to Number Conversion ... 61
8.5.7.24 Number to String Conversion ... 61
8.5.7.25 String to Number Conversion

\
... 63

8.5.8 Characters .. 63
8.5.8.1 Character Properties ... 64
8.5.8.2 Language-dependent Operations .. 64
8.5.8.3 Character Type Predicate .. 67
8.5.8.4 Character Comparison Predicates ... 67
8.5.8.5 Case-insensitive Character Predicates .. 67
8.5.8.6 Character Case Conversion .. 68
8.5.8.7 Character Proper-Ges ... 68
8.5.9 Strings .. 68
8.5.9.1 String Type Predicate ... 69
8.5.9.2 String Construction ... 69
8.5.9.3 String Length .. 69
8.5.9.4 String Access .. 69
8.5.9.5 String Equivalence .. 69
8.5.9.6 String Comparison .. 69

iv

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISO/IEC 10179:1996(E)

8.5.9.7 Substring Extraction .. 70
8.5.9.8 String Appendance .. 70
8.5.9.9 Conversion between Strings and Lists .. 70
8.5.10 Procedures .. 70
8.5.10.1 Procedure Type Predicate ... 70
8.5.10.2 Procedure Application ... 71
8.5.10.3 Mapping Procedures over Lists ... 71
8.5.10.4 Extemal Procedures .. 71
8.5.11 Date and Time .. 72
8.5.12 Error Signaling ... 72
8.6 Core Expression Language . 72
8.6.1 Syntax ..~............... 72
8.6.2 Procedures . 74
9 Groves .. 75
9.1 Nodal Properties .. 76
9.2 Grove Plans ... 77
9.3 Property Set Definition ... 78
9.3.1 Common Attributes .. 78
9.3.1.1 Component Names .. 78
9.3.1.2 Specification Documents .. 79
9.3.2 Modules .. 79
9.3.3 Data Type Definition .. 80
9.3.4 Class Definition .. 81
9.3.5 Property Definition ... 81
9.3.6 Normalization Rule Definition ... 82
9.4 Intrinsic Properties .. 83
9.5 Auxiliary Groves ... 84
9.6 SGML Property Set ... 84
9.7 DSSSL SGML Grove Plan .. 122
10 Standard Document Query Language .. 123
10.1 Primitive Procedures ... 123
10.1.1 Application Binding ... 123
10.1.2 Node Lists .. 124
10.1.3 Named Node Lists .. 124
10.1.4 Error Reporting .. 125
10.1.5 Application Name Transformation .. 125
10.1.6 Property Values .. 125
10.1.7 SGML Grove Construction .. 126
10.2 Derived Procedures ... 126
10.2.1 HyTime Support ... 126
10.2.2 List Operations ... 130
10.2.3 Generic Property Operations .. 137
10.2.4 Core Query Language .. 143
10.2.4.1 Navigation ... 143
10.2.4.2 Counting .. 143
10.2.4.3 Accessing Attribute Values ... 144
10.2.4.4 Testing Current Location .. 145
10.2.4.5 Entities and Notations ... 146

V

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

10.2.4.6 Name Normalization ... 147
10.2.5 SGML Property Operations ... 147
10.3 Auxiliary Parsing .. 149
10.3.1 Word Searching ... 149
10.3.2 Node Regular Expressions ... 150
10.3.3 Regexp Constructors .. 151
10.3.4 Regular Expression Searching Procedures 152
11 Transformation Language .. 152
11.1 Features ... 153
11.2 Associations .. 153
11.3 Transform-expression ... 154
11.3.1 Subgrove-spec ... 155
11.3.2 Create-spec .. 156
11.3.3 Result-node-list .. 158
11.3.4 Transform-grove-spec ... 159
11.3.5 SGML Prolog Parsing ... 159
11.4 SGML Document Generator .. 159
11.4.1 Verification Mapping .. 160
11.4.2 Transliteration .. 161
12 Style Language .. 162
12.1 Features ... 162
12.2 Flow Object Tree .. 164
12.3 Areas ... 164
12.3.1 Display Areas .. 165
12.3.2 Inline Areas .. 168
12.3.3 Inlined and Displayed Flow Objects ... 171
12.3.4 Attachment Areas .. 172
12.4 Flow Obiect Tree Construction .. 173
12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7

Constrktion Rules .. 173
Primary Flow Object ... 176
sosofos ... 176
Multi-process Feature .. 180
Styles ... 180
Characteristic Specification ..~................ 181
Synchronization of Flow Objects . 184

12.5 Common Data Types and Procedures .. 185
12.5.1 Layout-driven Generated Text ... 185
12.5.1.1 Constructing Indirect Sosofos .. 186
12.5.1.2 Layout Numbering .. 187
12.5.1.3 Reference Values .. 188
12.5.2 Length Specification .. 190
12.5.3 Decoration Areas ... 190
12.5.4 Spates .. 191
12.5.4.1 Display Spates .. 191
12.5.4.2 Inline Spates ... 191
12.5.5 Glyph Identifiers .. 192
12.5.6 Glyph Substitution, Tables ... 192
12.5.7 Font Information .. 193

vi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISOIEC 10179:1996(E)

12.5.8 Addresses ... 194
12.5.9 Color ... 195
12.6 Flow Object Classes .. 197
12.6.1 Sequence Flow Object Class .. 197
12.6.2 Display-group Flow Object .. 197
12.6.3 Simple-Page-sequence Flow Object Class 199
12.6.4 Page-sequence Flow Object Class ... 201
12.6.4.1 Page-model .. 202
12.6.5 Column-set-sequence Flow Object Class 205
12.6.5.1 Column-set-model ... 207
12.6.6 Paragraph Flow Object Class ... 217
12.6.6.1 Line Spacing .. 225
12.6.7 Paragraph-break Flow Object Class ... 225
12.6.8 Line-field Flow Object Class ... 225
12.6.9 Sideline Flow Object Class .. 226
12.6.10 Anchor Flow Object Class ... 227
12.6.11 Character Flow Object Class .. 228
12.6.11.1 Character Properties .. 234
12.6S2
12.6.13
12.6.14
12.6.15
12.6.16
12.6.17
12.6.18
12.6.19
12.6.20
12.6.21
12.6.22
12.6.23
12.6.24
12.6.25
12.6.26

Emphasizing-Mark Flow Object Class 266
Flow Object Classes for Mathematical Formulae267

12.6.26.1 Math-sequence Flow Object Class .. 267
12.6.26.2 Unmath Flow Object Class ... 268
12.6.26.3 Subscript Flow Object Class ... 269
12.6.26.4 Superscript Flow Object Class .. 269
12.6.26.5 Script Flow Object Class ... 269
12.6.26.6 Mark Flow Object Class .. 271
12.6.26.7 Fence Flow Object Class ... 272
12.6.26.8 Fraction Flow Object Class ... 272
12.6.26.9 Radical Flow Object Class .. 273
12.6.26.10 Math-Operator Flow Object Class 274
12.6.26.11 Grid Flow Object Class ... 275
12.6.26.12 Grid-cell Flow Object Class .. 276
12.6.27 Flow Object Classes for Tables .. 276
12.6.27.1 Table Flow Object Class ... 277
12.6.27.2 Table-part Flow Object Class .. 280

Leader Flow Object Class .. 236
Embedded-text Flow Object Class ... 237
Rule Flow Object Class .. 238
External-graphic Flow Object Class .. 242
Included-container-area Flow Object Class 247
Score Flow Object Class .. 251
Box Flow Object Class ... 253
Side-by-side Flow Object Class ... 258
Side-by-side-item Flow Object Class 260
Glyph-annotation Flow Object Class 261
Alignment-Point Flow Object Class ... 262
Aligned-column Flow Object Class ... 262
Multi-line-inline-note Flow Object Class 265

vii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

12.6.27.3 Table-column flow Object ... 282
12.6.27.4 Automatic Table-width Computation 284
12.6.27.5 Table-row Flow Object Class ... 284
12.6.27.6 Table-cell Flow Object Class ... 284
12.6.27.7 Table-border Flow Object Class ... 287
12.6.28 Flow Object Classes for Online Display 289
12.6.28.1 Scroll Flow Object Class .. 289
12.6.28.2 Multi-mode Flow Object Class ... 290
12.6.28.3 Link Flow Object Class .. 290
12.6.28.4 Marginalia Flow Object Class .. 291
Annex A: Further Information .. 292

. . .
VI11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISOIIEC 10179:1996(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized System
for worldwide standardization. National bodies that are members of ISO
or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal
with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international
organizations, govemmental and non-govemmental, in liaison with ISO
and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC 1. Draft International Standards
adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at
least 75% of the national bodies casting a vote.

International Standard ISO/IEC 10179 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology.

Annex A of this International Standard is for information only.

ix

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

Introduction

This International Standard defines the Document Style Semantics and
Specification Language (DSSSL) used to specify the formatting and
transformation of SGML documents. The initial focus of DSSSL is on
formatting for both Paper and electronie media and on the transformation
of SGML documents marked up according to different DTDs. DSSSL
may be used with any SGML documents without requiring modifications
or constraining the document type definitions.

The main objective of this International Standard is to provide a language
for expressing formatting and other document processing specifications in
a formal and rigorous manner so that these specifications may be
processed by a broad range of formatters, either natively or using a
translation mechanism.

The DSSSL style language allows users to specify the types of formatting
to be applied to various objects during composition, layout, and
pagination. The DSSSL transformation language allows users to specify
the transformation of documents from one application of SGML markup
into another.

DSSSL is designed for specifications that apply to a class of documents.
These specifications are applicable to all possible SGML documents for
an SGML application as well as to a particular SGML document.

The DSSSL specification languages are declarative. They are not intended
to be complete programming languages, although they contain constructs
normally associated with such languages. DSSSL specifications tan be
unambiguously parsed and interpreted by heterogeneous Systems. In
addition, DSSSL specifications may be used by existing formatting
Systems through the use of ‘front-end’ DSSSL processors and translators.
DSSSL has no bias toward batch or interactive formatting Systems and
does not prescribe any pre-defined formatting algorithms.

The standardization of formatting semantics is provided in DSSSL
through a set of basic structures known as flow objects and an associated
set of formatting characteristics that are applied to those objects. DSSSL
provides mechanisms for defining and extending the semantic constructs
so that DSSSL application designers tan construct DSSSL applications
best suited to their application environments.

0.1 Background

The concepts behind DSSSL are associated with the development of
generic coding and specifically with SGML, the Standard Generalized
Markup Language (ISO 8879).

X

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 [SOAEC ISO/IEC 10179: 1996(E)

Historically, electronie manuscripts contained control Codes or macro
calls that caused the document to be formatted in a particular way
(‘specific coding’). In contrast, generic coding, which began in the late
196Os, uses descriptive tags (for example, ‘heading’ rather than ‘Spate 3
lines; 14 Point Bodoni’). Central to the concept of generic coding is the
Separation of the information content of documents from the format or
appearance of the content. The generic coding concept gained
prominente in the early 1970s and came to fruition with the development
of SGML.

While SGML provides the language for modeling classes of documents, it
does not prescribe any particular model or pre-defined tag set. A set of
rules (consisting primarily of a DTD and its supporting documentation)
that applies SGML to a class of documents is known as an SGML
application.

SGML standardizes the representation of the document structure, leaving
it to users to develop their own techniques for interfacing with formatters
and other processors, such as general purpose translators. DSSSL is
designed to support this second class of applications by providing a
standardized architecture for formatting and other processing
specifications, allowing users to interchange such specifications within a
standardized framework.

A DSSSL specification is normally extemal to the SGML document to
which it applies, and thus multiple specifications may be applied to a
given SGML document to yield various presentations of the Same data.

SGML provides the ability to distinguish between the intrinsic content and
structure of a document, on the one hand, and the specifications for
processing it on the other. With DSSSL, formatting and other processing
specifications may be interchanged in conjunction with SGML documents
to provide the standardized specification of document display while
preserving the essential distinction between content and format.

xi

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISOIEC 10179: 1996(E) 0 ISO/IEC

xii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

INTERNATIONAL STANDARD @ ISo’IEC ISOIEC 10179:1996(E)

Information technology - Processing languages - Document Style
Semantics and Specification Language (DSSSL)

1 Scope

This International Standard is designed to specify the processing of valid SGML documents.

DSSSL defines the semantics, Syntax, and processing model of two languages for the
specification of document processing:

a) The transformation language for transforming SGML documents marked up in accordance
with one or more DTDs into other SGML documents marked up in accordance with other
DTDs. The specification of this transformation process is fully defined by this International
Standard.

b) The style language, where the result is achieved by applying a set of formatting characteristics
to portions of the data, and the specification is, therefore, as precise as the application
requires, leaving some formatting decisions, such as line-end and column-end decisions, to
the composition and layout process.

The DSSSL style language is intended to be used in a wide variety of environments with
typographic requirements ranging from simple Single-column layouts to complex multiple-
column layouts. This International Standard does not standardize a formatter nor does it
standardize composition or other processing algorithms. Rather, it provides the means whereby
an implementation may extemalize ‘style characteristics’ and other techniques for associating
style information with an SGML document.

DSSSL provides a mechanism for specifying the use of ‘extemal processes’ to manipulate data.
The nature of these processes is outside the scope of DSSSL, but may include typical data
management functions, such as sorting and indexing; typical composition functions, such as
hyphenation algorithms; and graphics or multimedia processes for non-SGML data.

Documents that have already been formatted or do not contain any hierarchical structural
information or generic markup are not within the field of application of this International
Standard.

DSSSL expresses specifications to be performed by some processor that accepts an input
document and produces an output document. DSSSL is independent of the type of formatter,
formatting System, or other transformation processor.

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISOIEC 10179:1996(E) 0 ISO/IEC

DSSSL includes

a>

b)

C>

Constructs that provide access to, and control of, all possible marked-up information in an
SGML document, as well as mechanisms for string processing to allow for the manipulation
of non-marked up data. This is provided by the Standard Document Query Language (SDQL)
component of DSSSL.

NOTE 1 String processing is necessary so that no special ‘markers’ need be embedded in the Source document to
indicate presentational changes. The display of a dropped or raised capital letter in a larger Point size at the
beginning of a line or Paragraph is an example sf a case where string processing may be used to isolate the first
Character or group of characters in Order to achieve a desired presentational effect.

Provisions for specifying the relationship between one or more SGML documents as input to
a transformation process and zero or more resulting SGML documents as the output of the
process.

Provisions for specifying the relationships between the SGML document(s), as expressed in
the Source Document Type Definition(s), and the result of the formatting process. The output
of the formatting process may be an ISO/IEC 10180 Standard Page Description Language
(SPDL) document or it may be a document in some other, possibly proprietary, form.

Provisions for describing the typographic style and layout of a document.

Definitions of a machine-processable Syntax for the representation of a DSSSL specification
and its various components.

Provisions for creating new DSSSL characteristics and their associated values, as well as new
flow Object classes. These are declared in the declarations for the style language Portion of
the DSSSL specification.

This International Standard is intended for use in a wide variety of SGML application
environments, including both electronie publishing and conventional printing.

2 Conformance

DSSSL includes two independent languages, the transformation language and the style language,
which specify processing of an SGML document. A DSSSL specification contains a number of
process specifications, each of which uses either the style language or the transformation
language. A process specification that uses the style language is a style-specification. A process
specification that uses the transformation language is a transformation-specification.

If a style-specification camplies with all the provisions of this International Standard, it is a
conforming DSSSL style-specification. If a transformation-specification camplies with all the
provisions of this International Standard, it is a conforming DSSSL transformation-specification.

In both the style language and transformation language, some facilities are optional. Esch
optional facility is associated with a named feature. A process specification that makes use of an

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISO/IEC 10179:1996(E)

optional facility shall enable the feature with which it is associated using the f eatures element
type form.

A conforming DSSSL System shall support the style language, the transformation language, or
both the style language and the transformation language.

The documentation for a conforming DSSSL System shall state whether it supports the
transformation language or the style language or both and, for each language that the System
supports, shall state which features of the language it supports.

A conforming DSSSL System that supports the style language shall be able to process any
conforming SGML document using any conforming DSSSL style-specification that enables only
features of the style language that the DSSSL System is documented to support.

A conforming DSSSL System that supports the transformation language shall be able to process
any conforming SGML document using any conforming DSSSL transformation-specification
that enables only features of the transformation language that the DSSSL System is documented
to support.

3 Normative References

The following Standards contain provisions which, through reference in this text, consititute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All Standards are subject to revision, and Parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the
Standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO 639: 1988, Code for the representation of names of languages.

ISO 3 166: 1993, Codes for the representation of names of countries.

ISOIIEC 6429: 1992, Information technology - Control functions for coded Character Sets.

ISO 8601: 1988, Data elements and interchange formats - Information exchange -
Representation of dates and times.

ISO 8879: 1986, Information processing - Text and Office Systems - Standard Generalized
h4arkup Language (SGML).

ISO/IEC 9070: 199 1, Information technology - SGh4L support facilities - Registration
procedures for public text owner identifiers.

ISOIIEC 9541-1: 1992, Information technology - Font information interchange - Part 1:
Architecture.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

ISOIIEC 9541-2: 1992, Information technology - Font information interchange - Part 2:
Interchange Format

ISOIIEC 9945-2: 1993, Information technology - Portable Operating System Interface (POSIX)
- Part 2: Shell and Utilities.

. ISOIIEC 10180: 1995, Information technology - Processing languages - Standard Page
Description Language (SPDL).

ISO/IEC 10646-1: 1993, Information technology - Universal Multiple-Octet Coded Character
Set (WS) - Part 1: Architecture and Basic Multilingual Plane.

ISO/IEC 10744: 1992, Information technology - Hypermediflime-based Structuring Language
(HyTime).

4 Dedinitions

For the purposes of this International Standard, the definitions given in ISO 8879 and the
following definitions apply.

4.1 area
A rectangular box with a fixed width and height produced by the formatting of a flow Object. An
area tan be imaged on a presentation medium to produce a set of marks.

4.2 association
A triple consisting of a query-expression, a transform-expression, and a priority-expression. The
priority-expression defaults to 0. Associations are used to control the transformation process.

4.3 atomic flow Object
A flow Object that has no ports.

4.4 auxiliary grove
A grove created by parsing nodes in another grove.

4.5 characteristic
A named Parameter of a flow Object.

4.6 complete grove
The grove that would be built using a grove plan that selected all the classes and properties from
the property set.

4.7 component name
A name defined in a property set with three variants: a reference concrete Syntax name, an
application name, and a full name.

4.8 creation origin
The node relative to which the Position of a node in a result grove is specified.

4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISOAEC ISO/IEC 10179:1996(E)

4.9 descendants
The Union of the subtrees of the children of a node.

4.10 enumerator
A possible value of an enumeration data type.

4.11 flow Object
A specification of a task to be performed by the formatter. A flow Object has a class, which
specifies the kind of task, and characteristics which further parameterize the task.

4.12 formatting process
The process partially specified by the style language.

4.13 grove
A set of nodes connected into a graph by their nodal properties. A grove is built using a grove plan.

4.14 grove plan
A set of classes and properties selected from a property set.

4.15 grove root
The unique node in a grove that has no origin.

4.16 intrinsic property
A property that is automatically part of a property set, without being defined in the property set.

4.17 line-progression-direction
A direction associated with inline areas. The line-Progression-direction is perpendicular to the
inline-Progression-direction of the inlined area.

4.18 nodal property
A property whose value is a node or list of nodes. Nodal properties are categorized by their
property set as subnode, irefnode, or urefnode.

4.19 node
An ordered set of property assignments. A node is a member of a grove, and belongs to a class
defined in the grove plan used to build its grove.

4.20 origin
For a node x, the node that exhibits for a subnode property a value that includes x. Every node in
a grove other than the grove root has a unique origin.

4.21 origin-to-subnode relationship
The subnode property of the origin of a node that includes the node in its value.

4.22 port
A Point on a flow Object in a flow Object tree to which an ordered list of flow objects tan be
attached. A port is either the principal port of the flow Object or it is named.

5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

4.23 primitive data type
A data type that has no super type. The primitive data type of a data type is the data type itself, if
the data type has no super type, and otherwise the primitive data type of the super type of the data
tYPe*

.
4.24 property assignment
The assignment of a property value to a property name.

4.25 property set
A set of classes and properties with associated definitions.

4.26 process specification
The combination of the specification in a process specification element and the specifications in
any other process specification elements that the process specification element is declared to use.

4.27 process specification element
An instance of a transformation-specification or. style-specification element type form.

4.28 process specification part
A section of the process specification coming from a Single process specification element. Any
process specification elements referred to using the use attribute are separate Parts. A part of a
process specification takes precedence over any later Parts of the process specification.

4.29 siblings (of a node)
The other nodes in the grove that occur in the value of the origin-to-subnode relationship property
of the origin of the node.

4.30 sosofo
A specification of a sequence of flow objects.

4.31 Source grove
The grove parsed to create an auxiliary grove.

4.32 spread
Consecutive back/front pair of pages in a Page-sequence.

4.33 stream
An ordered list of flow objects attached to a port of a flow Object.

4.34 subgrove
The Union of a node and the values of the subnode properties of the node.

4.35 subtree
A node together with the subtrees of its children.

4.36 synchronization set
A set of flow objects in different streams whose relative positioning is constrained.

6

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISO/IEC 10179:1996(E)

4.37 transformation process
The process specified by the transformation language. It transforms one or more SGML
documents into zero or more other SGML documents.

4.38 tree
The subtree of a node that has no parent.

4.39 verification grove
The grove that would be built by parsing the SGML document or subdocument generated from
the result grove using a grove plan that included all classes and properties of the SGML property
set.

4.40 zone
One of four named subdivisions of a column. The four zones are: top-float, body-text, bottom-
float, and footnote. The positioning of an area to be placed in a column-set area Container tan be
controlled by labeling it with the name of a Zone.

5 Notation and Conventions

5.1 Syntax Productions

In this International Standard, formal Syntax is described in a manner similar to ISO 8879 with
the following exceptions.

A sequence of expressions indicates that the expressions shall occur in the Order shown. The ,
Operator is not used.

The occurrence indicators ?, +, and * have higher precedence than sequencing, which in turn has
higher precedence than the connectors 1 and &. For example,

ab Icd*

is equivalent to

ta w 1 fc fd*N
A syntactic-literal is indicated by a monospaced typeface as shown.

syntactic-literal

In a Syntax production, double Square brackets ([[]]) tan be used to surround an or group. The
meaning of this is similar to an and group. However, if any of the members of the or group have
a * or + occurrence indicator, then they tan occur the number of times indicated but intermixed
with other members of the group. For example,

[[a* I b+ I c I d?]]

7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

means a sequence containing only a’s, b’s, c’s, and d’s in which any number of a’s occur, one or
more b’s, exactly one c, and at most one d.

5.2 Procedure Prototypes

. Esch procedure is defined by a procedure prototype:

(foo a b)

This indicates that the identifier f oo is bound in the top-level environment to a procedure that
has two arguments.

If the name of an argument is also the name of a type, then that argument shall be of the named
type. The following naming conventions for arguments also imply type restrictions:

- obj: any Object

- Zist: list

- g: quantity

- x: real number

- JC real number

- n: integer

- k: exact non-negative integer

If the procedure also accepts keyword arguments, the prototype is of the form:

(foo a b #!key keyl: key2:)

This indicates that the procedure in addition accepts two keyword arguments. The names of the
keyword arguments indicate the keywords that are used to specify them and do not constrain the
tYPe*

6 DSSSL Overview

A key feature of generalized markup is that the formatting and other processing information
associated with the document is separate from the generic tags embedded in it.

In any generalized markup scheme, there is a method for associating processing specifications
with the SGML markup. This method of association allows the information to be attached to
specific instances of elements as well as to general classes of element types. The primary goal of

8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

0 ISO/IEC ISO/IEC 10179:1996(E)

DSSSL is to provide a standardized framework and methods for associating processing
information with the markup of SGML documents or portions of documents.

DSSSL is intended for use with documents structured as a hierarchy of elements. For the
purpose of describing in detail the concepts of DSSSL in the subsequent clauses of this
International Standard, SGML terminology is used.

DSSSL enables formatting and other processing specifications to be associated with these
elements to produce a formatted document for presentation. For example, a designer may wish
to specify that all chapters begin on a new recte page and that all tables begin with a Page-wide
rule to be positioned only at the top or bottom of the Page. During the DSSSL transformation
process, formatting information may be added to the result of the transformation. This
information may be represented as SGML attributes. These, in turn, may be used by the style
language to create formatting characteristics with specific values.

6.1 Areas of Standardkation

DSSSL provides four distinct areas of standardization:

a) A language and processing model for transforming one or more SGML documents into zero
or more other SGML documents.

This is called the transformation language. This transformation is controlled by the
transformation-specification. A transformation-specification contains a list of associations.
An association contains up to three Parts: the query-expressions, the transform-expressions,
and the optional priority-expressions. Functionally, this specification allows the user to
specify the creation of new structures, the replication of existing structures, and the reordering
and regrouping of existing structures.

b) A language for specifying the application of formatting characteristics onto an SGML
document.

The process that applies formatting and other formatting-related processing characteristics to
an SGML document is called the formatting process. This process is controlled by the style-
specification. A style-specification contains a sequence of construction rules. There are
several kinds of construction rules. For more details, refer to 12.4.1.

NOTE 2 It is important to note that for the DSSSL style language and the associated formatting process, DSSSL
does not standardize the process itself, but merely standardizes the form and semantics of the style language
controlling a Portion of the process. The remaining formatting functions, such as line-breaking, column-breaking,
Page-breaking, and other aspects of whitespace distribution, are not standardized and are under control of the
formatter.

c) A query language, Standard Document Query Language, used for identifying portions of an
SGML document.

SDQL is part of both the DSSSL transformation language and the DSSSL style language. It
is used for navigating through the hierarchical structure of the SGML document, identifying

9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 ISO/IEC

the relevant pieces of the SGML markup and content on which processing is to be performed.
SDQL adds additional data types to the DSSSL expression language. In addition to the full
query language, this International Standard defines a subset called the core query language.
For more information on the core query language, see 10.2.4. For a complete discussion of the
full SDQL, see clause 10.

. d) An expression language.

The DSSSL expression language is used in SDQL, the DSSSL transformation language, and
the DSSSL style language. It is used to create and manipulate objects. In addition to the full
expression language, this International Standard defines a subset called the core expression
language. See 8.6. The DSSSL expression language is based on the Scheme Programming
Language as defined in the IEEE Scheme Standard, R4RS. DSSSL uses only the functional,
side-effect free subset of Scheme. See clause 8 for a complete discussion of the DSSSL
expression language.

6.2 Conceptual Model

The DSSSL conceptual model has two distinct processes: (1) a transformation process and (2) a
formatting process. The two processes may be used in conjunction with each other, or each may
be used alone.

An illustration of the DSSSL conceptual model is shown in Figure 1.

SGML
Document

DSSSL Specification

.,::i:i:.l~~~~~~~~~~~~,, ,,,,:,, I l l l~~~~~~~~~ :::,

~ ~ -:iIZpr;:~Siri~~~~~~~~~~~ .:.i::~:p~~.~iai:~~~~~~~~: : : : : :,., ,, : :_._ ;_._ ,: ,.,._. <. .,.. :::.:.:...::::.::.:::::::.: ;_. :.j: :.:.:...~:_:_~:.::::,:::::::.::.: .,.,.. ..:.....,::.::.::~.:.:~~~~

. : : ; : : : ,<~:: : ; : : 1: ; , ; : , ; . : : : : . : . , . :A~.~.~~. : : : : : : . : . . . : : :<.: : ,<:. :
. : . : <,.: : . : . :+: . : : , , . : : :

. ,<:. ,<:. : . , >, :<,. : . :<,<:. : . : . : . :<: . . : . : . : : : . : : . : : : : : . : : : . : : : . . :
.

. . . : : : . : ._: . : , :_: :+: . . _, , , , , ~~:,
.
._. , . ,<, . ,<,<,. ,<,. , . , . , . , . , . , . , , . : . : : . : : : :<, : :<: >:.: : . : . : . : . : . : . : . : . : . : . : . : : . : . :_:_: .y . : . : :

~: . . : . . : . .~. : : : : : . : . : . : : . . : : : : : . : . : : . : . . .
.

. :xx. :? : : . : : : : : : : : , : : : : : : : : : : : : . : ,::::::::‘:<:‘_.,:::,::::.::,::,

. :c . : . : . . : , : , . , . , : , , : , : , : , : , : . :‘:<.:::::x :x : : : : : : : : . : : : : : : : : : : : : : . : . : : : : : : : : ; . : : : : : : : : . : . : . : . . . : . : . : . : . : . : . : . : : : : : : : : : : : : : . : : . : : : : : : : : . : . : .~: : , : , : , : ,

i

: : : . : :_: : : : . : : . : : : : : : : : : : : : : : : : : : : : : : : : : : . : . : : : : : : : . : : : : : : : : . : : : : : . : . : : : : : . : : : : . . , . ,< ,. ,< .< , . , .< . .
~~~~~~~~~~~~~~~ 

. . . . . . . . . . . . . . . . . . .  : : : . . . :  . .  : : . :  : . : . . . : . : . : . : . : . : . . . : . : .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .~.~<:.:+:.: . : . :  . . . . . . . .  .,: :  :  :  : ,y  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : , : , : ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . .  y . : . : . : . : . : . : . : . : . :  
. . . . . . .  

. : . : . : . :  . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . :  . . . . . . . . . . . . .  . . : . :  . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . :+:<:+:.: :<:. ,  .z . : . :_:  . :  . . . . .  : , : ,  , , : , :  ~,~,~,_,_,, , , , ,_,, , , , , , , ,  
. .  . . .  . . . . . . . . . . . . . . . . . . . .  : .‘.:.: . : . , . : . : . : . : . : . :  : . : . : . : . : .  . : . : . : . : . : . : . : . : . : . . . :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  :<: . : . : . :<: . : . :<:. : . :  

<~:~‘~.~.~.~‘~~~~ . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . :  : . :<: . : . : . : . : . : . :  : . : . : . : .  
. . . . . . . . . . . . . .  .  . . .  :  : . :  :  :y . :  ‘.:.:.: . . : . : .‘.. : . : . : . : . : . : . : . : . : . : . : . :  . :  :_: :  : , ,  :+:. :  

. :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  . ; , . ; :  . . :  . :  ~~:+:,: , :_:, : . :  : . : . : . : .  . : : . : : : : : : : : :  :  :  p: : : :  : : : : : :  :  :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  .  . . . . . . .  .  : , :_,  : , :_: , : , : : :  . . . . . . . . . .  . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : ; ; ; ; ; i ; ; ; ; :  I~I:I:I : I~:.:: i_i:I:~:~:~:~:~:~:~:~.:::: : , :  : .  . : . :  . : . ,y : : : : : : : : : : :  . : . : : : : :  
. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . .  .  : : : : . : : : : : : . . : : : .  
. :_: . :  : . : . : . :  : . :  : . : . . . : . : . : . : . : . : . : . : . :  . . .  . : .  . : . : . : . : . : . : . : . :  , . :  . . . . . . . . . . . . . . .  : . ,  . . . .  . . . . . . . .  . . . .  . . . .  : . :<: . : .v : . : . :_: . ,  
. . . . . . . . . . .  ‘.‘.‘.‘.“““““~‘~~~“~.~::::::::::.:.:.:::::: . . .  

. . : . : . . . :  2. :  : . : . . . . . : . . . : . : . :  . . . .  :  :  . . . . . . .  . . .  : . . . : . . : : :  . :  : : : :y : ;  , : , :  : : ,  ,_,__.,_, ~,,,  

Source Transformation Result 
Document Process Document 

SGML 
Document 

...< ::;..:,.,.;,.;,.,...,. ,.... .,< <. .+: : .Y .........:.. .:_:. 1,: . . . . . . . ....,. .;. :. 
::::::::::.::::::::::::::::,:::::::::< 
.::I:i:j:::i:::I:::I:I:I:I::.::i:I:l 
: :.: :<:: 1.: :.:+:.:.:: .,::::\ ...<.. ::......... ..,. 1.1 :.:,:.:.:.:,:,:,::j:j:i:::::i ;:; 
.:.:.:.:<:<:.:.:,:.:,:.:.: :,.::::::,. ,. . . . . . . . . . . . . . . . 

+ :‘::::::.:,:,::::::::::.:.::. :‘:‘:‘:’ :,l:l:l:l~~:l:l:~.~:~:~:::~~:~:~ :.:.: :.:.:.:.: :.~.:.~.:.:.:.:.:<:.~ D S S S L-d r ive n 1111) .z.......... .:: ‘~,~~ Fortnatter 
.(.:.:.:.>>:.>:,: :,: : :,:,:.:,:,. <~.~.~<~.~.~.~.~,~..,~,~,.,...,...,. :::‘::::::::::::.:.:.:.:.:.:.:.:...~. <<.<<... .:,.:.. <C.~.~.~<.<~<~< . . . . . .<.. . . . . . .._... ._ <~<~<~<~<~<~.~<~<~...~.~...~.~ ._. <z< ..<.< . . . ..:. ::. :_. .,.,., ,.,.,.<.,.,.,.,.,.,.,.,. :. ‘.::i:::: . . . . .<.:,.;, ,.. _...<.< ,. .,. 

Formatting output of 
Process Formatter 

Figure 1 - DSSSL Conceptual Model 

SPDL or 
other 
output 
format 

The shaded areas indicate the Parts of the processing model that are standardized by DSSSL. 

10 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


\ 
0 ISO/IEC ISO/IEC 10179:1996(E) 

6.3 DSSSL Languages 

Esch of the DSSSL processes is controlled by the appropriate DSSSL language. The 
transformation language controls the transformation process. Likewise, the style language 
controls aspects of the formatting process. 

6.3.1 The Transformation Language 

The transformation process transforms an SGML document into another SGML document under 
the control of the transformation-specification. The SGML document that is the result of this 
transformation process may then be used as input to the formatting process. 

In the transformation process, a user identifies portions of the SGML document that are to be 
mapped or transformed. For each node matthing the specified portions of SGML content and 
structure, the transformation is accomplished according to the specification describing the new 
structures to be created. 

All operations performed in this transformation process are independent of the later formatting 
process. Operations during the transformation process may include the following: 

- Combining structures 

SGML structures may be reordered and regrouped to create totally new structures. For 
example, footnotes that are inline with footnote references according to the Source DTD may 
be collected to place the footnotes at the end of each chapter when the document is formatted. 

- Creating new elements with user-specifiable relationships to other elements 

New structures or attributes may be created. For example, special formatting descriptions 
such as the need for a 3-Point rule, expressed as an SGML attribute, may be associated with 
every fifth row in a table to provide visual impact. 

- Associating new descriptions with particular sequences of content 

A sequence of elements in the Source document may trigger the association of different 
formatting characteristics. For example, a Paragraph following a warning may be required to 
be presented differently from all other Paragraphs. 

- Associating new descriptions with particular components of content 

An association may be used to attach special formatting to particular strings of text that may 
not be specially tagged in the Source document, as, for example, in the replacement of the 
Character string ‘ISO’ with the ISO logo. 

DSSSL allows formatting Information to be associated with, and dependent on, any combination 
of the above. Both the content and structure of the SGML document tan be modified. 

11 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISO/IEC 10179: 1996(E) 0 PSO/IEC 

The transformation language tan be used to facilitate the formatting process as indicated in the 
examples above, or it tan be used to enhance or modify documents created in accordance with a 
DTD that has changed over time. It may also be used to transform documents using a public 
DTD into a proprietary or ‘in-house’ DTD. 

The importante and use of the transformation language will vary depending on the SGML 
. application, the DSSSL application, the capabilities of the formatter, and the implementation. 

Many formatting applications may require no transformation process at all. 

6.3.1 .l Components of the Transformation Process 

The component processes are: 

a) Grove Building Processor 

An SGML document is input to this process. The SGML document or subdocument is parsed 
and is represented by a collection of nodes called a grove. A grove is similar to an element 
tree, but may include other subtrees, for example, a subtree of attribute values. Relationships 
in a grove are expressed in terms of properties. For a complete description of the grove and 
SGML property definitions, see clause 9. 

b) Transformer 

The input to the transformation process includes the SGML document as created during the 
grove building step and the transformation-specification. 

The transformation-specification consists of a collection of associations. Esch association 
specifies the transformation of like objects in the Source document into objects in the result 
grove. Key to this transformation is that not only tan each Object be mapped to an explicit 
location in the result grove, but it tan also be mapped to a location using the result of 
transforming some other Source Object as a reference Point. 

The output of the transformation process is the result grove. The transformation process may 
operate on multiple SGML documents as input to the process, and likewise may transform 
them into multiple SGML documents. For a complete description of the transformation 
process, see clause 11. 

c) SGML Generator 

The transformation process produces a grove that must be converted to an SGML document 
for interchange, Validation, and input to the formatting process. The SGML generator is used 
for this purpose. The output of the SGML generator shall be a valid SGML document. For a 
complete description of the SGML generator, see 11.4. 

The model of the transformatio n process is illustrated in the Figure 2. No te that the shaded areas 
indicate the components of the DSSSL specification standardized by this Internatio na1 Standard. 

12 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

DTD 81 
SGML a Decl 

Docu- 
ment 

Source Result 
Grove Groves 

Figure 2 - The Transformation Process 

6.3.1.2 Model for Coded Characters, Characters, and Glyph Identifiers 

There are three distinct components of this model: 

- the coded characters in the SGML Source document, 

- the characters in the grove, 

- the glyph identifiers of the final result document. 

The characters in the SGML Source document are typically encoded in accordance with a 
particular Character encoding Standard, such as ISO 8859-1 (‘Latin 1’). The SGML declaration 
contains a specification of the Character set either in the form of a description or in terms of 
Codepoints in one or more particular, normally standardized or at least registered, coded 
Character Sets. It is, however, permitted to refer to a private coded Character set as weh as giving 
just a description as a m inimum literal of the coded Character. 

There are many Character coding schemes. Some of these use non-spacing characters together 
with a base Character to represent a Character with a diacritic. SGML also permits the use of 
entity references to represent ‘non-keyable’ characters. For example, a lower case e with acute 
accent may be represented, in the same document, as 

- a Single Character, 

- a non-spacing diacritic and e (2 characters), 

- an e and combining diacritic (2 characters), 

13 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

- the entity reference &eacute;. 

This Variation may Cause Problems in searching using regular expressions. 

In DSSSL, the input characters are ‘normalized’ into a sequence of characters that each 
represents a specific ‘meaning’ regardless of how it was originally encoded - as a Single 
Character, as multiple characters in a particular Character set, or as an entity reference. Esch 
DSSSL specification defines a Single Character repertoire. The Character repertoire shall include 
all characters used in the DSSSL specification, in the Source groves, and in the flow Object tree; 
therefore, only these characters may be used. The declaration of each Character also includes a set 
of properties that may be significant in the formatting process, for example, that the Character 
represents a ‘word space’. 

The DSSSL specification, which may have been encoded using a different coded Character set 
than the Source document, is also translated into a sequence of characters belonging to the Same 
repertoire as the characters used in the DSSSL trees. All comparisons, such as matthing an 
element name, are performed by comparing these characters rather than using the coded 
characters of the original SGML document. 

A sequence of characters in the input grove may be manipulated by a transformation process into 
another sequence under the control of a Character-to-Character map. This technique is typically 
used when Parts of the Source document contain transliterated text. 

The characters in the input grove to the formatter are transformed into glyph identifiers during 
the formatting process. The transformation is controlled by Character-to-glyph and ligature-to- 
glyph maps in which one or more characters are mapped into one or more glyph identifiers. The 
map to be used is not fixed for a document, but is expressed as a formatting characteristic that 
may be specified for an area or for a Portion of the input grove. Ligatures are specified by 
mapping more than one Character to a Single glyph. 

Additional properties specify the font to be used. This information, together with the glyph 
identifier, selects an actual shape to be used in rendering. Hyphenation Points are determined 
based on the characters, but width calculations are based on the metrics of the actual rendering 
shapes (i.e., based on the glyphs). 

6.3.2 The Style Language 

The term ‘formatting’ when used in this International Standard means any combination of the 
following: 

- the process that applies presentation styles to Source document content and determines its 
Position on the presentation medium, 

- the selection and reordering of content in the result document with respect to its Position in 
the input document, 

- the inclusion of material not explicitly present in the input document, such as the generation 
of new material, 

14 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

6.3.2.1 

6.3.2.2 

6.3.2.3 

- the exclusion of material from the input document in the result document. 

DSSSL defines the visual appearance of a formatted document in terms of formatting 
characteristics attached to an intermediate tree called theflow Object tree. DSSSL allows enough 
flexibility in the specification so that it is not tied to a set of composition or formatting 
algorithms, i.e., line-breaking, Page-breaking, or whitespace distribution algorithms, used by any 
particular formatting System. These aspects of the layout process are specific to individual 
implernentations. In this International Standard, line-breaking and Page-breaking rules may be 
expressed in terms of constraints and other formatting characteristics that govem the formatting 
process. The output of the formatter, undefined in this International Standard, is a formatted 
document suitable for printing or imaging. 

The formatting process uses the style-specification, which may include construction rules, page- 
model definitions, column-set-model definitions, and other general and application-defined 
declarations and definitions. 

Components of the Formatting Process 

The conceptual processes that constitute the formatting process are as follows: 

a) Build grove from SGML document. 

b) Apply construction rules to the objects in the Source grove to create the flow Object tree. 

c) Define page and column geometry by characteristics on the Page-sequence flow Object and 
column-set sequence flow objects referring to Page-models and column-set-models, 
respectively. 

d) Compose and lay out the content based on the rules specified by the semantics of the flow 
Object classes and the values of the characteristics associated with those objects. Esch flow 
Object (an instance of a flow Object class) is formatted to produce a sequence of areas having 
explicit dimensions and positioned by a parent in the flow Object tree. 

Grove Building 

The formatting process uses the Same grove building step as the transformation process to 
convert the SGML document into a grove of hierarchically structured objects. For more 
information, see clause 9. 

Flow Object Tree 

The grove is then further processed, using the construction rules, to create a flow Object tree 
consisting of flow objects with the appropriate formatting and Page-layout characteristics. For 
the formal definition of the construction rules, see 12.4.1. Esch flow Object (except an atomic 
flow Object) has one or more sequences of flow Object children. Esch sequence of flow Object 
children is attached to a Point of a flow Object called agort. The port is either the principal port of 
the flow Object, or it may be named. 

15 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179: 1996(E) 0 ISOAEC 

A flow Object class defines a set of formatting characteristics that apply to some category of flow 
objects. Esch flow Object class also defines a set of port names. The class of a Child flow Object 
shall be compatible with the class and port name of the port to which it is attached. The flow 
objects attached to any particular port are ordered, but there is no Order defined between flow 
objects attached to different ports of the Same flow Object. 

. The process of creating the flow Object tree includes the following Steps: 

a) Formatting characteristics are associated with each flow Object. 

b) Nodes representing data characters from the grove are converted to Character flow objects. 
Esch Character flow Object has characteristics goveming glyph selection and style Parameters 
such as font family, font weight, etc. 

In constructing the flow Object tree, SDQL may be used to identify portions of the SGML 
document that have specific formatting characteristics as well as those that tan be treated 
together for purposes of flowing onto the Same column or Page. The content that is flowed 
together is placed as a sequence of flow objects in a port of the parent in the flow tree. 

NOTE 3 For example, if a document consists of several normal Paragraphs and some footnote Paragraphs, the 
footnote Paragraphs tan be grouped as the content of a port of the parent flow Object that represents the footnote. 
Similarly, the normal Paragraphs tan be grouped in a port of a flow Object representing a sequence of columns. 

6.3.2.4 Flow Object Classes 

The flow Object classes and the characteristics that apply to them define the formatting 
appearance and behavior of the contents of the document. 

The following flow Object classes are provided in this International Standard: 

Sequence flow Object class 

Display-group flow Object class 

Simple-Page-sequence flow Object class 

Page-sequence flow Object class 

Column-set-sequence flow Object class 

Paragraph flow Object class 

Paragraph-break flow Object class 

Line-field flow Object class 

Sideline flow Object class 

16 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

Anchor flow Object class 

Character flow Object class 

Leader flow Object class 

Embedded-text flow Object class 

Rule flow Object class 

Extemal-graphic flow Object class 

Included-container-area flow Object class 

Score flow Object class 

Box flow Object class 

Side-by-side flow Object class 

Glyph-annotation flow Object class 

Alignment-Point flow Object class 

Aligned-column flow Object class 

Multi-line-inline-note flow Object class 

Emphasizing-mark flow Object class 

Flow Object classes for mathematical formulae 

Flow Object classes for tables 

Flow Object classes for online display 

In addition, DSSSL applications may define their own set of flow Object classes as well as their 
own set of characteristics that may apply to these or to DSSSL-defined flow Object classes. 

6.3.2.5 Areas 

The result of formatting a flow Object is a sequence of areas. An area is a rectangular box with a 
fixed width and height. There are two types of areas: inline areas that are Parts of lines and 
display areas that are not directly Parts of lines. 

Both types of areas are positioned by a process of filling. The exact nature of the filling process 
is different for each of these types of areas. See 12.3 for more information on the filling of areas. 

17 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIIEC 10179:1996(E) 0 ISO/IEC 

A display area is positioned by being filled into an area Container. The size of an area Container 
may grow in the filling-direction, but is fixed in the other direction. 

6.3.2.6 Page and Column Geometry 

Page layout in DSSSL is specified by Page-model characteristics on the Page-sequence flow 
Object and column-set-model characteristics on the column-set sequence flow Object. 

The Page-sequence flow Object is formatted to produce a sequence of page areas. A Page-model 
is the specification of the possible structure and positioning of the area hierarchy of the Page, 
including the height and width of the page and the specification of Page-regions. Page-regions 
are area Containers with fixed dimensions into which formatted content is placed as specified by 
the Page-region-flow-map. The Page-region-flow-map provides the connection between the port 
name and a Page-region. Esch of the Page-regions may have a header and a footer specification. 
For complete information on the Page-sequence flow Object and the associated page models, see 
12.6.4 and 12.6.4.1. 

The column-set-sequence flow Object is formatted to produce a sequence of column-set areas. A 
column-set area contains a set of parallel columns. The structure and positioning of each 
column-set area is controlled by the column-set-model to which it conforms. A column-set- 
model specifies the possible hierarchy of areas for each column-set. Column-sets may be nested. 
The column-set area is divided geometrically in a direction parallel to the filling direction into a 
number of columns. Associated with each column-set may be zones that constrain the placement 
of areas relative to other areas in the filling-direction. The allowed zones are: top-float, body- 
text, bottom-float, and footnote. 

The column-set-model specifies the possible structure and positioning of the area hierarchy of 
the column-set through the column-subset specification, the filling-direction specification, width 
and height specifications, etc. The column-subset specification includes a column-subset-flow- 
map that indicates the ports from which the contents are flowed into the specified Zone. The 
column-set-model also supports spanning. For complete information on the column-set 
sequence flow Object, see 12.6.5; for complete information on the column-set-model, see 
12.6.5.1. 

6.3.2.7 Expression Language 

The formatting process uses the core expression language defined in 8.6 or, as an optional 
feature, the full expression language as described in 8. 

Figure 3 illustrates the model of the formatting process. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

fl SGML 
Document . Formatter fl Formatted 

Result 
Document 

Source 
Grove Flow Object 

Tree 

Figure 3 - Formatting Process 

6.3.2.8 Model for Coded Characters, Characters, and Glyph Identifiers 

The formatting process uses the model for coded characters, characters, and glyph identifiers 
described in 6.3.1.2. 

7 DSSSL Specifications 

A DSSSL specification is an SGML document conforming to the DSSSL document architecture. 
The DSSSL document architecture is a document architecture conforming to the Architectural 
Form Definition Requirements of ISO/IEC 10744. 

An SGML document tan declare its conformance to the DSSSL document architecture by 
including a token ArcBase in the APPINFO Parameter of its SGML declaration and the 
following declarations in its DTD: 

<?ArcBase DSSSL> 
<!NOTATION DSSSL PUBLIC "ISO/IEC 10179:1996//NOTATION 

DSSSL Architecture Definition Document//EN" 
-- A document architecture conforming to the 

Architectural Form Definition Requirements of 
ISO/IEC 10744. -- 

> 
<!ATTLIST #NOTATION DSSSL 

-- Support attributes for all architectures -- 
ArcFormA -- Attribute name: architectural form -- 

NAME #FIXED DSSSL 
ArcNamrA -- Attribute name: attribute renamer -- 

NAME #FIXED DNames 
ArcBridA -- Attribute name: bridge functions -- 

19 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

NAME #FIXED DBrid 
ArcDocF -- Architectural form name: document element -- 

CDATA #FIXED dsssl-specification 
ArcVer -- Architecture version identifier -- 

CDATA #FIXED "ISO/IEC 10179:1996" 
> 
<!ENTITY DSSSL SYSTEM CDATA DSSSL> 

7.1 DSSSL Document Architecture 

The DSSSL document architecture is defined by the following meta-DTD. 

< ! -- DSSSL Document Architecture --> 

<!ENTITY % declarations 
"features 1 baseset-encoding 1 literal-described-char 1 add-name-chars 

1 add-separator-chars 1 standard-chars 1 other-chars 
1 combine-char 1 map-sdata-entity 1 char-repertoire 1 sgml-grove-plan" 

> 

<!element dsssl-specification - 0 
((%declarations;)*, 

(style-specification 1 transformation-specification 
1 external-specification)+)> 

<!attlist dsssl-specification 
dsssl NAME dsssl-specification 
Version CDATA #FIXED "ISO/IEC 10179:1996" 

> 

<!element transformation-specification - 0 
((%declarations;)*, transformation-specification-body*)> 

<!attlist transformation-specification 
dsssl NAME transformation-specification 
id ID #IMPLIED 
desc CDATA #IMPLIED 
-- human readable description of specification -- 

partial (partial 1 complete) complete 
-- is the specification complete is or is it just a fragment 

to be used in other specifications? -- 

use 
-- reftype(transformation-specificationlexternal-specification) -- 

IDREFS #IMPLIED -- Default: none -- 

> 

entities 
-- entities available to be specified as DTD for Validation 

of result document -- 
ENTITIES #IMPLIED -- Default: none -- 

<!element style-specification - 0 
((%declarations;)*, style-specification-body*)> 

20 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


O[SO/IEC ISO/IEC 10179:1996(E) 

<!attlist style-specification 
dsssl NAME style-specification 
id ID #IMPLIED 
desc CDATA #IMPLIED 
-- human readable description of specification -- 

partial (partial 1 complete) complete 
-- is the specification complete is or is it just a fragment 

to be used in other specifications? -- 

> 

use -- reftype(style-specificationlexternal-specification) -- 
IDREFS #IMPLIED -- Default: none -- 

<!-- Assign a local ID to a specification in another document. --> 
<!element external-specification - 0 EMPTY> 
<!attlist external-specification 

dsssl NAME external-specification 
id ID #REQUIRED 
document -- document containing spec -- 

ENTITY #REQUIRED 
specid -- id of spec in document -- 

NAME #IMPLIED -- Default: first spec in document -- 
> 

<!-- Declares features used by specification. --> 

<!element features - 0 (#PCDATA) 
-- lextype(featurename*) -+ 

<!attlist features 
dsssl NAME features 

> 

<!-- Map Character numbers in a base Character set to Character names; 
not needed when System knows a Character set, and all characters 
in Character set have universal Code. --> 
<!element baseset-encoding - 0 (#PCDATA) 

-- lextype((number, charname)*) --> 
<!attlist baseset-encoding 

dsssl NAME baseset-encoding 
name CDATA #REQUIRED -- public identifier of baseset -- 

> 

<!-- Map a Character described in the SGML declaration with a minimum literal 
to a Character name. --> 
<!element literal-described-char - 0 (#PCDATA) 

-- lextype(charname) --> 
<!attlist literal-described-char 

dsssl NAME literal-described-char 
desc CDATA #REQUIRED -- the literal description -- 

> 

<!-- Declare additional characters allowed in name within DSSSL notation. --> 
<!element add-name-chars - 0 (#PCDATA) 

-- lextype(charname*) -+ 
<!attlist add-name-chars 

21 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

> 
dsssl NAME add-name-chars 

< ! -- Declare additional characters allowed as separators within 
DSSSL notation. --> 

<!element add-separator-chars - 0 (#PCDATA) 
-- lextype(charname*) --> 

<!attlist add-separator-chars 
dsssl NAME add-separator-chars 

> 

< ! -- Define characters associating names with universal Codes. --> 

<!element standard-chars - 0 (#PCDATA) 
-- lextype((charname, number))*) --> 

<!attlist standard-chars 
dsssl NAME standard-chars 

> 

<!-- Define characters with no universal Codes. --> 

<!element other-chars - 0 (#PCDATA) 
-- lextype(charname*) --> 

<!attlist other-chars 
dsssl NAME other-chars 

> 

<!-- Map an SDATA entity onto a Character. --> 

<!element map-sdata-entity - 0 (#PCDATA) 
-- lextypekharname) --> 

<!attlist map-sdata-entity 
dsssl NAME map-sdata-entity 
name CDATA #IMPLIED -- Default: mapping uses replacement text only -- 
text CDATA #IMPLIED -- Default: mapping uses name only -- 

> 

<!-- Declare Character combining. --> 

<!element combine-char - 0 (#PCDATA) 
-- lextype(charname, charname, charname+) --> 

<!attlist combine-char 
dsssl NAME combine-char 

> 

<!-- Declare a Character repertoire. --> 
<!element char-repertoire - 0 EMPTY> 
<!attlist char-repertoire 

dsssl NAME char-repertoire 
name -- public identifier for repertoire -- 

CDATA #REQUIRED 
> 
< ! -- Declare the grove plan for the SGML property set. --> 
<!element sgml-grove-plan - 0 EMPTY> 
<!attlist sgml-grove-plan 

dsssl NAME sgml-grove-plan 

22 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

> 

modadd -- names of modules to be added to default grove plan -- 
NAMES #IMPLIED -- Default: none added -- 

<!element style-specification-body - - CDATA 
-- content uses notation of DSSSL style language --> 

<!attlist style-specification-body 
dsssl NAME style-specification-body 
content ENTITY #CONREF -- Default: syntactic content -- 

> 

<!element transformation-specification-body - - CDATA 
-- content uses notation of DSSSL transformation language --> 

<!attlist transformation-specification-body 
dsssl NAME transformation-specification-body 
content ENTITY #CONREF -- Default: syntactic content -- 

> 

The element type form ds SS l- spec i f i ca t ion is a Container for one or more process 
specification element type forms. Declaration elements in a ds s s 1 - spec i f ica t ion element 
apply to all the process specification elements in the ds s s l- speci f ica t ion element. 

There are two types of process specification element type forms. The element type form 
transformation-specification specifies a transformation process. The element type 
form s tyle- speci f ica t ion specifies a formatting process. Instances of these element type 
forms are called process specification elements. Esch process specification element may be self- 
contained, or it may make use of other process specification elements of the Same type. Process 
specification elements are identified by an SGML unique identifier. A process specification 
element in one SGML document may use a process specification element in another SGML 
document by using the external-specif ication element type form to assign a local 
unique identifier to the process specification element in the other document. The combination of 
a process specification element with the process specification elements that it uses is a process 
specification. 

A user specifies processing of an SGML document by identifying a process specification 
element. The manner in which these elements are identified is system-dependent. 

NOTE 4 A System may identify a process specification element with a System identifier for the document and an 
optional unique identifier for the element within the document, with the first process specification element in a 
document being used if no unique identifier is specified. 

Esch process specification element may contain elements, called body elements, whose content 
specifies processing in a process-specific notation. For a trans f ormat ion- 
specif ication, this notation is the DSSSL transformation language; for a style- 
speci f ication, this notation is the DSSSL style language. In addition, each process 
specification element may contain declaration elements that contain information needed to Parse 
these notations. 

The process specification described by a sequence of process specification elements is 
considered as a sequence of Parts, where each part consists of declarations expressed using 

23 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 PSO/IEC 

element type forms, and a specification in the process-specific notation, called the body of the 
part. The parts from a sequence of process specification elements consist of the sequence of 
Parts from the first process specification element, followed by the sequence of Parts from the 
next process specification element, and so on. The sequence of Parts from a Single process 
specification element consists of a part constructed from the content of the process specification 
element followed by the sequence of Parts from the sequence of process specification elements 
that it uses. The declarations in the first part comprise the declarations contained in the process 
specification element together with those contained in the ds s s 1 - spec i f i ca t i on element 
that contains the process specification element. The body of the first part consists of the 
concatenation of the body elements contained in the process specification element. 

A process specification shall be processed by first processing the declarations of all of the Parts, 
and then processing the bodies of all of the Parts in Order. Within a Single Part, there shall not be 
conflicting declarations; when two declarations in different Parts conflict, the declaration in the 
earlier part shall take precedence. Similarly, within the body of a Single Part, there shall not be 
conflicting specifications, but when two specifications in the bodies of different Parts conflict, 
the specification in the earlier part shall take precedence. 

The declarations of a process specification shall specify how each bit combination occurring in 
the bodies of the Parts of the specification and in all the SGML input documents are to be 
converted to characters. Declarations may occur in any Order. In particular, Character names may 
be used before they are declared. 

Every Character name used either in declarations or in body elements shall be declared using 
either a standard-chars element type form, an other-chars element type form, or a 
char-repertoire elementtypeform. 

All declaration element tYPe formsotherthanthe char-repertoire, features, and sgml- 
grove-plan element tYPe forms require the chars e t feature. 

7.1 .l Features 

The f eatures element type form declares the features used by a specification. A process 
specification shall declare all the features that it uses. 

The content of the element shall be a list of feature names. 

This declaration is cumulative. 

7.1.2 SGML Grove Plan 

The sgml-grove-plan element type form names additional modules that should be included 
in the grove plan for the SGML property set. The modadd attribute specifies the modules to be 
added. The following modules are included automatically: 

- baseabs 

- prlgabs0 

24 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

7.1.3 

7.1.4 

- instabs 

For the transformation language, the prlgabsl module is also included automatically. 

This declaration is cumulative. 

Character Repertoire 

The char -reper toire element type form declares that the specification uses the Character 
repertoire whose public identifier is given by the name attribute. 

A char-repertoire element is equivalent to a sequence of instances of the element type 
formsbaseset-encoding,literal-described-char,add-name-chars,add- 
separator-chars,standard-chars,other-chars,andmap-sdata-entity, andof 
Character-property-declaration and added-char-properties-declaration language forms. 

Standard Characters 

The s tandard-chars element type form declares the names of characters in the Character 
repertoire which correspond to characters defined in ISO/IEC 10646-1 or ISO/IEC 6429. A 
Character in ISO/IEC 10646-1 or ISO/IEC 6429 is identified by its code in the corresponding 
Character set, called its universaZ Code. 

The content of the element shall be a list of pairs of Character names and numbers expressed in 
decimal. It declares that each Character name corresponds to the Character with the universal 
code specified by the following number. 

A process specification shall declare Character names for each of the following Character 
numbers in ISO/IEC 10646-1: 32 (space), 34 (quotation mark), 35 (number sign), 39 
(apostrophe), 40 (left parenthesis), 41 (right parenthesis), 42 (asterisk), 43 (plus sign), 45 
(hyphen-minus), 46 (full stop), 47 (solidus), 48 to 57 (digit zero to digit nine), 58 (colon), 59 
(semicolon), 60 (less-than sign), 61 (equals sign), 62 (greater-than sign), 63 (question mark), 65 
to 90 (Latin capital letter A to Latin capital letter Z), 92 (reverse solidus), and 97 to 122 (Latin 
small letter a to Latin small letter z). It shall also declare Character names for each of the 
following Character numbers in ISO/IEC 6429: 10 (line feed), and 13 (carriage return). 

It shall be an error for a Single Character name to occur more than once in the standard- 
chars elements in a Single part. The declaration for a Character name in one part in the 
s tandard-chars element type form takes precedence over any declaration for that Character 
name in any later Parts. 

A System may inherently know for a base Character set identified by a public identifier with an 
ISO owner identifier how bit combinations in that Character set correspond to universal Codes. 
Thus, if a base Character set has a formal public identifier that includes an ISO owner identifier, 
and, for each Character used by the document Character set from that base Character set, exactly 
one Character name is declared using the s tandard-chars element type form, then no 
baseset -encoding element type form is required for that base Character set. 

25 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISOAEC 

7.1.5 Other Characters 

The other-chars element type form declares the names of characters in the Character 
repertoire which do not correspond to characters defined in ISO/IEC 10646-1 or ISO/IEC 6429. 

The content of the element shall consist of a list of Character names. 

EXAMPLE 1 

xother-chars> 
1ogoSGML runic-f runic-u 
</other-chars> 

These declarations are cumulative. 

7.1.6 Baseset Encoding 

The baseset-encoding element type form specifies how bit combinations in an SGML 
document whose meaning was declared in the SGML declaration to be that of a Character number 
in a base Character set are to be converted to characters. 

The content of a baseset-encoding element shall consist of a list of pairs of corresponding 
Character numbers, specified in decimal, and Character names. It specifies the Character names 
corresponding to Character numbers in the Character set whose public identifier is given by the 
name characteristic. 

Conflicts between basese t -encoding elements are resolved separately for each Character 
number. There tan be multiple basese t -encoding elements for the Same base Character set, 
but it shall be an error to have two specifications for the Same Character number in the Same base 
Character set in a Single part. 

EXAMPLE2 

xbaseset-encoding name=" Character set for the Viking age runic script"> 
31 runic-f 
32 runic-u 
</baseset-encoding> 

7.1.7 Litera1 Described Character 

The literal-described-char element type form specifies that bit combinations in an 
SGML document whose meaning was declared in the SGML declaration using a minimum literal 
equal to the value of the desc attribute are to be converted to the Character whose name is 
specified in the content of the element. 

EXAMPLE 3 

xliteral-described-char desc=" SGML User% Group logo"> 
1ogoSGML 
</literal-described-char> 

26 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

7.1.8 Sdata Entity Mapping 

7.1.9 Separator Characters 

7.1 .lO Name Characters 

7.1 .ll Character Combination 

72 m 

73 l 

7.3.1 

The map-sdata-ent i ty element type form declares that a reference to an internal SDATA 
entity whose name is equal to the value of the name attribute and/or whose replacement text is 
equal to the value of the text attribute represents the Character whose name is given in the 
content of the element. The content of the element shall be a Single Character name. 

If the grove plan includes the enti ty-name property for the sdata node class, then an 
SDATA entity shall be mapped by first searching for a mapping for its name and then, if no 
mapping is found, searching for a mapping for its text. 

EXAMPLE4 

<map-sdata-entity name="Alpha" text=" [Alpha]">greekA</map-sdata-entity> 
<map-sdata-entity name="V.Beta" text=" [V.Beta]">greekB</map-sdata-entity> 

The add-separator-chars element type forrn declares characters as separator-characters 
allowed in whitespace in the DSSSL transformation and style languages. 

These declarations are cumulative. 

The add-name- chars element type form declares additional characters as added-name- 
characters allowed in identifiers in the DSSSL transformation and style languages. 

These declarations are cumulative. 

The combine-char element type form contains a list of three or more Character names. It 
declares that a sequence of characters comprising the second and following characters shall be 
replaced by the first Character. Use of this element type form requires the combine-char 
feature. 

Public Identifiers 

Within this International Standard, public identifiers shall conform to the canonical string form 
of a public identifier defined in ISO/IEC 9070. 

Lexical Conventions 

Case Sensitivity 

Upper- and lower-case forms of a letter are always distinguished. 

27 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

NOTE 5 Traditionally Lisp Systems are case-insensitive. 

7.3.2 Identif iers 

[l] identifier = initial (subsequent* final)? I peculiar-identifier 

D [2] initial = letter I special-initial I added-name-Character 

[3] letter=alblcI...Izl~lBlCl...lZ 

[4] special-initial = special I : 

special=! 1$1%1&1*1/14=1>1?l~I IA - 

subsequent = initial I digit I special-subsequent 

special-subsequent = . I + I - 

[S] final = letter I special I added-name-Character I digit I special-subsequent 

[9] peculiar-identifier = + I - I . . . 

Most identifiers allowed by other programming languages are also acceptable in DSSSL. In 
addition to letters and digits, identifiers may contain the characters $ %& * / : <=> ? “-” + - . and 
any characters declared as added-name-characters by the add-name-chars or char- 
repertoire element type forms. An identifier shall not begin with a Character that tan begin a 
number; however, +, -, and . . . are identifiers. An identifier shall not end with : (unless the 
entire identifier is : ). 

NOTE6 . . . are three period characters and not a Single ellipsis Character. 

7.3.3 Tokens, Whitespace, and Comments 

[ 101 token = identifier I keyword I boolean I number I Character I string I named-constant I glyph- 
identijier I ( I ) I I I . I ’ I , I , @ 

[ 1 l] delimiter = whitespace I ( I ) I l1 I ; 

[ 121 whitespace = space I record-Start I record-end I tab I form-feed I separator-Character 

[13] comment = ; any-Character-except-record-end* 

[ 141 atmosphere = whitespace I comment 

[ 151 intertoken-space = atmosphere* 

Whitespace characters are spaces, record Starts, record ends, and separator-characters. 
Whitespace is used for improved readability and, as necessary, to separate tokens from each 

28 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

other, a token being an indivisible lexical unit such as an identifier or number, but is otherwise 
insignificant. Whitespace may occur between any two tokens, but not within a token. 
Whitespace may also occur inside a string, where it is significant. 

A semicolon (; ) indicates the Start of a comment. The comment continues to the end of the 
record on which the semicolon appears. Comments are invisible, but the record end is visible as 
whitespace. This prevents a comment from appearing in the m iddle of an identifier or number. 

intertoken-space may occur on either side of any token, but not within a token. 

Tokens which require implicit termination (identifiers, numbers, characters, dot, and # ! 
constants) may be terminated by any delimiter, but not necessarily by anything else. 

8 Expression Language 

The expression language is inspired by the Scheme Programming Language defined in the IEEE 
Scheme Standard, R4RS. The following specification is based on this definition. 

The expression language differs from Scheme in a number of ways: 

- The expression language uses only the functional, side-effect free subset of Scheme. Features 
of Scheme that are not useful in the absence of side-effects have been removed (for example, 
begin). 

- The vector data type is not provided. 

- A Character Object is uniquely identified by its name rather than its Code. 

- Dependencies in Scheme on the ASCII Character set have been removed. 

- The number data type is a subtype of a more general quantity data type that adds the concept 
of dimension to a number. 

- Continuations are not provided. 

- Some optional features of R4RS are not provided. 

- The gcd and lcm procedures are not provided. 

- Keyword arguments are provided. 

In addition, DSSSL specifies certain choices that the definition of Scheme leaves open to 
implernentations. 

A subset of the expression language, called the core expression language, is defined in 8.6. 

29 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

8.1 Overview of the Expression Language 

Following Algol, the expression language is statically scoped. Esch use of a variable is 
associated with a lexically apparent binding of that variable. 

The expression language has latent as opposed to manifest types. Types are associated with 
. values (also called objects) rather than with variables. (Some authors refer to languages with 

latent types as weakly typed or dynamically typed languages.) Other languages with latent types 
are other dialects of Lisp, APL, and Snobol. Languages with manifest types (sometimes referred 
to as strongly typed or statically typed languages) include Algol 60, Pascal, and C. 

All objects created in the course of a computation, including procedures, have unlimited extent. 
No expression language Object is ever destroyed. The reason that implernentations do not 
(usually!) run out of storage is that they are permitted to reclaim the storage occupied by an 
Object if they tan prove that the Object cannot possibly matter to any future computation. Other 
languages in which most objects have unlimited extent include other dialects of Lisp and APL. 

Implernentations are required to be properly tail-recursive. This allows the execution of an 
iterative computation in constant space, even if the iterative computation is described by a 
syntactically recursive procedure. Thus, with a tail-recursive implementation, iteration may be 
expressed using the ordinary procedure-cal1 mechanics, so that special iteration constructs are 
useful only as syntactic sugar. 

Procedures are objects in their own right. Procedures may be created dynamically, stored in data 
structures, retumed as results of procedures, and so on. Other languages with these properties 
include Common Lisp and ML. 

Arguments to procedures are always passed by value, which means that the actual argument 
expressions are evaluated before the procedure gains control, whether the procedure needs the 
result of the evaluation or not. ML, C, and APL are three other languages that always pass 
arguments by value. This is distinct from the lazy-evaluation semantics of Haskell, or the call-by- 
name semantics of Algol 60, where an argument expression is not evaluated unless its value is 
needed by the procedure. 

The expression language, like most dialects of Lisp, employs a fully parenthesized prefix 
notation for expressions and (other) data; the grammar of the expression language generates a 
sublanguage of the language used for data. 

8.2 Basic Concepts 

8.2.1 Variables and Regions 

Any identifier that is not a syntactic-keyword may be used as a variable. A variable may name a 
value. A variable that does so is said to be bound to the value. The set of all visible bindings in 
effect at some Point is known as the environment in effect at that Point. The value to which a 
variable is bound is called the variable’s value. 

30 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179: 1996(E) 

Certain expression types are used to bind variables to new values. The most fundamental of these 
binding constructs is the lambda expression, because all other binding constructs tan be 
explained in terms of lambda expressions. The other binding constructs are le t, 1 et *, and 
letrec expressions. 

Like Algol and Pascal, and unlike most other dialects of Lisp except for Common Lisp, the 
expression language is a statically scoped language with block structure. To each place where a 
variable is bound in an expression there corresponds a region of the expression text within which 
the binding is effective. The region is determined by the particular binding construct that 
establishes the binding; if the binding is established by a lambda expression, for example, then its 
region is the entire lambda expression. Every reference to, or assignment of, a variable refers to 
the binding of the variable that established the innermost of the regions containing the use. If 
there is no binding of the variable whose region contains the use, then the use refers to the 
binding for the variable in the top-level environment, if any; if there is no binding for the 
identifier, it is said to be unbound. 

8.2.2 True and False 

Any expression language value may be used as a boolean value for the purpose of a conditional 
test. All values count as true in such a test except for #f. This International Standard uses the 
word ‘true’ to refer to any value that counts as true, and the word ‘false’ to refer to #f. 

8.2.3 External Representations 

An important concept in the expression language (and Lisp) is that of the externaZ representation 
of an Object as a sequence of characters. For example, an extemal representation of the integer 28 
is the sequence of characters ‘2 8’, and an extemal representation of a list consisting of the 
integers 8 and 13 is the sequence of characters ‘ ( 8 13 ) ‘. 

The extemal representation of an Object is not necessarily unique. The list in the previous 
Paragraph also has the representations ‘ ( 0 8 13 ) ’ and ‘ ( 8 . ( 13 . ( ) ) ) '. 

Many objects have extemal representations, but some, such as procedures, do not. 

An extemal representation may be written in an expression to obtain the corresponding Object. 

Extemal representations may also be used for communicating between processes defined in this 
International Standard. 

The Syntax of extemal representations of various kinds of objects accompanies the description of 
the primitives for manipulating the objects. 

8.2.4 Disjointness of Types 

No Object satisfies more than one of the following predicates: 

boolean? 
pair? 

31 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) OISO/IEC 

synbol? 
keyword? 
quantity? 
char? 
string? 
procedure? 

. These predicates define the types boolean, pair, Symbol, keyword, quantity, char (or Character), 
string, and procedure. 

8.3 Expressions 

An expression is a construct that retums a value, such as a variable reference, literal, procedure 
call, or conditional. 

[ 161 expression = primitive-expression I derived-expression 

Expression types are categorized as primitive or derived. Primitive expression types include 
variables and procedure calls. Derived expression types are not semantically primitive but tan 
instead be explained in terms of the primitive constructs. They are redundant in the stritt sense of 
the word, but they Capture common Patterns of usage, and are, therefore, provided as convenient 
abbreviations. 

8.3.1 Primitive Expression Types 

[ 171 primitive-expression = variable-reference I Litera1 I procedure-cal1 
conditional . 

8.3.1.1 Variable Reference 

[ 181 variable-reference = variable 

I lambda-expression l 

An expression consisting of a variable is a variable reference. The value of the variable reference 
is the value to which the variable is bound. It shall be an error to reference an unbound variable. 

EXAMPLE5 

(define x 28) 
X 3 28 

[19] variable = identifier 

[20] syntactic-keyword = expression-keyword I else I => I define 

[21] expression-keyword =quoteIlambda I if I cond I and I or I casellet I let* I 
letreclquasiquotelunquotelunquote-splicing 

Any identifier that is not a syntactic-keyword may be used as a variable. DSSSL languages may 
reserve identifiers as syntactic-keywords in addition to those listed above. 

32 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

8.3.1.2 Literals 

[22] literal = quotation I self-evaluating 

[23] quotation = I datum l ( quo te datum ) 

( quo t e datum ) evaluates to datum. 

[24] datum = simple-datum I List 

[25] simple-datum = boolean I number I Character I string 
glyph-identifier 

I Symbol I keyword I named-constant I 

datum may be any extemal representation of an expression language Object. This notation is used 
to include literal constants in expressions. A glyph-identifier is allowed only within a style- 
language-body. 

EXAMPLE 6 

(quote a) 
(quote (+ 1 2)) 

*a 
* (+ 1 2) 

( quo t e datum ) may be abbreviated as I datum. The two notations are eauivalent in all 
respects. 

EXAMPLE 7 

'a *a 
IO * 0 
'(+ 1 2) * (+ 1 2) 
'(quote a) * (quote a) 
I I a * (quote a) 

[26] self-evaluating = boolean I number 
identifier 

I Character I string I keyword I named-constant I glyph- 

Boolean constants, numerical constants, Character constants, string constants, keywords,named 
constants, and glyph identifiers evaluate ‘to themselves’; they need not be quoted. 

EXAMPLE 8 

' " abc " 
" abc " 
'145932 
145932 
J #t 
#t 
abc: 
'abc: 

* " abc " 
* I' abc " 
* 145932 
* 145932 
=3 #t 
* #t 
) abc: 
a abc: 

33 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEClOl79:1996(E) OISO/IEC 

8.3.1.3 Procedure Cal1 

[21] procedure-cal1 = (Operator Operand* ) 

[28] Operator = expression 

[29] Operand = expression 

A procedure cal1 is written by simply enclosing in parentheses expressions for the procedure to 
be called and the arguments to be passed to it. The Operator and Operand expressions are 
evaluated, and the resulting procedure is passed the resulting arguments. 

EXAMPLE 9 

(+ 3 4) *7 
((if #f + *) 3 4) * 12 

If more than one of the Operator or Operand expressions Signals an error, it is system-dependent 
which of the errors will be reported to the User. 

A number of procedures are available as the values of variables in the initial environment; for 
example, the addition and multiplication procedures in the above examples are the values of the 
variables + and *. New procedures are created by evaluating lambda expressions. 

Procedure calls are also called combinations. 

NOTE 7 In contrast to other dialects of Lisp, the Operator expression and the Operand expressions are always 
evaluated with the same evaluation rules. 

8.3.1.4 Lambda Expression 

[30] lambda-expression = ( lambda vormal-argument-list) body ) 

A lambda expression evaluates to a procedure. The environment in effect when the lambda 
expression was evaluated is remembered as part of the procedure. When the procedure is later 
called with some actual arguments, the environment in which the lambda expression was 
evaluated shall be extended by binding the variables in the formal argument list to the 
corresponding actual argument values, and the body of the lambda expression shall be evaluated 
in the extended environment. The result of the body shall be returned as the result of the 
procedure call. 

EXAMPLE 10 

(lambda (x) (+ x x)) ) a procedure 
((lambda (x) (+ x x)) 4) ) 8 

(define reverse-subtract 
(lambda (x y) (- y x) 1) 

(reverse-subtract 7 10) g 3 

(define add4 

34 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

Uet ((x 4)) 
Umbda (y) (+ x y)))) 

(add4 6) =3 10 

[3 l] formal-argument-list = required-formal-argument* (# ! optional optional-formal- 
argument*)? (# ! res t rest-formal-argument)? (# ! ke y keyword-formal-argument*)? 

IX1 required-formal-argument = variable 

W l optional-formal-argument = variable I ( (variable initializer) ) 

W l rest-formal-argument = variable 

W l keyword-formal-argument = variable I ( (variable initializer) ) 

m  initializer = expression 

When the procedure is applied to a list of actual arguments, the formal and actual arguments are 
processed from left to right as follows: 

a) Variables in required-formal-arguments are bound to successive actual arguments starting 
with the first actual argument. It shall be an error if there are fewer actual arguments than 
required-formal-arguments. 

b) Next variables in optional-formal-arguments are bound to remaining actual arguments. If 
there are fewer remaining actual arguments than optional-formal-arguments, then the 
variables are bound to the result of evaluating initializer, if one was specified, and otherwise 
to #f. The initializer is evaluated in an environment in which all previous formal arguments 
have been bound. 

c) If there is a rest-formal-argument, then it is bound to a list of all remaining actual arguments. 
These remaining actual arguments are also eligible to be bound to keyword-formal- 
arguments. If there is no rest-formal-argument and there are no keyword-formal-arguments, 
then it shall be an error if there are any remaining actual arguments. 

d) If # ! key was specified in the formal-argument-list, there shall be an even number of 
remaining actual arguments. These are interpreted as a series of pairs, where the first member 
of each pair is a keyword specifying the argument name, and the second is the corresponding 
value. It shall be an error if the first member of a pair is not a keyword. It shall be an error if 
the argument name is not the same as a variable in a keyword-formal-argument, unless there 
is a rest-formal-argument. If the Same argument name occurs more than once in the list of 
actual arguments, then the first value is used. If there is no actual argument for a particular 
keyword-formal-argument, then the variable is bound to the result of evaluating initializer if 
one was specified, and otherwise to #f. The initializer is evaluated in an environment in which 
all previous formal arguments have been bound. 

NOTE 8 Use of # ! key in a formabargument-list in the transformation language or style language requires the 
keyword feature. 

35 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

It shall be an error for a variable to appear more than once in a formal-argument-list. 

EXAMPLE 11 

((lambda x x) 3 4 5 6) =+ (3 4 5 6) 
((lambda (x y #!rest z) z) 

3456) 2 (5 6) 
((lambda (x y #!optional z #!rest r #!key i (j 1)) (list x y z i: i j: j)) 

3 4 5 i: 6 i: 7) 3 (3 4 5 i: 6 j: 1) 

8.3.1.5 Conditional Expression 

[37] conditional = ( i f test consequent alternate ) 

[38] test = expression 

[39] consequent = expression 

[40] alternate = expression 

A conditional is evaluated as follows: first, test is evaluated. If it yields a true value, then 
consequent is evaluated and its value is returned. Otherwise, alternate is evaluated and its value 
is returned. 

EXAMPLE 12 

(if (> 3 2) 'yes 'no) * yes 
(if (> 2 3) 'yes 'no) + no 
(if (> 3 2) 

(- 3 2) 
(+ 3 2)) 31 

8.3.2 Derived Expression Types 

[4 l] derived-expression = cond-expression I case-expression I and-expression I or-expression I 
binding-expression I named-let I quasiquotation 

8.3.2.1 Cond-expression 

[42] cond-expression = (cond cond-clause+) I (cond cond-clause* (ehe expression) ) 

[43] cond-clause = (test expression) I ( test ) I ( test => recipient ) 

[44] recipient = expression 

A cond-expression is evaluated by evaluating the test expressions of each successive cond-clause 
in Order until one of them evaluates to a true value. When a test evaluates to a true value, then the 
result of evaluating the expression in the cond-clause is returned as the result of the entire cond 
expression. If the selected cond-clause contains only the test and no expression, then the value 
of the test is returned as the result. If the cond-clause contains a recipient, then recipient is 
evaluated. Its value shall be a procedure of one argument; this procedure is then invoked on the 

36 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

value of the test. If all tests evaluate to false values, and there is no else clause, then an error is 
signaled; if there is an else clause, then the result of evaluating its expression is retumed. 

EXAMPLE 13 

(cond ((> 3 2) 'greater) 
((K 3 2) 'less)) * greater 

(cond ((> 3 3) 'greater) 
((< 3 3) 'less) 
(eise 'equal) 1 * equal 

8.3.2.2 Case-expression 

[45] case-expression = (case key case-clause+) I (case key case-clause* (ehe 
expression ) ) 

[46] key = expression 

[47] case-clause = ( (datum* ) expression ) 

All the datums shall be distinct. A case-expression is evaluated as follows. key is evaluated and 
its result is compared against each datum. If the result of evaluating key is equal (in the sense of 
equal?) to a datum, then the result of evaluating the expression in the corresponding case- 
clause is retumed as the result of the case-expression. If the result of evaluating key is different 
from every datum, and if there is an else clause, then the result of evaluating its expression is the 
result of the case-expression; otherwise, an error is signaled. 

EXAMPLE 14 

8.3.2.3 

(case (* 2 3) 
((2 3 5 7) 'Prime) 
((1 4 6 8 9) 'composite)) 

(case (car '(c d)) 
((a e i 0 u) 'vowel) 
((w y) 'semivowel) 
(else 'consonant)) 

And-expression 

* composite 

* consonant 

[48] and-expression = (and test* ) 

The test expressions are evaluated from left to right, and the value of the first expression that 
evaluates to a false value is retumed. Any remaining expressions are not evaluated. If all the 
expressions evaluate to true values, the value of the last expression is retumed. If there are no 
expressions then #/t is retumed. 

EXAMPLE 15 

(and (= 2 2) (> 2 1)) * #t 
(and (= 2 2) (< 2 1)) * #f 

37 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

8.3.2.4 

8.3.2.5 

(and 1 2 'c '(f g)) 
(and) 

* (f 9) 
* #t 

Or-expression 

[49] or-expression = ( or test* > 

The test expressions are evaluated from left to right, and the value of the first expression that 
evaluates to a true value is retumed. Any remaining expressions are not evaluated. If all 
expressions evaluate to false values, the value of the last expression is retumed. If there are no 
expressions then #f is retumed. 

EXAMPLE 16 

(or (= 2 2) (> 2 1)) * #t 
(or (= 2 2) (< 2 1)) * #t 
(or #f #f #f) * #f 

Binding expressions 

[50] binding-expression = let-expression I let*-expression 1 letrec-expression 

The three binding constructs 1 et, 1 et *, and letrec give the expression language a block 
structure, Iike Algol 60. The Syntax of the three constructs is identical, but they differ in the 
regions they establish for their variable bindings. In a le t expression, the initial values are 
computed before any of the variables become bound; in a le t * expression, the bindings and 
evaluations are performed sequentially; while in a 1 et rec expression, all the bindings are in 
effect while their initial values are being computed, thus allowing mutually recursive definitions. 

[51] let-expression = ( let bindings body) 

[52] bindings = (binding-spec* ) 

[53] binding-spec = (variable init ) 

[54] init = expression 

It shall be an error for a variable to appear more than once in any bindings. The inits are 
evaluated in the current environment, the variables are bound to the results, and the result of 
evaluating body in the extended environment is retumed. Esch binding of a variable has body as 
its region. 

EXAMPLE 17 

(let ((x 2) (y 3)) 
t* x y)) +6 

(let Ux 2) (y 3)) 
(let Ux 7) 

(z (+ x y))) 
t* z x))) 3 35 

38 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

See also named-let. 

[55] let*-expression = ( let * bindings body ) 

A Zet*-expression is similar to a let-expression, but the bindings are performed sequentially from 
left to right, and the region of a binding indicated by a binding-spec is that part of the let*- 
expression to the right of the binding-spec. Thus, the second binding is done in an environment 
in which the first binding is visible, and so on. 

EXAMPLE 18 

(let ((x 2) (y 3)) 
(let* ((x 7) 

(z (+ x y))) 
t* z x)H J 70 

[56] letrec-expression = (letrec bindings body) 

Esch variable in a binding-spec is bound to the result of evaluating the corresponding init, and 
the result of evaluating body in the extended environment is returned. The inits are evaluated in 
the extended environment. Esch binding of a variable in a binding-spec has the entire Zetrec- 
expression as its region, making it possible to define mutually recursive procedures. It shall be an 
error if the evaluation of an init references the value of any of the variables. In the most common 
uses of le trec, all the inits are lambda expressions, and this restriction is satisfied 
automatically. 

EXAMPLE 19 

(letrec ((even? 
(lambda (n) 

(if (Zero? n) 
#t 
(odd? (- n 1))))) 

(odd? 
(lambda (n) 

(if (Zero? n) 
#f 
(even? (- n 1)))))) 

(even? 88)) 
=3 #t 

8.3.2.6 Named-let 

[57] named-let = ( 1 et variable (binding-spe? ) body ) 

Named le t has the Same Syntax and semantics as ordinary le t except that variable is bound 
within body to a procedure whose formal arguments are the bound variables and whose body is 
body. Thus, the execution of body may be repeated by invoking the procedure named by 
variable. 

- 
39 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


---- 

ISO/IEC 10179:1996(E) OISOAEC 

EXAMPLE 20 

(let loop ((numbers '(3 -2 1 6 -5)) 
(nonneg ' 0 1 
heg 'OH 

(cond ((null? numbers) (list nonneg ne@) 
1 b= (car numbers) 0) 

(loop (cdr numbers) 
(cons (car numbers) nonneg) 
neg) 1 

((< (car numbers) 0) 
(loop (cdr numbers) 

nonneg 
(cons (car numbers) neg))))) 

=+ ((6 1 3) (-5 -2)) 

8.3.2.7 Quasiquotation 

The following grammar for quasiquote expressions is not tontext-free. It is presented as a recipe 
for generating an infinite number of production rules. Imagine a copy of the following rules for 
D = 1, 2, 3, . . . . D keeps track of the nesting depth. 

[58] quasiquotation = quasiquotation- 

[59] template - 0 = expression 

[60] quasiquotation_D = \ template-D I (quasiquote template-D) 

[61] template D - = simple-datum I list-template-D I unquotation_D 

[62] list-template D = - (template-or-splice D* ) I (template-or-splice-D+ . templateD) I - 
’ template D I quasiquotation D+l - - 

[63] Unquotation D = - , template D-l I (Unquote template - D-l ) - 

[64] template-or-splice D = template D I splicing-Unquotation D - - - 

[65] splicing-Unquotation D = , - @template D-l I (Unquote-splicing template-D-l) - 

In quasiquotations, a list-template D may sometimes be confused with either an Unquotation D - - 
or a splicing-unquotationD. The interpretation as an Unquotation-D or splicing-unquotation_D 
takes precedence. 

‘Backquote’ or ‘quasiquote’ expressions are useful for constructing a list structure when most but 
not all of the desired structure is known in advance. If no commas appear within the tem@ a te, 
the result of evaluating \ tem@ a te is equivalent to the result of evaluating ’ templ a te. If a 
comma appears within the templa te, however, the expression following the comma is 
evaluated (‘unquoted’), and its result is inserted into the structure instead of the comma and the 
expression. If a comma appears followed immediately by an at-sign (@), then the following 
expression shall evaluate to a list; the opening and closing parentheses of the list are then 

40 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

‘stripped away’ and the elements of the list are inserted in place of the comma at-sign expression 
sequence. 

EXAMPLE 21 

‘(list ,(+ 1 2) 4) * (list 3 4) 
(let ((name 'a)) ‘(list ,name ',name)) 

(list a (quote a)) 
‘(a ,(+ 1 z ,@(map abs '(4 -5 6)) b) 

* (a 3 4 5 6 b) 
‘((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons))) 

* ((foo 7) . cons) 

Quasiquote forms may be nested. Substitutions are made only for unquoted components 
appearing at the same nesting level as the outermost backquote. The nesting level increases by 
one inside each successive quasiquotation and decreases by one inside each Unquotation. 

EXAMPLE 22 

‘(a '(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f) 
* (a '(b ,(+ 1 2) ,(foo 4 d) e) f) 

(let ((namel 'x) 
(narre2 ‘y) 1 

‘(a '(b ,,namel ,' ,name2 d) e)) 
* (a '(b ,x , 'y d) e) 

The notations \ template D and (quasiquote template-D) are identical in all respects. - 
f expression is identical to (unquo t e expression ) , and , @expression is identical to 
(Unquote-splicing expression). 

EXAMPLE 23 

(quasiquote (list (Unquote (+ 1 2)) 4)) * (list 3 4) 
'(quasiquote (list (Unquote (+ 1 2)) 4)) 

* '(list ,(+ 1 2) 4) i.e., (quasiquote (list (Unquote (+ 1 2)) 4)) 

Unpredictable behavior may result if any of the Symbols quasiquo te, unquo te, or 
unquo te-spl icing appear in positions within a template other than as described above. 

8.4 Definitions 

[66] definition = variable-definition I procedure-definition 

Definitions may take two possible forms. 

[67] variable-definition = ( de fine variable expression ) 

This Syntax is primitive. 

[68] procedure-definition = ( de fine ( variable formal-argument-list) body ) 

This form is equivalent to 

41 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISO/IEC 10179:1996(E) OISO/IEC 

(def ine variable 
(lambda (variable formal-argument-list) body) ) . 

A definition that does not occur within an expression is known as a top-Level definition. 

A top-level definition 

(def ine variable expression) 

evaluates expression in the top-level environment and binds variable to the result in the top-level 
environment. 

EXAMPLE 24 

(define add3 
(lambda (x) (+ x 3))) 

(add3 3) =+ 6 
(define first car) 
(first '(1 2)) *l 

A Single variable shall not be defined by more than one top-level definition in any process 
specification part. A top-level definition of a variable in a process specification part is ignored if 
that variable has been defined at the top level in a previous process specification part. See 7.1. 

The expression in a top-level definition shall not be evaluated until all top-level variables that 
would be referenced by evaluating the expression have been defined. 

NOTE 9 This constraint does not prevent the definition of mutually recursive procedures, because evaluating a 
lambda expression does not reference variables that occur free within it. 

It shall be an error if it is impossible to evaluate all the expressions occurring in top-level 
definitions in such a way that this constraint is not violated. 

The built-in definition of a variable may be replaced by a top-level definition. The replacement 
definition shall be used for all references to that variable, even those that occur in process 
specification Parts preceding the part that contains the first top-level definition. 

NOTE 10 This rule is not easy to implement, but it allows built-in procedures to be added in future Versions of this 
International Standard without changing the meaning of any conforming DSSSL specifications. 

[69] body = deflnition* expression 

Definitions may also occur at the beginning of a body. These are known as internal definitions. 
The variable defined by an intemal definition is local to the body. The region of the binding is the 
entire body. For example, 

tlet t(x 5)) 
(define foo (lambda (y) (bar x y))) 
(define bar (lambda (a b) (+ (* a b) a))) 
Mo0 (+ x 3))) =+ 45 

42 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC 

A body containing intemal definitions may always be converted into a completely equivalent 
le trec expression. For example, the le t expression in the previous example is equivalent to 

tlet ttx 5)) 
(letrec ((foo (lambda (y) (bar x y))) 

(bar (lambda (a b) (+ (* a b) a)))) 
Mo0 t+ x 3)))) 

Just as for the equivalent le t rec expression, it shall be possible to evaluate each expression of 
every intemal definition in a body without referring to the value of any variable being defined. 

8.5 Standard Procedures 

This section describes the expression language’s built-in procedures. The initial (or ‘top-level’) 
environment Starts out with a number of variables bound to useful values, most of which are 
primitive procedures that manipulate data. For example, the variable abs is bound to a 
procedure of one argument that computes the absolute value of a number, and the variable + is 
bound to a procedure that computes sums. 

It shall be an error for a procedure to be passed an argument of a type that it is not specified to 
handle. 

8.51 Booleans 

[70] boolean = #t I #f 

The Standard boolean objects for true and false are written as ##t and #f. What really matters, 
though, are the objects that the conditional expressions (i f, cond, and, or) treat as true or 
false. The Phrase ‘a true value’ (or sometimes just ‘true’) means any Object treated as true by the 
conditional expressions, and the Phrase ‘a false value’ (or ‘false’) means any Object treated as 
false by the conditional expressions. 

Of all the Standard values, only #f counts as false in conditional expressions. Except for #f, all 
Standard values, including #t, pairs, the empty list, Symbols, numbers, strings, and procedures, 
count as true. 

NOTE 11 Programmers accustomed to other dialects of Lisp should be aware that the expression language 
distinguishes both #f and the empty list from the Symbol nil. 

Boolean constants evaluate to themselves, so they don’t need to be quoted in expressions. 

EXAMPLE25 

#t * #t 
#f * #f 
'#f . #f 

8.51 .l Negation 

(not obj) 

43 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

no t returns #+t if ob j is false, and returns #+f otherwise. 

EXAMPLE26 

(not #t) * #f 
(not 3) * #f 
(not (list 3)) * #f 
(not #f) * #t 
bot ' 0) 3 #f 
(not (list)) * #f 
(not 'nil) =3 #f 

8.5.1.2 Boolean Type Predicate 

(boolean? obj) 

boolean? returns ##t if ob j is either #t or #f and returns ##f otherwise. 

EXAMPLE27 

(boolean? #f) * #t 
(boolean? 0) * #f 
(boolean? '0) * #f 

8.5.2 Equivalence 

(equal? objl obj2) 

The equal ? procedure defines an equivalence relation on objects. It retums #t if ob j, and ob j2 
should be regarded as the same Object, and otherwise retums ##f. For objects that have external 
representations, two objects shall be the Same if their extemal representations are the Same. If 
each of objl and obj2 is of type boolean, Symbol, char, pair, quantity, or string, then the 
equal? procedure shall retum #t if and only if: 

- ob j, and ob j2 are both #t or both #f. 

- objl and obj, are both Symbols and 

(string=? (symbol-ostring objl) 
(symbol-ostring obj2)) 

* #t 

- ob jl and ob j2 are both numbers, are numerically equal in the sense of =, and are either both 
exact or both inexact. 

- ob jl and ob j2 are both strings and are the Same string according to the st ring=? 
procedure. 

- ob j, and ob j2 are both characters and are the Same Character according to the char= ? 
procedure. 

- objl and obj, are both the empty list. 

44 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOhEC ISO/IEC 10179:1996(E) 

- ob jl and ob j2 are both pairs and the car of ob j, is equal ? to the car of ob j, and the cdr of 
objl is equal ? to the cdr of obj2. 

If one of ob jl and ob j2 is a procedure and the other is not, then equal ? shall retum #f. If ob jl 
and obj2 are both procedures then equal ? shall retum #f if ob j, and ob j2 would return a 
different value for some arguments, and otherwise shall retum either #t or #f. 

NOTE 12 In other words equality for procedures is not well defined. 

8.5.3 Pairs and Lists 

A pair (sometimes called a dotted pah) is a record structure with two fields called the car and cdr 
fields (for historical reasons). Pairs are created by the procedure cons. The car and cdr fields are 
accessed by the procedures car and cdr. Pairs are used primarily to represent lists. A list may 
be defined recursively as either the empty list or a pair whose cdr is a list. More precisely, the set 
of lists is defined as the smallest set x such that: 

- The empty list is in X. 

- If 1 is t is in X, then any pair whose cdr field contains 1 ist is also in X. 

The objects in the car fields of successive pairs of a list are the elements of the list. For example, 
a two-element list is a pair whose car is the first element and whose cdr is a pair whose car is the 
second element and whose cdr is the empty list. The length of a list is the number of elements, 
which is the same as the number of pairs. 

The empty list is a special Object of its own type (it is not a pair); it has no elements and its length 
1s Zero. 

NOTE 13 The above definitions imply that all lists have finite length and are terminated by the empty list. 

[7 13 list = (datum* ) I (datum+ . datum) I abbreviation 

The most general notation (extemal representation) for pairs is the ‘dotted’ notation ( c1 . c2) 
where c1 is the value of the car field and c2 is the value of the cdr field. For example ( 4 . 5 ) 
is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5 ) is the extemal representation of 
a pair, not an expression that evaluates to a pair. 

A more streamlined notation may be used for lists: the elements of the list are simply enclosed in 
parentheses and separated by spaces. The empty list is written ( ) . For example, 

(a b c d e) 

and 

(a . (b . (c - (d - (e - 0))))) 

are equivalent notations for a list of Symbols. 

45 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOAEC 10179:1996(E) OISO/IEC 

A chain of pairs not ending in the empty list is called an improper list. Note that an improper list 
is not a list. The list and dotted notations may be combined to represent improper lists: 

(a b c . d) 

is equivalent to 

(a . (b l  (c . dJ)) 

Whether a given pair is a list depends upon what is stored in the cdr field. 

[72] abbreviation = abbrev-prefix datum 

[73] abbrev-prefix = I I \ I , I , @ 

Within literal expressions, the forms f datum, ‘daturn, , datum, and , @daturn denote the two- 
element list whose first element are the Symbols quote, quasiquote, unquo te, and 
unquo t e- spl ic ing, respectively. The second element in each case is datum. This 
convention is supported so that arbitrary expressions and portions of the specification may be 
represented as lists. That is, according to the DSSSL expression language grammar, every 
expression is also a datum, and a transformation-language-body is a sequence of datums. 

8.5.3.1 Pair Type Predicate 

(pair? obj) 

Returns #t if ob j is a pair, and otherwise retums ##f. 

EXAMPLE 28 

(pair? '(a . b)) 
(pair? ' (a b c) 1 
(pair? f 0) 

* #t 
3 #t 
a #f 

8.5.3.2 Pair Construction Procedure 

(cons objl obj2) 

Returns a pair whose car is objl and whose cdr is obj2. 

EXAMPLE 29 

(cons 'a '0) * W 
kons '(a) '(b c d)) q Ma) b c d) 
(cons "an '(b c)) * ("a" b c) 
(cons 'a 3) * (a . 3) 
(cons '(a b) 'c) =3 Ha b) . c) 

8.5.3.3 car Procedure 

(car pair) 

46 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISOIEC 10179:1996(E) 

Returns the contents of the car field of pair. Note that it shall be an error to take the car of the 
empty list. 

EXAMPLE 30 

(car ' (a b c) 1 *a 
(car ' t(a) b c d) 1 * W 
(car '(1 . 2)) *l 
(car '0) * error 

8.5.3.4 cdr Procedure 

(cdr pair) 

Returns the contents of the cdr field of pair. Note that it shall be an error to take the cdr of the 
empty list. 

EXAMPLE 3 1 

(cdr ' ( (a) b c d) 1 * (b c d) 
(cdr ' (1 . 2)) *2 
(cdr '0) * error 

8.5.3.5 c...r Procedures 

(caar pair) 
(cadr pair) 
(cdar pair) 
(cddr pair) 
(caaar pak-) 
(caadr pair) 
(cadar pair) 
(caddr pair) 
(cdaar pair) 
(cdadr pair) 
(cddar pair) 
(cdddr pair) 
(caaaar pair) 
(caaadr pair) 
(caadar pair) 
(caaddr pair) 
(cadaar pair) 
(cadadr pair) 
(caddar pair) 
(cadddr pair) 
(cdaaar pair) 
(cdaadr pair) 
(cdadar pair) 
(cdaddr pair) 

47 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

8.5.3.6 

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of these 
procedures in all. 

Empty List Type Predicate 

(null? obj) 

Returns ##t if obj is the empty list, and otherwise retums #I-f. 

8.5.3.7 List Type Predicate 

(list? obj) 

Returns #t if obj is a list, and otherwise retums ##f. By definition, all lists have finite length and 
are terminated by the empty list. 

8.5.3.8 

EXAMPLE32 

(List? ' (a b CH 3 #t 
(list? '0) * #t 
(list? '(a . b)) * #f 

List Construction 

(list obj . ..) 

Returns a list of its arguments. 

8.5.3.9 

EXAMPLE33 

(list 'a (+ 3 4) 'c) 
(list) 

List Length 

(cddaar pair) 
(cddadr pair) 
(cdddar pair) 
(cddddr pair) 

These procedures are compositions of car and cdr, where for example caddr could be defined 
bY 
(define caddr (lambda (x) (car (cdr (cdr x))))). 

=3 (a 7 c) 
- 0 

(length list) 

Returns the length of 1 ist. 

EXAMPLE34 

(length ' (a b CH 33 
(length '(a (b) (c d e))) =3 3 
(length ' 0 1 * 0 

48 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179: 1996(E) 

8.5.3.10 Lists Appendance 

(append list . ..) 

Returns a list consisting of the elements of the first 1 i s t followed by the elements of the other 
lists. 

EXAMPLE35 

(append '(x) '(y)) 
(append '(a) ' (b c d)) 
l append 'b (b)) 'Ud)) 

The last argument may actual 
a proper list. 

* (x y) 
* (a b c d) 
* b W kl 1 

ly be any Object; an improper 

EXAMPLE36 

(append '(a b) '(c . d)) 
(append '0 'a) 

8.5.3.11 List Reversal 

* (a b c . d) 
*a 

(reverse list) 

list results if the last argument is not 

Returns a list consisting of the elements of 1 ist in reverse Order. 

EXAMPLE37 

(reverse ' b b CH 3 (c b a) 
(reverse 'b (b c) d (e (f)))) * ((e (f)) d (b c) a) 

8.5.3.12 Sublist Extraction 

(list-tail List k) 

Returns the sublist of 1 ist obtained by omitting the first k elements. List - tai 1 could be 
defined by 

(define list-tail 
(lambda (x k) 

(if (Zero? k) 
X 

(list-tail (cdr x) (- k 1))))) 

8.5.3.13 List Access 

(list-ref Zist k) 

Returns the kth element of 1 ist. (This is the same as the car of ( 1 ist - tai 1 1 ist k) .) 

49 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

EXAMPLE 38 

(list-ref ‘(a b c d) 2) * c 
(list-ref '(a b c d) 

(inexact->exact (round 1.8))) * c 

8.5.3.14 List Membership 

(member obj list) 

Returns the first sublist of 1 ist whose car is equal? to ob j, where the sublists of 1 ist are the 
non-empty lists returned by (list-tail list k) for kless than the length of list. If obj 
does not occur in 1 is t, then #f (not the empty list) is retumed. 

EXAMPLE 39 

(member 'a '(a b c)) 
(member 'b '(a b c)) 
(member 'a '(b c d)) 

8.5.3.15 Association Lists 

(assoc obj alist) 

al ist (for ‘association 
whose car field is equa 

list’) shal 
l? to ob: 

1 be a list of pairs. This procedure finds the first pair in al ist 
i and retums that pair. If no pair in al is t has ob j as its car, 

then #f (not the empty list) is returned. 

* (a b c) 
* (b c) 
* #f 

EXAMPLE 40 

(define e 'Ma 1) (b 2) (c 3))) 
(assoc ‘a e) * (a 1) 
(assoc ‘b e) * (b 2) 
(assoc 'd e) 3 #f 

NOTE 14 Although they are ordinarily used as predicates, member and assoc do not have question marks in their 
names because they return useful values rather than just ##t or ##f. 

8.54 Symbols 

Symbols are objects whose usefulness rests on the fact that two Symbols are identical (in the 
sense of equal ?) if and only if their names are spelled the Same way. This is exactly the 
property needed to represent identifiers, so most implernentations of Lisp dialects use them 
internally for that purpose. Symbols are useful for many other applications; for instance, they 
may be used the way enumerated values are used in Pascal. Typically, two Symbols may be 
compared for equality in constant time, no matter how long their names. 

[74] Symbol = identifier 

The rules for writing a Symbol are exactly the Same as the rules for writing an identifier. 

50 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

8.5.4.1 Symbol Type Predicate 

(symbol? obj) 

Returns ##t if obj is a Symbol, and otherwise retums ##f. 

EXAMPLE 41 

(synbol7 'foo) . a #t 
(symbol? (car '(a b))) 3 #t 
(symbol? "bar") * #f 
(symbol7 'nil) 
(syrnbol~ 

=9 #t 
. t 0) * #f 

(Symbol? #f) * #f 

8.5.4.2 Symbol to String Conversion 

(symbol+string Symbol) 

Returns the name of sm01 as a string. 

EXAMPLE 42 

(symbol+string 'flying-fish) 
(symbol->string 

(string-xymbol "Malvina")) 

* "flying-fish' 

=3 "Malvina" 

8.5.4.3 String to Symbol Conversion 

(string-xymbol string) 

Returns the Symbol whose name is string. This procedure may create Symbols with names 
containing special characters, but it is usually a bad idea to create such Symbols because they 
have no extemal representation. See symbol-xtring. 

EXAMPLE 43 

(equal7 
(equal; 

'mISSISSIppi 'mississippi) * #f 

(equal; 
'bitBlt (string-xymbol "bitBlt")) * #t 

. 'JollyWog 
(string-wymbol 

(symbol->string 'JollyWog))) * #t 
(string=? 'K. Harper, M-D.' 

(symbol-xtring 
(string-wymbol 'K. Harper, M.D.")) a #t 

8.5.5 Keywords 

Keywords are similar to Symbols. The main differente is that keywords are self-evaluating and 
therefore do not need to be quoted in expressions. They are used mainly for specifying keyword 
arguments. 

[75] keyword = identifier o 

51 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 ISO/IEC 

8.5.5.1 

8.5.5.2 

Keyword Type Predicate 

(keyword? obj) 

Returns #t if obj is a keyword, and 

Keyword to String Conversion 

(keyword-wtring keyword) 

Returns the name of keyword as a string. 

EXAMPLE44 

(keyword+string Argentina:) 3 "Argentina" 

8.5.5.3 String to Keyword Conversion 

(string->keyword string) 

Returns the keyword whose name is string. 

EXAMPLE45 

(string+keyword “foobar ") ) foobar: 

8.5.6 Named Constants 

[76] named-constant = #!optionall#!restl#!key 

Named-constants are used in formal-argument-lists. They are self-evaluating. The named objects 
have their own unique (unnamed) type that is distinct from the type of any other Object. 

8.5.7 Quantities and Numbers 

8.5.7.1 Numerital Types 

A keyword is a Single token; therefore, no whitespace is allowed between the identifier and the : . 
The : is not considered part of the name of the keyword. 

otherwise retums #f. 

The expression language provides a quantity data type which represents lengths and quantities 
derived from lengths, such as areas and volumes. The SI meter is used as the base unit for 
representing quantities. The name of this unit is m. Any quantity may be represented as the 
product of a number and the base unit raised to the power of an integer. The dimension of a 
quantity is the power to which the base unit is raised when the quantity is so represented. A 
quantity with dimension 0 is dimensionless. 

It is convenient to be able to express quantities not only in terms of the base unit but also in terms 
of other derived units. 

[77] unit-declaration = (def ine-uni t unit-name expression) 

52 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 JSO/IEC ISOIIEC 10179: 1996(E) 

8.5.7.2 

expression shall evaluate to a quantity. A unit-declaration declares the derived quantity unit- 
name to be equivalent to this quantity. In this context, unit-name is a separate token. 

Derived units for centimeters, millimeters, inches, picas, and Points, corresponding to the 
following declarations, are pre-defined. 

(define-unit cm O.Olm) 
(define-unit mm O.OOlm) 
(define-unit in 0.0254m) 
(define-unit pt 0.0003527778m) 
(define-unit pica 0.004233333m) 

The number data type is considered to be a subtype of quantity that represents dimensionless 
quantities. The expression language provides two types of number: reals and integers. Integers 
are considered to be a subtype of reals, and reals are a subtype of numbers. For example, the 
integer 3 is also considered to be a real number, which, in turn, is considered to be a 
(dimensionless) quantity. The types quantity, number, real, and integer are defined by the 
predicates quantity ?,number?,real?, and integer?. 

Angle (or more precisely, plane angle) is considered to be a dimensionless quantity (the ratio of 
two lengths). The integer 1 is equivalent to 1 radian. It is recommended that rad be declared as 
the name of a derived unit equal to the dimensionless quantity 1. 

Exactness 

It is necessary to distinguish between quantities that are represented exactly and those that may 
not be. For example, indexes into data structures shall be known exactly. In Order to catch uses 
of inexact quantities where exact quantities are required, the expression language explicitly 
distinguishes exact from inexact quantities. This distinction is orthogonal to the dimension of 
tYPe* 

Quantities are either exact or inexact. A quantity is exact if it was written as an exact constant or 
was derived from exact quantities using only exact operations. A quantity is inexact if it was 
written as an inexact constant, if it was derived using inexact ingredients, or if it was derived 
using inexact operations. Thus, inexactness is a contagious property of a quantity. 

If two implernentations produce exact results for a computation that did not involve inexact 
intermediate results, the two ultimate results shall be mathematically equivalent. This is 
generally not true of computations involving inexact quantities since approximate methods such 
as floating Point arithmetic may be used, but implernentations should make the result as close as 
practical to the mathematically ideal result. 

Rational operations such as + should always produce exact results when given exact arguments. 
If the Operation is unable to produce an exact result, then it may either report the Violation of an 
implementation restriction, or it may silently coerce its result to an inexact value. 

With the exception of inexact - >exac t, the operations described in this section shall 
generally retum inexact results when given any inexact arguments. An Operation may, however, 
retum an exact result if it tan prove that the value of the result is unaffected by the inexactness of 

53 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISOAEC 

its arguments. For example, multiplication of any quantity by an exact zero may produce an 
exact zero result, even if the other argument is inexact. 

8.5.7.3 Implementation Restrittions 

Implernentations may also support only a limited range of numbers of any type, subject to the 
requirements of this section. The supported range for exact numbers of any type may be 
different from the supported range for inexact numbers of that type. For example, an 
implementation that uses floating Point numbers to represent all its inexact real numbers may 
support a practically unbounded range of exact integers while limiting the range of inexact reals 
(and, therefore, the range of inexact integers) to the dynamic range of the floating Point format. 
All implernentations are required to support exact integers between -2147483647 and 
2147483647. 

An implementation shall support exact integers throughout the range of numbers that may be 
used for indexes of lists and strings or that may result from computing the length of a list or 
string. The length and string-length procedures shall return an exact integer, and it shall 
be an error to use anything but an exact integer as an index. Furthermore, any integer constant 
within the index range, if expressed by an exact integer Syntax, shall indeed be read as an exact 
integer, regardless of any implementation restrictions that may apply outside this range. Finally, 
the procedures listed below shall always retum an exact integer result provided all their 
arguments are exact integers and the mathematically expected result is representable as an exact 
integer within the implementation: 

+ 
quotient 
max 
floor 
round 

remainder 
min 
ceiling 
expt 

* 
modulo 
abs 
truncate 

If one of these procedures is unable to deliver an exact result when given exact arguments, then it 
may either report a Violation of an implementation restriction or it may silently coerce its result 
to an inexact number. Such a coercion may Cause an error later. 

An implementation may use floating Point and other approximate representation strategies for 
inexact numbers. 

This International Standard recommends, but does not require, that the IEEE 32-bit and 64-bit 
floating Point Standards be followed by implernentations that use floating Point representations, 
and that implernentations using other representations should match or exceed the precision 
achievable using these floating Point Standards. 

In particular, implernentations that use floating Point representations shall follow these rules. A 
floating Point result shall be represented with at least as much precision as is used to express any 
of the inexact arguments to that Operation. It is desirable (but not required) for potentially 
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers 
whenever possible (for example the Square root of an exact 4 ought to be an exact 2). If, however, 
an exact quantity is operated upon so as to produce an inexact result (as by sqrt), and if the 
result is represented as a floating Point number, then the most precise floating Point format 

54 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

available shall be used; but if the result is represented in some other way, then the representation 
shall have at least as much precision as the most precise floating Point format available. 

If an implementation encounters an exact numerical constant that it cannot represent as an exact 
quantity, then it may either report a Violation of an implementation restriction, or it may silently 
represent the constant by an inexact quantity. 

857.4 Syntax of Numerital Constants 

[78] number = num-2 I num-8 I num-IO I num-14 

[79] num-2 = #b sign? digit-2+ 

[80] num-8 = #o sign? digit-8+ 

[81] num-16 = #x sign? digit-16+ 

[82] num-10 = #d? sign? decimal exponent? unit? 

[83] decimal = digit-IO+ I . digit-IO+ 1 digit-IO+ . digit-lO* 

[84] exponent = exponent-marker sign? digit-+ 

[85] exponent-marker = e 

[86] unit = unit-name (sign? digit-IO+)? 

[87] unit-name = Zetter+ 

[88] sign = + I - 

[89] digit-2 = 0 I 1 

[90] digit-8 = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 

[91] digit-10 = digit 

[92] digit-16 = digit-10 I a I b I c I d I e I f 

[93] digit=0l11213141516171819 

A quantity may be written in binary, octal, decimal, or hexadecimal by the use of a radix prefix. 
The radix prefixes are #b (binary), #o (octal), #d (decimal), and #X (hexadecimal). With no 
radix prefix, a quantity is assumed to be expressed in decimal. 

A numerical constant is inexact if it contains a decimal Point, an exponent or a unit; otherwise, it 
is exact. 

55 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

NOTE 15 The examples used in this section assume that any numerical constant written using an exact notation is 
indeed represented as an exact quantity. Some examples also assume that certain numerical constants written using an 
inexact notation may be represented without loss of accuracy; the inexact constants were Chosen so that this is likely to 
be true in implernentations that use floating Point numbers to represent inexact quantities. 

A numerical constant may have a unit suffix. Esch unit-name shall be the name of the base unit 
or shall be declared by a unit-declaration. A unit-name shall not be an exponent-marker. If no 
number follows the unit-name, the constant is multiplied by the quantity associated with the unit. 
If a number with no sign or a sign of + follows the unit-name, the constant is multiplied by the 
quantity associated with the number name raised to the power of the following number. If a 
number with a sign of - follows the unit-name, the constant is divided by the quantity associated 
with the unit-name raised to the power of the absolute value of the following number. 

8.5.7.5 Number Type Predicates 

(quantity? obj) 
(nurher? obj) 
(real? obj) 
(integer? obj) 

These type predicates may be applied to any kind of argument, including non-quantities. They 
retum #t if the Object is of the named type, and otherwise they retum #f. In general, if a type 
predicate is true of a quantity, then all higher type predicates are also true of that quantity. 
Consequently, if a type predicate is false for a quantity, then all lower type predicates are also 
false for that quantity. 

If x is an inexact real number, then ( integer? x) is true if and only if ( = x ( round x) ) . 

EXAMPLE46 

(real? 3) 
(integer? 3.0) 

* #t 
* #t 

NOTE 16 The behavior of these type predicates on inexact quantities is unreliable, since any inaccuracy may affect 
the result. 

8.5.7.6 Exactness Predicates 

(exact? 4) 
(inexact? 9) 

These numerical predicates provide tests for the exactness of a quantity. For any quantity, 
precisely one of these predicates is true. 

8.5.7.7 Comparison Predicates 

( = q1 92 93 l J 
(< 41 92 93 J 
(> Cl1 92 43 l -) 
(<= q1 92 93 l *J 

56 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

8.5.7.8 

8.5.7.9 

8.5.7.10 

(>= 
91 q2 q3 l  * *  ) 

These procedures retum #t if their arguments are (respectively): equal, monotonically increasing, 
monotonically decreasing, monotonically nondecreasing, or monotonically nonincreasing. 

These predicates are required to be transitive. 

The dimensions of all the arguments shall be identical. 

NOTE 17 While it is not an error to compare inexact quantities using these predicates, the results may be unreliable 
because a small inaccuracy may affect the result; this is especially true of = and Zero?. 

Numerital Property Predicates 

(Zero? q) 
(positive? q) 
(negative? q) 
(odd? n) 
(even? n) 

These predicates test a quantity for a particular property, retuming #It or #f. See note above. 

Maximum and Minimum 

(max ql 92 . . . 1 
(min q  q2 l  . . 1  

These procedures retum the maximum or minimum of their arguments. The dimensions of all the 
arguments shall be identical; the dimension of the result shall be the same as the dimension of the 
arguments. 

EXAMPLE47 

(max 3 4) *4 ; exact 
(max 3.9 4) * 4.0 ; inexact 

NOTE 18 If any argument is inexact, then the result shall also be inexact (unless the procedure tan prove that the 
inaccuracy is not large enough to affect the result, which is possible only in unusual implernentations). If min or max 
is used to compare quantities of mixed exactness, and the numerical value of the result cannot be represented as an 
inexact quantity without loss of accuracy, then the procedure may report a Violation of an implementation restriction. 

Addition 

(+ q1 l *J 

Returns the sum of its arguments, which shall all have the Same dimension. The result shall have 
the Same dimension as the arguments. 

57 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IlK10179:1996(E) 0 ISO/IEC 

EXAMPLE 48 

(+ 3 4) 
(+ 3) 
(+) 

-7 
*3 
* 0 

8.5.7.11 Multiplication 

Returns the product of its arguments. The dimension of the result shall be the sum of the 
dimensions of the arguments. 

EXAMPLE 49 

t* 4) 34 
(*) * 1 

8.5.7.12 Subtraction 

(-- q s-2) 
(-- 9) 
( - 41  q2  l  **  ) 

With two or more arguments, returns the differente of its arguments, associating to the left; with 
one argument, returns the negation of its argument. The dimensions of all the arguments shall be 
identical. The dimension of the result shall be the Same as the dimension of the arguments. 

EXAMPLE 50 

(- 3 4) * -1 
(- 3 4 5) 3 -6 
(- 3) * -3 

8.5.7.13 Division 

(1 41 s-2) 
(1 9) 
( / q1  q2  l  **  > 

With two or more arguments, returns the quotient of its arguments, associating to the left; with 
one argument, returns 1 divided by the argument. The dimension of the result shall be the 
differente of the dimensions of each of the arguments. 

EXAMPLE 5 1 

(/ 3 4 5) * 3/20 
(/ 3) =3 1/3 

8.5.7.14 Absolute Value 

bbs q) 

Returns the magnitude of its argument. 

58 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/lEC ISO/IEC 10179:1996(E) 

EXAMPLE52 

(abs -7) *7 

8.5.7.15 Number-theoretic Division 

(quotient nl n2) 
(remainder nl IQ) 
(modulo nl n2) 

These procedures implement number-theoretic (integer) division: For positive integers “1 and 
“2, if n3 and na are integers such that nl = npz3 +q and 0 5 n4 < n2, then the following is true. 

(quotient nl 12~) * n3 
(remainder nl n2) * n4 
(modulo nl n2) * n4 

For integers nl and n2 with n2 not equal to 0, 

(= n1 (+ (* n 2 (quotient I2l I22)) 
(remainder nl IQ))) 

* #t 

provided all numbers involved in that computation are exact. The value returned by quo t ient 
always has the sign of the product of its arguments. remainder and modulo differ on negative 
arguments - the remainder is either zero or has the sign of the dividend, whereas the modulo 
always has the sign of the divisor: 

EXAMPLE53 

(modulo 13 4) *l 
(remainder 13 4) -1 

(modulo -13 4) *3 
(remainder -13 4) * -1 

(modulo 13 -4) a -3 
(remainder 13 -4) =Sl 

(modulo -13 -4) 3 -1 
(remainder -13 -4) 3 -1 

(remainder -13 -4.0) * -1.0 ; inexact 

8.5.7.16 Real to Integer Conversion 

(floor x) 
(ceiling x) 
(truncate x) 
(round x) 

These procedures retum integers. 

59 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) OISO/IEC 

f loor retums the largest integer not larger than x. teil ing retums the smallest integer not 
smaller than x. t runcat e retums the integer closest to x whose absolute value is not larger than 
the absolute value of x. round retums the closest integer to x, rounding to even when x is 
halfway between two integers. 

NOTES 

19 round rounds to even for consistency with the default rounding mode specified by the IEEE floating Point 
Standard. 

20 If the argument to one of these procedures is inexact, then the result shall also be inexact. If an exact value is 
needed, the result should be passed to the inexact ->exac t procedure. 

EXAMPLE 54 

(floor -4.3) - -5.0 
(ceiling -4.3) ==3 -4.0 
(truncate -4.3) =2 -4.0 
(round -4.3) * -4.0 

(floor 3.5) 
(ceiling 3.5) 
(truncate 3.5) 
(round 3.5) 

* 3.0 
* 4.0 
* 3.0 
* 4.0 ; inexact 

(round 7) -i7 

8.5.7.17 en and Natura1 Logarithm 

(exp x) 
(log XI 

Returns e raised to the power of x. log computes the natura1 logarithm of x (not the base-ten 
logarithm). If x is zero or negative, an error shall be signaled. 

8.5.7.18 Trigonometrie Functions 

(sin x) 
(cos x) 
(tan x) 

sin, cos, and tan retum the sine, cosine, and tangent of their arguments, respectively. The 
result shall be a number. 

8.5.7.19 Inverse Trigonometrie Functions 

(asin x) 
(acos x) 
(atan x) 
btan ql q2) 

60 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/IEC 

8.5.7.20 

8.5.7.21 

8.5.7.22 

8.5.7.23 

8.5.7.24 

asin, acos, and atan retum the artsine, arccosine, and arctangent of their arguments, 
respectively. The result shall be a number. The two-argument variant of a tan retums the angle 
of the complex number whose real part is the numerical value of q2 and whose imaginary part is 
the numerical value of ql; the dimensions of ql and q2 shall be identical. 

as in retums a value in the range 42 to W2. acos retums a value in the range 0 to YL atan 
retums a value in the range -7U2 to W2. 

Square Root 

(sqrt 9) 

Returns the Square root of q. The dimension of q shall be even. The dimension of the result shall 
be half the dimension of q. If q is negative, an error is signaled. 

Exponentiation 

kxpt x1 3) 

Returns x1 raised to the power x 2. ( expt x1 0 ) is defined to be equal to 1. 

Exactness Conversion 

(exact-Cnexact q) 
(inexact->exact q) 

Exac t - > inexac t retums an inexact representation of q. The value retumed is the inexact 
quantity that is numerically closest to the argument. If an exact argument has no reasonably close 
inexact equivalent, then a Violation of an implementation restriction may be reported. 

Inexac t - >exac t retums an exact representation of q. The value retumed is the exact 
quantity that is numerically closest to the argument. If an inexact argument has no reasonably 
close exact equivalent, then a Violation of an implementation restriction may be reported. 

These procedures implement the natura1 one-to-one correspondence between exact and inexact 
integers throughout an implementation-dependent range. 

Quantity to Number Conversion 

(quantity+number q) 

Returns the number of the quantity q. 

Number to String Conversion 

(number-ostring number) 
(number-ostring number radix) 

61 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

Radix shall be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to 10. The 
procedure number->s tring takes a number and a radix and retums as a string an extemal 
representation of the given number in the given radix such that 

(let ((nurher number) 
(radix Radio)) 

(equal? number 
(string->number (number-Xtring number 

radix) 
radix))) 

is true. It shall be an error if no possible result makes this expression true. 

If number is inexact, the radix is 10, and the above expression may be satisfied by a result that 
contains a decimal Point, then the result contains a decimal Point and is expressed using the 
minimum number of digits (exclusive of exponent and trailing zeroes) needed to make the above 
expression true; otherwise, the format of the result is unspecified. 

The result retumed by number->s tring never contains an explicit radix prefix. 

NOTE 21 If number is an inexact number represented using floating-Point numbers, and the radix is 10, then the 
above expression is normally satisfied by a result containing a decimal Point. The unspecified case allows for 
infinities, NaNs, and non-floating-Point representations. 

(format-number n string) 

Returns a string representation of n. string specifies the format to use as follows: 

- lmeansuseo, 1,2 . . . 

- 01 means use 00, 01,02, . . . 10, 11 . . . 100, 101 . . . and similarly for any number of leading 
Zeros; 

- a means use 0, a, b, c, . . . z, aa, ab, . . . 

-AmeansuseO,A,B,C, . ..Z.AA,AB, . . . 

i means use 0, i, ii, iii, iv, v, vi, vii, viii, ix, x, . . . 

- 1 means use 0, 1, 11,111, IV, V, VI, VII, VIII, IX, X, . . . 

(format-number-list list objl obj,) 

Returns a string representation of 1 i s tr, where 1 i s t is a list of integers. ob j, specifies the 
format to use for each number. It shall be either a Single string specifying the format to use for 
all numbers in the same manner as f ormat -number or a list of strings with the same number of 
members as 1 i s t specifying the format to use for each string in the Same manner as f orma t - 
number. obj2 is either a Single string or a list of strings specifying the separator to be used 
between the strings representing each number; it shall contain either a Single string or a list of 
strings with one fewer members than 1 i s t. 

62 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 I(SO/IEC ISO/IEC 10179: 1996(E) 

8.5.7.25 String to Number Conversion 

(string->number string) 
(string->number string radix) 

Returns a number of the maximally precise representation expressed by the given string. 
radix shall be an exact integer, either 2, 8, 10, or 16. If supplied, radix is a default radix that 
may be overridden by an explicit radix prefix in string (e.g., 11 #ol77 ll). If radix is not 
supplied, then the default radix is 10. If s tririgg is not a syntactically valid notation for a 
number, then string-xumber returns ##f. 

8.5.8 

EXAMPLE55 

(string-xnmber 700") 
(string-mumber "100" 16) 
(string-mumber Ye2") 

Characters 

* 100 
* 256 
* 100.0 

The Character Object represents a Character. 

[94] Character = # \ any-Character I # \ Character-name 

[95] Character-name = Zetter (Zetter I digit l - I . )+ 

Characters are written using the notation # \character or # \ Character-name. For example: 

- # \a: lower-case letter ‘a’ 

- # \A: upper-case letter ‘A’ 

- # \ ( : left parenthesis 

- # \ : the space Character 

- # \ space: the preferred way to write a space 

If the Character in # \any-Character is alphabetic, then the Character following any-Character 
shall be a delimiter Character such as a space or parenthesis. This rule resolves the ambiguous 
case where, for example, the sequence of characters ‘# \ space' could be taken to be either a 
representation of the space Character or a representation of the Character ‘# \ s’ followed by a 
representation of the Symbol ‘Pace.' 

The Character-name shall be the name of a Character declared in the Character repertoire 
declaration. 

Characters written in the # \ notation are self-evaluating. That is, they do not have to be quoted in 
expressions. 

63 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

8.5.8.1 Character Properties 

--- 

Every Character has a set of named properties. Esch property has a default value. 

[96] Character-property-declaration = (declare-char-property identijierexpression) 

This declares identijier to be a Character property with the default value equal to the value of 
expression. 

[97] added-char-properties-declaration = ( add- 
Character+) 

char-properties keyword-argument-list 

[98] keyword-argument-list = (keyword expression)* 

The added-char-properties-declaration adds properties to each of the characters. The keyword- 
argument-list specifies the properties to be added. The keyword specifies the property name, and 
the expression specifies the property value. Esch property either shall be a property that is pre- 
defined in this International Standard or it shall be explicitly declared using a character- 
property-declaration. 

The following Character ProPertY is pre-defined: 

-numer ic-equiv: is an integer giving the numeric equivalent of the 
default value is #f. 

Character or #f. The 

Additional properties are pre-defined for the style language. 

8.5.8.2 Language-dependent Operations 

Certain operations on characters such as case-conversion and collation are dependent on the 
natura1 language for which the characters are being used. The language data type describes how 
language-dependent operations should be performed. Expressions may be evaluated with respect 
to a current language. It shall be an error to cal1 procedures which use the current language if 
there is no current language. 

Some of the procedures that operate on characters ignore the differente between upper case and 
lower case. The procedures that ignore case have ‘ -c i ’ (for ‘case-insensitive’) embedded in 
their names. These procedures always behave as if they converted their arguments to upper case. 
These procedures all use the current language. See 8.5.8.5 for these procedures. 

(language? obj) 

Returns ##t if obj is of type language, and otherwise retums #f. 

(current-language) 

At any Point in a computation there may be a current language. current - language retums 
the current language if there is one, and otherwise retums #f. 

64 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

[99] default-language-declaration = (declare-default-language expression) 

A default-language-declaration declares the current language which is used initially in the 
evaluation of an expression. The expression shall evaluate to a language Object. 

(with-language 1anguage proc) 

The wi th-language procedure calls proc, which shall be a procedure of no arguments, with 
Ianguage as the current language. 

8.5.8.2.1 Language Definition 

[ 1001 language-definition = (de fine - language variable [[collation-speciflcation? I 
toupper-specification? I tolower-specification?]] ) 

A language-definition defines variable to be an Object of type language. 

8.5.8.2.1 .l Collation 

[ 10 1 ] collation-specification = ( col lat e [[multi-collating-element-specification* I collating- 
symbol-specification*]] order-specijkation ) 

A collation-specification determines the relative Order of strings. 

NOTE 22 The Syntax of the collation-specification is based on ISO 99452, which contains examples that may assist 
the reader. 

[ 1021 multi-collating-element-specification = ( e lernen t multi-collating-element string ) 

[ 1031 multi-collating-element = identifier 

When two strings are compared, each string is divided up into collating elements. Esch collating 
element is either a Single Character or a sequence of consecutive characters that is to be treated as 
a Single unit. A multi-collating-element-specification declares that the sequence of characters in 
the string is to be treated as a collating element. Within the order-specification, this collating 
element is identified by the multi-collating-element. Identifiers declared as multi-collating- 
elements shall be distinct from those used as weight-identifiers. 

[ 1041 collating-symbol-specification = ( symbo 1 weight-identifier) 

[ 1051 weight-identifier = identifier 

A collating-symbol-specification declares that weight-identijier is a symbolic identifier for a 
weight, which may be used within the order-specification. 

[ 1061 order-specification = (Order sort-rules collation-entry* ) 

[107] sort-rules = ( level-sort-rules+ ) 

65 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISOAEC 

Esch Order specification defines a number of different comparison levels. If two strings compare 
equal at the first level, they are compared at the second level. If they also compare equal at the 
second level, they are compared at the third level. This process is repeated until there are no 
more levels or until the strings compare unequal. The number of levels in the Order specification 
is determined by the number of level-sort-rules. 

[ 1081 level-sort-rules = sort-keyword I ( (sort-keyword+) ) 

[ 1093 sort-keyword = forwardlbackwardlposition 

The leveI-sort-rules determine for each level how the strings are to be compared. At a given 
level, each col lat ing-element in the strings to be compared is assigned zero or more 
weights. This results in an ordered list of weights for each string. 

The backward and f orward sort-keywords determine the comparison direction for the level. 
If the backward sort-keyword is specified, then comparison proceeds from the last weight to the 
first; otherwise, it proceeds from the first weight to the last. 

If the pos i t ion sort-keyword is specified, then the Position of the collating element 
corresponding to each weight is considered when comparing weights. When comparing two 
weights with different positions, the weight with the earlier Position (in the comparison 
direction) shall collate first. 

A Single Zevel-sort-rules shall not contain both f orward and backward. 

[ 1101 collation-entry = ( ( collating-element Level-weight* ) ) 
element 

weight-identifier I collating- 

Esch collation entry is associated with a weight determined by its Position in the order- 
speciflcation. The first collation entry is associated with the lowest weight, the second with the 
next lowest weight, and so on. 

When a collation-entry is a weight-identifier, then the effect of the collation-entry 
the weight-identifier with the weight with which the collation-entry is associated. 

is to associate 

A collation-entry that contains a collating-element serves two purposes. First, it assigns weights 
for each level to the collating-element. Second, it makes collating-element stand for the weight 
associated with the collation-entry when the collating-element is used in a weight. 

If a level-weight is not specified for some level, then the Single weight associated with the 
collation-entry shall be assigned. For example, a collation-entry of # \ a is equivalent to a 
collation-entry of ( # \ a # \ a) . 

[ 11 l] collating-element = Character 1 multi-collating-element I #t 

When ##t is used as a collating-element, then the specified weights are assigned to all collating 
elements to which no weight has been explicitly assigned by a collation-entry. 

66 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/IEC ISO/IEC 10179:1996(E) 

[ 1121 level-weight = weight l weight-list 

[113] weight-list = ( weight* ) 

The Level-weight specifies the weights to be assigned for a particular level. 

[ 1141 weight = weight-identifier I multi-collating-element I Character I string 

Specifying a string is equivalent to specifying a list of the characters it contains. 

8.5.8.2.1.2 Case Conversion 

[ 1151 toupper-specification = ( t oupper case-conversion-list ) 

[ 1161 tolower-specification = ( t 01 ower case-conversion-list > 

[ 1171 case-conversion-list = ( ( Character Character) )* 

In the case-conversion-Zist, the upper-case or lower-case equivalent of the first Character in each 
pair is the second Character in that pair according as the case-conversion-Zist occurs in a toupper- 
specification or a tolower-speciflcation. 

8.5.8.3 Character Type Predicate 

(char? obj) 

Returns ##t if obj is a Character, and otherwise retums ##f. 

8.5.8.4 Character Comparison Predicates 

(char=? chaq chaq) 
(charx? chaq chaq) 
(char>? chaq chaq) 
(char<=? chaq chaq) 
(char>=? chaq chaq) 

These procedures impose a total ordering on the set of characters. All the procedures other than 
char=? use the current language. 

8.5.8.5 Case-insensitive Character Predicates 

(char-ci=? chaq chaq) 
(char-ci<? chaq chaq) 
(char-ci>? chaq chaq) 
(char-ci<=? chaq chaq) 
(char-ci>=? chaq chaq) 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


--- 

0 ISO/IEC 

8.5.8.6 

8.5.8.7 

8.5.9 

These procedures are similar to char- -? etc., but they treat upper-case and lower-case letters as 
the Same. All these procedures use the current language. For example, ( char-ci =? # \A 
# \ a ) retums #t. 

Character Case Conversion 

(char-upcase char) 
(char-downcase char) 

The procedures retum the upper- or lower-case equivalent of char as defined by the current 
language. If char has no upper- or lower-case equivalent, char is retumed. 

Character Properties 

(char-property Symbol char) 
(char-property synbol char obj) 

Returns the value of the property Symbol of char. If symbol is not a Character property, an 
error is signaled. If char does not have a property Symbol, then ob j is retumed, or if ob j was 
not specified, the default value of the property is retumed. 

Strings 

Strings are sequences of characters. 

[118] string = ‘1 string-element* ‘1 

[ 1191 string-element = any-character-other-than- “-OP\ I \ ft I \ \ I \character-name ; ? 

Strings are written as sequences of characters enclosed within doublequotes ( lt). A doublequote 
may be written inside a string by escaping it with a backslash (\), as in 

"The word \"recursion\" has many meanings." 

A backslash may be written inside a string by escaping it with another backslash. Any Character 
may be written inside a string by writing its name after a backslash. The name shall be followed 
by a semi-colon, unless there are no following characters in the string, or the following Character 
is not a subsequent. The name used here is the Same as the name used in #\ Syntax for characters. 

A string constant may continue from one record to the next and shall contain the characters that 
separate the two records in the entity. 

The length of a string is the number of characters that it contains. This number is a non-negative 
integer that is fixed when the string is created. The valid indexes of a string are the exact non- 
negative integers less than the length of the string. The first Character of a string has index 0, the 
second has index 1, and so on. 

In phrases such as ‘the characters of string beginning with Index s tart and ending with 
index end,' it is understood that the index s tart is inclusive and the index end is exclusive. 

68 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

Thus, if start and end are the Same index, a null substring is referred to, and if start is zero 
and end is the length of string, then the entire string is referred to. 

Some of the procedures that operate on strings ignore the differente between upper and lower 
case by converting the strings to upper case before performing the Operation. The Versions that 
ignore case have ‘ -ci' (for ‘case-insensitive’) embedded in their names. 

8.5.9.1 String Type Predicate 

(string? obj) 

Returns #t if obj is a string, and otherwise returns #f. 

8.5.9.2 String Construction 

(string char -.) 

Returns a string composed of the arguments. 

8.5.9.3 String Length 

(string-length string) 

Returns the number of characters in the given string. 

8.5.9.4 String Access 

(string-ref string k) 

k shall be a valid index of string. s tring-ref retums Character k of string using zero- 
origin indexing. 

8.5.9.5 String Equivalence 

(string=? stringl stringz) 
(string-ci= ? stringl stringz) 

Return #t if the two strings are the Same length and contain the Same characters in the Same 
positions, and otherwise retum #K. s t ring- ci = 3 treats upper- and lower-case letters as though . 
they were the Same Character, but s tring- -? treats upper- and lower-case letters as distinct 
characters. string-ci= ? uses the current language. 

(string-equiv. 3 stringl stringz k) 

Returns #t if the two strings compare the Same at the first k comparison levels of the collation 
specification of the current language, and otherwise retums #f. k shall be strictly positive. 

8.5.9.6 String Comparison 

(stringx? stringl string2) 

69 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 ISO/IEC 

8.5.9.7 

8.5.9.8 

8.5.9.9 

8.510 

8.5.10.1 

(string>? <stringl stringz) 
(string<=? stringl stringz) 
(string>=? stringl stringz) 
(string-ci< ? stringl stringz) 
(string-ci> ? stringl stringz) 
(string-ci<= ? stringl stringz) 
(string-ci>= ? stringl stringz) 

These procedures are the lexicographic extensions to strings of the corresponding erderings on 
characters. For example, s t r ing< ? is the lexicographic ordering on strings induced by the 
ordering char<. 3 on characters. If two strings differ in length but are the Same up to the length 
sf the shorter string, the shorter string is considered to be lexicographically less than the longer 
string. These procedures use the current language. 

Substring Extraction 

(substring string Start end) 

Returns a string formed from the characters of s tring beginning with index s tart (inclusive) 
and ending with index end (exclusive). 

String Appendance 

(string-append string . ..) 

Returns a string formed by the concatenation of the given strings. 

Conversion between Strings and Lists 

(string->list string) 
(list-xtring chars) 

s t ring- >1 i st retums a list of the characters that make up the given string. 1 ist - >s tring 
retums a string formed from the characters in the list chars. st r ing- >1 ist and 1 ist - 
xtring are inverses so far as equal? is concemed. 

Procedures 

Procedure Type Predicate 

(procedure? obj) 

Returns #t if ob j is a procedure, and otherwise retums ##f. 

EXAMPLE 56 

(procedure? car) -4 #t 
(procedure? 'car) =3 #f 
(procedure? (lambda (x) (* x x))) 

a #t 

70 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

(procedure? '(lambda (x) (* x x))) 
* #f 

8.5.10.2 Procedure Application 

(apply proc args) 
(apply proc arg1 -. args) 

Proc shall be a procedure and args shall be a list. The first (essential) form calls proc with the 
elements of args as the actual arguments. The second form is a generalization of the first that 
calls proc with the elements of the list (append ( list arg1 . ..) args) as the actual 
arguments. 

EXAMPLE 57 

(apply + (list 3 4)) -47 

(define compose 
(lambda (f g) 

(lambda args 
(f bpply g args))))) 

((compose sqrt *) 12 75) * 30 

8.5.10.3 Mapping Procedures over Lists 

(map proc list, list, . ..) 

The 1 is ts shall be lists, and proc shall be a procedure taking as many arguments as there are 
1 i s ts. If more than one 1 ist is given, then they shall all be the same length. map applies proc 
element-wise to the elements of the 1 i s ts and retums a list of the results, in Order from left to 
right. 

EXAMPLE 58 

(map cadr 'Ma b) td e) (g h))) a tb e hl 

(map (lambda (n) (expt n n)) 
'(1 2 3 4 5)) * (1 4 27 256 3125) 

(mp + '(1 2 3) '(4 5 6)) * (5 7 9) 

8.5.10.4 Extemal Procedures 

(external-procedure string) 

Returns a procedure Object which when called shall execute the extemal procedure with public 
identifier string. If the System is unable to find the extemal procedure, then #f is retumed. The 
arguments passed to the procedure Object shall be passed to the extemal procedure. If the number 
or type of arguments do not match those expected by the extemal procedure, then an error may 
be signaled. The result of the extemal procedure shall be retumed as the result of the cal1 of the 
procedure Object. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

Extemal procedures should be side-effect free, and implernentations are free to assume that they 
are. They should be used to retrieve information from the System rather than to Change the state 
of the System. 

8.5.11 Date and Time 

(time) 
(time-xtring k) 
(time-xtring k boolean) 

time retums the number of seconds since 1970-01-01 0O:OO:OO GMT as an integer. 

t ime- >s tring converts an integer representation as retumed by t ime of the time and date 
into a string in the format of ISO 8601. 

If the bool ean argument is present and true, then the string representation shall be in GMT; 
otherwise the string shall be in local time. 

(timet? stringl 
(time>? stringl 
(time<=? string 
(time>=? string 

stringz) 
stringz) 

'1 stringz 
-1 stringz 

These procedures impose a total ordering on the set of strings that represent dates and times in 
ISO 8601 format. It shall be an error if any argument does not represent a date or time in ISO 
8601 format. 

8.5.12 Error Signaling 

(error string) 

error Signals an error. The s tring argument describes the error. The action a System takes 
when an error is signaled is system-dependent. In particular, the manner in which the error is 
reported to the user is system-dependent. It should, however, use string in its report and 
describe the context in which the error occurred. No value is retumed from error. 

8.6 Core Expression Language 

This clause defines a subset of the expression language called the core expression Zanguage. In 
the core expression language, only those expressions and definitions allowed by the productions 
in this clause are permitted, and only those procedures with prototypes in this clause are 
available. Any expression or definition that is valid in the core expression language has the Same 
meaning that it does in the full expression language. 

8.6.1 Syntax 

[ 1201 expression = primitive-expression I derived-expression 

72 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 iSO/IEC ISO/IEC 10179:1996(E) 

[ 12 1] primitive-expression = variable-reference I Litera1 I procedure-cal1 I conditional 

[ 1221 variable-reference = variable 

[ 1231 variable = identifier 

[ 1241 literal = quotation I self-evaluating 

[ 1251 quotation = f datum I ( quo t e datum ) 

[ 1261 datum = simple-datum I list 

[ 1271 simple-datum - - boolean I number I Character I string I Symbol I keyword I glyph-identifier 

[128] list = (datum*) I I datum 

[ 1291 self-evaluating = boolean I number I c 

[ 1301 procedure-cal1 = ( Operator Operand* 

[ 13 l] Operator = expression 

[ 1321 Operand = expression 

Bharacter I string I keyword I glyph-identifier 

[ 1331 conditional = ( i f test consequent alternate) 

[ 1341 test = expression 

[ 1351 consequent = expression 

[ 1361 alternate = expression 

[ 1371 derived-expression = cond-expression I case-expression I and-expression I or-expression 

[ 1381 cond-expression = (cond cond-clause+) I (cond cond-clause* (else expression) ) 

[ 1391 cond-clause = ( test expression ) 

[ 1401 case-expression = (case key case-clause+) I (case key case-clause* (else 
expression ) ) 

[ 1411 key = expression 

[ 1421 case-clause = ( (datum* ) expression ) 

[ 1431 and-expression = ( and test* ) 

[ 1441 op-expression = ( or test* ) 

73 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

[ 1451 definition = ( de fine variable expression > 

8.6.2 Procedures 

(not obj) 
(boolean? obj) 
(equal? objl objz) 
(null? obj) 
(list? obj) 
(list obj . ..> 
(length list) 
(append list . ..> 
(reverse list) 
(list-tail list k) 
(list-ref list k) 
(member obj list) 
(symbol? obj) 
(keyword? obj) 
(quantity? obj) 
(number? obj) 
(real? obj) 
(integer? obj) 
( = q 92 93 J 
(< q1 92 93 l  -• ) 

( ’ q 92 93 J 
(<= q1 q2 qj J 
(>= 41 92 93 l *J 
bax q l  q2  l  . . > 

bin 41 q2 l J 
(+ q1 J 
( *  q  l  -e 1  

(- 41  s2) 

(- 9) 

(1 q  92) 

(1 4) 

bbs q) 

(quotient nl 122) 
(remainder nl 19) 
(modulo nl 122) 
(floor x) 
(ceiling x) 
(truncate x) 
(round x) 
(sqrt 9) 
(number-ostring number) 

74 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

(number-ostring number radix) 
(string->number string) 
(string->number string radix) 
(char? obj) 
(char=? chaq char2) 
(char-property spnbol char) 
(char-property symbol char obj) 
(string? obj) 
(string char . ..) 
(string-length string) 
(string-ref string k) 
(string=? stringl string2) 
(substring string Start end) 
(string-append string . ..) 
(procedure? obj) 
bpply proc args) 
(external-procedure string) 
(time) 
(time-ostring k) 
(time-wtring k boolean) 
(error string) 

9 Groves 

A grove is a set of nodes constructed according to a grove plan. Every node in the grove belongs 
to a named class in the grove plan. A node is a set of property assignments, each consisting of a 
property name and a property value. 

A grove plan defines a set of classes and, for each class, an ordered set of properties. 

For each property assignment of a node, there is a unique corresponding property of the node’s 
class whose name is the same as the name part of the property assignment. This is referred to as 
the property of the property assignment. The value part of a property assignment is referred to as 
a value of the property of the property assignment. A node is said to exhibit a value v for a 
property p if there is a property assignment of the node whose property is p and whose value part 
is v. The properties for which the node exhibits a value are referred to as the properties of the 
node. 

The ordering of the properties of a class determines for nodes of that class the ordering of the 
corresponding property assignments. 

Every property value has a data type. The definition of a property declares a certain data type to 
be possible for values of the property. This data type is referred to as the declared data type of 
the property. 

75 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

In addition to simple abstract data types such as boolean or string, there are three special data 
types called the nodal data types, whose values are nodes or lists of nodes. These are described 
in 9.3.3. 

The definition of a property may also allow that property to have a null value in certain 
circumstances, instead of a value having the declared data type. This null value is the unique 
Object of the null data type. The null data type tan never be used as a declared data type. 

9.1 Nodal Properties 

A property of a class may be a subnode property. The declared data type of a subnode property 
shall be nodal. When a node exhibits a value for a subnode property, all the nodes in the value of 
the property are in the Same grove as the node exhibiting the value. The values of subnode 
properties of nodes in the grove tan be viewed as connecting all the nodes in the grove into a 
Single tree with labeled branches. More precisely, 

- in any grove there is a unique node called the grove root that does not occur in the value of 
any subnode property of a node. 

- for every node n, other than the grove root, there is a unique node o and there is a unique 
property p such that both 

- p is a subnode property, and 

- o exhibits a value for p that is or includes n. 

o is called the origin of n and p is called the origin-to-subnode relationship of n. 

- for every node n, other than the grove root, 
such that ml is the grove root, mk is n, and, 

there exists a sequence of nodes ml ,m2, . . . mk 

This tree is referred to as the subnode tree. It is often useful for applications to deal with certain 
subtrees of the subnode tree in which all the children of a node occur as part of the value of a 
Single property of the node. For this purpose, one property of the class tan be distinguished as 
the children property for the class. This is done indirectly by making one property the content 
property for the class. If the data type of this property is nodal, then this is the children property, 
otherwise the primitive data type of the data type shall be char or string and the property is the 
data property of the node. The term children as applied to a node refers to the nodes occurring as 
the value of the children property. The data of a node that has a children property is the data of 
each of its children separated by the value of the data separator property, if any, of the class. A 
node has a parent if its origin has a children property which includes that node in its value; if a 
node does have a parent, its parent will be the Same as its origin. The term tree without 
qualification refers to the tree formed using these parent/children relationships. The ancestors of 
a node comprise the parent of the node, if any, together with the ancestors of the parent of the 
node. The tree root of a node, x, is x if x has no ancestors or otherwise is the node that is an 
ancestor of x and that has no ancestors. The siblings of a node are an empty set for the grove root 

76 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOAEC ISOIIEC 10179:1996(E) 

and are otherwise the nodes in the value of the origin-to-subnode relationship property of the 
node’s origin other than the node itself. 

NOTE 23 A node tan have siblings even if it does not have a parent because its origin-to-subnode relationship 
property need not be the children property of its origin. 

The subtree of a node is the node together with the subtrees of its children. The descendants of a 
node are the subtrees of children of the node. A total ordering called tree Order is defined on the 
set of nodes in the subtree of any node: this ordering corresponds to a pre-Order traversal of the 
subtree in which a node is visited before its children. 

There are two possibilities for properties with a declared data type that is nodal but which are not 
subnode properties: 

- The property may be an irefnode (internal reference) property; for such a property the nodes 
in the value are in the Same grove as the node that exhibits the value. The subnode and 
irefnode properties connect all the nodes in a grove into a Single directed graph. The names of 
the properties may be considered as labeling the arcs of the graph. 

- The property may be a urefnode (unrestricted reference) property; for such a property the 
nodes in the value may be in different groves from the node that exhibits the value. Thus, the 
subnode, irefnode, and urefnode properties connect the nodes in multiple groves together into 
a graph. The set of groves thus connected is called a hypergrove. 

9.2 Grove Plans 

A grove plan specifies a selection of classes and properties from a property set. A property set is 
defined by a property set definition expressed in SGML as described in 9.3. 

For any Source for the grove, the property set determines the complete grove that would be built 
using a grove plan that selected all the classes and properties from the property set. 

NOTE 24 The complete grove contains all the information that the parser is capable of making available about the 
Source of the grove. For any particular application, much of this information may be irrelevant. The grove plan 
provides a way for an application to get a grove that contains just the information it requires. 

The grove to be constructed from the grove plan shall be the Same as a grove obtained by 
modifying the complete grove in the following manner: 

- To mark the subgrove of a node, first mark the node itself; then for each subnode property, if 
the property is included in the grove plan, mark the subgrove of each node in the value whose 
class is included in the grove plan. The nodes to be included in the grove are determined by 
marking the subgrove of the grove root. Only nodes thereby marked will be included in the 
constructed grove. 

- A node in the constructed grove only exhibits values for those properties that are specified to 
be included in the grove. 

77 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

- If a node in the complete grove exhibits a value for an intrinsic property whose semantics are 
that it is the name of a non-intrinsic property exhibited by the node, then if the non-intrinsic 
property is not included in the grove plan, the node in the constructed grove shall exhibit a 
null value for the intrinsic property. 

- If a node in the complete grove exhibits a value for an intrinsic property whose semantics are 
that it is a list of names of non-intrinsic properties exhibited by the node, then the node in the 
constructed grove shall exhibit a value for the intrinsic property that is obtained from the 
value in the complete grove by removing the names of any of the non-intrinsic properties not 
included in the grove plan. 

- If a node in the complete grove exhibits a value for an irefnode property that has a declared 
value of node, but the value of the property is not marked for inclusion in the constructed 
grove, then the node shall exhibit a null value for that property in the constructed grove. 

- If a node in the complete grove exhibits a value for an irefnode property that has a declared 
value of nodelist or nmndlist, then the value in the constructed grove is obtained by removing 
from the value exhibited for the property in the complete grove all nodes that are not marked 
for inclusion in the constructed grove. 

9.3 Property Set Definition 

Property set definitions are described fully in the Property Set Definition Requirements of ISO/ 
IEC 10744. This clause presents a simplified version that includes only those details necessary 
for the understanding of this International Standard. 

The top-level element is a propset element. The psn and fullnm attributes specify a short 
SGML name and a long descriptive name. At various places within the property set, the 
following elements are allowed: 

- desc contains a description of the Object that is being defined by the element in which it 
occurs. 

-note contains notes about the Object being defined. 

9.3.1 Common Attributes 

9.3.1 .l Component Names 

The name of a class, property, or enumerator is not a simple string but a triple of strings, each 
appropriate for use as a name in a different context: 

- The reference concrete Syntax (RCS) name is appropriate for use in a context where a valid 
name in the SGML reference concrete Syntax is required. 

- The application name specifies a name that is appropriate for use as an identifier in a 
programming or scripting language. An application name tan include multiple words 

78 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


1  

0  IS O /IE C  IS O /IE C  1 0 1 7 9 :1 9 9 6 ( E )  

s e p a r a te d  by  spaces;  th e  n a m e  m u s t b e  t rans fo rmed to  b e  a  val id  i d e n tifie r  in  th e  l a n g u a g e  in  
wh ich  it is to  b e  u s e d , us ing  th e  n o r m a l  c o n v e n tio n s  o f th a t l a n g u a g e  fo r  m u l t i -word 
i d e n tifiers. Fo r  e x a m p l e , th e  app l ica t ion  n a m e  ‘process ing  instruct ion’, w h e n  b o u n d  to  a  
p r o g r a m m i n g  l a n g u a g e , m ight  b e c o m e  ‘ProcessingInst ruct ion’, ‘processing- inst ruct ion’, o r  
‘P R O C E S S ING J N S T R U C T IO N ’, d e p e n d i n g  o n  th e  l a n g u a g e . 

-  T h e  ful l  n a m e  is a n  u n a b b r e v i a te d  n a m e  a p p r o p r i a te  fo r  u s e  in  d o c u m e n ta tio n . 

A  th r e e - p a r t n a m e  o f th is  k ind  is ca l led  a  c o m p o n e n t n a m e . 

T h e s e  th r e e  n a m e s  a r e  speci f ied by  a ttrib u tes  as  fol lows: 

- rcsnm speci f ies th e  R C S  n a m e  o f th e  p r o p e r ty. 

- a p p n m  speci f ies th e  app l ica t ion  n a m e  o f th e  p r o p e r ty; th is  d e faul ts to  th e  R C S  n a m e . 

-  fu l lnm speci f ies th e  ful l  n a m e  o f th e  p r o p e r ty; th is  d e faul ts to  th e  app l ica t ion  n a m e . 

9 .3 .1 .2  Speci f icat ion D o c u m e n ts 

Va r i ous  e l e m e n ts occur r ing  in  a  p r o p e r ty set d e fin e  c o m p o n e n ts by  r e fe renc ing  th e m  in  a  
speci f icat ion d o c u m e n t. T h e s e  e l e m e n ts u s e  th e  fo l low ing  c o m m o n  a ttrib u tes: 

-  sd  speci f ies th e  speci f icat ion d o c u m e n t; th is  d e faul ts to  S G M L . Formal ly ,  th e  va lue  is th e  
n a m e  o f a  n o ta tio n . O th e r  a l l owed  va lues  a r e  G e n F a c  fo r  th e  G e n e r a l  Facil i t ies o f IS O /IE C  
1 0 7 4 4  a n d  D S S S L . 

-  c lause speci f ies th e  app l i cab le  c lause  o f th e  speci f icat ion d o c u m e n t; fo r  S G M L  this uses  
th e  n o ta tio n  o f IS O /IE C  1 3 6 7 3 . 

9 .3 .2  M o d u l e s  

A  p r o p e r ty set d e fin i t ion is d iv ided  into n a m e d  m o d u les e a c h  desc r ibed  by  a  p s m o d u l e  e l e m e n t. 
T h e  a ttrib u tes  h a v e  th e  fo l low ing  m e a n ing:  

- rcsnm gives th e  R C S  n a m e  o f th e  m o d u le. 

- fu l lnm gives th e  ful l  n a m e . 

- d e p e n d o n  lists th e  n a m e s  o f th e  m o d u les o n  wh ich  th is m o d u le  d e p e n d s . 

- requ i red  speci f ies w h e th e r  th e  m o d u le  is r e q u i r e d , th a t is, shal l  b e  i nc luded  in  every  g r o v e  
p l a n . A  va lue  o f requ i red  m e a n s  th a t it is r e q u i r e d ; a  va lue  o f nrequ i re  m e a n s  th a t it is 
n o t. T h e  d e faul t  is nrequi re .  

Inc lud ing  a  m o d u le  in  a  g r o v e  p l a n  is equ i va len t to  inc lud ing  in  th e  g r o v e  p l a n : 

-  al l  th e  c lasses a n d  p r o p e r ties  d e fin e d  wi th in th e  m o d u le, 
/ 

7 9  l 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

- any modules on which the module depends, and, recursively, any modules on which they 
depend. 

In addition to modules defined in property Sets, there are a number of intrinsic modules defined 
in this International Standard that are automatically part of every property set. Properties defined 
in intrinsic modules are called intrhric properties. Intrinsic modules are treated as occurring 
before all non-intrinsic modules. 

9.3.3 Data Type Definition 

Every data type is defined by a datade f element. The attributes have the following meaning: 

- rcsnm gives the RCS name of the data type. 

NOTE 25 There is no application name for a data type, because when the property set is used in a programming or 
scripting language, each abstract data type has to be explicitly bound to one of the data types provided by the 
language. 

- f ul lnm gives the full name of the data type. 

- nodal specifies whether the data tYPe nodal; the allowed values are nodal or nonnodal; 
the defaultis nonnodal. 

- 1 i s to f allows formal specification of the semantics of a data type in the case where the data 
type is an ordered list or array of some other data type; that other data type is specified as the 
value of the attribute. 

- super allows for the formal specification of a subtyping hierarchy among defined data types; 
the value of the attribute is a list of the names of the super types. 

The primitive data type of a data type is the data tYPe 
otherwise is the primitive data type of the super tYPe* 

itself if the data type has no super type, and 

Some data types are defined in the following intrinsic module: 

<psmodule rcsnm=intrdt fullnm="intrinsic data types" required> 
<datadef rcsnm=node nodal> 
<desc> 
A Single node. 

xdatadef rcsnm=nodelist listof=node nodal> 
<desc> 
An ordered list of zero or more nodes. 

<datadef rcsnm=nmndlist fullnm="named node list" super=nodelist nodal> 
<desc> 
This is a node list in which each node is uniquely identified within 
the node-list by a name, which is the value of one of its properties. 
A named node list identifies, for each class of node that occurs in 
it, a property of that class, which has data type string, whose value 
serves as the name of nodes of that class within that named node list. 

80 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

In addition, a named node-list also identifies, for each class of node 
that occurs in it, a normalization rule to be applied to a 
string before it is compared against the name of a node of that class 
in the process of name space addressing. 

<datadef rcsnm=enum fullnm=enumeration> 
<desc> 
This is used for a data type that represents one of an enumerated set 
of values, called enumerators. The possible enumerators are 
defined in each context in which the enum data type is used. 

cdatadef rcsnm=char fullnm=character> 

<datadef rcsnm=string listof=char> 

<datadef rcsnm=integer> 

<datadef rcsnm=intlist fullnm="integer list" listof=integer> 

xdatadef rcsnm=strlist fullnm="string list' listof=string> 

cdatadef rcsnm=compname fullnm="component name"> 
<desc> 
A component name, that is, a name with three variants, an RCS name, 
an application name, and a full name. 

Kdatadef rcsnm=cnmlist fullnm="component name list' listof=compname> 

</psmodule> 

9.3.4 Class Definition 

A class is defined by a classde f element. In addition to the component name attributes and 
specification document attributes, the following attributes are allowed: 

- conprop identifies the content property of the class, if any. 

- dsepprop identifies the data separator property of the class, if any. A class tan have a data 
separator property only if it has a children property (i.e., a nodal content property). 

- mayadd identifies a category of classes that is used in the definition of the verification 
mapping in the transformation language. See 11.4.1. Only the value mayadd is allowed for 
this attribute. The attribute name tan be omitted for this attribute. 

9.3.5 Property Definition 

A property is defined by a propdef element. In addition to the component name attributes and 
specification document attributes, the following attributes are allowed: 

- cn specifies the class to which this property belongs. When a propdef element occurs 
within a classdef element, the property belongs to that class. Otherwise, the cn attribute 

81 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

shall be specified, specifying the class name. A value of #all means that it belongs to all 
classes of node; a value of #grove means that it belongs to the node at the root of the grove. 

- datatype specifies the RCS name of the data type, as defined by a datadef element. 

- ac specifies the classes allowed in the value of the property; this applies only if the data type 
is nodal. The default is that any class is allowed in the value. 

- acnmprop applies when the data type is nrnndli s t and specifies for each of the classes 
allowed in the property value the name of the property that serves as the name of a node of 
that class in the named node list. There shall be one property name for each class in ac. 

- st rnorm specifies a string normalization rule applicable to the value. It applies when the 
data type is a string, is a list of strings, or has a super type that is a string. The default is for no 
normalization to be applied. Esch string normalization rule shall be defined by a normdef 
element. 

NOTE 26 The upper-case Substitution that SGML performs on general names when the reference concrete Syntax 
is used is an example of a string normalization rule. 

- noderel specifies whether the property is a subnode, irefnode, or urefnode property; this 
applies only if the data type is nodal. The attribute name is usually omitted for this attribute. 

- vrfytype categorizes the property as either derived, optional, or other for purposes of 
defining the verification mapping in the transformation language. See 11.4.1. The default is 
other. A property set shali not allow a node in a complete grove to exhibit an empty value for 
a property that has a declared data type of nodelist or nmmdlist and a vrfytype of optional. 

NOTE 27 This does not prohibit a node from exhibiting a null value for such a property. 

- st rlex gives a lexical type. The value is a lexical type defined by a lexde f element. The 
lexical type of a property is not used in this International Standard. The semantics of lexical 
types are defined in ISO/IEC 10744. 

A propdef tan have subelements of the following types in addition to desc and note 
elements: 

- when specifies a condition that shall be satisfied for a node to exhibit a value with the 
declared data type. If this condition is not satisfied, the node shall exhibit a null value for this 
property. 

- enumde f defines the possible enumerators when the data type is enum. It has only the 
component name attributes. 

9.3.6 Normalkation Rule Definition 

A string normalization rule is defined by a normdef element. It has an rcsnm attribute and the 
specification document attributes. 

82 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

9.4 Intrinsic Properties 

The following module defines the intrinsic properties of all nodes: 

<psmodule rcsnm=intrbase fullnm="intrinsic base" required> 
<propdef rcsnm=classnm appnm="class name" datatype=compname> 
<desc> 
The name of the node's class. 
Kpropdef cn=" #all" rcsnm=grovroot appnm="grove root" datatype=node irefnode> 

<propdef cn=" #all" rcsnm=subpns appnm="subnode property names" 
datatype=cnmlist> 
<desc> 
The names of all the subnode properties exhibited by the node. 

xpropdef cn=" #all" rcsnm=allpns appnm="all property names" datatype=cnmlist> 
<desc> 
The names of all the properties exhibited by the node. 

Kpropdef cn=" #all" rcsnm=childpn appnm="children property name" 
datatype=compname> 
<desc> 
The name of the children property. 
<when> 
The class has a children property. 

xpropdef cn=" #all" rcsnm=datapn appnm="data property name" datatype=compname> 
<when> 
The class has a data property. 

Kpropdef cn=" #all" rcsnm=dseppn appnm="data sep property name" 
fullnm="data separator property name" datatype=compname> 
cwhen> 
The class has a data separator property. 

cpropdef cn=" #all" rcsnm=parent datatype=node irefnode> 
<when> 
The node has a parent. 

xpropdef cn=" #all" rcsnm=treeroot appnm="tree root" datatype=node irefnode> 
<note> 
The value of this property for a node shall be the node itself 
if the node has no parent. 
</note> 

cpropdef cn=*'#all" rcsnm=origin datatype=node irefnode> 
<when> 
The node is not the grove root. 

cpropdef cn=" #all" rcsnm=otsrelpn appnm=" origin-to-subnode rel property name" 
fullnm="origin-to-subnode relationship property name" datatype=compname> 
<when> 
The node is not the grove root. 
</psmodule> 

<psmodule rcsnm=intrhy fulPnm="intrinsic hytime"> 

83 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISOAEC 

95 . 

9.6 

<datadef rcsnm=grovepos appnm="grove position" strlex=GROVEPOS> 
<desc> 
A list each of whose members is either (a) an integer, (b) a pair 
consisting of a component name and a string, (c) a pair consisting of 
a component name and an integer, or (d) a component name 

xpropdef cn="#all" rcsnm=grovepos appnm="grove position" sd=GenFac 
datatype=grovepos> 
<desc> 
The Position of a node in a grove. 

xpropdef cn= "#all" rcsnm=treepos appnm="tree position" sd=GenFac 
datatype=intlist 
strlex= "marker+"> 
-cdesc> 
The Position of a node in its tree in treeloc format. 

Kpropdef cn="#all" rcsnm=pathpos appnm="path position" sd=GenFac 
datatype=intlist 
strlex=" (marker,marker)+"> 
<desc> 
The Position of a node in its tree in pathloc format. 
</psmodule> 

<propdef cn="#grove" rcsnm=ptreert appnm="principal tree root" sd=GenFac 
datatype=node 
irefnode> 

Auxiliary Groves 

It is sometimes convenient to group nodes in a grove in an application-dependent manner. This 
is done by using nodes in the grove as the Source for a further Parse, called an auxifiary Parse. A 
grove created by an auxiliary Parse is called an auxiliary grove. The grove parsed to create the 
auxiliary grove is called the source grove of the auxiliary grove. Esch node in an auxiliary grove 
has an intrinsic urefnode property, Source, that Points to those nodes in the Source grove from 
which it was derived. 

cpropdef cn="#all" rcsnm=source datatype=nodelist urefnode sd=DSSSL> 

SGML Property Set 

The property set for SGML is: 

<! -- SGML Property Set --> 
<!doctype propset public 'ISO/IEC 10744:1993/DTD Property Set//EN' 
"sgmlprop.dtd"> 
<propset psn="sgmlprop" fullnm="SGML Property Set"> 
<desc> 
Defines the classes and properties to be used in the construction of 
groves from the parsing of SGML documents. 

Classes and properties are classified as follows: 
o Abstract or SGML document string (SDS) 

84 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

o SGML declaration, document prolog, or document instance 
o Required only for support of datatag, rank, shortref, link, subdoc, 

formal. 

ESIS corresponds roughly to the combination of baseabs (base abstract), 
prlgabs0, and instabs (instance abstract). 
</desc> 
<! --Note: Clause numbering conforms to the rules specified in Clause 6.3 

of ISO/IEC 13673, which defines how the components of 
ISO/IEC 8879 should be identified within conformance tests. 
The first number/letter represents the clause number (letters 
tan be treated as hexadecimal in this document), the second 
number identifies the sub-clause, the third the 
sub-sub-clause, and the fourth the 
sub-sub-sub-clause (if any) with the final number/letter 
identifying the Paragraph number. (Productions, 
notes and items in a list are counted as separate paragraphs.) 
Where figures are referred to, the clause, sub-clause, and 
sub-sub-clause numbers are replaced by FIG and the 
sub-sub-sub-clause number is replaced by the figure number. 
As an extension to ISO/IEC 13673, subclauses in clause 4 
are referred to using numbers of the form 4xxxy where xxx 
is the decimal subclause number and y is the Paragraph number 
as normal. 

--> 

<!-- Base abstract classes and properties --> 

<psmodule rcsnm=baseabs fullnm="base abstract"> 

Kclassdef rcsnm=sgmldoc appnm="sgml document" clause="62001"> 
<desc> 
The parsed SGML document or subdocument. The root of the grove. 

cpropdef subnode rcsnm=sgmlcsts appnm="sgml constants" datatype=node 
ac=sgmlcsts clause="41170 41180"> 

cpropdef rcsnm=appinfo appnm="application info" 
fullnm="application information" datatype=string strlex=mindata 
clause="d6001"> 
<desc> 
Application information provided by the SGML declaration. 
<when> 
A literal was specified as the value of the APPINFO Parameter 
of the SGML declaration applicable to the document/subdocument. 

Kpropdef subnode rcsnm=prolog datatype=nodelist 
ac="doctpdcl lktpdcl comdcl pi ssep" cn=sgmldoc clause="71001"> 

Kpropdef subnode rcsnm=epilog datatype=nodelist ac="comdcl pi ssep" 
cn=sgmldoc clause="71002"> 
<desc> 
Other prolog following the document instance. 

xclassdef rcsnm=sgmlcsts appnm="sgml constants" clause="b6004 c2101"> 
<desc> 

85 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISOAEC 

A holding pen for selected nodes intrinsic to all SGML documents, 
which may be needed as irefnodes elsewhere. 
<note> 
This has no properties unless the srabs (shortref abstract) 
or linkabs (link abstract) modules are included. 

Kclassdef rcsnm=attasgn appnm="attribute assignment" 
conprop=value dsepprop=tokensep clause="79002"> 
-cdesc> 
An attribute assignment, whether specified or defaulted. 
<note> 
In the base module because of data attributes. 

<propdef subnode rcsnm=value datatype=nodelist 
ac= "attvaltk datachar sdata intignch entstart entend" clause="79401"> 
<note> 
If the attribute value is tokenized, the children are of type attvaltk; 
otherwise, they are of the other allowed types. 
<when> 
The attribute is not an impliable attribute for which there is no 
attribute specification. 

cpropdef rcsnm=name datatype=string strlex=name strnorm=general 
clause="93001"> 

Kpropdef rcsnm=implied datatype=boolean clause="b3407"> 
<desc> 
True if and only if the attribute is an impliable attribute 
for which there is no attribute specification. 

Kpropdef rcsnm=tokensep appnm="token sep" fullnm="token separator" 
datatype=char clause="79400"> 
<desc> 
The separator between the tokens of the value. Always equal 
to the SPACE Character in the concrete Syntax. 
<when> 
The node has two or more children of class attvaltk. 

cclassdef rcsnm=attvaltk appnm="attribute value token" conprop=token 
clause="79305"> 

Kpropdef rcsnm=token datatype=string strlex=nmtoken clause="93003"> 

xclassdef rcsnm=datachar appnm="data char" fullnm="data Character" 
conprop=char clause="92002"> 

cpropdef rcsnm=char fullnm=character datatype=char clause="92003"> 
<desc> 
The Character returned by the parser to the application. 

xclassdef rcsnm=sdata 
fullnm=" internal specific Character data entity reference result" 
conprop=char clause="92101"> 

cpropdef rcsnm=sysdata appnm="system data" datatype=string clause="43041"> 
<note> 

$6 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

The replacement text of a specific Character data entity is treated 
as System data when referenced. 

Kpropdef rcsnm=char fullnm=character datatype=char sd=DSSSL> 
<desc> 
The Character associated with the SDATA entity by the map-sdata-entity 
architectural form. 
<when> 
A Character has been associated with the SDATA entity by the 
map-sdata-entity architectural form. 

cclassdef rcsnm=pi fullnm="processing instruction" clause="80000"> 
<desc> 
Processing instruction. 

cpropdef rcsnm=sysdata appnm="system data" datatype=string clause="80002"> 

</psmodule> 

<!-- Prolog-related abstract classes and properties, level 0 --> 

<psmodule rcsnm=prlgabsO fullnm="prolog abstract level 0" dependon=baseabs> 

cpropdef irefnode rcsnm=govdt appnm="governing doctype" datatype=node 
ac=doctype 
cn=sgmldoc clause="71004"> 
<desc> 
The document type that governs the Parse. When there are more than one 
"active" document types specified, each active document type gives rise 
to a separate Parse, which, in turn, creates a separate sgmldoc grove. 

<propdef subnode rcsnm=dtlts appnm="doctypes and linktypes" 
fullnm="document types and link types" 
datatype=nmndlist ac="doctype linktype" acnmprop="name name" cn=sgmldoc 
clause="71001"> 
<desc> 
The document types and link types declared in the prolog, in declaration 
Order. 

<classdef rcsnm=doctype appnm="document type" clause="blOOO"> 
<desc> 
The abstraction of a document type declaration. 
<note> 
It includes entities declared in that declaration's DTD, 
entities treated as being declared therein because they 
occur in a link type for which that DTD is the Source DTD, 
and entities declared in the base declaration which may be 
referenced when this document type is active. 

xpropdef rcsnm=name datatype=string strlex=name strnorm=general clause="b1002"> 
<desc> 
The name associated with the DTD by the document type declaration; 
necessarily also the name of the type of the outermost element, 

<propdef rcsnm=govrning appnm=governing datatype=boolean clause="71005"> 
<desc> 

87 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


- .-- 

ISO/IEC 10179:1996(E) 0 ISO/IEC 

True if either this was the active document type or there was 
no active document type and this is the base document type. 
<note> 
The "governing" document type governs the parsing process. 
If more than one document type is specified as "active", 
each active document type gives rise to a separate Parse, 
for which it is the governing document type, and thereby 
pro.duces a separate grove. 

<propdef subnode rcsnm=genents appnm="general entities" datatype=nmndlist 
ac=entity acnmprop=name clause="b1004"> 
<desc> 
The general entities of the document or subdocument declared in the DTD. 
<note> 
Includes entities not explicitly declared, as discussed above 
in the description of this class. 
<note> 
If the DTD provides a default declaration for undeclared 
general entity names, there is no entry in the list 
corresponding to this declaration, nor any entry for any 
such undeclared name. (But such entities are in the 
entities property of the sgmldoc class.) See dfltent following. 

xpropdef subnode rcsnm=nots appnm=notations datatype=nmndlist ac=notation 
acnmprop=name clause="blOO5"> 

cclassdef rcsnm=entity clause="60000"> 

cpropdef rcsnm=name datatype=string strlex=name strnorm=entity clause="93001"> 

cpropdef rcsnm=enttype appnm="entity type" datatype=enum clause="a5502"> 

cenumdef rcsnm=text fullnm='SGML text"> 
cenumdef rcsnm=cdata> 
cenumdef rcsnm=sdata> 
cenumdef rcsnm=ndata> 
Kenumdef rcsnm=subdoc appnm=subdocument> 
cenumdef rcsnm=pi> 

cpropdef rcsnm=text fullnm="replacement text" datatype=string clause="92101"> 
<when> 
The entity is an internal entity. 

<propdef subnode rcsnm=extid appnm="external id" fullnm="external identifier" 
datatype=node ac=extid clause="al601"> 
<when> 
The entity is an external entity. 

Kpropdef subnode rcsnm=atts appnm=attributes 
datatype=nmndlist ac=attasgn acnmprop=name clause="b4120"> 
<desc> 
A list of data attribute assignments, one for each declared attribute of 
the entity in the Order in which they were declared in the attribute 
definition list declaration 
<when> 
The entity is an external data. entity. 

88 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

<propdef rcsnm=notname appnm="notation name" datatype=string strlex=name 
strnorm=general clause="79408"> 
<when> 
The entity is an external data entity. 

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001"> 
<when> 
The entity is an external data entity. 

cclassdef rcsnm=notation fullnm="data content notation" clause="b4000"> 

cpropdef rcsnm=name datatype=string strlex=name strnorm=general clause="79441"> 

cpropdef subnode rcsnm=extid appnm="external id" fullnm= "external identifier" 
datatype=node ac=extid clause="al601"> 

<classdef rcsnm=extid appnm="external id" fullnm="external identifier" 
clause= "a1600"> 

xpropdef rcsnm=pubid appnm="public id" fullnm="public identifier" 
datatype=string strlex=mindata clause="al602"> 
<when> 
The external identifier contained an explicit public identifier. 

Kpropdef rcsnm=sysid appnm="system id" fullnm="system identifier" 
datatype=string clause="al603"> 
<when> 
The external identifier contained an explicit System identifier. 

cpropdef optional rcsnm=gensysid appnm="generated System id" 
fullnm="generated System identifier" 
datatype=string> 
<desc> 
The System identifier generated by the System from the external 
identifier and other information available to the System. 
<when> 
The external identifier is not the external identifier of 
the default entity. 
</psmodule> 

< ! -- Document instance related abstract classes and properties --> 

<psmodule rcsnm=instabs fullnm="instance abstract" dependon=baseabs> 

<propdef subnode rcsnm=docelem appnm="document element" datatype=node 
ac=element cn=sgmldoc clause="72003"> 
<desc> 
The document element for the governing document type. 

<propdef irefnode rcsnm=elements datatype=nmndlist ac=element acnmprop=id 
cn=sgmldoc clause="73001"> 
<desc> 
All the elements in the document which have unique identifiers in the 
Order in which they are detected by the parser: parents occur 
before children; siblings occur in left-to-right Order. 

89 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

<propdef irefnode rcsnm=entities datatype=nmndlist ac=entity acnmprop=name 
cn=sgmldoc clause='94410'> 
<desc> 
The explicitly declared general entities from the governing document 
type I followed by the defaulted entities. 
<note> 
This includes both internal and external entities. It does not 
include unnamed entities. 

<propdef subnode rcsnm=dfltents appnm="defaulted entities" datatype=nmndlist 
ac=entity acnmprop=name cn=sgmldoc clause="94412"> 
<desc> 
An entity for each entity name in the document that referenced 
the default entity in the governing document type. 

< ! -- Attribute value token --> 

cpropdef irefnode rcsnm=entity datatype=node ac=entity cn=attvaltk 
clause="79401"> 
<when> 
Declared value of attribute is ENTITY or ENTITIES. 

Kpropdef irefnode rcsnm=notation datatype=node ac=notation cn=attvaltk 
clause="79408"> 
<when> 
Declared value of attribute is NOTATION. 

xpropdef irefnode rcsnm=referent datatype=node ac=element cn=attvaltk 
clause='79403"> 
<when> 
Declared value is IDREF or IDREFS. 

cclassdef rcsnm=element conprop=content clause="73000"> 

<propdef rcsnm=gi fullnm="generic identifier" datatype=string strlex=name 
strnorm=general clause='78001"> 
<desc> 
Generic identifier (element type name) of element. 

Kpropdef derived rcsnm=id fullnm="unique identifier" datatype=string 
strlex=name strnorm=general clause="79403"> 
<when> 
A unique identifier was specified for the element. 

Kpropdef subnode rcsnm=atts appnm=attributes 
datatype=nmndlist ac=attasgn acnmprop=name clause="79301"> 
<desc> 
A list of attribute assignments, one for each declared attribute 
of the element in the Order in which they were declared in the 
attribute definition list declaration. 

Kpropdef subnode rcsnm=content datatype=nodelist 
ac="datachar sdata element extdata subdoc pi msignch ignrs ignre repos 

usemap uselink entstart entend ssep comdcl msstart msend ignmrkup" 
clause="76001"> 

90 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179: 1996(E) 

xclassdef rcsnm=extdata appnm="external data" 
fullnm="reference to external data" clause="a5500"> 
<desc> 
The result of referencing an external data entity. 

Kpropdef rcsnm=entname appnm="entity name" datatype=string strlex=name 
strnorm=entity clause="a5101"> 

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="94410"> 

</psmodule> 

< ! -- Base SDS classes and properties --> 

<psmodule rcsnm=basesdsO fullnm=' base SGML document string level 0" 
dependon=baseabs> 

< ! -- Sdata -+ 

xpropdef optional rcsnm=entname appnm="entity name" datatype=string 
strlex=name strnorm=entity cn=sdata clause="a5101"> 

cpropdef irefnode rcsnm=entity datatype=node ac=entity cn=sdata 
clause="94410"> 

<!-- Processing instruction --> 

Kpropdef rcsnm=entname appnm="entity name" datatype=string strlex=name 
strnorm=entity cn=pi clause="a5101"> 
<when> 
The processing instruction resulted from referencing a PI entity. 

xpropdef irefnode rcsnm=entity datatype=node ac=entity cn=pi 
clause="94410"> 
<when> 
The processing instruction resulted from referencing a PI entity. 

< ! -- Entity --> 

cpropdef rcsnm=dflted appnm=defaulted datatype=boolean cn=entity 
clause="94412"> 
<desc> 
True if this was created because of a reference to the default entity. 

</psmodule> 

<psmodule rcsnm=basesdsl fullnm=" base SGML document string level 1" 
dependon=basesdsO> 

<propdef subnode optional rcsnm=entref appnm="entity ref" 
fullnm=" entity reference" datatype=nodelist 
ac= "gendelm name ssep entstart entend refendre shortref" cn=pi 
clause="94401"> 
<desc> 
The markup of the entity reference. 

91 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 ISO/IEC 

<note> 
s-p, entstart, and entend may occur only in a name group in a named 
entity reference. 
<when> 
The processing instruction resulted from referencing a PI entity with 
a named entity reference or a short reference. 

cpropdef subnode optional rcsnm=open appnm="open delim" 
fullnm="open delimiter" datatype=node ac=gendelm cn=pi clause="80001"> 
<when> 
The processing instruction did not result from referencing a PI entity. 

cpropdef subnode optional rcsnm=close appnm="close delim" 
fullnm= "close delimiter" datatype=node ac=gendelm cn=pi clause="80001"> 
<when> 
The processing instruction did not result from referencing a PI entity. 

<!-- Attribute --> 

<propdef irefnode rcsnm=attspec appnm="attribute spec" fullnm="attribute 
specification" 
datatype=nodelist ac= "name ssep gendelm literal attvalue" cn=attasgn 
clause= "79002"> 
<when> 
The attribute was specified rather than defaulted or implied. 

cpropdef irefnode rcsnm=attvalsp appnm="attribute value spec" 
fullnm= "attribute value specification" datatype=node 
ac= "attvalue literal' cn=attasgn clause="79301"> 
<when> 
The attribute is not implied. 

<! -- Data Character --> 

cpropdef rcsnm=intrplch appnm="interp replaced char" 
fullnm="interpretation replaced Character" datatype=char cn=datachar 
clause= "a1704"> 
<desc> 
The Character that was replaced. 
<note> 
When a sequence of RE and/or SPACE characters in a minimum literal 
is replaced by a Single SPACE Character, then the first 
Character is represented by a datachar possibly with an intrplch 
property, and the other characters are represented by an intignch. 
<when> 
The data Character replaced another Character 
when a literal was interpreted: a SPACE Character that replaced a 
RE or SEPCHAR in an attribute value literal or an RE in a minimum 
literal. 

<propdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm="named Character reference" datatype=nodelist 
ac= "gendelm name refendre" cn=datachar clause="95001"> 
<when> 
The data Character was the replacement of a named Character reference. 

92 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

xpropdef subnode optional rcsnm=numcref appnm="numeric char ref" 
fullnm="numeric Character reference" datatype=nodelist 
ac= "gendelm name crefcnum refendre" cn=datachar clause="95001"> 
<when> 
The data Character was the replacement of a numeric Character reference. 

<!-- Specific Character data --> 

<propdef subnode optional rcsnm=markup datatype=nodelist 
ac= "gendelm name ssep entstart entend refendre shortref" cn=sdata 
clause="94401"> 
<note> 
s-p, 'entstart, and entend tan occur only in a name group in a named 
entity reference. 

cclassdef rcsnm=ssep appnm="s sep" fullnm="s separater" mayadd 
clause= "62100"> 

cpropdef rcsnm=char fullnm=character datatype=char clause="92003"> 

cpropdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm="named Character reference" datatype=nodelist 
ac= "gendelm name refendre" clause="95001"> 
<when> 
The Character was the replacement of a named Character reference. 

cclassdef rcsnm=comment clause="a3002"> 

cpropdef subnode optional rcsnm=open appnm="open delim" 
fullnm=" open delimiter" datatype=node ac=gendelm clause="a3002"> 

cpropdef rcsnm=chars fullnm=characters datatype=string clause="92101"> 
<desc> 
The characters in the comment (excluding the com delimiters). 

Kpropdef subnode optional rcsnm=close appnm="close delim" 
fullnm= "close delimiter" datatype=node ac=gendelm clause="a3002"> 

cclassdef rcsnm=comdcl appnm="comment decl" fullnm="comment declaration" 
conprop=markup mayadd clause="a3001"> 

cpropdef subnode rcsnm=markup datatype=nodelist ac="comment ssep" 
clause= "a3001"> 

xclassdef rcsnm=ignmrkup appnm="ignored markup" conprop=markup 
clause=" 77002 94405 ~3007"~ 
<desc> 
Ignored markup. Either a start-tag or end-tag that is ignored because 
it contains a document type specification that contains a name group 
none of the names in which is the name of an active document type, or 
a general or Parameter entity reference that is ignored because it 
contains a name group none of the names in which is the name of an 
active document or link type, or a link set use declaration that is 
ignored because its link type name is not an active link type, 
or a general entity reference in an attribute value literal in 
a start-tag that is itself ignored markup, or an entity declaration 

93 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

that is ignored because the entity was already declared. 

Kpropdef subnode rcsnm=markup datatype=nodelist 
ac= "gendelm name ssep attvalue literal entstart entend refendre" 
clause=" 74001 75001 94401 c3001"> 

cclassdef rcsnm=entstart appnm="entity Start" conprop=markup> 
<desc> 
The Start of the replacement text of an entity. 
<note> 
The end shall be marked by an entend node. This is the result of an 
entity reference that was replaced by the parser. 

Kpropdef subnode optional rcsnm=markup datatype=nodelist 
ac= "gendelm name ssep entstart entend refendre shortref"> 
<desc> 
The markup of the entity reference. 

xpropdef optional rcsnm=entname appnm="entity name" datatype=string 
strlex=name strnorm=entity> 

xpropdef irefnode rcsnm=entity datatype=node ac=entity clause="a5201"> 

<classdef rcsnm=entend appnm="entity end" clause="94500"> 
<desc> 
The end of an entity reference that was replaced by the parser. 

<classdef rcsnm=msignch appnm=" marked section ignored char" 
fullnm="marked section ignored Character" clause="a4204"> 
<desc> 
A Character that has been ignored within a marked section. 

cpropdef rcsnm=char fullnm=character datatype=char clause="92101"> 

<classdef rcsnm=intignch appnm="interp ignored char" 
fullnm=" interpretation ignored char" clause="79303 a1704"> 
<desc> 
A Character in a literal that was ignored when the literal was 
interpreted: an RS in an attribute value literal or in a minimum literal, 
an RE or SPACE Character in a minimum literal that immediately 
followed another RE or SPACE Character in a minimum literal, 
or an RE or SPACE Character that was the first or last Character 
in a minimum literal. 

Kpropdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm="named Character reference" datatype=nodelist 
ac= "gendelm name refendre" clause="95001"> 
<when> 
The Character was the replacement of a named Character reference. 

xpropdef rcsnm=char fullnm=character datatype=char clause="92101"> 

cclassdef rcsnm=gendelm appnm="general delim" fullnm="general delimiter" 
clause="FIG30"> 
<desc> 
A general delimiter. 

94 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

cpropdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm="named Character reference" datatype=nodelist 
ac= "gendelm name refendre" clause=tt95001tt> 
Knote> 
This may happen only for a delimiter that is the first Child 
of its parent or the value of a close delimiter property. 
<when> 
The first Character of the delimiter was entered with a named 
Character reference. 

cpropdef rcsnm=role datatype=string strnorm=rcsgener clause="96001 FIGXP> 
<desc> 
The name of the delimiter role. 

Kpropdef optional rcsnm=origdelm appnm="original delim" 
fullnm=" original delimiter" datatype=string clause="92102 FIG22Q 
cdesc> 
The delimiter as originally entered before any upper-case Substitution. 

xclassdef rcsnm=name clause="93001"> 
<desc> 
A name within markup. 
<note> 
Names in attribute values are represented by nodes of type attvaltk 
rather than name. 

Kpropdef rcsnm=origname appnm="original name" datatype=string clause="93005"> 
<desc> 
The characters of the name as originally entered before 
any upper-case Substitution. 

xclassdef rcsnm=rname appnm="reserved name" clause="d4701"> 
<desc> 
A token in markup that is recognized as a reserved name. 

xpropdef rcsnm=refname appnm="ref name" fullnm="reference name" 
datatype=string strnorm=rcsgener clause="d4704"> 
<desc> 
The reference reserved name. 

Kpropdef optional rcsnm=origname appnm="original name" datatype=string 
clause="93005"> 
<desc> 
The reserved name as originally entered before any upper-case 
Substitution. 

cclassdef rcsnm=literal conprop=value clause="al201 79302 a1701 a1603"> 
<desc> 
A Parameter literal, attribute value literal, minimum literal, or 
System identifier. 

cpropdef subnode optional rcsnm=open appnm="open delim" 
fullnm="open delimiter" datatype=node ac=gendelm clause="96100 FIG30V 

xpropdef subnode rcsnm=value datatype=nodelist 

95 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

ac= "entstart entend datachar sdata intignch" 
clause= "a1202 91001 a1702 80002"> 
<desc> 
Interpreted value of literal. 
<note> 
If the literal is an attribute value literal for a tokenized value, 
the value of the literal represents the attribute value before 
tokenization but after interpretation. 

<propdef subnode optional rcsnm=close appnm="close delim" 
fullnm=?lose delimiter" datatype=node ac=gendelm clause="96100 FIG30"> 

cclassdef rcsnm=number clause="93002"> 
<desc> 
A number in markup that is not a Character number in 
a Character reference. 
<note> 
Numbers in attribute values are represented by nodes of type attvaltk 
rather than number. 

cpropdef rcsnm=digits datatype=string strlex=number clause="93002"> 

<classdef rcsnm=crefcnum appnm= "char ref char number" 
fullnm="character reference Character number" clause="95001"> 
<desc> 
A Character number occurring in a Character reference. 
<note> 
The numeric value of the number is determined by the char property of 
the datachar node. 

<propdef optional rcsnm=ndigits appnm="n digits" fullnm="number of digits" 
datatype=integer clause="95003 93002"> 
<desc> 
The number of digits used to specify the value. 

Kclassdef rcsnm=refendre appnm="ref end re" fullnm="reference end RE" 
clause="94502"> 
<desc> 
An RE in markup that is used as a reference end. 

cclassdef rcsnm=attvalue appnm="attribute value" clause="79400"> 
<desc> 
An attribute value specification that is an attribute value 
rather than an attribute value literal. 
<note> 
DO not confuse this with the attasgn class. 

Kpropdef rcsnm=value datatype=string clause="93005"> 
<desc> 
The value before any upper-case Substitution. 

cclassdef rcsnm=nmtoken appnm='*name token" clause="93003"> 
<desc> 
A name token in markup. 
<note> 
This is used only for name tokens in name token groups in 

96 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

declared values. Name tokens in attribute values are represented by 
nodes of type attvaltk rather than nmtoken. 

xpropdef rcsnm=origname appnm="original name token" datatype=string 
clause="93005"> 
<desc> 
The characters of the name token as originally entered before 
any upper-case Substitution. 

xclassdef rcsnm=msstart appnm="marked section Start" 
fullnm="marked section declaration Start" conprop=markup clause="a4002"> 
<desc> 
The part of a marked section declaration preceding the marked section. 

<propdef subnode optional rcsnm=markup datatype=nodelist 
ac= "gendelm rname ssep entstart entend comment ignmrkup" clause="a4002"> 
cnote> 
First Child will be gendelm for mdo, last will be gendelm for 
dso. 

cpropdef rcsnm=status datatype=enum clause="a4201"> 
<desc> 
Effective Status of marked section. 

cenumdef rcsnm=ignore> 
cenumdef rcsnm=cdata> 
xenumdef rcsnm=rcdata> 
xenumdef rcsnm=include> 
<enumdef rcsnm=temp> 

<classdef rcsnm=msend appnm="marked section end" conprop=markup 
clause= "a4003"> 

cpropdef subnode optional rcsnm=markup datatype=nodelist ac=gendelm 
clause= "FIG3e FIG3h"> 
<note> 
will be a gendelm for the msc and a gendelm for the mdc. 

</psmodule> 

< ! -- SGML Declaration-related abstract classes and properties --> 

<psmodule rcsnm=sdclabs fullnm= "sgml declaration abstract" dependon=baseabs> 

cpropdef rcsnm=sgmlver appnm="sgml Version" datatype=string strlex=mindata 
cn=sgmldoc clause="dOOO2"> 
<desc> 
The minimum literal specified as the first Parameter of the SGML 
declaration applicable to this document or subdocument. 

xpropdef subnode rcsnm=docchset appnm="document char setz" 
fullnm="document Character set" datatype=node ac=charset cn=sgmldoc 
clause="dlOOl"> 

xpropdef subnode rcsnm=capset appnm="capacity set" datatype=node 
ac=capset cn=sgmldoc clause="d2001"~ 

97 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

Kpropdef rcsnm=synscope appnm="syntax scope" 
fullnm=" concrete Syntax scope" datatype=enum cn=sgmldoc clause="d3002"> 

cenumdef rcsnm=instance> 
<enumdef rcsnm=document> 

-cpropdef subnode rcsnm=dclsyn appnm="decl Syntax" 
fullnm="declared concrete Syntax" datatype=node ac=syntax cn=sgmldoc 
clause="d4001"> 

<propdef subnode rcsnm=refsyn appnm="ref Syntax" 
fullnm=Yeference concrete Syntax" datatype=node ac=syntax cn=sgmldoc 
clause="d4002 eo001 FIG'-/O"> 
<desc> 
The reference concrete Syntax used for the SGML declaration and, 
if the concrete Syntax scope is INSTANCE, the prolog. 
<note> 
Not a property of sgmlcsts because it depends on the document Character 
set. 

xpropdef irefnode rcsnm=prosyn appnm="prolog Syntax" 
fullnm="prolog concrete Syntax" datatype=node ac=syntax cn=sgmldoc 
clause= "d4001"> 
<desc> 
The concrete Syntax for the prolog. 

xpropdef subnode rcsnm=features fullnm="feature use" datatype=node 
ac=features cn=sgmldoc clause="d5001"> 

cclassdef rcsnm=charset appnm="char Set" fullnm="character Set" 
conprop=chdescs clause="dlOOO"> 

cpropdef subnode rcsnm=chdescs appnm="char descs" 
fullnm=" Character descriptions" datatype=nodelist ac=chardesc 
clause="dllOl"> 

<classdef rcsnm=chardesc appnm="char desc" fullnm= "Character description" 
clause="dll22"> 

<propdef rcsnm=descnum appnm="desc set number" 
fullnm="described set Character number" datatype=integer clause="dl123"> 

xpropdef rcsnm=nchars appnm="n chars" fullnm="number of characters" 
datatype=integer clause="dl125"> 

cpropdef rcsnm=basenum appnm="base set number" 
fullnm="base set Character number" datatype=integer clause="dl124"> 
<when> 
Character description included a base set Character number. 

Kpropdef rcsnm=baseset appnm="base char Set" fullnm="base Character Set" 
datatype=string strlex=mindata clause="dllll"> 
<desc> 
The public identifier of the base Character set. 
<when> 

98 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

Character description included a base set Character number. 

xpropdef rcsnm=desclit appnm="desc literal" 
fullnm="description literall datatype=string strlex=mindata 
clause= "a1701"> 
<when> 
Character description not entered as base set number. 

<classdef rcsnm=syntax fullnm="concrete Syntax" clause="d4000"> 
<note> 
This represents a concrete Syntax bound to this document's document 
Character set. Characters are characters in the document Character set 
not in the Syntax reference Character set. 

xpropdef rcsnm=shunctrl appnm="shunchar controls" datatype=boolean 
clause="d4204"> 
<desc> 
True if SHUNCHAR included CONTROLS. 

Kpropdef rcsnm=shunchar fullnm="shunned Character numbers" 
datatype=intlist clause="d4201"> 

Kpropdef subnode rcsnm=synchset appnm="syntax ref char set" 
fullnm=" Syntax-reference Character set" datatype=node ac=charset 
clause="d4301"> 

xpropdef rcsnm=re fullnm="record end" datatype=char clause="d4401"> 

Kpropdef rcsnm=rs fullnm="record Start" datatype=char clause="d4401"> 

<propdef rcsnm=space datatype=char clause="d4401"> 

cpropdef subnode rcsnm=addfuns appnm="added function chars" 
fullnm=" added function characters" datatype=nmndlist ac=addfun 
acnmprop=name clause="d4401"> 

cpropdef rcsnm=lcnmstrt datatype=string clause="d4503"> 

Kpropdef rcsnm=ucnmstrt datatype=string clause="d4504"> 

xpropdef rcsnm=lcnmchar datatype=string clause="d4505"> 

Kpropdef rcsnm=ucnmchar datatype=string clause="d4506"> 

xpropdef rcsnm=substgen appnm="subst general names" 
fullnm="substitute general names" datatype=boolean clause="d4507"> 
<desc> 
True if GENERAL YES is specified in NAMECASE. 

xpropdef rcsnm=substent appnm="subst entity names" 
fullnm=" Substitute entity names" datatype=boolean clause="d4507"> 
<desc> 
True if ENTITY YES is specified in NAMECASE. 

<propdef subnode rcsnm=gdasns appnm="general delim assocs" 
fullnm="general delimiter role associations" 

99 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

datatype=nmndlist ac=dlmrlas acnmprop=role clause="d4611"> 
<desc> 
There is a term for every general delimiter role whether or not 
it is changed from that prescribed by the reference concrete Syntax. 
The terms occur in alphabetical Order of their (abstract-Syntax) 
role names. 

cpropdef rcsnm=srdelms appnm="shortref delims" 
fullnm="short reference delimiters" datatype=strlist clause="d4621"> 

<propdef subnode rcsnm=slitasns appnm="syntax literal assocs" 
fullnm=%yntax literal associations" datatype=nmndlist ac=synlitas 
acnmprop=refname clause="d4701"> 
<desc> 
The Syntax literal/reserved name associations specified by the concrete 
Syntax. There is a term for every reserved name whether or not 
it is changed from that prescribed by the reference concrete Syntax. 
The terms occur in alphabetical Order of the syntactic literals. 

cpropdef rcsnm=attcnt datatype=integer clause="FIG41"> 
xpropdef rcsnm=attsplen datatype=integer clause="FIG42"> 
cpropdef rcsnm=bseqlen datatype=integer clause="FIG43"> 
cpropdef rcsnm=dtaglen datatype=integer clause="FIG44"> 
cpropdef rcsnm=dtemplen datatype=integer clause="FIG45"> 
cpropdef rcsnm=entlvl datatype=integer clause="FIG46"> 
cpropdef rcsnm=grpcnt datatype=integer clause="FIG47"> 
cpropdef rcsnm=grpgtcnt datatype=integer clause="FIG48"> 
xpropdef rcsnm=grplvl datatype=integer clause="FIG49"> 
cpropdef rcsnm=litlen datatype=integer clause="FIG4a"> 
cpropdef rcsnm=namelen datatype=integer clause="FIG4b"> 
cpropdef rcsnm=normsep datatype=integer clause="FIG4c"> 
<propdef rcsnm=pilen datatype=integer clause="FIG4d"> 
cpropdef rcsnm=taglen datatype=integer clause="FIG4e"> 
cpropdef rcsnm=taglvl datatype=integer clause="FIG4f"> 

cclassdef rcsnm=addfun appnm="added function char" 
fullnm="added function character" clause="d4400"> 

cpropdef rcsnm=name 
clause="d4402"> 

datatype=string strlex=name strnorm=general 

<propdef rcsnm=class fullnm="function class" datatype=enum clause="d4403"> 
Kenumdef rcsnm=funchar> 
xenumdef rcsnm=msichar> 
<enumdef rcsnm=msochar> 
cenumdef rcsnm=msschar> 
Kenumdef rcsnm=sepchar> 

xpropdef rcsnm=char fullnm=character datatype=char clause="95003"> 
<desc> 
Character assigned to function. 

Kclassdef rcsnm=dlmrlas appnm="delim role assoc" 
fullnm="delimiter role association'" clause="d4610"> 
<desc> 
The association, made by a concrete Syntax, of a Character string with 

100 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

an abstract-Syntax delimiter role. 

xpropdef rcsnm=role datatype=string strnorm=rcsgener clause="d4612"> 
<desc> 
The name of the role. 

cpropdef rcsnm=delm appnm=delim fullnm=delimiter datatype=string 
strnorm=general c1ause=ttd4611tt> 
<desc> 
The string to be used in the document. 

<classdef rcsnm=synlitas appnm= "syntactic literal assoc" 
fullnm="syntactic literal association" clause="d4700"> 
<desc> 
The association, made by a concrete Syntax, of a reserved name with 
an abstract-Syntax syntactic literal. 

cpropdef rcsnm=synlit appnm="syntactic literalt' 
datatype=string strnorm=rcsgener clause="d4702"> 
<desc> 
The syntactic literal. (More precisely, the name which when enclosed in 
double quotation marks becomes the syntactic literal.) 

cpropdef rcsnm=resname appnm="reserved name" datatype=string strlex=name 
strnorm=general clause="d4702"> 
<desc> 
The reserved name to be used in the document. 
Knote> 
In the reference concrete Syntax, the syntactic literal is 
identical to the reserved name. 

xclassdef rcsnm=capset appnm="capacity set" clause="d2000"> 

cpropdef rcsnm=totalcap datatype=integer clause="FIG51"> 
<propdef rcsnm=entcap datatype=integer clause="FIG52"> 
cpropdef rcsnm=entchcap datatype=integer clause="FIG53"> 
cpropdef rcsnm=elemcap datatype=integer clause="FIG54"> 
Kpropdef rcsnm=grpcap datatype=integer clause="FIG55"> 
cpropdef rcsnm=exgrpcap datatype=integer clause="FIG56"> 
Kpropdef rcsnm=exnmcap datatype=integer clause="FIG57"> 
cpropdef rcsnm=attcap datatype=integer clause="FIG58"> 
cpropdef rcsnm=attchcap datatype=integer clause="FIG59"> 
xpropdef rcsnm=avgrpcap datatype=integer clause="FIG5a"> 
<propdef rcsnm=notcap datatype=integer clause="FIGSb"> 
xpropdef rcsnm=notchcap datatype=integer clause="FIG5c"> 
xpropdef rcsnm=idcap datatype=integer clause="FIG5d"> 
Kpropdef rcsnm=idrefcap datatype=integer clause="FIG5e"> 
<propdef rcsnm=mapcap datatype=integer clause="FIG5f"> 
cpropdef rcsnm=lksetcap datatype=integer clause="FIG5g"> 
cpropdef rcsnm=lknmcap datatype=integer clause="FIG5h"> 

<classdef rcsnm=features fullnm="feature use" clause="d5000"> 

Kpropdef rcsnm=datatag datatype=boolean clause="d5101"> 
<desc> 
True if DATATAG is YES. 

101 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 

--- 

0 ISO/IEC 

xpropdef rcsnm=omittag datatype=boolean clause="d5101"> 
<desc> 
True if OMITTAG is YES. 

xpropdef rcsnm=rank datatype=boolean clause="d5101"> 
<desc> 
True if RANK is YES. 

xpropdef rcsnm=shorttag datatype=boolean clause="d5101"> 
<desc> 
True if SHORTTAG is YES. 

<propdef rcsnm=simple datatype=integer clause="d5201"> 
<desc> 
0 if SIMPLE is NO. 

<propdef rcsnm=implicit datatype=boolean clause="d5201"> 
<desc> 
True if IMPLICIT is YES. 

Kpropdef rcsnm=explicit datatype=integer clause="d5201"> 
<desc> 
0 if EXPLICIT is NO. 

xpropdef rcsnm=concur datatype=integer clause="d5301"> 
<desc> 
0 if CONCUR is NO. 

<propdef rcsnm=subdoc datatype=integer clause="d5301"> 
<desc> 
0 if SUBDOC is NO. 

Kpropdef rcsnm=formal datatype=boolean clause="d5301"> 
<desc> 
True if FORMAL is YES. 

</psmodule> 

< ! -- SGML Declaration-related SGML document string classes and properties --> 

<psmodule rcsnm=sdclsds fullnm= "SGML declaration SGML document string" 
dependon=basesdsl> 

Kpropdef subnode optional rcsnm=sgmldcl appnm="sgml decl" 
fullnm="SGML declaration" datatype=node ac=sgmldcl cn=sgmldoc 
clause="dOOOl"> 
<when> 
SGML declaration was explicitly present. 

<propdef rcsnm=sdcltype appnm="sgml decl type" 
fullnm="SGML declaration type" datatype=enum cn=sgmldoc clause="62300"> 

Kenumdef rcsnm=explicit> 
<desc> 
The SGML declaration was explicitly specified. 

102 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

xenumdef rcsnm=implied> 
<desc> 
The SGML declaration was implied. 

xenumdef rcsnm=inherit> 
<desc> 
The SGML declaration Comes from the SGML document of which 
this is a subdocument. 

Kclassdef rcsnm=sgmldcl appnrn=%gml decl" fullnm="SGML declaration" 
conprop=markup clause="dOOOOtt> 

cpropdef subnode rcsnm=markup datatype=nodelist 
ac=ll ssep comment name number rname literal gendelm" clause="dOOOl"> 
<note> 
Also includes any s separators before the SGML declaration; 
last Child is gendelm for mdc delimiter. 

</psmodule> 

<!-- Prolog-related abstract classes and properties, level 1 --> 

<psmodule rcsnm=prlgabsl fullnm="prolog abstract level 1" 
dependon=prlgabsO> 

xpropdef subnode rcsnm=attdefs appnm="attribute defs" 
fullnm="attribute definitions" datatype=nmndlist ac=attdef acnmprop=name 
cn=notation clause="b3002"> 

xpropdef irefnode rcsnm=attdef appnm="attribute def" 
fullnm=" attribute definition" datatype=node ac=attdef cn=attasgn 
clause="b3003"> 

xpropdef irefnode rcsnm=elemtype appnm="element type" datatype=node ac=elemtype 
cn=element clause="b2101"> 

Kpropdef subnode rcsnm=dfltent appnm="default entity" datatype=node ac=dfltent 
clause="a5105" cn=doctype> 
<when> 
The DTD declared a default for undeclared entity names. (Esch such 
undeclared name is associated with an entity using this node as 
a Pattern, but in certain cases, the System may not select the 
Same entity for each name.) 

Kpropdef subnode rcsnm=elemtps appnm="element types" datatype=nmndlist 
ac= "elemtype rankstern" acnmprop="gi rankstern" cn=doctype clause="b2101" > 
<desc> 
Generic identifiers or rank Sterns used to name elements. l 

cpropdef subnode rcsnm=parments appnm="parameter entities" 
datatype=nmndlist ac=entity acnmprop=name cn=doctype 
clause="blOO4" > 
<note> 
Includes entities not explicitly declared, as discussed above in 
the description of this class. 

103 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

aclassdef rcsnm=elemtype appnm="element type" 
fullnm="element type definition" clause="b2000"> 

cpropdef rcsnm=gi fullnm="generic identifier" datatype=string 
strlex=name strnorm=general clause="78002"> 

xpropdef rcsnm=omitstrt appnm="omit Start tag" datatype=boolean 
clause="b2202"> 
<desc> 
True if start-tag minimization was 'IO". 
<when> 
Element type declaration specified omitted tag minimization. 

<propdef rcsnm=omitend appnm="omit end tag" datatype=boolean 
clause="b2203"> 
<desc> 
True if end-tag minimization was "0". 
<when> 
Element type declaration specified omitted tag minimization. 

xpropdef rcsnm=contype appnm="content type" datatype=enum clause="b2300"> 

cenumdef rcsnm=cdata> 
<desc> 
Declared content of CDATA. 

cenumdef rcsnm=rcdata> 
<desc> 
Declared content of RCDATA. 

Kenumdef rcsnm=empty> 
<desc> 
Declared content of EMPTY. 

xenumdef rcsnm=any> 
<desc> 
Content model of ANY. 

cenumdef rcsnm=modelgrp appnm="model group"> 
<desc> 
Content model that is a model group. 

cpropdef subnode rcsnm=modelgrp appnm="model group" datatype=node 
ac=modelgrp clause="b2402"> 
<when> 
Element type declaration includes content model that has a model group. 

xpropdef rcsnm=excls appnm=exclusions datatype=strlist clause="b2521"> 
<when> 
Contype is any or modelgrp. 

104 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

xpropdef subnode rcsnm=attdefs appnm="attribute defs" 
fullnm="attribute definitions" datatype=nmndlist ac=attdef acnmprop=name 
clause="b3003"> 

cclassdef rcsnm=modelgrp appnm='model group" conprop=tokens 
clause='b2402"> 
<desc> 
A model group or a data tag group. 
<note> 
A data tag group is represented by a model group node with connector 
equal to seq whose first token is an elemtk and whose second token 
is a pcdatatk. 

xpropdef rcsnm=connect appnm=connector datatype=enum clause="b2410"> 
<desc> 
Connector used within model group. 

cenumdef rcsnm=and> 
cenumdef rcsnm=or> 
xenumdef rcsnm=seq> 

cpropdef rcsnm=occur appnm='occur indicator" fullnm='occurrence indicator" 
datatype=enum clause='b2420'> 
<when> 
Model group has an occurrence indicator. 

xenumdef rcsnm=opt> 
Kenumdef rcsnm=plus> 
cenumdef rcsnm=rep> 

cpropdef subnode rcsnm=tokens appnm='content tokens' datatype=nodelist 
ac= "modelgrp pcdatatk elemtk" clause='b2403"> 

Kclassdef rcsnm=pcdatatk appnm="pcdata token' clause="b2404'> 

cclassde'f rcsnm=elemtk appnm='element token' clause='b2405'> 

xpropdef rcsnm=gi fullnm='generic identifier" datatype=string 
strlex=name strnorm=general clause='b2405"> 

Kpropdef rcsnm=occur appnm='occur indicator' fullnm="occurrence indicator" 
datatype=enum clause="b2405"> 
<when> 
Element token has an occurrence indicator. 

<enumdef rcsnm=opt> 
Kenumdef rcsnm=plus> 
cenumdef rcsnm=rep> 

Kclassdef rcsnm=attdef appnm="attribute def" fullnm="attribute definition" 
conprop=dfltval clause='b3003"> 

Kpropdef rcsnm=name datatype=string strlex=name strnorm=general 
clause="b3201"> 

<propdef rcsnm=dcltype appnm="decl value type" 

105 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

fullnm="declared value prescription type" datatype=enum clause="b33OP> 

<enumdef rcsnm=cdata> 
<enumdef rcsnm=entity> 
Kenumdef rcsnm=entities> 
cenumdef rcsnm=id> 
Kenumdef rcsnm=idref> 
<enumdef rcsnm=idrefs> 
Kenumdef rcsnm=name> 
<enumdef rcsnm=names> 
<enumdef rcsnm=nmtoken> 
<enumdef rcsnm=nmtokens> 
<enumdef rcsnm=number> 
<enumdef rcsnm=numbers> 
Kenumdef rcsnm=nutoken> 
xenumdef rcsnm=nutokens> 
Kenumdef rcsnm=notation> 
cenumdef rcsnm=nmtkgrp appnm="name token group"> 
<desc> 
The declared value was a name token group. 

Kpropdef rcsnm=tokens datatype=strlist clause="b3301"> 
<desc> 
A list of strings specifying the allowed tokens. 
<when> 
Declared value is a name token group or a notation. 

Kpropdef rcsnm=dflttype appnm="default value type" datatype=enum 
clause="b3401"> 

xenumdef rcsnm=value> 
<desc> 
The default value was an attribute value specification without #FIXED. 

xenumdef rcsnm=fixed> 
Kenumdef rcsnm=required> 
xenumdef rcsnm=current> 
xenumdef rcsnm=conref> 
Kenumdef rcsnm=implied> 

xpropdef subnode rcsnm=dfltval appnm="default value" datatype=nodelist 
ac= "attvaltk datachar sdata intignch entstart entend" clause="b3409"> 
<when> 
The default value includes an attribute value specification. 

xpropdef irefnode rcsnrn=curgrp appnm="current group" datatype=nodelist 
ac=attdef clause="b3001"> 
<desc> 
All the attdef nodes that represent the Same attribute definition 
and which will therefore share the Same current value. 
<note> 
There will be as many members as there were associated element types 
in the attribute definition list declaration 
that declared this attribute definition. 
<when> 
The default value type is CURRENT, 

106 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

Kpropdef rcsnm=curattix appnm="current attribute index" datatype=integer 
clause="b3001"> 
<desc> 
The number of preceding attribute definitions in the document type 
declaration with a default value type of CURRENT. 
<note> 
All the attdef nodes in the value of the curgrp property of an attdef 
node will exhibit the Same value for the curattix property. 
Two attdef nodes will share the Same current value just in case they 
exhibit the Same value for the curattix property. 
<when> 
The default value type is CURRENT. 

<classdef rcsnm=dfltent appnm="default entity"> 

xpropdef rcsnm=enttype appnm="entity type" datatype=enum clause="a5502"> 

xenumdef rcsnm=text fullnm="SGML text"> 
Kenumdef rcsnm=cdata> 
Kenumdef rcsnm=sdata> 

. <enumdef rcsnm=ndata> 
Kenumdef rcsnm=subdoc appnm=subdocument> 
Kenumdef rcsnm=pi> 

<propdef rcsnm=text datatype=string fullnm="replacement text" 
clause="92101"> 
<when> 
The default entity declaration declares an internal entity. 

xpropdef subnode rcsnm=extid appnm="external id" 
fullnm=" extemal identifier" datatype=node ac=extid clause="al601"> 
<when> 
The default entity declaration declares an external entity. 

xpropdef subnode rcsnm=atts appnm=attributes 
datatype=nmndlist ac=attasgn acnmprop=name clause="b4120"> 
<desc> 
A list of data attribute assignments, one for each declared attribute of the 
entity in the Order in which they were declared in the attribute 
definition list declaration. 
<when> 
The default entity declaration declares an external entity. 

cpropdef rcsnm=notname appnm="notation name" datatype=string strlex=name 
strnorm=general clause="79408"> 
<when> 
The default entity declaration declares an external entity. 

Kpropdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001"> 
<when> 
The default entity declaration declares an external entity. 

</psmodule> 

<! -- Prolog-related SDS classes and properties --> 

107 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


--- 

ISOIEC 10179: 1996(E) 0 ISO/IEC 

cpsmodule rcsnm=prlgsds fullnm= "prolog SGML document string" 
dependon=basesdsl> 

xpropdef irefnode rcsnm=entdcl appnm="entity decl" 
fullnm="entity declaration" datatype=node ac=entdcl cn=entity 
clause= "a5001"> 

xpropdef irefnode rcsnm=entdcl appnm="entity decl" 
fullnm="entity declaration" datatype=node ac=entdcl cn=dfltent 
clause= "a5001"> 

cpropdef irefnode rcsnm=notdcl appnm="notation decl" 
fullnm="notation declaration" datatype=node ac=notdcl cn=notation 
clause="b4001"> 

<propdef irefnode rcsnm=attdldcl appnm="attribute def list decl" 
fullnm="attribute definition list declaration" datatype=node ac=attdldcl 
cn=notation clause="b4111"> 
<when> 
The notation has an associated ATTLIST. 

Kpropdef irefnode rcsnm=eltpdcl appnm="element type decl" 
fullnm="element type declaration" datatype=node ac=eltpdcl cn=elemtype 
clause="b2001"> 

cpropdef irefnode rcsnm=attdldcl appnm="attribute def list decl" 
fullnm="attribute definition list declaration" 
datatype=node ac=attdldcl cn=elemtype clause="b3001"> 
<when> 
The element type has an associated ATTLIST declaration. 

cpropdef irefn .ode rc snm=doctpdcl full nm="doc ument type declaration" 
datatype =node ac=doc tpdcl cn=doc WPe clause= "b100 1 " > 

xpropdef irefnode rcsnm=attvalsp appnm="attribute value spec" 
fullnm="attribute value specification" 
datatype=node ac="attvalue literal" cn=attdef clause="79002"> 
<when> 
Default value includes attribute value specification. 

xclassdef rcsnm=doctpdcl fullnm= "document type declaration" 
clause="bl ooo"> 

mayadd 

cpropdef subnode rcsnm=markup datatype=nodelist 
ac= "ssep comment name rname literal msstart msend msignch entstart entend 

comdcl pi eltpdcl entdcl notdcl attdldcl usemap srmapdcl" 
clause="blOOl"> 

<note> 
First Child is gendelm for mdo delimiter; last is gendelm 
for mdc delimiter. If there is an external entity, its entend node 
will appear immediately before the gendelm for the dsc delimiter, 
if there is one, and otherwise immediately before the gendelm node 
for the mdc delimiter. 

Kpropdef irefnode rcsnm=doctype appnm="document type" datatype=node 

108 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOAEC ISO/IEC 10179:1996(E) 

ac=doctype clause="blOO8"> 

Kpropdef subnode rcsnm=entity datatype=node ac=entity clause="blOO8"> 
<when> 
Document type declaration includes external identifier. 

<classdef rcsnm=attdldcl appnm="attribute def list decl" 
fullnm="attribute definition list declaration" mayadd clause="b3000"> 

cpropdef subnode rcsnm=markup datatype=nodelist 
ac= "ssep comment entstart entend gendelm name nmtoken attvalue literal" 
clause="b3001"> 

<propdef irefnode rcsnm=asseltps appnm="assoc element types" 
fullnm="associated element types" datatype=nodelist ac=elemtype 
clause="b3001"> 
<desc> 
The element types to which the attribute definition list is applicable, 
ordered as their names occur in the attribute definition 
list declaration. This does not include undefined element types. 

qpropdef irefnode rcsnm=assnots appnm="assoc notations" 
fullnm= "associated notations" datatype=nodelist ac=notation clause="b3001"> 

cclassdef rcsnm=eltpdcl appnm="element type decl" 
fullnm=" element type declaration" mayadd clause="b2000"> 

Kpropdef subnode rcsnm=markup datatype=nodelist 
ac= "ssep comment entstart entend gendelm name number" clause="b2001"> 

xpropdef irefnode rcsnm=elemtype appnm="element type" 
fullnm="element type" datatype=node ac=elemtype clause="b2101"> 

cclassdef rcsnm=entdcl appnm="entity decl" fullnm="entity declaration" 
mayadd clause="a5000"> 
<desc> 
An entity declaration that is not ignored. 

Kpropdef subnode rcsnm=markup datatype=nodelist 
ac= "entstart entend ssep comment gendelm name rname literal attvalue" 
clause= "a5001"> 

xpropdef subnode rcsnm=entity datatype=node ac=entity clause="a5201"> 
<desc> 
The entity declared by the entity declaration. 

<classdef rcsnm=notdcl appnm="notation decl" 
fullnm="notation declaration" mayadd clause="b4000"> 

<propdef subnode rcsnm=markup datatype=nodelist 
ac= "entstart entend ssep comment literal name rname" clause="b4001"> 

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001"> 
<desc> 
The declared notation. 

109 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


L-. -- 

ISO IEC 10179:1996(E) 0 ISO/IEC 

</psmodule> 

<! - -  Document instance-related SDS c lasses and properties - -> 

<psmodule rcsnm=instsdsO fullnm=" instance SGML document string level O tt> 

xpropdef derived rcsnm=included 
<desc> 
True if and only if the element 

xpropdef derived rcsnm=momitend 
cn=element c lause="b2209"> 
<desc> 

appnm= "must omit end tag" datatype=boolean 

True if and only if the end tag for the element had to be omitted 

datatype=boolean cn=element> 

was an included subelement. 

because the element had a declared content of empty or 
an explicit content reference. 

</psmodule> 

<psmodule rcsnm=instsdsl fullnm=" instance SGML document string level 1" 
dependon= "instsds0 basesdsl"> 

<!-- Element - -> 

cpropdef subnode optional rcsnm=starttag appnm="start tag" datatype=nodelist 
ac= "gendelm name ssep entstart entend literal attvalue" cn=element 
c lause="74001"> 
<note> 
First Child is  gendelm for stago. 
Nodes of type entstart and entend tan occur  only 
in the document type specification. 
<when> 
A start-tag was specified for the element. 

xpropdef subnode optional rcsnm=endtag appnm="end tag" datatype=nodelist 
ac= li gendelm name ssep entstart entend ignmrkup" cn=element c lause="75001"> 
<note> 
First Child is  gendelm for etago or net. Nodes of type entstart, 
entend, and ignmrkup tan occur  only in the document type specification. 
<when> 
An end-tag (not a data tag) was specified for the element. 

<!-- Data Character - -> 

xpropdef rcsnm=movedre appnm="moved re" datatype=boolean cn=datachar 
c lause="76lOa"> 
<desc> 
True if and only if this Character is  an RE that was deemed to occur  
at a Point other than that at which it in fact occurred. 
<note> 
A node of type repos will indicate the Position at which 
it in fact occurred. 

cpropdef irefnode rcsnm=repos appnm="re Position" datatype=node cn=datachar 
ac=repos c lause="761Oa"> 
<desc> 

110 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

The Position at which this RE Character in fact occurred. 
<when> 
This Character is an RE that was deemed to occur at a Point other 
than that at which it in fact occurred. 

xpropdef subnode optional rcsnm=markup datatype=nodelist 
ac= "gendelm name ssep entstart entend refendre shortref" cn=extdata 
clause=" 94401 94402"> 
<desc> 
The markup of the entity reference. 
Knote> 
ssep, entstart, and entend tan occur only in a name group in a named 
entity reference. 

Kclassdef rcsnm=ignrs appnm="ignored rs" clause="76101"> 
<desc> 
An RS that was ignored because of the rules in 7.6.1 of ISO 8879. 

<propdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm="named Character reference" datatype=nodelist 
ac= "gendelm name refendre" clause="95001"> 
<when> 
The Character was the replacement of a named Character reference. 

cclassdef rcsnm=ignre appnm="ignored re" clause="76100"> 
<desc> 
An RE in content that was ignored because of the rules in 7.6.1 of ISO 
8879 e 
<note> 
This occurs at the Point where the RE originally occurred rather 
than at the Point it was determined that the RE should be ignored. 

Kpropdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm=" named Character reference" datatype=nodelist 
ac= "gendelm name refendre" clause="95001"> 
<when> 
The Character was the replacement of a named Character reference. 

xclassdef rcsnm=repos appnm="re position" clause="76lOa"> 
<desc> 
The original Position of an RE that was deemed by the rules of clause 
7.6.1 of ISO 8879 to occur at some Point other than that at which it 
in fact occurred. 
<note> 
For each node of type repos, there will be a node of type datachar 
with a property movedre that is true. 

Kpropdef irefnode rcsnm=re appnm="record end" datatype=node ac=datachar 
clause="76lOa"> 
<desc> 
The Character for which this is the repos. 

</psmodule> 

<! -- Datatag-related abstract classes and properties -+ 
cpsmodule rcsnm=dtgabs fullnm="datatag abstract" dependon=baseabs> 

111 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IlX 10179:1996(E) OISO/IEC 

cpropdef derived rcsnm=datatag datatype=boolean cn=element clause="73201"> 
<desc> 
True if and only if a data tag served as the end tag of the element. 
Knote> 
The data characters comprising the data tag will follow the element in 
the content of the containing element. 

Kpropdef rcsnm=dtgtemps appnm="data tag templates" datatype=strlist 
cn=elemtype clause="b2444"> 
<when> 
The model group was a data tag group. 

cpropdef rcsnm=dtgptemp appnm="data tag padding template" datatype=string 
cn=elemtype clause="b2445"> 
<when> 
The model group was a data tag group whose data tag Pattern included a 
data tag padding template. 

</psmodule> 

< ! -- Rank-related abstract classes and properties --> 
<psmodule rcsnm=rankabs fullnm="rank abstract" dependon=prlgabsl> 

xpropdef derived rcsnm=ranksuff appnm="rank suffix" datatype=string 
cn=elemtype clause="b2114"> 
<when> 
The element type in the element type declaration included a rank suffix. 

<propdef rcsnm=rankstem appnm="rank Stern"' datatype=string cn=elemtype 
clause="b2113"> 
<when> 
The element type in the element type declaration used a ranked element 
or ranked group. 

xpropdef rcsnm=rankgrp appnm="rank group" datatype=strlist cn=elemtype 
clause="b2112"> 
<desc> 
The rank Sterns in the ranked group. 
<when> 
The element type declaration included a ranked group. 

<classdef rcsnm=rankstem appnm="rank Stern" clause="b2113"'> 

Kpropdef rcsnm=stem datatype=string strlex=name strnorm=general 
clause="b2113"> 
<deso 
Name of rank Stern. 

Kpropdef irefnode rcsnm=elemtps appnm="element types" 
datatype=nodelist ac=elemtype clause="b2112"> 
<desc> 
The element types for which this is a rank Stern, 

</psmodule> 

112 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 JSO/IEC ISO/IEC 10179:1996(E) 

<! -- Shortref-related abstract classes and properties -+ 
<psmodule rcsnm=srabs fullnm="shortref abstract" dependon=prlgabsO> 

xpropdef subnode rcsnm=emptymap appnm="empty short ref map" 
fullnm="empty short reference map" datatype=node ac=srmap cn=sgmlcsts 
clause="b6004"> 
<desc> 
The empty short reference map. 

Kpropdef subnode rcsnm=srmaps appnm='short ref maps" 
fullnm="short reference maps" datatype=nmndlist ac=srmap acnmprop=name 
cn=doctype clause="blOO6"> 
<note> 
Does not include #EMPTY map. 

Kpropdef rcsnm=srmapnm appnm=%hort ref map name" 
fullnm=" short reference map name" datatype=string strlex=rniname 
strnorm=general cn=elemtype clause="b6004"> 
<when> 
The element type has an associated short reference map. 

cpropdef irefnode rcsnm=srmap appnm="short ref map" 
fullnm=" short reference map' datatype=node ac=srmap cn=elemtype 
clause="b6101"> 
<when> 
The element type has an associated short reference map. 

Kclassdef rcsnm=srmap appnm="short ref map" fullnm="short reference map" 
clause="b5000"> 

cpropdef rcsnm=name datatype=string strlex=name strnorm=general clause="b5002"> 
<when> 
Map is not the implicitly declared #EMPTY map. 

cpropdef subnode rcsnm=map datatype=nmndlist ac=srassoc acnmprop=shortref 
clause="b5004"> 

cclassdef rcsnm=srassoc appnm="short ref assoc" 
fullnm=" short reference association" clause="b5004"> 

xpropdef rcsnm=shortref appnm="short ref" 
fullnm="short reference delimiter" datatype=string strnorm=general 
clause="b5004"> 

Kpropdef rcsnm=entname appnm='entity name" datatype=string strlex=name 
strnorm=entity clause="b5004"> 

cpropdef irefnode rcsnm=entity datatype=node ac=entity clause="b5001"> 

</psmodule> 

<!-- Shortref-related SDS classes and properties --> 
<psmodule rcsnm=srsds fullnm=" shortref SGML document string" 
dependon=basesdslr 

xclassdef rcsnm=usemap appnm="short ref use decl" 

113 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

fullnm= "short reference use declaration" conprop=markup clause="b6000"> 

<propdef subnode rcsnm=markup datatype=nodelist 
ac= "entstart entend ssep comment gendelm name rname ignmrkup" 
clause="b6001"> 
Knote> 
First Child is gendelm for mdo delimiter; last is gendelm for mdc 
delimiter, 

<propdef irefnode rcsnm=asseltps appnm="assoc element types" 
fullnm="associated element types" datatype=nodelist ac=elemtype 
clause="al501"> 
Knote> 
SGML specifies that this does not include element types which had 
already been associated with a map. 
<when> 
The short reference use declaration includes an associated element 
type. 

xpropdef irefnode rcsnm=srmap datatype=node ac=srmap clause="b6002'"> 

<classdef rcsnm=shortref appnm="short ref" 
fullnm=" short reference delimiter" clause="e4620"> 

<propdef rcsnm=origdelm appnm="'original delim'" 
fullnm="original delimiter" datatype=string clause="96601"> 
<desc> 
The short reference delimiter as originally entered. 

xpropdef subnode optional rcsnm=namecref appnm="named char ref" 
fullnm="named Character reference"" datatype=nodelist 
ac= "gendelm name refendre" clause="'95001"> 
<when> 
The first Character of the delimiter was entered with a named 
Character reference. 

Kclassdef rcsnm=srmapdcl appnm="short ref map decl" 
fullnm=" short reference mapping declaration" mayadd clause="b5000"> 

xpropdef subnode rcsnm=markup datatype=nodelist 
ac= It entstart entend ssep comment gendelm name rname literall 
clause="b5001"> 
Knote> 
First Child is gendelm for mdo delimiter; last is gendelm for mdc 
delimiter. 

cpropdef irefnode rcsnm=map datatype=node ac=srmap clause="b5001"> 

</psmodule> 

< ! -- Link-related abstract classes and properties --> 
xpsmodule rcsnm=linkabs fullnm="link abstract" dependon=prlgabsO> 

Kpropdef subnode rcsnm=emptylks appnm="empty link set" datatype=node ac=linkset 
cn=sgmlcsts clause="c3004"> 
<desc> 

114 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

Empty link set used to disable current link set. 

xpropdef subnode optional rcsnm=simplelk appnm=%imple link info" 
fullnm=" simple link information" datatype=nmndlist ac=simplelk 
acnmprop=linkset cn=element clause="cl431"> 
<when> 
Element is the document element and there are active simple link 
processes. 

xpropdef irefnode rcsnm=linkatts appnm="link attributes" 
datatype=nmndlist ac=attasgn acnmprop=name cn=element clause="cl402"> 
<desc> 
A list of attribute assignments, one for each declared link attribute 
of the element. 
cnote> 
The origin of the link attributes will be the link rule. 

xpropdef derived rcsnm=rsltgi appnm="result gi" 
fullnm="result element generic identifier" datatype=string strlex=name 
strnormzgeneral cn=element clause="c2202"> 
<when> 
There is an applicable link rule which is an explicit link rule whose 
result element is not implied. 

cpropdef irefnode rcsnm=rsltelem appnm="result element type" 
datatype=node ac=elemtype cn=element clause="c2202"> 
<when> 
There is an applicable link rule which is an explicit link rule whose 
result element is not implied. 

xpropdef irefnode rcsnm=rsltatts appnm="result attributes" 
datatype=nmndlist ac=attasgn acnmprop=name cn=element clause="c2203"> 
-cnote> 
The origin of the attributes will be the link rule. 
<when> 
There is an applicable link rule which is an explicit link rule whose 
result element is not implied. 

xpropdef irefnode rcsnm=lksetinf appnm="link set info" 
fullnm=" link set information" datatype=nodelist ac=linkrule cn=element 
clause="c2205"> 
<desc> 
Link rules in the current link set whose Source element type is implied. 
<when> 
There is an active explicit link process. 

<propdef irefnode rcsnm=lksetinf appnm="link set info" 
fullnm=" link set information" datatype=nodelist ac=linkrule cn=datachar> 
<desc> 
Link rules in the current link set whose Source element type is implied. 
cwhen> 
There is an active explicit link process and the Character occurs 
in content. 

<classdef rcsnm=simplelk appnm="simple link Info" 
fullnm=" simple link information" clause="cl430"> 

115 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOAEC 10179:1996(E) 0 ISODEC 

<propdef rcsnm=linktype appnm="link type" datatype=string strlex=name 
strnorm=general clause="clOOl"> 
<desc> 
The link type name of the simple link process. 

xpropdef subnode rcsnm= atts appnm=a ttributes 
datatype =nmndlis t ac=at tasgn acnmpr op=name clause="cl402"> 

xclassdef rcsnm=linktype appnm="link type"> 

cpropdef rcsnm=name datatype=string strlex=name strnorm=general 
clause= "c1002"~ 

<propdef rcsnm=active datatype=boolean> 
<desc> 
True if and only if link type is active. 

xpropdef rcsnm=ltkind appnm="link type kind" 
fullnm="kind of link type" datatype=enum clause="clOOl"> 
xenumdef rcsnm=simple> 
Kenumdef rcsnm=implicit> 
cenumdef rcsnm=explicit> 

cpropdef rcsnm=srcname appnm= "Source document type name" datatype=string 
strlex=name strnorm=general clause="c1302"> 

xpropdef irefnode rcsnm=source appnm= "Source document type" datatype=node 
ac=doctype clause="cl305 c1306"> 
<note> 
For a simple link type, this will always be the base document type. 

Kpropdef rcsnm=rsltname appnm="result document type name" datatype=string 
strlex=name strnorm=general clause="cl303"> 

cpropdef irefnode rcsnm=result appnm="result document type" datatype=node 
ac=doctype clause="cl306"> 
cwhen> 
The link type is an explicit link type. 

Kpropdef subnode rcsnm=inilkset appnm="initial link Set" datatype=node 
ac=linkset clause="c2004"> 
-cwhen> 
The link type is not simple. 

Kpropdef subnode rcsnm=idlkset appnm="id link Set" datatype=node ac=linkset 
clause= "c2300"> 
<when> 
The link type declaration subset includes an ID link set declaration. 

xpropdef subnode rcsnm=linksets appnm="link Sets" datatype=nmndlist 
ac=linkset acnmprop=name clause="cl401"> 
Knote> 
Does not include #INITIAL or #EMPTY or ID link set- 

cclassdef rcsnm=linkset appnm="link Set" conprop=lkrules clause="c2000"> 

116 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IE@ ISO/IEC 10179:1996(E) 

cpropdef rcsnm=name datatype=string strlex=name strnorm=general 
clause= "c2003"> 
<when> 
Link set is not #INITIAL nor #EMPTY nor the ID link set. 

Kpropdef subnode rcsnm=lkrules appnm="link rules" datatype=nodelist 
ac=linkrule clause="c2002"> 

cclassdef rcsnm=linkrule appnm="link rule" clause="c2002"> 

<propdef rcsnm=assgis appnm="assoc gis" 
fullnm="associated generic identifiers" datatype=strlist strlex=name 
clause= "c2101"> 
<desc> 
The names of the associated element types. 
<when> 
The link rule is not an explicit link rule whose Source element type 
is implied. 

cpropdef irefnode rcsnm=asseltps appnm="assoc element types" 
fullnm=" associated element types" datatype=nodelist ac=elemtype 
clause= "c2101"> 
<when> 
The link rule is not an explicit link rule whose Source element type 
is implied. 

cpropdef rcsnm=id fullnm="unique identifier" datatype=string strlex=name 
strnorm=general clause="c2301"> 
<when> 
Link rule occurs in ID link set declaration. 

Kpropdef irefnode rcsnm=uselink datatype=node ac=linkset clause="c2104"> 
<when> 
The link rule includes a USELINK Parameter. 

cpropdef rcsnm=uselknm appnm="uselink name" datatype=string strlex=rniname 
strnorm=general clause="c2104"> 
<desc> 
The link set named by the USELINK Parameter. 
<when> 
The link rule includes a USELINK Parameter. 

cpropdef derived rcsnm=postlkrs appnm="postlink restore" datatype=boolean 
clause= "c2101"> 
<desc> 
True if the link rule includes a POSTLINK Parameter of #RESTORE. 

cpropdef irefnode rcsnm=postlkst appnm="postlink Set" datatype=node 
ac=linkset clause="c2101"> 
<when> 
The link set specification did not specify #RESTORE. 

xpropdef rcsnm=postlknm datatype=string strlex=rniname strnorm=general 
clause= "c2101"> 
cdesc> 

117 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

The token specified for the link set specification following POSTLINK. 
<when> 
The link rule includes a POSTLINK Parameter. 

<propdef subnode rcsnm=linkatts appnm="link attributes" 
datatype=nmndlist ac=attasgn acnmprop=name clause="c2102"> 
<when> 
The link rule is not an explicit Pink rule whose Source element type 
is Implied. 

<propdef rcsnm=rsltgi appnm="result gi" 
fullnm=" result element generic identifier" datatype=string strEex=name 
strnorm=general clause="c2202"> 
<when> 
The link rule is an explicit link rule whose result element type is 
not implied. 

<propdef irefnode rcsnm=rsltelem appnm="result element type" datatype=node 
ac=elemtype clause="c2202"> 
<when> 
The link rule is an explicit link rule whose result element type is 
not implied. 

<propdef subnode rcsnm=rsltatts appnm="result attributes" 
datatype=nmndlist ac=attasgn acnmprop=name clause="c2203"> 
<when> 
The link rule is an explicit link rule whose result element type is 
not implied. 

</psmodule> 

< ! -- Link-related SDS classes and properties --> 
<psmodule rcsnm=linksds fullnm="link SGML document string" 
dependon=basesdsl> 

cpropdef irefnode rcsnm=lksetdcl appnm="link set decl" 
fullnm="link set declaration" datatype=node ac="lksetdcl idlkdcl" 
cn=linkset clause="c2001"> 
<when> 
Link set is not #EMPTY. 

<propdef irefnode rcsnm=lktpdcl appnm=".link type decl" 
fullnm="link type declaration" datatype=node ac=lktpdcl cn=linktype 
clause="clOOl"> 

Kclassdef rcsnm=lktpdcl appnm="link type decl" fullnm="link type declaration" 
mayadd clause="clOOO"> 

Kpropdef subnode rcsnm=markup datatype=nodelist 
ac= " ssep comment name rname literal msstart msignch msend 

entstart entend pi comdcl entdcl attdldcl lksetdcl idlkdcl" 
clause="clOOl"> 

cpropdef irefnode rcsnm=linktype appnm="link type" datatype=node 
ac=linktype> 

118 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

Kpropdef subnode rcsnm=entity datatype=node ac=entity clause="c1004"> 
<when> 
Link type definition includes external identifier. 

Kclassdef rcsnm=lksetdcl appnm="link set decl" fullnm="link set declaration" 
mayadd clause="c2000"> 

Kpropdef subnode rcsnm=markup datatype=nodelist 
ac= "entstart entend ssep comment gendelm name rname literal attvalue" 
clause= "c2001"> 

Kpropdef irefnode rcsnm=linkset appnm="link set" datatype=node 
ac=linkset clause="c2001"> 

Kclassdef rcsnm=idlkdcl appnm="id link set decl" 
fullnm="ID link set declaration" mayadd clause="c2300"> 

xpropdef subnode rcsnm=markup datatype=nodelist 
ac= "entstart entend ssep comment gendelm name rname literal attvalue" 
clause="c2301"> 

<propdef irefnode rcsnm=linkset appnm="link set" datatype=node ac=linkset 
clause="c2301"> 

Kclassdef rcsnm=uselink appnm="link set use decl" 
fullnm="link set use declaration" conprop=markup clause="c3000"> 
<desc> 
A link set use declaration that is not ignored. 

Kpropdef subnode rcsnm=markup datatype=nodelist 
ac= "entstart entend ssep comment gendelm name rname ignmrkup" 
clause="c3001"> 
Knote> 
First Child is gendelm for mdo delimiter; last is gendelm 
for mdc delimiter. 

Kpropdef derived rcsnm=restore datatype=boolean clause="c3002"> 
<desc> 
True if the link set specification specified #RESTORE. 

xpropdef irefnode rcsnm=linkset datatype=node ac=linkset clause="c3002"> 
<when> 
The link set specification did not specify #RESTORE. 

xpropdef rcsnm=lksetnm datatype=string strlex=rniname strnorm=general 
clause="c3002"> 
<desc> 
The token specified for the link set specification. 

xpropdef rcsnm=linktpnm appnm="link type name" datatype=string 
strlex=name strnorm=general clause="c3001"> 

xpropdef irefnode rcsnm=linktype appnm="link type" datatype=node 
ac=linktype clause="c3001"> 

</psmodule> 

119 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

< ! -- Subdoc-related abstract classes and properties --> 
<psmodule rcsnm=subdcabs fullnm="subdoc abstract" dependon=baseabs> 

xclassdef rcsnm=subdoc appnm=subdocument fullnm="reference to subdocument"> 
<desc> 
The result of referencing a subdocument entity. 

xpropdef rcsnm=entname appnm="entity name" datatype=string strlex=name 
strnorm=entity clause="a5101"> 

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="c5501"> 

</psmodule> 

< ! -- Subdoc-related SDS classes and properties --> 
<psmodule rcsnm=subdcsds fullnm= "subdoc SGML document string" 
dependon="basesdsl subdabs"> 

xpropdef subnode optional rcsnm=markup datatype=nodelist 
ac= "gendelm name ssep entstart entend refendre shortref" cn=subdoc 
clause= " 94401"> 
<desc> 
The markup of the entity reference. 
<note> 
s-p, entstart, and entend tan occur only in a name group in a named 
entity reference. 

c/psmodule> 

< ! -- Formal public identifier-related abstract classes and properties --> 
<psmodule rcsnm=fpiabs fullnm= "formal public identifier abstract" 
dependon=baseabs> 

<propdef subnode optional rcsnm=fpi appnm="formal public id" 
fullnm="formal public identifier" datatype=node ac=fpi cn=extid 
clause= "a2001"> 
<when> 
FORMAL YES was specified in the SGML declaration. 

<classdef rcsnm=fpi appnm="formal public id" fullnm= "formal public identifier" 
clause= "a2000"> 
<note> 
The string which is the value of each of the string-valued properties 
provided by this class is the minimum data specified as such in the 
governing productions, without any accompanying 'VP', "-/PI "+//" 
or s characters. 

xpropdef rcsnm=ownertp appnm="owner type" datatype=enum clause="a2100"> 
<desc> 
Type of owner identifier. 

<enumdef rcsnm=iso> 
<enumdef rcsnm=regist appnm=registered> 
cenumdef rcsnm=unregist appnm=unregistered> 

120 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

Kpropdef rcsnm=ownerid appnm="owner id" fullnm="owner identifier" 
datatype=string strlex=mindata clause="a2100"> 

<propdef rcsnm=textclas appnm="text class" fullnm="public text class" 
datatype=enum clause="a2210"> 
Kenumdef rcsnm=capacity> 
xenumdef rcsnm=charset> 
<enumdef rcsnm=document> 
cenumdef rcsnm=dtd> 
<enumdef rcsnm=elements> 
<enumdef rcsnm=entities> 
xenumdef rcsnm=lpd> 
cenumdef rcsnm=nonsgml> 
cenumdef rcsnm=notation> 
<enumdef rcsnm=shortref> 
Kenumdef rcsnm=subdoc> 
cenumdef rcsnm=syntax> 
cenumdef rcsnm=text> 

Kpropdef rcsnm=unavail appnm=unavailable datatype=boolean clause="a2202"> 
<desc> 
True if and only if unavailable text indicator was specified. 

Kpropdef rcsnm=textdesc appnm="text description" 
fullnm="public text description" datatype=string strlex=mindata clause="a2221"> 

Kpropdef rcsnm=textlang appnm=Vext language" 
fullnm='public text language" datatype=string clause="a2231"> 
<when> 
The text identifier included a public text language. 

cpropdef rcsnm=textdseq appnm= "text designating sequence" 
fullnm="public text designating sequence" datatype=string clause="a2241"> 
<when> 
The text identifier included a public text designating sequence. 

cpropdef rcsnm=textdver appnm="text display version" 
fullnm="public text display Version" datatype=string clause="a2251"> 
<when> 
The text identifier included a public text display version 
(that is, there was a // following the public text language 
or public text designating sequence). 

</psmodule> 

<! -- String Normalization Rules --> 
Knormdef rcsnm=general sd=SGML clause="d4506"> 
<desc> 
Declared concrete Syntax general namecase Substitution. 
cnormdef rcsnm=entity sd=SGML clause="d4506"> 
<desc> 
Declared concrete Syntax entity namecase Substitution. 
<normdef rcsnm=rcsgener sd=SGML clause="d4506"> 
<desc> 
Reference concrete Syntax general namecase Substitution. 

121 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

xdatadef rcsnm=integer lextype=integer> 
xdatadef rcsnm=boolean lextype=boolean> 
<datadef rcsnm=strlist fullnm="string list" listof=string lextype=strlist> 
xdatadef rcsnm=intlist fullnm="integer list" listof=int lextype=intlist> 

<! -- Lexical Types --> 
<!-- Datatypes --> 
xlexdef ltn=boolean norm model="[Ol]"> 
<lexdef ltn=integer unorm model="'O'lmarker"> 
<lexdef ltn=intlist norm model="integer+@'> 
<lexdef ltn=literal spec sd=SGML clause="96107"> 
<desc> 
Delimited literal as in declared concrete Syntax. Character reference 
tan be used to enter delimiter string within literal, as in SGML 
documents. 
<lexdef ltn=strlist norm model="literal, (',',literal)*? 
<desc> 
String list in so-called "comma-delimited ASCII" format supported by 
data base and Spreadsheet programs. The literals, exclusive of their 
delimiters, shall conform to the applicable lexical type of the 
individual strings. 

<! -- Other lexical types -+ 
<lexdef ltn=mindata spec sd=SGML clause="al702"> 
<desc>Minimum da&, 
<lexdef ltn=NAME spec sd=SGML clause="93001"> 
<desc>Name in declared concrete Syntax. 
<lexdef ltn=NMTOKEN spec sd=SGML ckause="93004"> 
<desc>Name token in declared concrete Syntax. 
<lexdef ltn=number spec sd=SGML clause="93002"> 
<desc>Number in declared concrete Syntax. 
<lexdef ltn=nmchar spec sd=SGML clause="92103"> 
<desc>Name Character in declared concrete Syntax. 
<lexdef ltn=ATTNAME nmsp provider=element property=atts sd=SGML clause="b3201"> 
<desc>Name of attribute of an element. 
<lexdef ltn=attspecs spec sd=SGML clause="79001"> 
<desc>Attribute specification list. 
<lexdef ltn=ENTITY nmsp provider=sgmldoc property=entities sd=SGML 
clause="a5101"> 
<desc>General entity name. 
xlexdef ltn=IDREF nmsp provider=sgmldoc property=elements sd=SGML 
clause="79403"> 
<desc>ID of an element (specified in document). 
<lexdef ltn=GI nmsp provider=dtd property=elemtps sd=SGML clause="78001"> 
<desc>Element type name (if dtd:effective is true). 
clexdef ltn=rniname spec sd=SGML> 
<desc>A name optionally preceded by an RN1 delimiter. 

9.7 DSSSL SGML Grove Plan 

A DSSSL specification has a Single grove plan specified by the sgml-grove-plan 
architectural form in the DSSSL specification. See 7.1.2. 

122 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

10 

10.1 

10.1 .l 

Standard Document Query Language 

SDQL adds two data types to the expression language, node - 1 i st and named-node- 1 i st. 
It also adds some additional Syntax for expressions: in SDQL, in any context in which an 
expression is allowed, a special-queryexpression is also allowed. 

A subset of SDQL called the core query language is defined in 10.2.4. 

The node- 1 i st data type represents an ordered list of zero or more nodes in a grove. 

NOTES 

28 There is no node data type. A Single node is represented by a node-list with a Single member. 

29 A node-list will typically be implemented in a lazy fashion. In other words, the internal representation of a node- 
list is not a list of nodes, but a representation of the specification that constructed the node-list. For example, if an 
application uses the node-list -count procedure on a node-list, it would be inefficient to build the node-list, count 
it, and then discard the node-list; it would be better simply to count how many distinct nodes match the node-list’s 
specification. 

A node-list with a Single member is referred to as a singleton node-list. 

The named-node-lis t data type is a subtype of the node-lis t data type that represents a 
node - 1 i s t each of whose members has a string-valued property that uniquely identifies the 
node in the node-list. 

ne is used for an argument that shall be a node-list. sn1 is used for an argument that shall be a 
singleton node-list. nn1 is used for an argument that shall be a named-node-list. 

Primitive Procedures 

The procedures in this clause are the primitive procedures, in the sense that all other procedures 
in SDQL could be defined in terms of the procedures in this clause, but no procedure in this 
clause is capable of being defined in terms of the other procedures in this clause. 

Application Binding 

(current-node) 

Returns a singleton node-list. The semantics of this are defined by the context in which the 
SDQL expression occurs. 

(current-root) 

Returns a singleton node-list. The semantics of this are defined by the context in which the 
SDQL expression occurs. 

123 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

10.1.2 Node Lists 

(node-lPst? obj) 

Returns #k if obj is a node-list, and otherwise returns #f. 

(node-list-empty? nl) 

Returns ##t if nl is the empty node-list, and otherwise retums #f. 

(node-list-first nl) 

Returns a node-list containing the first member of nl, if any, and otherwise retums the empty 
node-list . 

(node-list-rest nl) 

Returns a node-list containing all members of nl except the first, if nl has at least one member, 
and otherwise retums the empty node-list. 

(node-list nll nl2 . ..) 

Returns the node-list that results from appending the members of nl I, n12, . . . . If there are no 
arguments, retums the empty node-list. 

(node-list=? nl, n.Z2) 

Returns #k if nll and dz are the Same node-list, that is, they contain the Same members in the 
Same Order, and otherwise retums #f. 

(node-list-no-Order nl) 

Returns a node-list that has the Same members as nI but in an unspecified Order. 

NOTE 30 An implementation may be able to implement (node- lis t -no -Order CJ) more efficiently than g. 

10.1.3 Named Node Lists 

(named-node-list? obj) 

Returns #-t if obj is a named-node-list and otherwise retums #f. 

(named-node string nnl) 

Returns a singleton node-list comprising the node in nd whose name is s tring, if there is such 
a node, and otherwise retums the empty node-list. s tririgg is normalized according to the string 
normalization rule associated with nd before being compared to the names sf the members sf 
nnl. 

124 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEClOl79:1996(E) 

10.1.4 

10.1.5 

10.1.6 

(named-node-list-normalize string nd symbol) 

Returns string normalized according to the normalization rule of the named node list nd 
applicable to nodes of class symbol. 

(named-node-list-names nd) 

Returns a list of the names of the members sf nd in the Same Order as nd. The result shall be 
a list of strings with the Same number of members as nd. 

Error Reporting 

(node-list-error string nl) 

This Signals an error in a similar way to the error procedure. When an error is signaled with 
node-1 is t -error, the System should report to the user that the error is associated with the 
nodes in nl. The manner in which this is done is system-dependent. 

Application Name Transformation 

In all contexts in SDQL, application names are transformed by replacing each space with a 
hyphen and adding a question mark (?) to the application names of properties whose declared 
data type is boolean. 

Property Values 

(node-property propname sn1 #!key default: null: res?:) 

Returns the value that the node represented by sn1 exhibits for the property propname. If the 
node does not exhibit the property propname, then if the de f aul t : is supplied, it is retumed; 
otherwise, an error is signaled. If the node exhibits a null value for the property, then if null : is 
supplied, it is retumed; otherwise, if def aul t : is supplied, it is retumed; otherwise, an error is 
signaled. 

propname shall be a Symbol or a string specifying either the application name (transformed as 
specified in 10.1 S) or the RCS name of the property. propname is compared against the 
property name in a case-independent manner. 

Property values are represented as expression language objects according to their abstract data 
type: 

- An abstract Character is represented by an Object of type char. 

- An abstract string is represented by an Object of type string. 

- An abstract boolean is represented by an Object of type boolean. 

- An abstract integer is represented by an Object of type integer. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIIEC 10179:1996(E) 0 ISO/IEC 

- An abstract integer list is represented by a list of integers. 

An abstract string list is represented by a list of strings. 

-- An enumeration is represented by a Symbol whose name Ps equal to the application name of 
the enumerator (transformed as specified in 10.1.5). 

- A component name is represented by a Symbol. The name of the Symbol shall be the 
application name (transformed as specified in 10.1.5), unless the res ? : argument is supplied 
with a true value, in which case the RCS name will be used. 

- An abstract component name list is represented by a list sf the Symbols that represent each 
component name. 

An abstract node is represen ted by a singleton node-list. 

An abstract nodelist is represented by an object of type node-list. 

An abstract nmndlist is represented by an object of type n amed -node- . 
11st . 

- Null values have no representation in the expression language. 

l10.1.7 SGML Grove Construction 

(sgml-Parse string #!key active: parent:) 

Returns a node-list containing a Single node that is the root of a grove built by parsing an SGML 
document or subdocument using the SGML property set. s tririgg is the System identifier of the 
SGML document entity or SGML subdocument entity. active : is a list of strings specifying 
the names of the active DTD or LPDs. At most one DTD shall be active. If parent : is 
specified, then the entity to be parsed is an SGML subdocument entity, and the value shall be a 
singleton node-list in the grove in which the subdocument should be treated as being declared. 
This uses the default grove plan, which is determined in an application-dependent manner. 

10.2 Derived Procedures 

For some procedures, a formal definition in the expression language is supplied. These formal 
definitions do not handle errors. A correct implementation would need first to verify that 
arguments meet the requirements indicated by the procedure prototypes and the procedure 
description. 

10.2.1 HyTime Support 

Use of the facilities in this clause in the style or transformation languages requires the hytime 
feature. 

The grovepos abstract data type is represented by a list each of whose members is 

126 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

- an integer, 

- a list containing a Symbol and a string, or 

- a list containing a Symbol and an integer. 

(value-proploc propname snl #!key apropsrc?: default:) 

Returns the value that the member of sn1 exhibits for the property named propname. 
propname shall be a Symbol or string, interpreted as for the node-property procedure. If 
the member of sn1 does not exhibit a value for propname or exhibits a null value, then if 
def aul t : is supplied, de f aul t : shall be retumed; otherwise, an error shall be signaled. 
apropsrc?:, if true, has the same effect as specifying an apropsrc attribute with a value of 
apropsrc for the code proploc form in ISO/IEC 10744. 

(list-proploc propname nl #!key apropsrc?: ignore-missing?:) 

Returns a list of objects, one for each member of nl, where each Object is the value that the 
member of nl exhibits for propname. propname shall be a Symbol or string, interpreted as for 
the node-property procedure. If some member of nl does not exhibit a value for propname 
or exhibits a null value, then if ignore-missing? : is true, the resulting list shall contain no 
Object for that member; otherwise, an error shall be signaled. apropsrc? : , if true, has the same 
effect as specifying an apropsrc attribute with a value of apropsrc for the code proploc 
form in ISO/IEC 10744. 

(node-list- proploc propname nl #!key apropsrc?: ignore-missing?:) 

Returns the node-list that results from concatenating the values that each member of nZ exhibits 
for propname. propname shall be a Symbol or string, interpreted as for the node-property 
procedure. For the class of each member of nl, propname shall be nodal. If some member of 
nI does not exhibit a value for propname or exhibits a null value, then if ignore- 
missing?: is true, the resulting node-list shall contain no nodes for that member; otherwise, an 
error shall be signaled. apropsrc? : , if true, has the Same effect as specifying an apropsrc 
attribute with a value of apropsrc for the code proploc form in ISOLIEC 10744. 

(listloc dimlist nl #!key overrun:) 
(listloc dirnlist list #!key overrun:) 
(listloc dirnlist string #!key overrun:) 

This addresses the members of the second argument in the Same manner as the 1 ist loc 
architectural form defined in ISOLIEC 10744. Returns a node-list, list, or string according to the 
type of the second argument. diml ist is a list of integers. overrun : is one of the Symbols 
error,wrap, truncate, or ignore. Thedefaultis error. 

(nameloc nmlist nn1 #!key ignore-missing?:) 

127 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

Returns a node-list containing one member for each member of nm1 i s t, where nm1 is t is a 
string, Symbol, or a list of strings and/or Symbols. It shall be an error if any member of nmlist 
does not match the name of some member of nl, unless ignore-missing? : is true. 

(groveloc list nl #!key overrun:) 

Returns a list of nodes located in the same manner as with the groveloc architectural form of 
ISO/IEC 10744. list is a list in the Same format as the representation of the grovepos abstract 
datatype. overrun: is interpreted as with listloc. 

(treeloc marklist nl #!key overrun: treecom?:) 

Returns a list of nodes located in the Same manner as with the t reeloc architectural form of 
ISO/IEC 10744. marklist is list of integers. overrun: is interpreted as with listloc. 
treecom?:, if true, corresponds to a treecom attribute with a value of treecom. 

(pathloc dimlist nl #!key overrun: treecom?:) 

Returns a list of nodes located in the Same manner as with the pathloc architectural form of 
ISO/IEC 10744. dimlist is a list of integers. overrun: is interpreted as with listloc. 
treecom?:, if true, corresponds to a treecom attribute with a value of treecom. 

(relloc-anc dimlist nl #!key overrun:) 
(relloc-esib dimlist nl #!key overrun:) 
(relloc-ysib dimlist nl #!key overrun:) 
(relloc-des dimlist nl #!key overrun:) 

Returns a list of nodes located in the Same manner as with the re 11 oc architectural form of ISO/ 
IEC10744. Theprocedures relloc-anc,relloc-esib,relloc-ysib, and relloc- 
des correspondtovaluesforthe relation attributeof anc,esib,ysib, and des. dimlist 
is a list of integers. overrun : is interpreted as with 1 ist 1 oc. 

NOTE 31 Relations of parent and children arc handled by parent and children procedures. 

(datatok nl #!key filter: concat: catsrcsp: catressp: tokensep: 
ascp: stop: min: max: nlword: Stern?:) 

Returns a list of nodes located in the same manner as with the data tok architectural form of 
ISO/IEC 10744. 

- f i 1 ter : is a Symbol having one of the values allowed for the f i 1 ter attribute. 

-concat: isoneofthesymbols catshi,catslo,cattk,catshitk,catslotk, 
catrhitk,catrlotk, or nconcat interpretedinthesame mannerasthe concat 
attribute. 

128 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OLSO/IEC , ISOIEC 10179:1996(E) 

-catsrcsp:,catressp:,tokensp:, and ascp : are strings interpreted in the Same 
manner as the attributes with the Same name. 

- nlword: is a string specifying an ISO 639 language Code. 

-Stern?:, if true, has the Same effect as specifying #STEM for the nlword attribute. 

- stop : is a list of strings specifying a stop list; the default is the empty list. 

- min : is an integer specifying the m inimum untruncated token length. 

- max : is an integer specifying the maximum untruncated token length. 

(make-grove string nl) 

make-grove constructs a new grove and retums a node-list containing the grove root. string 
is the name of a grove plan. nl is the Source text. 

(literal-match dring nl #!key level: boundary: 
min-hits: max-hits:) 
(hylex-match string nl #!key norm?: level: boundary: 

min-hits: max-hits:) 

These functions construct a new grove using the Data Tokenizer Property Set containing one 
tokenized string node for each non-overlapping match found in the data of each member of nl. 
A node-list of all tokenized string nodes is retumed. 

-boundary: isoneofthesymbols sodeod,sodiec,isceod, or isciec, whichshallbe 
interpreted in the Same manner as the boundary attribute of the HyLex element defined in 
ISO/IEC 10744. 

- level : is a number of comparison levels in the collation specification of the current 
language on which string comparison shall be performed; if level : is not specified, strings 
shall be compared simply by comparing their constituent characters for equality. 

- min-hi t s : and max-hi t s : are strictly positive integers specifying the m inimum and 
maximum number of hits: any match whose parent node does not contain a number of hits 
within the specified range shall be excluded from the list of nodes retumed. The default for 
min-hi t s : is 1. If max-hi ts : is not specified, there shall be no maximum. 

-norm?: is a boolean specifying whether the lexical model shall be normalized. 

(compare proc list) 

Returns #t if proc applied to each successive pair of strings retums #t, where proc is an 
argument of two strings that retums a boolean. This could be defined by: 

(define (compare proc 1) 
(if (null2 1) 

#t 

129 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

(let loop ((prev (car 1)) 
(rest (cdr 1))) 

(cond ((null? rest) #t) 
((proc prev (car rest)) 

(loop (car rest) (cdr rest))) 
klse #f))))) 

(ordered-may-overlap? nl) 
(ordered-no-overlap? nl) 

Esch node shall be in an auxiliary grove, and the Source nodes of all the nodes shall be in a Single 
tree. Returns #/t if the Source nodes are ordered within that tree, and otherwise returns #f. For 
ordered-no-overlap ?, the Source nodes are considered to be ordered if, for each argument 
node, all of its Source nodes are before any of the Source nodes of the next argument node. For 
ordered-may-overlap ?, the Source nodes are considered to be ordered if, for each argument 
node, the first of its Source nodes is before the first of the Source nodes of the next argument 
node. 

(span nl Symbol) 

Esch node shall be in an auxiliary grove, and the Source nodes of all the nodes shall be in a Single 
tree. Returns the number of quanta between the first and the last Source nodes. synbol 
specifies the quantum. It shall have one of the values allowed for the f i 1 ter : argument of the 
datatok procedure. 

10.2.2 List Operations 

These procedures are similar to procedures on normal lists. 

(empty-node-list) 

Returns an empty node-list. 

(node-list-reduce nl proc obj) 

If nl has no members, retums obj, and otherwise retums the result of applying node- 1 i s t - 
reduce to 

- a node-list containing all but the first member of nl, 

- proc, and 

- the result of applying proc to ob j and the first member of nl. 

node - 1 i st - reduce could be defined as follows: 

(define (node-list-reduce nl combine init) 
(if (node-list-empty? nl) 

init 
(node-list-reduce (node-list-rest nl) 

130 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

combine 
(combine init (node-list-first nl))))) 

(node-list-contains? nl snl) 

Returns #It if nl contains a node equal to the member of snl, and otherwise retums ##-f. This 
could be defined as follows: 

(define (node-list-contains? nl snl) 
(node-list-reduce nl 

(lambda (result i) 
(or result 

(node-List=? snl i))) 
#fl 1 

(node-list-remove-duplicates nl) 

Returns a node-list which is the Same as nl except that any member of nl which is equal to a 
preceding member of nl is removed. This could be defined as follows: 

(define (node-list-remove-duplicates nl) 
(node-list-reduce nl 

(lambda (result snl) 
(if (node-list-contains? result snl) 

result 
(node-list result snl))) 

(empty-node-list))) 

(node-list-union #!rest args) 

Returns a node-list containing the Union of all the arguments, which shall be node-lists. The 
result shall contain no duplicates. With no arguments, an empty node-list shall be retumed. This 
could be defined as follows: 

(define (node-list-union #!rest args) 
(reduce args 

(lambda (nll n12) 
(node-list-reduce n12 

(lambda (result snl) 
(if (node-list-contains? result 

snl) 
result 
(node-list result snl))) 

nll)) 
(empty-node-list))) 

where reduce is defined as follows: 

(define (reduce list combine init) 
(let loop ((result init) 

(list list)) 
(if (null? list) 

result 
(loop (combine result (car list)) 

(cdr list))))) 

131 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IECl0179:1996(E) 0 ISO/IEC 

(node-list-intersection #!rest args) 

Returns a node-list containing the intersection of all the arguments, which shall be node-lists. 
The result shall contain no duplicates. With no arguments, an empty node-list shall be retumed. 
This could be defined as follows: 

(define (node-list-intersection #!rest args) 
(if (null? args) 

(empty-node-list) 
(reduce (cdr args) 

(lambda (nll n12) 
(node-list-reduce nll 

(lambda (result snl) 
(if (node-list-contains? n12 snl) 

(node-list result snl) 
result)) 

(empty-node-list))) 
(node-list-remove-duplicates (car args))))) 

(node-list-differente #!rest args) 

Returns a node-list containing the set differente of all the arguments, which shall be node-lists. 
The set differente is defined to be those members of the first argument that are not members of 
any of the other arguments. The result shall contain no duplicates. With no arguments, an empty 
node-list shall be retumed. This could be defined as follows: 

(define (node-list-differente #!rest args) 
(if (null? args) 

(empty-node-list) 
(reduce (cdr args) 

(lambda (nll n12) 
(node-list-reduce nll 

(lambda (result snl) 
(if (node-list-contains? n12 snl) 

result 
(node-list result snl))) 

(empty-node-list))) 
(node-list-remove-duplicates (car args))))) 

(node-list-symmetrie-differente #!rest args) 

Returns a node-list containing the symmetric set differente of all the arguments, which shall be 
node-lists. The symmetric set differente is defined to be those nodes that occur in exactly one of 
the arguments. The result shall contain no duplicates. With no arguments, an empty node-list 
shall be retumed. This could be defined. as follows: 

(define (node-list-symmetrie-differente #!rest args) 
(if (null? args) 

(empty-node-list) 
(reduce (cdr args) 

(lambda (nll n12) 
(node-list-differente (node-list-union nll n12) 

(node-list-intersection nll n12H) 
(node-list-remove-duplicates (car args))) >) 

132 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OPSO/IE@ ISO/IEC 10179:1996(E) 

(node-list-map proc nl) 

For each member of nl, applies proc to a singleton node-list containing just that member and 
appends the resulting node-lists. It shall be an error if proc does not retum a node-list when 
applied to any member of nl. This could be defined as follows: 

(define (node-list-map proc nl) 
(node-list-reduce nl 

(lambda (result snl) 
(node-list (proc snl) 

result)) 
(empty-node-list))) 

(node-list-Union-map proc nl) 

For each member of nl, applies proc to a singleton node-list containing just that member and 
retums the Union of the resulting node-lists. It shall be an error if proc does not retum a node- 
list when applied to any member of nl. This could be defined as follows: 

(define (node-list-Union-map proc nl) 
(node-list-reduce nl 

(lambda (result snl) 
(node-list-union (proc snl) 

result)) 
(empty-node-list))) 

(node-list-some? proc nl) 

Returns #t if, for some member of nl, proc does not retum ##f’ when applied to a singleton node- 
list containing just that member, and otherwise retums ##f. An implementation is allowed, but not 
required, to Signal an error if, for some member of nl, proc would Signal an error when applied 
to a singleton node-list containing just that member. This could be defined as follows: 

(define (node-list-some? proc nl) 
(node-list-reduce nl 

(lambda (result snl) 
(if (or result (proc snl)) 

#t 
w ) 

w > 

(node-list- every? proc nl) 

Returns ##t if, for every member of nl, proc does not retum ##f when applied to a singleton node- 
list containing just that member, and otherwise retums #f. An implementation is allowed to 
Signal an error if, for some member of nl, proc would Signal an error when applied to a 
singleton node-list containing just that member. This could be defined as follows: 

(define (node-list-every? proc nl) 
(node-list-reduce nl 

(lambda (result snl) 
(if (and result (proc snl)) 

#t 

133 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

(node-list-filter proc nl) 

Returns a node-list containing just those members of nl for which proc applied to a singleton 
node-list containing just that member does not retum #f. This could be defined as follows: 

. 
(define (node-list-filter proc nl) 

(node-list-reduce nl 
(lambda (result snl) 

(if (proc snl) 
(node-list snl result) 

result)) 
(empty-node-list))) 

(node-list->list nl) 

Returns a list containing, for each member of nir, a singleton node-list containing just that 
member. This could be defined as follows: 

(define (node-list->list nl) 
(reverse (node-list-reduce nl 

(lambda (result snl) 
(cons snl result)) 

f 0))) 

(node-list-length nl) 

Returns the length of nl. This could be defined as follows: 

(define (node-list-length nl) 
(node-list-reduce nl 

(lambda (result snl) 
(+ result 1)) 

0)) 

(node-list-reverse nl) 

Returns a node-list containing the members of nl in reverse Order. This could be defined as 
follows: 

(define (node-list-reverse nl) 
(node-list -reduce nl 

(lambda (result snl) 
(node-list snl result)) 

(empty-node-list))) 

(node-list-ref nl k) 

Returns a node-list containing the kth member of nP (Zero-based), if there is such a member, and 
otherwise retums the empty node-list. This could be defined as follows: 

(define (node-list-ref nl i) 
(cond ((< i 0) 

(empty-node-list)) 
((Zero? i) 

134 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/lEC ISO/IEC 10179:1996(E) 

(node-list-first nl)) 
(ehe 

(node-list-ref (node-list-rest nl) (- i 1))))) 

(node-list-tail nl k) 

Returns the node-list comprising all but the first k members of nl. If nZ has k or fewer members, 
retums the empty node-list. This could be defined as follows: 

(define (node-list-tail nl i) 
(cond ((< i 0) (empty-node-list)) 

((Zero? i) nl) 
(eise 

(node-list-tail (node-list-rest nl) (- i 1))))) 

(node-list-head nl k) 

Returns a node-list comprising the first k members of nL If nl has k or fewer members, retums 
nl. This could be defined as follows. 

(define (node-list-head nl i) 
(if (Zero? i) 

(empty-node-list) 
(node-list (node-list-first nl) 

(node-list-head nl (- i 1))))) 

(node-list-sublist nl kl IQ) 

Returns a node-list containing those members of nl that are preceded in n.2 by at least kl 
members but fewer than k2 members. This is equivalent to selecting those members whose zero- 
based index in nZ is greater than or equal to k, but less than k2. This could be defined as 
follows: 

(define (node-list-sublist nl i j) 
(node-list-head (node-list-tail nl i) 

(- j i)H 

(node-list-count nl) 

Returns the number of distinct members of nZ. This could be defined as follows: 

(define (node-list-count nl) 
(node-list-length (node-list-remove-duplicates nl))) 

(node-list-last nl) 

Returns a node-list containing the last member of nl, if nl is not empty, and otherwise retums 
the empty node-list. This could be defined as follows: 

(define (node-list-last nl) 
(node-list-ref nl 

(- (node-list-length nl) 1))) 

Whenusing node-list-some?,node-list-every?, node-list-filter, and node- 
1 ist -Union-map, the first argument is often a lambda expression with a variable. A Syntax 

135 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


5  - - -  

IS O /IE C  1 0 1 7 9 :1 9 9 6 (E)  O IS O A E C  

th a t a v o i d s  th e  n e e d  to  u s e  a n  e x p l i c i t l a m b d a  e x p re s s i o n  i n  th i s  c a s e  i s  p ro v i d e d  i n  th i s  
In te rn a ti o n a l  S ta n d a rd . 

[ 1 4 6 1  s p e c i a l -q u e ry -e x p re s s i o n  =  th e re -e x i s ts ? -e x p re s s i o n  I fo r-a l l ? -e x p re s s i o n  I s e l e c t-e a c h - 
e x p re s s i o n  I U n i o n -fo r-e a c h -e x p re s s i o n  

[ 1 4 7 1  th e re -e x i s ts ? -e x p re s s i o n  =  . 

A n  e x p re s s i o n  

(th e re -e x i s ts ?  v a r n h e x p r 

i s  e q u i v a l e n t to : 

th e re  - e x i  s  t s  ?  v a ri a b l e  e x p re s s i o n  e x p re s s i o n  ) 

e x p r) 

(n o d e - l i s t-s o m e ?  ( l a m b d a  ( V a r)  e x p r)  n l -e x p r)  

R e a d  th i s  a s : th e re  e x i s ts  a  v a r  i n  n l  -e x p r  s u c h  th a t e x p r. 

[ 1 4 8 1  fo r-a l l ? -e x p re s s i o n  =  ( f o r -  a l l  ?  v a ri a b l e  e x p re s s i o n  e x p re s s i o n  ) 

A n  e x p re s s i o n  

(fo r -a l l ?  v a r n l -e x p r  e x p r)  

i s  e q u i v a l e n t to : 

(n o d e - l i s t-e v e ry ?  ( l a m b d a  ( V a r)  e x p r)  n h e x p r)  

R e a d th i s  a s : fo r  a l l  v a r  i n  n l -e x p r, e x p r. 

[ 1 4 9 1  s e l e c t-e a c h -e x p re s s i o n  =  ( s e l e c  t -e a c h  v a ri a b l e  e x p re s s i o n  e x p re s s i o n ) 

A n  e x p re s s i o n  

(s e l e c t-e a c h  v a r n h e x p r e x p r)  

i s  e q u i v a l e n t to : 

(n o d e - l i s t-fi l te r  ( l a m b d a  W a r) e x p r)  n .b e x p r)  

R e a d  th i s  a s : s e l e c t e a c h  v a r  i n  n l  -e x p r  s u c h  th a t e x p r. 

[ 1 5 0 1  U n i o n -fo r-e a c h -e x p re s s i o n  =  (U n i o n - f o r-e a c h  v a ri a b l e  e x p re s s i o n  e x p re s s i o n ) 

A n  e x p re s s i o n  

(U n i o n -fo r-e a c h  v a r n l -e x p r  e x p r)  

i s  e q u i v a l e n t to : 

(n o d e - l i s t-U n i o n -m a p  ( l a m b d a  ( V a r)  e x p r)  n l -e x p r)  

R e a d  th i s  a s : th e  U n i o n  o f, fo r  e a c h  v a r  i n  n P  -e x p r, e x p r. 

1 3 6  

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179: 1996(E) 

10.2.3 Generic Property Operations 

These procedures work with any grove, but use only intrinsic properties. 

The result of many of the following procedures is the mapping of a function on a node over a 
node-list, which is defined to be the node-list that results from appending in Order the result of 
applying the function to each member of the node-list. 

(node-list-property propname nl) 

Returns the mapping over nl of the function on a node that retums the value that the node 
exhibits for the property propname or an empty node-list if the node does not exhibit a value or 
exhibits a null value for propname. propname tan be specified in any of the ways allowed for 
the node-property procedure. It shall be an error if any node in nl exhibits a non-null, non- 
nodal value for propname. This could be defined as follows: 

(define (node-list-property prop nl) 
(node-list -map (lambda (snl) 

(node-property prop snl default: (empty-node-list))) 
nl) 1 

(origin n2) 

This is equivalent to: 

(define (origin nl) 
(node-list-property 'origin nl)) 

(origin-to-subnode-rel snl) 

Returns the value that the member of sn1 exhibits for the origin-to-subnode-rel- 
property-name property, or ##f if it does not exhibit a value or exhibits a null value. This 
could be defined as follows: 

(define (origin-to-subnode-rel snl) 
(node-property 'origin-to-subnode-rel-property-name snl default: #f)) 

(tree-root n.2) 

This is equivalent to: 

(define (tree-root nl) 
(node-list-property 'tree-root nl)) 

(grove-root nl) 

This is equivalent to: 

(define (grove-root nl) 
(node-list-property 'grove-root nl)) 

(children nl) 

137 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

Returns the mapping over nl of the function on a node that retums the value of the node’s 
children property, if any, and otherwise the empty node-list. This could be defined as follows: 

(define (children nl) 
(node-list-map (lambda (snl) 

(let ((childprop (node-property 'children-property-name 
snl 
default: #f))) 

. (if childprop 
(node-property childprop 

snl 
default: (empty-node-list)) 

(empty-node-list)))) 
nU 1 

(data nl) 

Returns a string containing the concatenation of the data of each member of nL The data of a 
node is: 

- if the node has a data property, the value of its data property converted to a string, if 
necessary, 

- if the Child has a children property, the concatenation of the data of each of the children of the 
node, separated by the value of the data separator property, if it has a non-null value, or 

- otherwise, an empty string. 

(parent nl) 

This is equivalent to: 

(define (parent nl) 
(node-list-property 'parent nl)) 

(Source n2) 

This is equivalent to: 

(define (Source nl) 
(node-list-property 'Source nl)) 

(subtree nl) 

Returns the mapping over nl of the function on a node that retums the subtree of a node, where 
the subtree of a node is defined to be the node-list comprising the node followed by the subtrees 
of its children. This could be defined as follows: 

(define (subtree nl) 
(node-list-map (lambda (snl) 

(node-list snl (subtree (children snl)))) 
nl)) 

(subgrove nl) 

138 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

Returns the mapping over nl of the function on a node that returns the subgrove of a node, where 
the subgrove of a node is defined to be the node-list comprising the node followed by the 
subgroves of members of the values of each of the node’s subnode properties. This could be 
defined as follows: 

(define (subgrove nl) 
(node-list-map 

(lambda (snl) 
(node-list snl 

(subgrove 
(apply node-list 

(map (lambda (name) 
(node-property name snl)) 

(node-property 'subnode-property-names 
snl)))))) 

nl)) 

(descendants nl) 

Returns the mapping over nl of the function on a node that returns the descendants of the node, 
where the descendants of a node are defined to be the result of appending the subtrees of the 
children of the node. This could be defined as follows: 

(define (descendants nl) 
(node-list-map (lambda (snl) 

(subtree (children snl))) 
nl)) 

(ancestors 121) 

Returns the mapping over nl of the function on a node that retums the ancestors of the node, 
where the ancestors of a node are an empty node-list if the node is a tree root, and otherwise are 
the result of appending the ancestors of the parent of the node and the parent of the node. This 
could be defined as follows: 

(define (ancestors nl) 
(node-list -map (lambda (snl) 

(let loop ((cur (parent snl)) 
(result (empty-node-list))) 

(if (node-list-empty? cur) 
result 
(loop (parent snl) 

(node-list cur result))))) 
nl) > 

(grove-root-path nl) 

Returns the mapping over nl of the function on a node that retums the grove root path of the 
node, where the grove root path of a node is defined to be an empty node-list if the node is the 
grove root, and otherwise is the result of appending the grove root path of the origin of the node 
and the origin of the node. This could be defined as follows: 

(define (grove-root-path nl) 
(node-list-map (lambda (snl) 

(let loop ((cur (origin snl)) 

139 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

(result (empty-node-list))) 
(if (node-list-empty? cur) 

result 
(loop (origin nl) 

(node-list cur result))))) 
nl) 1 

(rsiblings nl) . 

Returns the mapping over nl of the function on a node that retums the reflexive siblings of the 
node, where the reflexive siblings of a node are defined to be the value of the origin-to-subnode 
relationship property of the node’s origin, if the node has an origin, and otherwise the node itself. 
This could be defined as follows: 

(define (rsiblings nl) 
(node-list-map (lambda (snl) 

(let ((rel (origin-to-subnode-rel snl))) 
(if rel 

(node-property rel 
(origin snl) 

default: (empty-node-list)) 
snl))) 

nl) > 

(ipreced nl) 

Returns the mapping over nl of the function on a node that retums the immediately preceding 
sibling of the node, if any. This could be defined as follows: 

(define (ipreced nl) 
(node-list-map (lambda (snl) 

(let loop ((prev (empty-node-list)) 
(rest (siblings snl))) 

(cond ((node-list-empty? rest) 
(empty-node-list)) 

((node-list=? (node-list-first rest) snl) 
p-v) 

(eise 
(loop (node-list-first rest) 

(node-list-rest rest)))))) 
nl)) 

(ifollow n2) 

Returns the mapping over nl of the function on a node that retums the immediately following 
sibling of the node, if any. This could be defined as follows: 

(define (ifollow nl) 
(node-list-map (lambda (snl) 

(let loop ((rest (siblings snl))) 
(cond ((node-list-empty? rest) 

(empty-node-list)) 
((node-list=? (node-list-first rest) snlj 

(node-list-first (node-list-rest restIN 
(eise 

140 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


nl)) 
(100~ (node-list-rest rest)))))) 

(preced nl) 

Returns the mapping over nl of the function on a node that retums the preceding siblings of the 
node, if any. This could be defined as follows: 

(define (preced nl) 
(node-list-map (lambda (snl) 

(let loop ((scanned (empty-node-list)) 
(rest (siblings snl))) 

(cond ((node-list-empty? rest) 
(empty-node-list)) 

((node-list=? (node-list-first rest) snl) 
scanned) 

(eise 
(loop (node-list scanned 

(node-list-first rest)) 
(node-list-rest rest)))))) 

nl)) 

(follow nl) 

Returns the mapping over nl of the function on a node that retums the following siblings of the 
node, if any. This could be defined as follows: 

(define (follow nl) 
(node-list-map (lambda (snl) 

(let loop ((rest (siblings snl))) 
(cond ((node-list-empty? rest) 

(empty-node-list)) 
((node-list=? (node-list-first rest) snl) 

(node-list-rest rest)) 
(else 

(loop (node-list-rest rest)))))) 
nl)) 

(grove-before? snll snlz) 

Returns #t if snll is strictly before snZ2 in grove Order. It is an error if snll and sn$ are not 
in the Same grove. This could be defined as follows: 

(define (grove-before? snll sn12) 
(let ((sorted 

(node-list-intersection (subgrove (grove-root snll)) 
(node-list snll sn12)))) 

(and (= (node-list-length sorted) 2) 
(node-list=? (node-list-first sorted) snll)))) 

(sort-in-tree-Order nl) 

Returns the members of nZ sorted in tree Order. Any duplicates shall be removed. It is an error 
if the members of n.2 are not all in the Same tree. This could be defined as follows: 

141 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

(define (sort-in-tree-Order nl) 
(node-list-intersection (subtree (tree-root nl)) 

nl)) 

(tree-before? snll snl,) 

Returns #t if snll is strictly before sn12 in tree Order. It is an error if snlI and sn12 are not in 
the same tree. This could be defined as follows: 

(define (tree-before? snll sn12) 
(let ((sorted 

(sort-in-tree-Order (node-list snll sn12)))) 
(and (= (node-list-length sorted) 2) 

(node-list=? (node-list-first sorted) snll)))) 

(tree-before nl) 

Returns the mapping over nl of the function on a node that retums those nodes in the same tree 
as the node that are before the node. This could be defined as follows: 

(define (tree-before nl) 
(node-list-map (lambda (snl) 

(node-list-filter (lambda (x) 
(tree-before? x snl)) 

(subtree (tree-root snl)))) 
nl)) 

(property-lookup propname snl if-present if-not-present) 

If snl exhibits a non-null value for the property propname, property-lookup retums the 
result of applying i f -presen t to that value, and otherwise retums the result of calling i f - 
no t -presen t without arguments. propname tan be specified in any sf the ways allowed for 
the node-property procedure. This could be defined as follows: 

(define (property-lookup name snl if-present if-not-present) 
(let ((val (node-property name snl default: #f))) 

(cond (val (if-present val)) 
((node-property name snl default: #t) (if-not-present)) 
(eise (if-present val))))) 

(select-by-class nl sym) 

Returns a node-list comprising members of nl that have node class sym. sym is either the 
application name (transformed as specified in 10.1.5) or the RCS name of the class. 

(select-by-property nl sym proc) 

Returns a node-list comprising those members of nl that have a non-nodal property named sm 
that exhibits a non-null value such that proc applied to it retums a true value. 

(select-by-null-property nl sp) 

Returns a node-list comprising members of nl for which the property SF exhibits a null value. 

142 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOAEC ISOIIEC 10179:1996(E) 

(select-by-missing-property nl sym) 

Returns a node-list comprising members of nl for which the property SF does not exhibit a 
value. 

10.2.4 Core Query Language 

This clause defines a subset of SDQL. In addition to the procedures defined in this clause, the 
current-node,node-list-empty?,node-list?, parent, and node-list-error 
procedures are allowed in the subset. This subset is designed so that a node-list never contains 
more than one node and so that any node that it does contain is always of type element. 

In the following procedures, the argument that is of type node-list tan be omitted and defaults to 
(current-node). osnl (optional singleton node-list) denotes an argument that shall be a 

node-list containing zero or one nodes. 

10.2.4.1 Navigation 

(ancestor string osnl) 

Returns a node-list containing the nearest ancestor of osnl with a gi equal to s tring, or an 
empty node-list if there is no such ancestor or if osnl is empty. 

(gi osnl) 

Returns the value of the gi property of the node contained in osnl or #f if osnl is empty or if 
osnl has no gi property or a null gi property. 

(first-Child-gi osnl) 

Returns the value of the gi property of the first Child of osnl of class element or #f if osnl is 
empty or has no such Child. 

(id osnl) 

Returns the value of the id property of the node contained in osnl or #kf if osnl is empty or if 
osnl has no id property or a null id property. 

10.2.4.2 Counting 

(Child-number snl) 

Returns the Child number of snl. The child number of an element is one plus the number of 
element siblings of the current element that precede in tree Order the current element and that 
have the Same generic identifier as the current element. 

(ancestor-Child-number string snl) 

143 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

Returns the Child number of the nearest ancestor of snl whose generic identifier is s tring, or 
##f if there is no such ancestor. 

(hierarchical-number list snl) 

Returns a list of non-negative integers with the Same number of members as 1 ist. 1 ist shall 
be a list of strings. The last member is the Child number of the nearest ancestor of snl whose 
generic identifier is equal to the last member of 1 i s t, the next to last member is the Child 
number of the nearest ancestor of that element whose generic identifier is equal to the next to last 
member, and so on for each member of 1 i s t. 

(hierarchical-number-recursive string snl) 

Returns a list of non-negative integers. The last member of the list is the Child number of the 
nearest ancestor of the snl element whose generic identifier is equal to s tring, the next to last 
member is the Child number of the nearest ancestor of that element whose generic identifier is 
equal to s tring, and so on for each ancestor of the current element with generic identifier equal 
to string. Note that the length of this list is the nesting level of string. 

(element-number snl) 

Returns the number of elements before or equal to snl with the Same gi as snl. 

(element-number-list list snl) 

Returns a list of non-negative integers, one for each member of 1 ist, which shall be a list of 
strings, where the i-th integer is the number of elements that: 

- are before or equal to snl, 

- have a generic identifier equal to the i-th member of 1 i s t, and 

- if i is greater than 1, are after the last element before snl whose generic identifier is equal to 
the i-lth member of list. 

NOTES 

32 In effect the counter for each argument is reset at the Start of the element referred to by the previous argument. 

33 An element is considered to be after its parent. 

34 This procedure could be used to number footnotes sequentially within a chapter (by using the last number in the 
list). It could also be used to number headings in a document whose DTD lacks Container elements. 

10.2.4.3 Accessing Attribute Values 

In the following procedures, attribute values are represented as strings by applying the data 
proceduretothe attribute-assignment node. 

144 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

(attribute-string string osnl) 

Returns a string representation of the attribute with name equal to s tririgg of osnl, or ##f if 
osnl has no such attribute, or the attribute is implied, or osnl is empty. 

(inherited-attribute-string string osnl) 

Returns a string representation of the attribute with name equal to string of osnl or of the 
nearest ancestor of osnl for which this attribute is present and not implied, or ##f if there is no 
such element or osnl is empty. For the purpose of this procedure, a node is considered an 
ancestor of itself. 

(inherited-element-attribute-string dring1 dring2 
osnl ) 

Returns a string representation of the attribute with name equal to string2 of the nearest 
ancestor of osnl whose generic identifier is equal to stringl and for which this attribute is 
present and not implied, or ## if there is no such element or osnl is empty. For the purpose of 
this procedure, a node is considered an ancestor of itself. 

10.2.4.4 Testing Current Location 

(first-sibling? snl) 

Returns #t if snl has no preceding sibling that is an element with the Same generic identifier as 
itself, and otherwise retums #f. 

(absolute-first-sibling? snl) 

Returns #t if snl has no preceding sibling that is an element, and otherwise retums ##f. 

(last-sibling? snl) 

Returns ##t if snl has no following sibling that is an element with the Same generic identifier as 
itself, and otherwise retums #f. 

(absolute-last-sibling? snl) 

Returns #t if snl has no following sibling that is an element, and otherwise retums #f. 

(have-ancestor? obj snl) 

obj shall be either a string or a list of strings. If obj is a string, then have-ances t or ? retums 
#t if snl has an ancestor with a generic identifier that matches that string and otherwise retums 
##f. If obj is a list of strings, then have-ancestor ? retums #t if snl has an ancestor with 
generic identifier equal to the last member of obj, which itself has an ancestor with generic 
identifier equal to the next to last member of obj, and so on for each member, and otherwise 
retums #f. 

145 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IE@ 

10.2.4.5 Entities and Notations 

snl here determines the document in which to find the entity. 

(entity-public-id string snl) 

Returns the value of the public-id property of the value of the extemal-id property of the general 
entity whose name is string in the goveming document type of the Same grove as snl, or #f if 
there is no such entity or the entity has a null value for the extemal-id property or the extemal-id 
has a null value for the public-id property. 

(entity-System-id string snl) 

Returns the value of the System-id property of the value of the extemal-id property of the general 
entity whose name is string in the goveming document type of the Same grove as snl, or #f if 
there is no such entity or the entity has a null value for the extemal-id property or the extemal-id 
has a null value for the System-id property. 

(entity-generated-System-id string snl) 

Returns the value of the generated-System-id property of the value of the extemal-id property of 
the general entity whose name is string in the goveming document type of the Same grove as 
snl, or #f if there is no such entity or the entity has a null value for the extemal-id property or 
the extemal-id has a null value for the generated-System-id property. 

(entity-text string snl) 

Returns the value of the text property of the general entity whose name is string in the 
goveming document type of the Same grove as snl, or #f if there is no such entity or the entity 
has a null value for the text property. 

(entity-notation string snl) 

Returns the value of the notation-name property of the general entity whose name is string in 
the goveming document type of the Same grove as snl, or ##f if there is no such entity or the 
entity has a null value for the notation-name property. 

(entity-attribute-string stringl string2 snl) 

Returns a string representation of the value of the attribute named s tringz of the general entity 
whose name is s tringl in the goveming document type of the Same grove as snl, or #f if there 
is no such entity or the entity has no such attribute or the attribute is implied. 

(entity-type string snl) 

Returns the value of the entity-type property of the general entity whose name is s tring in the 
goveming document type of the Same grove as snl, or #f if there is no such entity or the entity 
has a null value for the entity-type property. 

146 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

10.2.4.6 

10.2.5 

(notation-public-id string snl) 

Returns the value of the public-id property of the value of the extemal-id property of the general 
notation whose name is s tring in the goveming document type of the Same grove as snl, or ##f 
if there is no such notation or the extemal-id has a null value for the public-id property. 

(notation-System-id string snl) 

Returns the value of the System-id property of the value of the extemal-id property of the general 
notation whose name is s tring in the goveming document type of the Same grove as snl, or #f 
if there is no such notation or the extemal-id has a null value for the System-id property. 

(notation-generated-System-id string snl) 

Returns the value of the generated-System-id property of the value of the extemal-id property of 
the general notation whose name is s tring in the goveming document type of the Same grove 
as snl, or #f if there is no such notation or the extemal-id has a null value for the generated- 
System-id property. 

Name Normalkation 

(general-name-normalize string snl) 

Returns s tring transformed using the general namecase Substitution string normalization rule 
of the grove in which sn1 occurs. This could be defined as follows: 

(define (general-name-normalize string snl) 
(named-node-list-normalize string 

(node-property 'elements (grove-root snl)) 
'element)) 

(entity-name-normalize string snl) 

Returns s tring transformed using the entity namecase Substitution string normalization rule of 
the grove in which snl occurs. This could be defined as follows: 

(define (entity-name-normalize string snl) 
(named-node-list-normalize string 

(node-property 'entities (grove-root snl)) 
'entity)) 

SGML Property Operations 

These procedures make use of particular properties that are defined by the property set for 
SGML. 

(attributes nl) 

This is equivalent to: 

(define (attributes nl) 
(node-list-property 'attributes nl)) 

147 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) OISO/IEC 

(attribute string nl) 

Returns the mapping over nl of the function that retums the member of the value of the 
attributes property whose name is equal to string. This could be defined as follows: 

(define (attribute name nl) 
(no&--list-map (lambda (snl) 

(named-node name (attributes snl))) 
nl)) 

(element-with-id string snl) 

Returns a singleton node-list returning the element in the Same grove as snl whose unique 
identifier is s tring, if there is such an element, and otherwise retums the empty node-list. sn1 
defaultsto (current-node). 

(referent nl) 

This is equivalent to: 

(define (referent nl) 
(node-list-property 'referent nl)) 

(match-element ? Pattern snl) 

Returns #It if snl is a node of class element that matches pa t t ern. pa t tern is either a list or a 
Single string or Symbol. A string or Symbol is equivalent to a list containing just that string or 
Symbol. The list tan contain strings or Symbols. The element matches the list if the last string or 
Symbol matches the gi of the element, and the next to last matches the gi of the element’s parent, 
and so on. Esch string or Symbol may optionally be followed by a list containing an even 
number of strings or Symbols, which are interpreted as attribute name and value pairs all of 
which the element whose gi matches the preceding string or Symbol shall have. 

For example, 

(match-element? '(el (al vl a2 v2) e2 (a3 v3) e3 e4) n) 

retums true if 

- the gi of n is ed, 

- the gi of n’s parent is e3, 

- the gi of n’s grandparent is e2, 

- n’s grandparent has an a3 attribute with a value equal to v3, 

- the gi of n’s great grandparent is e 1, 

148 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

- n’s great grandparent has an a2 attribute with a value equal to v2, and 

- n’s great grandparent has an al attribute with a value equal to vl. 

snl defaults to the node-list retumed by the current-node procedure. 

When a string or Symbol in the Pattern is compared against a property value, and the property 
value was subject to upper-case Substitution, upper-case Substitution shall also be performed on 
the string before comparison. 

(select-elements nl Pattern) 

Returns a node-list comprising those members of nl that match pa t tern as defined by the 
match-element? procedure. 

(q-element Pattern nl) 
(q-element Pattern) 

Searches in the subgroves whose roots are each members of nl for elements matthing pa t tern, 
as defined by the ma tch-element ? procedure. nl defaults to the node-list retumed by 
current-node. 

(q-class Symbol nl) 
(q-class spbol) 

Searches in the subgroves whose roots are each members of nl for nodes whose class is 
Symbol. nl defaults to the node-list retumed by current-node. 

(q-sdata string nl) 
(q-sdata string) 

Searches in the subgroves whose roots are each members of nl for nodes whose class is sdata 
and the value of whose sysdata property is string. nl defaults to the node-list retumed by 
current-node. 

10.3 Auxiliary Parsing 

10.3.1 Word Searching 

Use of the facilities in this clause in the style or transformation languages requires the word 
feature. 

(word-Parse nl string) 
(word-Parse nl) 

This builds a new grove by performing an auxiliary Parse using the Data Tokenizer Property Set. 
s tring, if specified, is the ISO 639 language code of the language which should be assumed for 

149 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) OISO/IEC 

the purposes of determining 
this International Standard. 

what constitutes a word. The algorithm to be used is not specified in 

xpropset psn=datatok fullnm=" Data Tokenizer Property Set? 
Kclassdef rcsnm=tokroot appnm="tokenized root" conprop=strings> 
xpropdef rcsnm=strings datatype=nodelist ac=tokenstr> 
xclassdef rcsnm=tokenstr appnm="tokenized string" conprop=string> 
Kpropdef rcsnm=string datatype=string> 

For each member of nl, a tokenized string node is created for each word in the data of that 
member. The root of the auxiliary grove has these tokenized string nodes as children. A node- 
list of all the tokenized string nodes is retumed. If a member, X, of nl contains another member, 
y, of nl as a descendant, then the data of y Ps removed from the data of x before x is parsed for 
words. 

(select-tokens nl dring) 

Returns a node-list containing each member of nl that is a tokenized-string node with a s tring 
property equal to string. 

10.3.2 Node Regular Expressions 

Use of the facilities in this clause in the style or transformation languages requires the regexp 
feature. 

The regexp type represents a node regular expression. A node regular expression is an Object 
that tan be used to perform an auxiliary Parse of a grove. This auxiliary Parse creates a new 
grove that contains nodes that group together nodes that correspond to nodes in the original 
grove. The semantics of a node regular expression define for any node-list s and any node-list t 
that is a sublist of s whether t matches the node regular expression with respect to s. This is 
defined inductively for each of the procedures that construct regexps. s is referred to as the 
search list. 

A node-list s immediately precedes 
members of both s and t if 

a node-list t with respect to a node-list x that contains all the 

- s is empty, or 

- t is empty, or 

- the member of s that occurs latest in x occurs in x before the element of t that occurs first 
in x, and 

- there is no node in x that 

l follows in x all those members of x that occur in s, and 

l precedes in x all those members of x that occur in t. 

150 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC10179:1996(E) 

(regexp? obj) 

Returns ##t if ob j is a regexp, and otherwise retums #K 

10.3.3 Regexp Constructors 

The procedures in this section construct regexp objects that are used by the subparsing 
procedures. 

(regexp-node proc) 

Returns a regexp that matches a node-list with respect to any search list if the node-list contains 
exactly one node and proc applied to that node-list retums a true value. 

(regexp-seq regexpl regexp2 . . regexp,) 

Returns a regexp that matches a node-list with respect to a search list x if the node-list tan be 
Split into sublists ~1, ~2.. ., s, such that regexpi matches Si with respect to the search list x for 2 
< i < n and such that Si immediately precedes Si+1 with respect to x for I 2 i i n-l. - - 

(regexp-or regexpl regexp2 . . regexp,) 

Returns a regexp that matches a node-list with respect to a search list x if, for some i such that 1 L 
i I n, the node-list matches regexpi with respect to x. 

(regexp-and regexpl regexpz . . regexp,) 

Returns a regexp that matches a node-list with respect to a search list x if, for every i such that Z  
I i I n, the node-list matches regexpi with respect to x. 

(regexp-rep regexp) 

Returns a regexp that matches a node-list with respect to a search list x if the node-list is empty or 
if there is some integer n 2 Z such that the node-list tan be Split into sublists ~1,s~. ..,s, such that 
Si matches regexp for each i such that 1 I i 5 n and such that Si immediately precedes Si+1 with 
respect to x for each i such that 1 I i I n-l. 

(regexp-plus regexp) 

Returns a regexp that matches a node-list with respect to a search list x if there is some integer n 
2 2 such that the node-list tan be Split into sublists q, su. .., n s such that Si matches regexp for 
each i such that I 5 i I n and such that Si immediately precedes Si+1 with respect to x for each i 
such that 2 I i I n-l. 

(regexp-opt regexp) 

Returns a regexp that matches a node-list with respect to a search list x if either the node-list is 
empty or the node-list matches regexp with respect to x. 

151 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

(regexp-range regexp kl k2) 

Returns a regexp that matches a node-list with respect to a search list x if there is some integer n 
with kl I n I k2 such that the node-list tan be Split into sublists ~1~2.. .,s, such that Si matches 
regexp for each i such that 1 L i L n and such that Si immediately precedes Si+1 with respect to x 
for each i such that 2 I i I n-l. If k1 is Zero, then the retumed regexp shall match the empty 
node-list. 

(striAg-Xegexp string) 

Returns the regexp represented by string. It shall be an error if string is not a valid 
representation of an extended regular expression as defined in ISO 9945-2. A normal Character in 
string matches a node with a char property whose value is that Character. 

NOTE 35 This could be implemented in terms of the above primitives. 

10.3.4 Regular Expression Searching Procedures 

The procedures in this clause use regexp objects to create a new auxiliary grove using the 
Regular Expression Property Set as follows:. 

cpropset psn=regexp fullnm= "Regular Expression Property Set"> 
<classdef rcsnm=root conprop=groups sd=DSSSL> 
<desc> 
The root of the grove. 
<propdef rcsnm=groups datatype=nodelist ac=group sd=DSSSL> 
Kclassdef rcsnm=group sd=DSSSL> 

(regexp-search nl regexp) 

Returns a new auxiliary grove built using the regexp property set. The grove contains one group 
node for each sublist of nZ that matches regexp with respect to nl. The Source property of each 
group node contain the nodes in the matthing sublist. 

NOTE 36 The Source property is an intrinsic property of every node in an auxiliary grove. 

(regexp-search-disjoint nl regexp) 

This is the Same as regexp-search except that the sublists are disjoint. When two sublists 
overlap, if one sublist has a member that occurs in nl before all members of the other sublist, 
then the first sublist is preferred. If one sublist contains another sublist as a proper sublist, then 
the containing sublist is preferred. 

11 Transformation Language 

This clause describes the DSSSL transformation language. Syntactically, the DSSSL 
transformation language is a data content notation as defined by ISO 8879. The content of an 
element in this notation is parsed as a transformation-Zanguage-body. 

152 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

11.1 

11.2 

[ 15 l] transformation-language-body = [[unit-declaration* I added-char-properties-declaration* 
I Character-property-declaration* l transliteration-map-definition* I language-definition* I 
default-language-declaration? I defirzition* I association*]] 

The transformation language uses the expression language defined in clause 8 and SDQL defined 
in clause 10. 

A transformation process requires a Single grove as input, which is transformed as specified by 
the associations. An association may Cause other groves to be transformed. The grove being 
transformed is referred to as the current grove. 

Features 

The following features are optional in the transformation language: 

- The combine-char feature allows the combine-char element type form. 

- The keyword feature allows # ! key in formal-argument-lists. 

- The multi-source featureallowsuseofthe transform-grove procedure. 

- The mul t i -resul t feature allows multiple result groves. 

- The regexp feature allows the use of node regular expressions described in 10.3.2. 

- The word feature allows the use of the facilities for word searching described in 10.3.1. 

- The hyt ime feature allows the use of the facilities for HyTime location addressing described 
in 10.2.1. 

- The charse t feature allows the use of the declaration element type forms other than char- 
repertoire,combine-char,features, and sgml-grove-plan. 

Associations 

The transformation process is specified by a collection of associations. 

[ 1521 association = ( = > query-expression transform-expression priority-expression? ) 

[ 1531 query-expression = expression 

[ 1541 transform-expression = expression 

[ 1551 priority-expression = expression 

Esch association has up to three components: 

153 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

- a query-expression returning a node-list; an association is potentially applicable to any node 
in the node-list returned by its query-expression. 

- a transform-expression that is evaluated for each of the nodes to which the association is 
applicable. The value returned describes the node or nodes in the result grove corresponding 
to the selected node in the Source grove. 

- an optional priori@expression that affects whether the association actually applies to a node 
to which it is potentially applicable. 

A query-expression shall evaluate to a node-list. All the nodes in the node-list returned by a 
query-expression shall be nodes in the current grove or shall be nodes in an auxiliary grove 
whose Source grove is the current grove. Auxiliary groves are described in 9.5. In a query- 
expression, the current -root procedure and current -node procedure return a singleton 
node-list containing the root of the current grove. 

A priority-expression shall evaluate to an integer. The number specifies the priority of the 
association. If the priority-expression is omitted for an association, the priority of the 
association is 0. Larger numbers indicate higher priorities. 

Esch node to which an association is potentially applicable has a constituent set of nodes in the 
current grove. When the node is in the current grove, the constituent set contains just that node. 
When the node is in an auxiliary grove, then the constituent set contains the nodes in the current 
grove that occur in the value of the Source property of the node in the auxiliary grove. An 
association is actually applicable to any node, n, to which it is potentially applicable unless some 
higher priority association applies to a node whose constituent set contains a node that is in the 
constituent set of n. 

11.3 Transform-expression 

Within a transform-expression, the current -node procedure returns a singleton node-list 
containing the node that is being transformed. 

Esch transform-expression shall return an Object of type create-spec or of type transform-grove- 
spec or a (possibly empty) list of objects each of type create-spec or transform-grove-spec. Esch 
create-spec describes a subgrove to be created at a specified place in the result grove. The 
subgrove may consist either of a Single node or of multiple nodes forming a subgrove rooted in a 
Single node. The place at which the subgrove is to be created may be specified as the root of a 
result grove, or it may be specified relative to some other node in the result grove. 

For each node that is created in the result grove, links are created from each of the constituent 
nodes of the node whose transformation resulted in creation of the node in the result grove to the 
created node. These links are referred to as arrows. An arrow is labeled with an expression 
language Object. The start-point of an arrow is called the transformation origin of its end-point. 
The arrow for a node in the Source grove says where that node was transformed to. The labels on 
the arrows distinguish between different transformations that were applied to a node. The 
transform-expression for a node either specifies that the created subgrove shall be the root of a 

154 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISOAEC ISO/IEC 10179:1996(E) 

result grove or specifies the Position of the created subgrove in the result grove relative to a node 
in the result grove to which some other node in the Source grove was transformed. 

11.3.1 Subgrove-spec 

The subgrove to be created is described using an Object of type subgrove-spec. 

(subgrove-spec #!key node: subgrove: class: add: null: remove: 
children: sub: label: sort-children:) 

Returns an Object of type subgrove-spec. 

The node : argument shall be a singleton node-list; it specifies that the node at the root of the 
created subgrove shall have the Same class as the value of node : , the Same non-nodal, non- 
intrinsic properties as the value of node : (as modified by the add : and remove : arguments), 
and the Same null-valued properties as the value of node : (except as modified by the null : 
and remove : arguments). 

The subgrove : argument shall be a singleton node-list; it specifies the creation of a subgrove 
that is a copy of the subgrove rooted in the argument node. 

The class : argument is a Symbol specifying the class of the node to be created. Exactly one of 
the node:,subgrove:, and class : arguments shall be specified. 

The add : argument specifies non-nodal, non-intrinsic properties with non-null values that shall 
be added to the node. The add : argument shall be a list of two-element lists whose first member 
is the name of a property and whose second member is the value of that property. The property 
shall be a non-nodal, non-intrinsic property of the node’s class. The value for a property 
specified in the add : argument replaces any value for that property that the node specified by 
the node : argument had. 

The null : argument is a list of Symbols specifying the names of additional non-intrinsic 
properties of the node which shall have null values. This replaces any non-null property which 
the node would have by virtue of the node : argument. 

The remove : argument is a list of non-intrinsic properties which the node specified by the 
node : argument has and which the node to be created should not have; it defaults to the empty 
list. This may be used to remove properties with both null and non-null values. 

The sub: argument is a list specifying subnodes for the node at the root of the subgrove retumed 
by subgrove-spec. The members of the list shall be lists whose first member is a Symbol 
specifying the name of the subnode property and the rest of whose members are subgrove-specs 
specifying the nodes in the value of the property. This argument defaults to the empty list. 

The children : argument is a list of subgrove-specs specifying the nodes in the value of the 
children property of the node at the root of the subgrove retumed by subgrove- spec. 

NOTE 37 These tan also be specified using the su’b : argument, but using children: is often more convenient. 

155 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

This argument defaults to the empty list. 

The label : argument specifies the label for the arrow which shall be created from the 
transformed node in the Source grove to the node at the root of the subgrove being created in the 
result grove. It may be any expression language Object. The default value is #f. 

The sor t -chi ldren : argument is a procedure that affects the ordering of the children of the 
root node. See 11.3.2. 

Classes and properties are named by their application names as defined in the SGML property 
set, with the usual 

11.3.2 Create-spec 

(create-spec? 

transformation described in 10.1.5. 

obj) 

Returns #t if obj is of type create-spec, and otherwise retums #f. 

(create-root obj sg) 

Returns a create-spec specifying the creation of the root of a result grove. sg is a subgrove-spec 
for the root of the result grove. obj is an identifier for the result grove. 

(create-sub snl sg #!key property: label: result-path: optional: 
unique:) 
(create-preced sn1 sg #!key label: result-path: optional: unique:) 
(create-follow sm2 sg #!key label: result-path: optional: unique:) 

create-sub,create-preced, and create-follow retum acreate-spec specifyingthat 
for each arrow labeled label : with a start-point of snl the subgrove specified by sg shall be 
created in the result grove. The evaluation of the create-sub, create-preced, or 
creat e - f 0110~ procedures does not of itself Cause the creation of nodes in the result grove; a 
create-spec that is not retumed by a transform-expression shall be ignored. 

label : tan be any expression language Object; it defaults to # f. 

If optional : is # f, then it shall be an error if there never is any such arrow; optional : 
defaults to # f. 

resul t -path : is a procedure that for each arrow is applied to a result-node-list whose only 
member is the end-point of the arrow. resul t -path : may be applied to this result-node-list at 
various Points in the construction of the grove. At some Point in the construction of the grove, it 
shall retum a result-node-list that contains exactly one member. This is the creation origin. At 
no Point shall it retum a result-node-list that contains more than one member. If resul t - 
path : is not specified, it defaults to the identity procedure. 

For create-sub, property : is a Symbol or string specifying a property name. This property 
shall be a subnode property of the creation origin, and the subgrove shall be created as a member 

156 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

of that property of the creation origin. If the property : argument is omitted, it defaults to the 
children property of the creation origin; it shall not be omitted if the creation origin has no 
children property. For create-preced, the subgrove shall be created as a preceding sibling of 
the creation origin. For creat e- f ol low, the subgrove shall be created as a following sibling 
of the creation origin. 

Two subgroves are said to have the Same creation method if and only if the roots of the 
subgroves were created with the Same creation origin and same creation procedure and, if the 
creation procedure was crea t e - sub, the Same propname. 

If unique : is not # f, then this subgrove shall be the only one that is ever created with the Same 
creation method as this one. unique : defaults to # f. 

When unique: is # f, the relative Order of subgroves created with the Same creation method is 
determined in a way that is independent of the Order in which the subgroves are created. Let the 
immediately dependent siblings of a node be those siblings of the node that were created with a 
creation origin of that node using the create-follow or create-preced procedures. Let 
the dependent siblings of a node be the immediately dependent siblings of the node together with 
the dependent siblings of the immediately dependent siblings. Let the creation siblings of a 
subgrove to be inserted be those nodes that were created with the Same creation procedure and 
with the Same creation origin. In addition, if a subgrove is to be inserted using create- sub, 
then any nodes that will be siblings of the inserted subgrove and were created as part of the same 
subgrove as the origin node shall be treated as creation siblings. The Position of a subgrove to be 
inserted is first determined relative to its creation siblings. It is then inserted in such a way that it 
follows all the dependent siblings of all those creation siblings that it is to follow and precedes all 
the dependent siblings of all those creation siblings that it is to precede so that there is no node 
between it and its creation origin that is neither a creation sibling nor a dependent sibling of a 
creation sibling. 

When the node at the root of the subgrove is a Child of the node that will be the origin of the 
subgrove, the Position of the subgrove among its creation siblings is determined by the ordering 
predicate of the origin node. The ordering predicate is the procedure specified by the sor t - 
children: argumenttothe subgrove-spec procedure. The ordering predicate is passed the 
transformation origins of two nodes in the result grove that are to be compared. It shall retum 
true if the first is before the second. If no ordering predicate was specified, then the tree- 
be f ore ? procedure shall be used as an ordering predicate. In this case, it shall be an error if the 
transformation origins of the subgrove and its creation siblings are not all in the Same tree. When 
the node at the root of the subgrove is not a Child of the origin node, then the Position of the 
subgrove among its creation siblings is determined in the Same way as for the children of a node 
with an ordering predicate of grove-before?. 

An arrow triggers another arrow if the second arrow was created by a cal1 to a create procedure 
that specified the start-point of the first arrow as the first argument and specified the label of the 
first arrow as the label : argument. It shall be an error if there is a sequence of arrows where 
each arrow triggers the next arrow and where the last arrow has the same start-point and label as 
the first arrow. 

NOTE 38 This requirement avoids the possibility of an infinite loop. 

157 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

11.3.3 Result-node-list 

A result-no&-list represents a list of nodes in the result grove. A subset of the operations 
permitted on node-lists are permitted on result-node-lists. In a prototype, an argument name rd 
shall be of type result-node-list. 

NOTE 39 The allowed operations are designed to ensure that if a node in the result grove is contained in the result- 
node-list that res& from evaluating an expression at some Point in the construction of the result grove, then that node 
shall be contained in the result-node-list that results from evaluating that expression at any subsequent Point in the 
construction of the result grove. 

(node-list-union rd . ..) 
(node-list-intersection rn1 . ..) 
(children rd) 
(attributes rd) 
(preced rd) 
(follow rd) 
(parent rd) 
(ancestors rnl) 
(descendants rd) 
(origin rd) 
(select-by-class rnl sym) 
(select-by-property rd sym proc) 
(select-by-null-property rn1 sym) 
(select-by-missing-property rn1 sym) 

These procedures behave in the Same way as the corresponding operations on node-lists except 
that the retum value is of type result-node-list rather than node-list. 

(select-by-relation rn1 i proc) 

Returns a result-node-list containing those nodes contained in rd which are such that proc 
applied to a result-node-list containing exactly that node retums a result-node-list containing i or 
more nodes. For example, 

(lambda (x) 
(select-by-relation (children x) 

1 
(lambda (y) 

(select-elements (descendants y) "para")))) 

selects those children of a node that have a descendant element with a gi of Para. 

(select-by-attribute-token rd stringl string2) 

Returns a result-node-list containing those nodes in rd that have an attribute named str.i.ngl 
and that have an attribute with a Child sf class attribute-value-token with a token property equal 
to string2 after any applicable string normalization. 

158 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179: 1996(E) 

11.3.4 Transform-grove-spec 

An Object of type transform-grove-spec represents a grove to be transformed in addition to the 
current grove. 

(transform-grove-spec? obj) 

Returns #t if obj is of type trans f orm-grove-spec, and otherwise retums # f. 

(transform-grove sn1 obj . ..) 

sd shall be the root of a grove. trans f orm-grove creates a new grove from snZ by adding 
a trans f orm-args property to the grove root whose value is a list containing ob j, . . . , and 
retums an Object of type transform-grove-spec specifying the transformation of that new grove. 

(select-grove nl obj) 

Returns a node-list containing those members of nl whose grove root has a trans f orm-args 
property that contains a member equal to obj. 

11.3.5 SGML Prolog Parsing 

(sgml-Parse-prolog string) 

Returns a node-list containing a Single node that is the root of a grove built by parsing the prolog 
of an SGML document. string is the System identifier of the SGML document entity. This is 
built using the default grove plan modified to exclude the instabs module. 

NOTE 40 This procedure is typically used to specify the subgrove : argument to the subgrove- spec : procedure 
when the Source and result groves have different DTDs. 

11.4 SGML Document Generator 

The SGML document generator generates an SGML document or subdocument from a result 
grove. The Operation of the SGML document generator is specified in terms of a verification 
grove, which is the grove that would be built by parsing the SGML document or subdocument 
generated from the result grove using a grove plan that included all classes and properties of the 
SGML property set. 

NOTE 41 An implementation is not required to build a verification grove. 

A result grove is vaZid if it is possible to generate a conforming SGML document or 
subdocument from the result grove such that there is a verification mapping from the result grove 
to the verification grove which meets the requirements specified in 11.4.1. If the result grove is 
valid, an implementation shall generate such a document or subdocument. An implementation 
shall report that a result grove is not valid if and only if the result grove is not valid. 

159 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

1 1.4.1 Verif ication Mapping 

Any result grove satisfies the following requirements: 

- A node in the result grove does not exhibit a value for a property with a declared data type 
that is nodal unless the property is a subnode property. 

- A node in the result grove never exhibits a value for a property that is in the derived category. 

The verification mapping, V, maps each node in the result grove to a node in the verification 
grove. V(n) denotes the result of applying V to the node n; n[p] denotes the value that n exhibits 
for property p. A node n’ in the verification grove is said to be grounded if and only if there is a 
node n in the result grove such that V(n) is n’. 

V shall satisfy the following requirements: 

- If n is the root of the result grove, then V(n) shall be the root of the verification grove. 

- For each distinct m and n in the result grove, V(m) shall be distinct from V(n). 

- For each n in the result grove, V(n) shall have the Same class as n. 

- For each node n in the result grove, and each non-intrinsic property p with a non-nodal 
declared data type for which V(n) exhibits a null value, n shall exhibit a null value for p unless 
p is in the derived or optional category. 

- For each node n in the result grove, and each non-intrinsic property p for which V(n) exhibits 
a non-null, non-nodal value, n shall exhibit a value for p unless p is in the derived or optional 
category. 

- A node in the verification grove shall be grounded if its class is not in the mayadd category 
and either 

- any of its siblings are grounded, or 

l the origin of the node is grounded, and 

l the origin-to-subnode relationship property of its origin is not in the optional category. 

- For each node n in the result grove, and for each non-intrinsic property p for which n exhibits 
a null value, V(n) shall exhibit a null value for p. 

- For each node n in the result grove, and for each non-intrinsic non-nodal property p for which 
n exhibits a non-null value, n[p] shall be equal, after any applicable string normalization 
specified for the property by the property set, to V(n)[P]O 

- For each node n in the result grove and each subnode property p with a declared data type of 
node for which n exhibits a non-null value, V(n[p]) shall be equal to V(n)[P]. 

160 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 IISO/IEC ISO/IEC 10179:1996(E) 

- For each node n in the result grove and each subnode property p with a declared data type of 
nodelist or nmndlist for which n exhibits a non-null value, and for each node s in n[p], V(s) 
shall be in V(n)[p]. 

- For each node n in the result grove and each subnode property p with a declared data type of 
nodelist for which n exhibits a value, and for any nodes Y and s in nlp], if r precedes s in the 
result grove, V(r) shall precede V(s) in the verification grove. 

The transliteration property described in 11.4.2 is not considered in the verification mapping. 

As an exception to these rules, a node in the verification grove of class attribute-assignment need 
not be grounded if the rules of ISO 8879 that apply with an SGML declaration that specified 
SHORTTAG YES would not require the attribute to be specified. 

11.4.2 Transliteration 

[ 1561 transliteration-map-definition = (define-transliteration-map variable 
transliteration-entr ) 

[ 1571 transliteration-entry = (Character Character-list ) 

[ 1581 Character-list = ( Character+ ) 

A transliteration-map-definition binds variable to an Object of type transliteration-map. The 
transliteration-map specifies a transliteration in which certain characters are represented by 
sequences of one or more other characters. Esch transliteration entry specifies that the first 
Character is represented by the sequence of characters in the Character-Zist. 

(transliteration-map? obj) 

Returns #t if ob j is of type transliteration-map,* and otherwise retums #f. 

Esch node in a result grove tan have a non-nodal transliteration property whose value is an 
Object of type transliteration-map. If no transliteration property is specified for a node, the value 
of the transliteration property is the value of the transliteration property of the origin of the node. 
If no transliteration property is specified for the root node of a result grove, then the value shall 
be an empty transliteration map. 

For each consecutive sequence of data-char nodes in the result grove with the Same 
transliteration property, the sequence of characters that the sequence of characters in the result 
grove represents with respect to the transliteration-map shall be output instead of the sequence of 
characters in the result grove. In case of ambiguity, the longest transliteration-entry shall be 
used. 

161 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 63 ISO/IEC 

12 Style Language 

This clause describes the DSSSL style language. Syntactically, the style language is a data 
content notation, as defined in ISO 8879. The content of an element in this notation is parsed as a 
style-language-body. 

[ 1591 style-language-body = [[unit-declaration* I definition* I construction-rule* I mode- 
construction-rule-group* i application-Jlow-Object-class-declaration* I application- 
characteristic-declaration* I application-char-characteristic+propertytion~ I initial- 
value-declaration* I reference-value-type-declaration* I Page-model-definition* I column-set- 
model-definition* I added-char-properties-declaration* I Character-property-declaration* I 
language-deflnition* I default-language-declaration? ]] 

The style language described in this International Standard uses the core expression language 
described in 8.6 or, optionally, the full expression language described in clause 8, and the core 
query language described in 10.2.4 or, optionally, the full query language (SDQL) described in 
clause 10. 

[ 1601 style-language-expression = make-expression I style-expression I with-mode-expression 

Within a style- language-body, an expression may be a style-language-expression. 

NOTE 42 A s@e-expression is used to specify the values for inherited characteristics. 

12.1 Features 

The following features are optional in the style language: 

- The expression feature allows the full expression language. Without this feature only the 
core expression language shall be used. 

- The multi-process featureallowstheunrestricteduseof process-children and 
related procedures as described in 12.4.4. 

- The query feature allows use of the full query language described in 10 and related facilities 
described in this clause. Without this feature only the core query language shall be used. This 
impliesthe multi-process feature. 

- The regexp feature allows the use of node regular expressions described in 10.3.2. 

- The word feature allows the use of the facilities for word searching described in 10.3.1. 

- The hytime feature allows the use of the facilities for HyTime location addressing described 
in 10.2.1. 

- The combine-char feature allows the combine-char element type form. 

162 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/IEC ISOIEC 10179: 1996(E) 

- The keyword feature allows # ! key in formal-argument-lists. 

- The s ide -by- s ide feature allows use of the side-by-side and side-by-side-item flow Object 
classes. 

- The s idel ine feature allows use of the sideline flow Object class. 

- The aligned-column feature allows use of the aligned-column flow Object class. 

- The bidi feature allows use of the right-to-left writing-mode and the embedded-text flow 
Object class. 

- The ver t ical feature allows use of the top-to-bottom writing-mode. 

- The math feature allows use of the flow Object classes for mathematical formulae described 
in 12.6.26. 

- The table feature allows use of the flow Object classes for tables described in 12.6.27. 

- The t able -au t o -wid th feature allows the widths of table columns to be computed 
automatically. This implies the t ab1 e feature. 

- The simple-Page feature allows use of the facilities for simple page 
12.6.3. 

- The page feature allows use of the Page-sequence and column-Set-seq1 
classes and related features. 

layout described in 

ience flow Object 

- The mul t i -column feature allows use of column-sets containing more than one column. 
This implies the page feature. 

- The nes ted-column-set feature allows use of a column-set-sequence flow Object with a 
column-set-sequence flow Object ancestor. This implies the mul t i -column and page 
features. 

- The general-indirect featureallowsuseofthe general-indirect-sosofo 
procedure. 

- The inline-note feature allows use of the inline-note flow Object class. 

- The glyph-anno tat ion feature allows use of the glyph-annotation flow Object class. 

- The emphasi zing-mark feature allows use of the emphasizing-mark flow Object class. 

- The included-Container feature allows use the included-Container flow Object class. 

- The actual-characteristic feature allows use ofthe actual-cprocedures foreach 
inherited characteristic c. 

163 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

- The online feature allows use of the facilities described in 12.6.28. 

- The f ont-inf o feature allows use of the facilities described in the 12.5.7. 

- The Cross-reference featureallowstheuseofthe process-element-with-id 
procedure. 

- The charset feature allows the use of the declaration element type form other than char- . 
repertoire,combine-char,features, and sgml-grove-plan. 

12.2 Flow Object Tree 

A flow Object tree is an abstract representation of the merger of the formatting specification and 
the Source document. The nodes of the flow Object tree are flow objects. Esch flow Object is of 
a type called aflow Object class. A flow Object is said to be an instance of its class. A flow 
Object also has a set of characteristics. The characteristics that are applicable to a flow Object 
depend on the flow object’s class. A flow object’s class and characteristics together constitute a 
specification of the desired formatting behavior of the flow Object. 

Esch flow Object has a set of ports to each of which an ordered list of flow objects tan be 
attached. The set of ports may be empty. One port of each flow Object that has any ports may be 
distinguished as the principal Port. The principal port is unnamed. Every other port has a name 
which uniquely identifies it in the context of its flow Object. The list of flow objects attached to a 
port is known as a stream, and the members of the list are called members of the stream. There is 
a Single flow Object in the flow Object tree that is not a member of any stream. This flow Object is 
called the root of the flow Object tree. Every other flow Object in the flow Object tree is a 
member of exactly one stream. This stream is referred to as the flow object’s stream. The flow 
Object to which a flow object’s stream is attached is called theflow parent of the flow Object. The 
set of ports that a flow Object has is controlled by its class, and for some classes also by its 
characteristics. A flow Object that has no ports is called an atomic jlow Object, and a flow Object 
class whose instances are always atomic is an atomicflow Object class. The relative positioning 
of flow objects in different streams tan be constrained by synchronizing the flow objects. In 
addition, the value of a characteristic may result in the creation of a flow Object. 

12.3 Areas 

The concept of an area is used to give semantics to flow objects. The result sf formatting a flow 
Object other than the root flow Object is a sequence of areas. The nature of these areas is not fully 
specified by this International Standard. An area is a rectangular box with a fixed width and 
height. An area is also a specification of a set of marks that tan be imaged on a presentation 
medium. An area may contain other areas. In particular, an area may contain a glyph. 
Information may be attached to areas depending on the flow Object that produced the area and the 
context in which it is to be used. Areas are of two types: display areas and inline areas. Esch type 
of area is placed in a different way. For an Illustration of the concept of displayed and inlined 
areas, see Figure 4. 

164 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

Mine area 
(graphic in box) 

Formula is 
an inline 
area, 

This is DSSSL illustrative Text, 
It will be used in various 
forms in the DSSSL pictures 
to illustrate certain Points, 
Here is an inline graphic D,sp,W 
that IflBI is run into the area 
sentence. (formula) 

E=mc* N 

This is DSSSL illustrative Text, 
lt will be used in various 
forms in the DSSSL pictures 
to illustrate certain Points 
This Paragraph includes an 
inline formula as shown, such 
asIE=1 

Figure 4 - Displayed and Inlined Areas 

12.3.1 Display Areas 

Display areas are areas that are not directly Parts of lines. A display area has an inherent absolute 
orientation. 

NOTE 43 Informally, the box has an arrow on it saying ‘this way up’. 

The positioning of display areas is specified by area Containers. An area Container has its own 
coordinate System with its origin at the lower left corner, the positive x-axis extending 
horizontally to the right and the positive y-axis extending vertically upward. 

An area Container has a filling-direction specified in terms of its own coordinate System. The 
filling-direction gives a starting edge and an ending edge which are opposite to each other. The 
size of an area Container is always fixed in the direction perpendicular to the filling-direction. 
This means that the lengths of the starting and ending edges are always fixed and equal to each 
other. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

Solid gray box 
represents 
area 
Container 

Display Area A 

Display Area B 

Filling-direction of displayed 
area placed inside an area 

Startin 
/edge o! 

area A 

Ending 
edge of 

/ area A 

\ Starting 
edge of 
area B 

Ending 
edge of 
area B 

/ 

Ending edge 
of area Container 

Figure 5 - Asea Containers and Display Areas 

The size of an area Container in the filling-direction may be fixed or it may be specified to grow 
as necessary to contain the areas with which it is filled. The display areas with which an area 
Container is filled are always created so that their size in the direction perpendicular to the filling- 
direction is equal to the size of the area Container in that direction. This is called the display-size 
of the area. An area Container is filled with a sequence of display areas as follows. The first 
display area is positioned with its starting edge aligned with the area container’s starting edge. 
The next display area is then positioned with its starting edge on the previous area’s ending edge, 
and so on. This is illustrated in Figure 5. 

An area Container resulting from an included-container-area flow Object may also specify a 
rotation to be applied to each of the display areas with which it is to be filled. The angle of 
rotation is restricted to be a multiple of 90 degrees. This rotation is applied to each display area, 
thus changing the display area’s starting and ending edges. 

NOTE 44 It is possible to have Paragraphs with lines with different placement directions on the same page without 
using rotation. See Figure 15. 

166 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

The direction between a display area’s starting and ending edges is the placement direction of the 
display area. A display area also has an associated writing-mode that is perpendicular to the 
area’s placement direction. This is illustrated in Figure 6. 

Display-Size 

This is DSSSL illustrative Text, 
It will be used in various 
forms in the DSSSL pictures 
to illustrate certain Points. 
This Paragraph includes an 
inline formula as shown, such 
as IE=mc*J 

1 Placement 
Direction 

Left-to-right W riting Mode 

Figure 6 - Placement Direction for Left-to-Right Writing-Mode 

Writing-mode may be left-to-right, right-to-left, or top-to-bottom. See Figure 7. 

Eastern 
Top-to-Bottom 
Writing Mode 

1 

Left-to-Right 
Writing Mode 

Western 

Figure 7 - Different Writing-modes 

167 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

12.3.2 Inline Areas 

Mine areas are areas that are Parts of lines. An inline area has a Position Point that lies on one 
edge of its box and an orientation called the escapement direction, which is perpendicular to the 
edge of the box on which the Position Point lies. The Point on the box which lies in the 
escapement direction from the Position Point and is on the opposite edge of the box is called the . 
escapement Point of the inline area. 

NOTE 45 Informally the box has an arrow pointing from the Position Point that says ‘place me so that the arrow lies 
parallel to the line I’m in’. 

Inline areas are positioned to form lines in the following manner. The writing-mode for a 
Paragraph gives an inline-progression direction for the Paragraph. There is a placement Point 
associated with the process of constructing a line. The first inline area is oriented so that its 
escapement direction is the Same as the inline-Progression direction of the Paragraph, and the 
Point on the inline area’s box opposite to the Position Point becomes the current placement Point. 
The next area is placed so that its Position Point is coincident with the current placement Point 
and oriented so that its escapement direction is the Same as the inline-Progression direction of the 
Paragraph. The Point on the inline area’s box opposite to the Position Point becomes the current 
placement Point for placing the next area. This is illustrated in Figure 8. 

Inline-Progression 
direction 

Left-to-right writing mode 

Placement 

Escapement Poin point 
e area 

Figure 8 - Inline Area Placement and Positioning 

The use of kerning modifies this positioning as illustrated in Figure 9. 

168 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

Left-to-rig ht writing mode 
inline-Progression 
direction 

/ Placement 
wth 

\ 

0 a 

0 a 

0 

0 C 

Position point 
Nominal escapement point 
Escapement point 
adjusted for kerning 

Figure 9 - Positioning with Kerning 

The path containing the Position Points of the inline areas, which have the direction determined 
by the paragraph’s writing-mode, is known as the placement path. This is illustrated in Figure 10 
for the left-to-right writing-mode and in Figure 11 for the right-to-left writing-mode. 

169 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

placement path 

escapement direction 

Figure 10 - Glyph Positioning for the Left-to-Right Writing-Mode 

n’Y 

escapement direction placement path 

escapement Point 

Figure 11 - Glyph Positioning for the Right-to-Left Writing-Mode 

There are additional Steps in the process when the Paragraph uses more than one writing-mode. 
For example, in Figure 12, there is an inline-Progression direction of left-to-right for the English 
text and an inline-Progression direction of right-to-left for the Hebrew text. In addition, line 
breaking becomes more complex in this case. 

Standard generalkd n~~~~~ OOXX3 KlX17 nDV 7WD 3t VXkI’7Y~ TiTn 
xn17~11131 TH7 17HYli77 SGML-2 vmtm7 p3 Markup Language (SGML) YDH-3~~1HL/~~Yir'lSfyl,n'~11313r'l~lKSnHYl~~'yYnH13~n~ .mi3 
yin3 12 ?m ,‘mvn n’mbn fiz’yz nzI ‘vwv SGML .yw ‘wn ti 

Figure 12 - Mixed Writing-Mode for Hebrew and English 

170 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOAEC ISO/IEC 10179:1996(E) 

The alignment mode specified by the alignment mode property for the font resource also 
influences how glyphs are positioned, as illustrated in Figure 13. There are characteristics on 
inlined flow objects that tan modify this process. 

Position Point in 
nominal alignment mode 

\ 

escapement Point 

alignment mode alignment mode 

Figure 13 - Scripts with M ixed Alignment Modes 

An inline area also has a line-Progression direction, which is perpendicular to the inline- 
Progression direction for its Paragraph. Certain characteristics of inline areas are specified in 
terms of the line-Progression direction. 

12.3.3 Inlined and Displayed Flow Objects 

A flow Object that is to be formatted so as to produce a sequence of inline areas is said to be 
inlined. A flow Object that is to be formatted so as to produce a sequence of display areas is said 
to be displayed. Instances of some flow Object classes tan only be inlined; instances of others 
tan only be displayed; and instances of others tan be either inlined or displayed. In the last case, 
whether a flow Object is to be inlined or displayed is controlled by the characteristics of the flow 
Object or by whether the flow objects attached to its ports are themselves inlined or displayed. 
The class of a flow Object determines for each port of that flow Object whether the flow objects 
associated with that port shall be inlined, or whether they shall be displayed, or whether they may 
be either inlined or displayed. 

NOTE 46 The included-container-area flow Object described in 12.6.16 allows a flow Object that tan only be 
displayed to occur indirectly in a line without causing a break. For example, one may wish to mix vertical Japanese in 
a line of English text without causing a break. 

171 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

12.3.4 Attachment Areas 

A display area tan have a number of associated inline areas called attachment areas. These are 
illustrated in Figure 14 which Shows the use of sidelines and graphics as attachment areas on 
either side of the display area. 

NOTE 47 Attachment areas are used for sidelines, line numbers, and marginalia. 

. 

Sideline 
(changemark) 

Alignment 
Points for + 
sideline 

Left-to-right writing mode 

Separation 
0 a 

/ 
-m 

1 5 ..,i ..,,z ‘,, . . . . 5’,< v 5.,, y . v<, . . . . <p-a ‘C,, 5y.v yy 5%: A.... y,, :+v.w ,, . *v qgy . ‘2./ i ic/p..y.+ &#,y. Hg,/ ~~.//~,,,/i~~ :... (a) gwww #*j8..:..+.4y.. +,~fifl~yd.~~flflq~~~ (a) Aiignment . / &9 ..x. >px,; &/ . (. . . &w Position ,i 2’ .:$iP B .$+~~~ . . . . ,. . ,/J , . ..wp’/* ./q&&~~.~..: . . h, .,.. ..v..-... ~+i.Vd..~~. . . ..v..vs .w,z ,i.. w,.. na. :+:...c&&I~~ l @&A 
Point Point 

. . . . m . . . . . . . . . . . ..t ‘.‘.:.:.:.:.:.: . . . . 
animals2.ttf 

A 
0 a 0 a 

Position Escapement Alignment 
Point Point Point 

(a) Attachment 
points 

Figure 14 - Attachment Areas 

Esch attachment area is positioned relative to a Point on the display area’s box called the 
attachment Point for the attachment area. The attachment Point may be different for each of the 
attachment areas of the display area. An attachment Point lies on an edge of the display area that 
is parallel to the placement direction. 

There is a specification for each attachment area that indicates which such edge of the display 
area it is attached to. Esch attachment area has an alignment Point and is positioned so that the 
attachment area’s alignment Point is at the Same Position in the placement direction as the 
corresponding attachment Point on the display area. 

Esch attachment area has a specified Separation from the display area. If the attachment Point is 
on the edge that is at the Start in the direction determined by the writing-mode, then the 
Separation is the distance in that direction from the attachment area’s alignment Point to the 
attachment Point, and the attachment area’s alignment Point is its escapement Point. Hf the 

172 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 JSO/IEC ISO/IEC 10179: 1996(E) 

attachment Point is on the edge that is at the end in the direction determined by the writing-mode, 
then the Separation is the distance in that direction from the attachment Point to attachment area’s 
alignment Point, and the attachment area’s alignment Point is its Position Point. 

NOTE 48 A negative value for the Separation means that the attachment Point is inside the display area. 

12.4 Flow Object Tree Construction 

12.4.1 Construction Rules 

W l 
rule I 

construction-rule 
root-construction- 

= query-construction-rule I id-construction-rule I 
rule l default-element-construction-rule 

element-construction- 

The construction-rules in a style-specif ication (see 7.1) specify how a node in the 
Source grove is to be processed. Esch construction-rule matches some (possibly empty) set of the 
nodes in a Source grove. Refer to 9 for information about groves and their use in this 
International Standard. 

A construction-rule includes a construct-expression, which is an expression returning an Object 
of type sosofo. A sosofo is a specification of a sequence of flow objects to be added to the flow 
Object tree. See 12.4.3. When a construction-rule is applied to a node, its construct-expression is 
evaluated. The node to which it is applied becomes the current node for the evaluation of the 
construct-expression. 

The most 
node. 

specific construction-rule (as defined below) that matches the node is applied to the 

NOTE 49 Processing a node has no side-effects; it just retums a value. 

A node is processed with respect to a current processing mode. In addition to named processing 
modes that are specified with mode-construction-rule-groups, there is an initial processing mode 
that is unnamed. construction-rules not in any mode-construction-rule-group tan match nodes 
both when the processing mode is the initial processing mode and when it is a named processing 
mode. 

A flow Object tree is constructed from a Source grove by processing the root node of the Source 
grove in the initial processing mode; the flow objects specified by the resulting sosofo are added 
as children of the root of the flow Object tree. The flow objects specified by this sosofo shall all 
be unlabeled, and shall either be all of class scroll, or shall be all of class Page-sequence or 
simple-Page-sequence. 

[ 1621 mode-construction-rule-group = (mode mode-name construction-rule*) 

[ 1631 mode-name = identifier 

A construction-rule in a mode-construction- 
processing mode is mode-name. 

rule-group matches a node only when the current 

173 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISOIIEC 

The relative specificity of construction-rules is determined as follows: 

- A construction-rule in a mode-construction-rule-group is more specific than any 
construction-rule not in a mode-construction-rule-group. 

- Among construction-rules that have the Same specificity according to the preceding rule, a 
construction-rule in one part of a style-specif ication is more specific than any 
construction-rule in a subsequent part (see 7.1). . 

- Among construction-rules that have the Same specificity according to the preceding rules, 
each of the following is more specific than the next: 

- query-construction-rule 

- id-construction-rule 

- element-construction-rule 

- default-element-construction-rule 

- root-construction-rule 

- A query-construction-rule is more specific than another query-construction-rule with a fesser 
priority. 

- An element-construction-rule with a qualified-gi containing two or more gis is more specific 
than another element-construction-rule with no qualified-gi or with a qualified-gi containing 
fewer gis. 

It shall be considered an error if there are two or more equally specific construction rules that 
match the node. 

In addition to construction-rules explicitly specified in style-language-bodys, there is an implicit 
default construction-rule. The default construction rule matches any node in a Source grove but 
is less specific than any explicitly specified construction-rule. The result returned by the default 
construction-rule shall depend on the type of node to which it is applied: 

- foranodeofclass sgml-document, itshallretum (process-children). 

- foranodeofclass element, itshallretum (process-children). 

- for a node with a char property, it shall retum (make charac ter > . 

- foranodeofclass attribute-assignment, itshallretum (process-children). 

- for any other kind of node, it shall retum (empty-sosof o) . 

174 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

[ 1641 query-construction-rule = ( query style-query-expression construct-expression priority- 
expression? ) 

A query-construction-rule matches any node in the node-list returned by the styZe-query- 
expression. query-construction-rules require the query feature. 

[ 1651 style-query-expression = expression 

A style-query-expression shall return an Object of type node-list. Within a style-query- 
expression, the current-root and current-node procedures both return the grove root of 
the grove being processed. 

[ 1661 construct-expression = expression 

A construct-expression shall retum an Object of type sosofo. When the query feature is enabled, 
within a construct-expression, the current-node procedure shall retum the current node. 

[ 1671 priority-expression = expression 

The priority-expression specifies the priority of the query-construction-rule. It shall evaluate to a 
number. If the priority-expression is omitted, then the priority shall be 0. Bigger numbers 
indicate higher priorities. 

[ 1681 element-construction-rule = ( e 1 emen t (gi I qualijied-gi) construct-expression ) 

[169] gi = string I Symbol 

[ 1701 qualified-gi = ( ( gi+ > ) 

An element-construction-ruZe matches any node of class element that matches the gi or 
qualified-gi. A node matches a gi if its generic identifier is equal to the string or Symbol. A node 
matches a qualified-gi if it matches the last gi in the qualified-gi, and its parent matches the next 
to last gi, and so on for each gi in the qualified-gi. 

[ 17 l] default-element-construction-rule = ( de f aul t construct-expression) 

A default-element-construction-rule matches any node of class el emen t . 

[ 1721 root-construction-rule = ( roo t construct-expression) 

A root-construction-rule matches any node of class sgml -document. 

[ 1731 id-construction-rule = ( id unique-id construct-expression) 

[ 1741 unique-id = Symbol I string 

An id-construction-rule matches any node of class element that has a unique identifier equal to 
unique-id. 

175 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IE@ 10179:1996(E) 8 ISO/IEC 

12.4.2 Primary Flow Object 

A flow Object is associated with a node in a Source grove if it was constructed when that node 
was the current node and the flow Object occurs in the flow Object tree, that is, not within a 
reference value or a characteristic value. Flow objects constructed using the implicit default 
construction rule are considered to be associated with the nodes in the Source grove for which the 
rule was applied, just as for flow objects constructed using explicit construction rules. 

One flow Object associated with a node is more closely associated with the node than another 
flow Object associated with the node if: 

- the one flow Object was constructed when the current processing mode was the initial 
processing mode, and the other flow Object was constructed when the current processing 
mode was some mode other than the initial processing mode, or 

- the one flow Object contains directly or indirectly the other flow Object. 

If there is a flow Object associated with a node that is more closely associated with the node than 
any other flow Object associated with the node, then that flow Object is the primaryflow Object 
for the node. 

12.4.3 Sosofos 

An Object of type sosofo is a specification of a sequence of flow objects to be added to the flow 
Object tree. 

NOTES 

50 The expression language never operates on flow objects directly; it only operates on their specifications using the 
sosofo data type. 

51 An implementation will use the information in a sosofo to construct portions of the flow Object tree when a sosofo 
is returned by a construct-expression in a construction-rule that has been applied to some node in a Source grove. 

Esch flow Object specified by a sosofo may be labeled with a Symbol. A sosofo whose members 
are all unlabeled is called an unlabeled sosofo. 

NOTE 52 A flow Object is labeled by specifying a label : argument in a make-expression. 

(sosofo? obj) 

Returns #t if obj is a sosofo, and otherwise retums #f. 

[ 1751 make-expression = (make flow-Object-class-name keyword-argument- list content- 
expression” > ’ 

[ 1761 content-expression = expression 

176 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

The result of evaluating a make-expression is a sosofo (the res& sosofo) whose first specified 
member is a flow Object of the class named by thefeow-Object-class-name. This flow Object is 
called the constructedflow Object. Esch content-expression shall retum an Object of type sosofo. 
The sosofos retumed by the content-expressions are concatenated to form the content sosofo. No 
content-expressions shall be specified if theflow-Object-class-name is of an atomic flow Object 
class. If theflow-Object-class-name is not of an atomic flow Object class and the make-expression 
contains no content-expressions, then a content-expression with the effect of ( process - 
children) shallbeused. 

Esch make-expression has a content map that maps labels to ports. Esch flow Object specified in 
the content sosofo is considered in turn. If it is unlabeled, it is appended to the stream attached to 
the principal port of the constructed flow Object, if the constructed flow Object has a principal 
port, otherwise this shall be an error. If it is labeled, and the label is one that is mapped by the 
content map, then the flow Object is appended to the stream attached to the port of the flow Object 
to which that label is mapped. Otherwise, the flow Object is appended to the result sosofo; these 
flow objects are after the constructed flow Object in the result sosofo. 

A keyword shall be treated as part of the keyword-argument-list rather than as a content- 
expression. If the Same keyword occurs more than once in the keyword-argument-list, it shall not 
be an error, but all except the first occurrence shall be ignored. The following keywords are 
allowed in the keyword-argument-list: 

- A keyword that is the name of a characteristic and specifies the value of that characteristic for 
the flow Object (unless it is an inherited characteristic that is overridden) as described in 
12.4.6. If the characteristic is not inherited, then the characteristic shall be one that is 
applicable to the constructed flow Object. 

- A keyword forte ! c: where c is the name of an inherited characteristic that specifies the 
value of that characteristic for the flow Object and prevents overriding of that value as 
described in 12.4.6. 

- A keyword that is the name of a reference value type and specifies that the constructed flow 
Object has a reference value of that type with the specified value. 

- use : specifying a style to be used for the constructed flow Object as described in 12.4.6. The 
value shall be a style Object or #f indicating that no style shall be used. 

- content -map : specifying the content map for the make-expression. The value shall be a 
list of lists of two objects, where the first Object is a Symbol that specifies a label and the 
second Object is either a Symbol specifying the name of a port or #f specifying the principal 
port. No label shall occur more than once in a content map. 

If the cont ent -map : argument is not specified, then a content map shall be used that for 
each non-principal port of the flow Object contains a list of two Symbols both equal to the 
name of the port. 

- label : specifying the label for the constructed flow Object in the result sosofo. This 
argument shall be a Symbol. 

177 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 %SO/IEC 

[ 1771 flow-Object-class-name = identifier 

Any identifier that is the name of a flow Object class is aflow-Object-class-name. 

[ 1’781 application-flow-Object-class-declaration = (declare-flow-Object-class 
identifier string ) 

This declares identifier to be aflow-Object-class-name for a class with a public identifier 
specified by string. 

[ 1791 with-mode-expression = (wi th-mode mode-specification expression) 

[ 1801 mode-specification = mode-name I # f 

A with-mode-expression evaluates expression with the processing mode specified by mode- 
specification. A mode-specification of # f indicates the initial unnamed processing mode. The 
mode-name in mode-specification shall have been specified in a mode-construction-rule-group. 

(empty-sosofo) 

Returns an empty sosofo. 

(literal string -.) 

Returns a sosofo containing one flow Object of class Character for every char in s tring, . . . in 
the Same Order. Esch Character flow Object is constructed as if by evaluating a make-expression 
with Character as theflow-Object-class-name and a char : argument specifying the 
Character. 

(process-children) 

Returns the sosofo that results from appending the sosofos that result from processing in Order 
the children of the current node. When the current node is of class sgml-document, the value 
of the document - el ement property is treated as being the children of the node. 

(process-children-trim) 

Returns the sosofo that results from appending the sosofos that result from processing in Order 
the children of the current node after removing any leading and trailing sequence of nodes that 
have a char property with the input -whi tespace property true. 

(process-matthing-children Pattern . ..) 

Returns the sosofo that results from appending the sosofos that result from processing in Order 
those children of the current node that match any of pa t tern, . . . . A pa t tern shall be an Object 

178 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOAEC ISO/IEC 10179:1996(E) 

that is allowed as the second argument to the ma t ch-el ement ? procedure. It is interpreted as 
itisby match-element?. 

(process-first-descendant Pattern . ..) 

Returns the sosofo that results from processing the first descendant in tree Order of the current 
node that matches any of pa t tern, . . . . A pa t tern shall be an Object that is allowed as the 
second argument to the match-element? procedure. It is interpreted as it is by match- 
element?. 

(process-element-with-id string) 

Returns the sosofo that results from processing the element in the Same grove as the current node 
whose unique identifier is string, if there is such an element, and otherwise retums an empty 
sosofo. This procedure requires the Cross-ref erence feature. 

(process-node-list ndlist) 

Returns the sosofo that results from appending the sosofos that result from processing the 
members of the nd1 is t in Order. This requires the query feature. 

(map-constructor procedure node-list) 

For each node in node-list, procedure is evaluated with that node as a current node. 
procedure shall be a procedure of no arguments and shall retum a sosofo. map- 
cons t ruc tor shall retum the sosofo that results from concatenating the results of evaluating 
the procedure. This requires the query feature. 

(sosofo-append sosofo . ..) 

Returns the sosofo that results from appending sosofo . . . . 

(sosofo-label sosofo Symbol) 

Returns a sosofo that results from labeling with Symbol each member of sosofo that is 
currently unlabeled. A new sosofo is constructed; neither the sosofo nor its members are 
modified. 

(sosofo-discard-labeled sosofo symbol) 

Returns a sosofo that results from discarding from sosofo any flow Object that is labeled with 
Symbol. A new sosofo is constructed; the sosofo is not modified. 

(next-match) 
(next-match style) 

179 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 ISO/IEC 

Returns the sosofo that results from applying the next most specific construction rule that 
matches the current node. If styl e is specified, then that style shall become the current 
overriding style for the evaluation of that construction rule. 

12.4.4 Multi-process Feature 

Acalltoanyoftheprocedures process-children,process-children-trim, 
process-matthing-children,orprocess -first-descendant is adescending 
recursiie cal1 if: 

- it does not occur during the evaluation of a cal1 to process-node-set or process- 
element-with-id, and 

- it does not occur during the evaluation of the value of a reference value. 

Unless the mul ti -process feature is enabled, it shall be an error if there occur two 
descending recursive calls both made when the Same node was the current node and when the 
Same processing mode was the current processing mode. 

12.4.5 Styles 

A style Object contains a set of expressions specifying values for inherited characteristics. 

[ 18 l] style-expression = ( s tyle keyword-argument-list) 

Evaluates to an Object of type style. The following keywords are allowed in the keyword- 
argument-list: 

- A keyword that is the name of an inherited characteristic and specifies the value of that 
characteristic for the style (unless overridden) as described in 12.4.6. 

- A keyword forte ! c: where c is the name of an inherited characteristic that specifies the 
value of that characteristic for the style and prevents overriding of that value as described in 
12.4.6. 

- use : specifying another style whose characteristics are to be added to this style as described 
in 12.4.6. 

NOTE 53 A style-expression is interpreted in a similar manner to a make-expression with an atomic flow Object class 
that has only inherited characteristics. 

(style? obj) 

Returns ##t if obj is of type style, and otherwise retums #f. 

(merge-style style . ..) 

180 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

Returns a style Object constructed by merging styl e, . . . . The expression for a characteristic in 
the retumed style Object is the expression for that characteristic in the first of the argument style 
objects that contains an expression for that characteristic. 

12.4.6 Characteristic Specification 

Every characteristic is inherited unless it is explicitly specified not to be in this International 
Standard. For each inherited characteristic, there is an expression in this International Standard 
specifying the initial value for that characteristic. Esch non-inherited characteristic has a default 
value. 

While a construct-expression is being evaluated, a current overriding style is in effect. When the 
processing of a node Starts, the current overriding style is empty. The next -match procedure 
tan Change the current overriding style during the evaluation of a construct-expression. That 
construct-expression may, in turn, cal1 next -match to Change the current overriding style, and 
so on. 

The expression specifying an inherited characteristic c for a flow Object is determined when the 
make-expression is evaluated using the first of the following rules that is applicable: 

- If a keyword of forte ! c: was specified, then the corresponding expression shall be used. 

- If the current overriding style contains an expression for c, then that expression shall be used. 

- If a keyword of c: was specified, then the corresponding expression shall be used. 

- If use : was specified on the flow Object, and the corresponding style Object specifies an 
expression for c, then that expression shall be used. 

- Otherwise, an expression ( inheri ted- c) shall be used. 

The set of characteristics and corresponding expressions for a style Object is determined in a 
similar manner during the evaluation of the style-expression. For each inherited characteristic c, 
the expression that the style Object has for c is determined using the first of the following rules 
that is applicable: 

- If a keyword of forte ! c: was specified, then the corresponding expression shall be used. 

- If the current overriding style contains an expression for c, then that expression shall be used. 

- If a keyword of c: was specified, then the corresponding expression shall be used. 

- If use : was specified on the flow Object, and the corresponding style Object specifies an 
expression for c, then that expression shall be used. 

If none of these rules are applicable, then the style Object contains no expression for c. 

181 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

For each non-inherited characteristic c applicable to some flow Object, if the make-expression for 
that flow Object specifies the c: keyword, then the corresponding expression shall be evaluated 
and used; otherwise, the default for that characteristic shall be determined as specified for that 
characteristic and flow Object class. 

The expression specifying the value of a characteristic in a make-expression or style-expression 
shall not be evaluated immediately; instead the expression shall be associated with the 
characteristic in the created flow Object or style Object. The values of the free variables in the 
expression are remembered and are used when the expression is evaluated, as with a lambda 
expression. The current node is also remembered and restored for the evaluation of the 
expression. 

When the flow Object tree has been sufficiently constructed so that the Position of a flow Object 
in the flow Object tree has been determined, then the expressions specifying the values for the 
characteristics applicable to that flow Object shall be evaluated. 

An expression specifying the value of a characteristic shall be evaluated with respect to two flow 
objects, which are referred to as the valueflow Object and the specification jZow Object. The value 
of a characteristic for a flow Object is determined by evaluating the expression specifying that 
characteristic with both the value flow Object and the specification flow Object equal to that flow 
Object. 

(inherited-c) 

For any inherited characteristic, c, there is a procedure inheri ted- c. This procedure shall be 
used only in the evaluation of an expression specifying a value for a characteristic. The 
procedure retums the result of evaluating the expression that specifies c for the flow parent of the 
specification flow Object; this expression is evaluated with the value flow Object unchanged and 
with the specification flow Object equal to the flow parent of the current specification flow 
Object. If the current specification flow Object has no flow parent because it occurs as a 
characteristic value of some flow Object, then that flow Object shall be treated as the flow parent 
for this purpose. If the current specification flow Object has no flow parent because it is used in a 
generate-specijication or a decoration-specification, then the Page-sequence or column-set- 
sequence flow Object that is using the Page-model or column-set-model in which that generate- 
specification or decoration-specification occurs shall be treated as the flow parent for this 
purpose. Otherwise, if the current specification flow Object has no flow parent then 
inheri t ed- c retums the result of evaluating the expression specifying the initial value of c; 
there is no specification flow Object during the evaluation of this specification, and it shall be an 
error if it calls inheri t ed- c for any inherited characteristic c. 

The procedure inheri ted- c behaves differently when: 

- the flow parent of the specification flow Object is a table or a table-Part; 

- the value flow Object is a table-cell of that table or table-part or is in a table-cell of that table 
or table-Part; and 

182 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/IEC ISO/IEC 10179:1996(E) 

- the table or table-part contains a table-column flow Object that specifies c and has the Same 
column number as that table-cell. 

In this case, inheri ted- c shall retum the result of evaluating the specification of c in the 
table-column; this expression shall be evaluated with the value flow Object unchanged and with 
the specification flow Object equal to the table flow Object. 

(actual-c) 

For each inherited characteristic c, actual- c shall retum the value of c for the value flow 
Object. This procedure shall be used only in the evaluation of an expression specifying a value for 
a characteristic. It shall be an error to cal1 ac tual- c with a value flow Object of f in the course 
of determining the value of c for f. Use of this procedure requires the ac tual- 
characteristic feature. 

(char-script-case stringl objl . . string,_l objn-l obj,) 

This procedure shall be used only in the evaluation of an expression specifying a value for an 
inherited characteristic. There shall be an odd number of arguments. All arguments other than 
the last shall be interpreted as a series of pairs, where the first member of the pair is a string 
specifying a public identifier, and the second member is any Object. If the value flow Object is 
not a Character flow Object or is a Character flow Object that has a script property that is not #f, 
then char-script-case shall retum its last argument. Otherwise, the value of the script 
characteristic shall be compared in turn against the first member of each argument pair; if it 
matches, then the second member shall be retumed; if there is no match, then the last argument 
shall be retumed. 

NOTE 54 For example, in 
Latin portions of the text. 

formatting Japanese text, it is common to use different fonts for the Katakana, Han, and 

[ 1821 application-characteristic-declaration = (declare-characteristic identifierstring 
expression ) 

This declares identijier to be an additional inherited characteristic. It also has the effect of 
declaringprocedures inherited-identifierand actual-identifier. The string is a 
public identifier specifying the semantics of the characteristic. If an implementation does not 
recognize the specified public identifier, it shall ignore uses of the characteristic. The expression 
is the specification of the initial value of the characteristic. 

[ 1831 application-char-characterlstic+property-declaration = ( declare -char - 
characteristic+property identifierstring expression) 

This declares identifier to be an additional non-inherited characteristic of a Character flow Object 
and also declares identifier to be an additional Character property. The string shall be a public 
identifier specifying the semantics of the characteristic. The default value of the characteristic is 
the value of the identifier property of the Character that is the value of the char : characteristic 
of the flow Object. The default value of the property is the value of expression. This expression 

183 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

shall be evaluated normally; it shall not be evaluated in the special way that the values of 
characteristics are evaluated, nor shall it be evaluated with respect to a current node. 

[ 1841 initial-value-declaration = (declare-initial-value identifierexpression) 

This declares the initial value of the inherited characteristic identijifer to be an expression. This 
shall not be used for characteristics declared with an application-characteristic-declaration. 

12.4.7 Synchronkation of Flow Objects 

Facilities in this clause require the page feature. 

It is sometimes necessary to constrain the relative positioning of flow objects in different 
streams. For example, a footnote might be constrained to be on the same page as the 
corresponding reference, or a sidenote might be constrained to be at the Same vertical Position as 
its reference. Such constraints are specified by creating a synchronization set. A 
synchronization set is a set of flow objects whose relative positioning is constrained. A flow 
Object contains information describing the synchronization sets to which it belongs. A flow 
Object tan belong to any number of synchronization Sets. For every synchronization set, there 
shall be a flow Object, the synchronizingflow Object, that is a. flow ancestor of all the flow objects 
in the synchronization set. In addition, each stream of that flow Object tan contain (either directly 
or as a descendant) at most one flow Object in the synchronization set. 

(sync sosofol sosofo~ 
#!key type: min: max:) 

Creates a synchronization set whose members are the first member of sosofol and the first 
member of sosofo2. sync retums a sosofo comprising: 

a) a copy of the first flow Object of sosofol with added synchronization information, 

b) any remaining flow objects of sosofol, 

c) a copy of the first flow Object of sosofo2 with added synchronization information, and 

d) any remaining flow objects of sosofo2. 

The tme : argument is a Symbol specifying the type of constraint on the areas created by 
formatting the synchronized flow objects. The min : and max : arguments are integers that 
further specify the type of constraint. The value of max : shall be greater than or equal to that of 
min:. min : and max : default to 0. The permitted values for type : are: 

- page specifying that the number of pages separating 

a) the first of the areas created from the first synchronized flow Object from 

b) the first of the areas created from the second synchronized flow Object 

184 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

shall not be less than min : nor greater than max : . The synchronizing flow Object shall be a 
Page-sequence flow Object or a column-set-sequence flow Object with a Page-sequence flow 
Object as an ancestor. The number of pages from one area to another area is defined to be the 
Index, among all the pages of the Page-sequence, of the page on which the second area lies 
m inus the index of the page on which the first area lies. 

NOTE 55 If min : were -1 and max : were 2, then the first of the areas created from the second synchronized flow 
Object would be constrained to be either on the page before the first of the areas created from the first synchronized 
flow Object, on the same page as the first of the areas created from the first synchronized flow Object, on the page 
after the first of the areas created from the first synchronized flow Object, or on the next page after that. 

- spread specifying that the number of spreads from the first of the areas created from the first 
synchronized flow Object to the first of the areas created from second synchronized flow 
Object shall not be less than min : nor greater than max : . The synchronizing flow Object shall 
be a Page-sequence flow Object or a column-set-sequence flow Object with a Page-sequence 
flow Object as an ancestor. 

- column specifying that the first of the areas created from the first synchronized flow Object 
and the first of the areas created from the second synchronized flow Object shall be in the 
Same column-subset and that the number of columns from the first of the areas created from 
the first synchronized flow Object to the first of the areas created from the second 
synchronized flow Object shall be between min : and max : . The synchronizing flow Object 
shall be of class column-set-sequence. 

The default value of type : is Page. 

(side-sync list) 

Creates a synchronization set containing the first members of each of the members of li st, 
which shall be a list of two or more sosofos. side- sync retums the sosofo that results from 
concatenating the members of the list except that the first member of each sosofo is replaced by a 
copy with added synchronization Information. The first areas produced by each member of the 
synchronization set are constrained to be positioned in the Same column-set so that the Position 
of their placement paths is the same in the filling-direction, possibly adjusted for any differente 
in alignment mode. 

12.5 Common Data Types and Procedures 

12.5.1 Layout-driven Generated Text 

This clause describes the facilities for generating text when the value of the text to be generated 
at some Point in the flow Object tree may not be known until some formatting has been done. The 
facilities in this clause require the page feature. 

NOTE 56 Examples of layout-driven generated text include page numbers, per-page footnote numbers, and dictionary 
heads. 

185 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

Esch such piece of generated text is represented by an indirect flow Object. An indirect flow 
Object contains a specification for a list sf flow objects. The result of formatting an indirect flow 
Object is the result of formatting the list of flow objects it specifies. Indirect flow objects are 
created only by using the procedures in 12.5.1.1 and are not created using the normal flow Object 
creation mechanism. The content of the indirect flow Object is defined to be the list of flow 
objects that it specifies. For the purposes of inheritance, the contents of an indirect flow Object 
have the indirect flow Object as their flow parent. 

The generated-Object data type is the specification of an expression-language Object. The kerne/ 
of a generated-Object is defined to be the Object that is specified. The kerne1 of a generated- 
Object is not available directly but only through the procedures in 12.5.1.1. 

(generated-Object? obj) 

Returns #+t if obj is of type generated-Object, and otherwise retums #f. 

12.51 .l Constructing lndirect Sosofos 

(general-indirect-sosofo procedure generated-Object . ..) 

Returns a sosofo containing a Single indirect flow Object, the content of which is an unlabeled 
sosofo that is the result of applying the procedure to a list of the kemels of the genera ted- 
objects. This requiresthe general-indirect feature. 

(asis-indirect-sosofo generated-Object) 

Returns a sosofo containing a Single indirect flow Object whose content is the kerne1 of 
generated-Object. Thekemelof generated-Object shallbeasosofo. 

NOTE 57 Typically, the generated-Object is created by one of the procedures in 12.5.1.3. 

(number-indirect-sosofo generated-Object #!key format: add: multiple:) 

Returns a sosofo containing a Single indirect flow Object whose content is the kerne1 of 
genera ted-Object, which shall be an integer converted to a string and then to a sosofo. The 
keyword arguments control the conversion of the integer to a string as follows: 

- f ormat : is a string specifying the format to use for conversion of the number as in the 
f ormat -number procedure. The default is 1. 

- add : is an integer to be added to the kerne1 of genera t ed-ob jec t before conversion. The 
default is 0. 

- multiple : is an integer. The integers to be converted that are not multiples of this integer 
shall be converted to the empty string. The integer specified in the add: argument shall be 
added to the kerne1 of genera t ed-ob jec t before testing whether it is a multiple, The 
default is 1. 

186 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOIIEC ISO/IEC 10179:1996(E) 

1251.2 Layout Numbering 

The following procedures all retum a generated-Object whose kerne1 is a number that may 
depend on the result of formatting. When the f irst-area-of -node: and last-area-of - 
node : arguments are allowed, the number is specified relative to a reference area. At most one 
ofthe first-area-of-node: and last-area-of-node: argumentsshallbesupplied.If 
the f irst-area-of -node : argument is supplied, then its value shall be a node, and the 
reference area is the first area resulting from the primary flow Object of that node. If the last - 
area-of -node : argument is supplied, then its value shall be a node, and the reference area is 
the last area resulting from the primary flow Object of that node. One of f irst-area-of - 
node: or last-area-of-node: shallbe suppliedunless either: 

- there is a current node when the procedure is evaluated, in which case the reference area is the 
first area resulting from the primary flow Object of the current node, or 

- the procedure is used within a generate-specification, in which case the reference area is the 
generated area, or 

- the procedure is 
is the decorated 

in the construction of a decoration area, in which case the reference area 

Although a column is not an area, in this clause it is treated as an area, and an area is deemed to 
be in a particular column if it is in the column-set of that column and if that column is the first 
column in the column-set that the area spans. 

It shall be an error to use one of the procedures defined in this clause in such a way that it 
requires the primary flow Object of a node that has no primary flow Object. 

(Page-number #!key first-area-of-node: last-area-of-node:) 

Returns a generated-Object whose kerne1 is the number of pages before or the Same as the 
reference area. 

(category-Page-number #!key first-area-of-node: last-area-of-node:) 

Returns a generate d-Object whose kerne1 is the number of pages before or the Same as the 
reference area that has the Same category as the page that is or that contains the reference 

(Page-number-in-node nd) 

Returns a generated-Object whose kerne1 is the number of pages that: 

- are before or contain the first of the 
generated-Object is used, and 

areas generated by the indirect-sosofo 

- contain areas from the flow Object that corresponds to nd. 

NOTE 58 This procedure could be used within a table header or footer. 

which the 

187 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


(total-node-Page-numbers nd) 

ISO/IEC 10179:1996(E) 0 ISO/IEC 

Returns a generated-Object whose kerne1 is the total number of pages that contain an area from 
the primary flow Object associated with nd. 

(column-number #!key first-area-of-node: last-area-of-node:) 

Returns a generated-Object whose kerne1 is the number of columns in the Same column-subset as 
the reference area that is before or the Same as the reference area. 

(footnote-number Symbol #!key first-area-of-node: last-area-of-node:) 

Returns a generated-Object whose kerne1 is the number of footnote areas that are before or the 
same as the reference area and are descendants of the nearest ancestor of the reference area that is 
of the type specified by Symbol, which is one of Page, Page-region, or column. For this 
purpose, a footnote area is an area which is the first in the sequence of areas produced from a 
flow Object whose stream is directed into the footnote zone of a column-set-sequence flow 
Object. 

(line-number symbol #!key first-area-of-node: last-area-of-node:) 

Returns a generated-Object .whose kerne1 is the number of line areas that are before or the Same as 
the reference area and are descendants of the nearest ancestor of the reference area that is of the 
typespecifiedby syrnbol, where Symbol is oneof page,page-region,colurnn, or 
Paragraph. Line areas from Paragraphs for which the numbered-lines? : characteristic 
was ##f shall not be counted. 

1251.3 Reference Values 

A flow Object may have a number of named objects associated with it called reference values. 

[ 1851 reference-value-type-declaration = (declare-reference-value-type identifier) 

A reference-value-type-declaration declares identifier to be the name of a reference-value type. 
The identifier shall not be the name of a characteristic or of any other keyword argument 
accepted by a make-expression. 

(first-area-reference-value Symbol #!key default: inherit:) 
(last-area-reference-value Symbol #!key default: inherit:) 
(last-preceding-area-reference-value Symbol #!key default:) 
(all-area-reference-values Symbol #!key unique: inherit:) 

Esch of these procedures may be used only in a generate-specification or in the construction of a 
decoration area. The context in which these procedures are used determines a list of areas, the 
associated-areas List, on which these procedures operate. 

When the procedures are used in the construction of a decoration area, the associated-areas list 
contains just the decorated area. When the procedures are used in a generate-specification in a 

188 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

header-speciflcation, footer-specijiication, oT footnote-separator-specijication in a column- 
specification, then the associated-area list contains the areas that are placed in the Same column- 
set area Container and that are in the body-text zone and that overlap the column. When the 
procedures are used in a generate-specification in a header-specification or footer-specijkation, 
or in a Page-region-SpeciJication, then the associated-area list contains the areas that are placed 
in the Same page-region area Container as the generated area. 

A flow Object is eligible if 

- it has a reference value symbol, or 

- it has an ancestor with a reference value symbol, and inherit : is specified and is not 4% 

The relevant reference value for an eligible flow Object is the reference value Symbol of the 
eligible flow Object, if the eligible flow Object has the reference value Symbol, and otherwise is 
the reference value Symbol of the nearest ancestor of the eligible flow Object that has the 
reference value symbol. 

f irst-area-ref erence-value does a pre-Order traversal of the flow Object tree searching 
for the first eligible flow Object that produces an area that 

- is one of the areas in the associated-area list, or 

- is contained in one of the areas in the associated-area list 

and retums a generated-Object whose kerne1 is the value of the relevant reference value for that 
flow Object. When a flow Object has more than one stream, then each stream is searched 
separately. If the search finds flow objects in more than one stream, then the flow Object that is 
earlier in the layout Order of the area is retumed. If the search finds no flow Object, the value of 
the de f aul t : argument is retumed, which shall be a generated-Object. 

last- area-reference-value behaves 
except that the Order of the search is reversed 

thesameas first-area-reference-value 

last-preceding-area-reference-value doesapre-ordertraversaloftheflow Object 
tree searching for the last eligible flow Object, all of whose areas are before all the areas in the 
associated-areas list, and retums a generated-Object whose kerne1 is the value of the relevant 
reference value for that flow Object. If no flow Object is found, the value of the de f aul t : 
argument is retumed, which shall be a generated-Object. 

NOTE 59 This procedure might be used in the default : argument for the first-area-reference-value 
procedure. 

all-area-ref erence-values does a pre-Order traversal of the flow Object tree searching 
for all eligible flow objects that produce an area that is, or is contained in, one of the areas in the 
associated-area list; it retums a generated-Object whose kerne1 is a list containing the value of the 
relevant reference value for each such eligible flow Object in the Order in which it was found. If 
unique: is not #f, then duplicate (in the sense of equal?) values shall be discarded. 

189 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOAEC 10179:1996(E) 0 ISO/IEC 

12.5.2 

12.5.3 

Length Specification 

An Object of type length-spec specifies a length as a linear combination of other lengths that 
may not be currently known. Whenever a value of type length-spec is required, a length (a 
quantity of dimension 1) may always be used. 

(+ length-spec J 
(- length-spec . ..> . 
(* length-spec x) 
(* x length-spec) 
(/ Jength-spec x) 
(/ x length-spec) 

These procedures behave in the Same way as their counterparts on quantities, except that they 
shall retum a length-spec if any of their arguments is a length-spec (as opposed to just a length). 

(display-size) 

This procedure shall be used only in the evaluation of an expression specifying a value for a 
characteristic. The value flow Object shall be a displayed flow Object. It retums a length-spec 
specifying the display-size of the value flow Object. 

Decoration Areas 

Facilities in this clause require the page feature. 

An area Container may be ‘decorated’ with one or more other areas called decoration areas. 
Decoration areas do not affect how parent areas treat the decorated area; in particular, they shall 
not Change the width or height of the decorated area. 

(decoration-area sosofo #!key placement-Point-x: 
placement-Point-y: placement-direction:) 

Returns an Object of type decoration-area. The sosofo tan specify a Single flow Object of any 
class that tan be used inline. The result of formatting the sosofo is used as the decoration area. 
The decoration area has a placement Point and a placement direction specified by the other 
arguments. The inline area produced by the sosofo is placed so that its Position Point lies on 
the placement Point of the decoration area and its escapement direction is in the placement 
direction of the decoration area. 

placement -Point -x : is a length-spec specifying the distance between the bottom left corner 
of the decorated area and the placement Point of the decoration area in the x-direction of the 
decorated area. placement -Point -y : is a length-spec specifying the distance between the 
bottom left comer of the decorated area and the placement Point of the decoration area in the y- 
direction of the decorated area. placement-direction: is one of the Symbols left-to- 
right,right-to-left, or top-to-bottom givingthe placementdirection ofthe 

190 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

decoration area relative to the orientation of the decorated area. In this case, the line-Progression 
direction of the decoration area is the placement direction of the decorated area. 

(decorated-area-width) 
(decorated-area-height) 

decorated-area-width and decorated-area-height retumalength-specspecifying, 
respectively, the width and height of the area to be decorated. They may be used in the 
specification forthe placement-Point-x: and placement-Point-y: arguments ofa 
decoration-area. 

12.5.4 Spates 

12.5.4.1 Display Spates 

Objects of type display-space are used to describe the desired space between displayed areas. 

(display-space? obj) 

Returns #t if obj is an Object of type display-space, and otherwise retums #f. 

(display-space length-spec #!key min: max: conditional?: priority:) 

Returns an Object of type display-space. 1 ength-spec specifies the nominal size of the space. 
min : and max : are length-specs specifying the m inimum and maximum size of the space. These 
both default to the nominal size. priori ty : is either an integer or the Symbol forte. The 
default is 0. Higher integers indicate higher priorities. When two display-spaces are adjacent, 
then if one has a higher priority than the other, the m inimum, nominal, and maximum values 
from the higher priority space shall be used, and the lower priority space shall be ignored. If the 
priorities are equal, but one display-space has a higher nominal value than the other, then the 
m inimum, nominal, and maximum values from the space with the higher nominal value shall be 
used, and the other space shall be ignored. Otherwise, the priorities and nominal values are both 
equal; in this case, that nominal value, the lesser of the maximum values, and the greater of the 
m inimum values shall be used. A priority of forte is considered greater than any other priority. 
However, if both priorities are forte, then the nominal, m inimum, and maximum values shall 
be added together. The condi t ional : argument is a boolean; if true, the space shall be 
discarded if it Starts an area. The default is ##t. 

NOTE 60 This allows spaces to disappear at page or column breaks. 

12.5.4.2 M ine Spates 

Objects of type inline-space are used to describe the desired space between inline areas. 

(inline-space? obj) 

Returns #t if obj is an Object of type inline-space, and otherwise retums #f. 

191 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

(inline-space length-spec #!key min: max:) 

Returns an Object of type inline-space. 1 ength-spec specifies the nominal size of the space. 
min : and max : are length-specs specifying the minimum and maximum size of the space. These 
both default to the nominal size. 

12.55 Glyph Identif iers 

Glyph identifiers are represented by objects of type glyph-id. 

(glyph-id? obj) 

Returns #t if obj is a glyph-id, and otherwise retums #f. 

(glyph-id string) 

Returns a glyph-id with public identifier s tring. 

[ 1861 glyph-identifier = afii-glyph-identifier 

[ 1871 afii-glyph-identifier = #Adigit- IO+ 

An afii-glyph-identifier is a Single token; therefore, no whitespace is allowed between the #A and 
the digits. An afii-glyph-identifier represents the glyph-id retumed by 

(glyph-id "ISO/IEC 10036/RA//Glyphs: :nfl) 

where n is the Same sequence of digits occurring in the afii-glyph-identifier with leading Zeros 
removed. The value represented by the digits shall be between 1 and 232-1. 

12.5.6 Glyph Substitution Tables 

An Object of type glyph-subst-table represents a one-to-one mapping from glyph-ids to glyph- 
ids. 

(glyph-subst-table? obj) 

Returns #t if obj is of type glyph-subst-table, and otherwise returns #f. 

(glyph-subst-table List) 

Returns an Object of type glyph-subst-table. 1 ist shall contain a list of pairs of glyph-ids. In the 
resulting glyph-subst-table, the Substitution for the first member of each pair is the second 
member. The Substitution for any glyph-id that does not occur as the first member of a pair is 
itself. If a glyph-id occurs as the first member of more than one pair, then the Substitution for that 
glyph-id is the second member of the first pair that has that glyph-id as its first member 

(glyph-subst glyph-subst-table glyph-id) 

192 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 JSO/JEC ISO/IEC 10179:1996(E) 

12.5.7 

Returns the glyph-id that substitutes for glyph -i d in the glyph-subst-table. 

Fant Information 

Facilities in this clause require the f ont - inf o feature. 

(font-property string list 
#!key size: name: family-name: weight: posture: structure: 
proportionate-width: writing-mode:) 

Returns the value of a property in a font resource. The arguments name : , f ami ly-name : , 
weight:,posture:,structure:, or proportionate-width: selectthe fontinthe 
Same manner as the corresponding characteristics, with a prefix of f ont - added, of a Character 
flow Object. The s i ze : argument is a length specifying the size of the font, which shall be 
supplied if the ISO/IEC 9541-1 data type of the value is REL-RATIONAL. s tring is a string 
representing a public identifier specifying the name of the property. 1 ist is a list, each of whose 
members is either: 

- a string, or 

- a list of three strings and an Object. 

The property value to be returned shall be determined as follows. Initially, the active property-list 
is the font-resource property-list. Esch member of 1 is t in turn shall set the active property-list 
to a property-list nested in the active property-list, as follows: 

- If the member is a string, then it shall set the property-list to the property-list that is the value 
of the property of that name in the active property-list. 

- Otherwise, the active property-list shall be searched for a property whose name is equal to the 
first string. The value of the property shall be a property-list. The active property-list shall be 
set to the value of the property in that list whose name is equal to the second string and whose 
value is a property-list that contains a property whose name is equal to the third string and 
whose value is equal to the fourth member of the list. 

Finally, the value of the property whose name is s tring in the active property-list shall be 
retumed. 

Theoptional writing-mode: argument shall have one of the values 1 e f t - to -right, 
right-to-left, or top-to-bottom. Thevalue left-to-right isequivalentto 
prefixing 1 ist with the list 

("ISO/IEC 9541-l / /WRMODES" 
"ISO/IEC 9541-l/ /WRMODE" 
"ISO/IEC 9541~l/ /WRMODENAME" 
"ISO/IEC 9541~l/, 'LEFT-TO-RIGHT") 

and so on for the other allowed values, 

193 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) 0 ISO/IEC 

The Object retumed shall depend on the data type of the value of the property as defined in ISO/ 
IEC 9541-1: 

- for a BOOLEAN property, a boolean value shall be retumed. 

- for a STRUCTURED-NAME, a string containing the ISO 9070 canonical representation shall 
be retumed. 

- for MATCH-STRING or MESSAGE, a string shall be retumed. 

- for OCTET, INTEGER, CARDINAL, or CODE, a number shall be retumed. 

- for REL-RATIONAL, a length shall be retumed which is obtained by scaling the font size. 

- for ANGLE, a number shall be retumed corresponding to the angle in degrees. 

- for an OCTET-STRING, a list of integers shall be retumed. 

- for a value-list or an ordered-value-list, a list containing the result of converting the members 
of the value-list or ordered-value-list shall be retumed. 

Other types of values shall Cause an error to be signaled. 

12.58 Addresses 

An address Object shall be used as the destination of a hypertext link. An address Object 
represents the address of one or more objects. 

(address? obj) 

Returns #/t if obj is an Object of type address, and otherwise retums #f. 

(address-local? address) 

Returns ##t if the address is local to the current document, and otherwise retums #f. 

(address-visited? address) 

Returns #kt if address has been visited, and otherwise retums #f. 

(hytime-linkend) 

Returns an Object of type address. The current node shall be an element conforming to the clink 
architectural form as defined in ISO/IEC 10744. The address identifies the linkend of the current 
node. 

(idref-address string) 

194 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 JSO/IEC ISO/IEC 10179:1996(E) 

The string is divided into one or more space-separated tokens, and an Object of type address 
shall be returned representing the elements whose unique ID is one of the tokens. 

(current-node-address) 

Returns an address Object representing the current node. 

(entity-address string) 

The s tring is divided into one or more space-separated tokens, and an Object of type address 
shall be retumed representing the entities whose names are the tokens. 

(sgml-document-address stringl string2) 

stringl shall be the System identifier of an SGML document entity and string2 shall be a 
unique ID in that SGML document. Returns an address Object representing the element in the 
SGML document that has that unique ID. 

(node-list-address node-list) 

Returns an address Object representing the nodes in node-list. This procedure requires the 
query feature. 

NOTE 61 Extemal procedures may be used to allow other addressing mechanisms. 

12.59 Color 

A color shall always be specified with respect to a color-space. 

(color-space string arg . ..) 

Returns an Object of type color-space. The s tring specifies a public identifier identifying the 
color-space family. The remaining arguments specify Parameters to the color-space family. The 
type and number of the remaining arguments depend on the color-space family as described 
below. 

(color-space? obj) 

Returns #t if obj is a color-space, and otherwise retums #f. 

(color color-space arg . ..) 

Returns an Object of type color. col or-space is the color-space relative to which color is to be 
specified. The type and number of the remaining arguments depend on the color-space family to 
which color-space belongs. If no arguments other than color-space are specified, then 
the default color in color-space is retumed. 

NOTE 62 This is normally black. 

195 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

(color? obj) 

Returns ##t if ob j is a color, and otherwise retums ##f. 

This International Standard defines the following color-space families: 

- ISOAEC 10179: 1996//Color-Spate Family: :Device Gray 

- ISOAEC 10179: 1996//Color-Spate Family::Device RGB 

- ISO/IEC 

- ISO/IEC 

- ISO/IEC 

996//Color-Spate Family::Device CMYK 

996//Color-Spate Family::Device KX 

996//Color-Spate Family : :CIE LAB 

- ISO/IEC 10179: 1996//Color-Spate Family::CIE LUV 

- ISO/IEC 10179: 1996//Color-Spate Family::CIE Based ABC 

- ISOAEC 10179: 1996//Color-Spate Family::CIE Based A 

The semantics of each of these color-space families is that of the corresponding color-space 
family in ISO/IEC 10180. The additional arguments required by color-space when one of 
these color-space families is specified as the first argument are determined by the Parameters of 
the corresponding Color-Spate Object in ISO/IEC 10180. When the ISO/IEC 10180 Color- 
Spate Object has no Parameters, color-space takes no additional arguments. When the ISO/ 
IEC 10180 Color-Spate Object has a Single Parameter of type Dictionary, color-space 
accepts a keyword argument for each key allowed in the Dictionary. The name of each keyword 
is derived from the name of the Dictionary key by inserting a hyphen before each upper-case 
letter in the name that is not the first letter and that is followed by a lower-case letter, and by then 
mapping all characters to lower-case. The type of each keyword argument shall be determined 
by the type of the corresponding Dictionary value: 

- If the ISO/IEC 10180 type is a number, then the argument type shall be a number. 

- If the ISO/IEC 10180 type is a procedure, then the argument type shall be a procedure. 

- If the ISO/IEC 10180 type is a reference to a vector of numbers, then the argument type shall 
be a list of numbers of the Same length.- 

- If the ISO/IEC 10180 type is a reference to a vector of procedures, then the argument type 
shall be a list of procedures of the Same length. 

The number and type of the additional arguments required by the color procedure when the 
first argument is a color-space that belongs to one of these families shall be determined by the 
number and type of the argument required by the ISO/IEC 10180 SetColor Operator to specify a 
color in the corresponding ISO/IEC 10180 color-space. These additional arguments are all 

196 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179: 1996(E) 

12.6 Flow Object Classes 

12.6.1 Sequence Flow Object Class 

A sequence flow Object class is formatted to produce the concatenation of the areas produced by 
each of its children. It has a Single principal port. Its children may be inlined or displayed. 

NOTE 64 A sequence flow Object is useful for specifying inherited characteristics. For example, a sequence flow 
Object with a specification of a f ont -pos ture : characteristic may be constructed for an emphasized Phrase element 
in a Paragraph. 

A port of a flow Object shall accept a sequence flow Object if and only if it would accept each of 
the flow objects in that sequence. 

12.6.2 Display-group Flow Object 

required arguments (not keyword arguments). Their types are determined from the ISO/IEC 
10180 types in the Same manner as the arguments for color-space. The default color for each 
color-space is determined by the value that ISOLIEC 10180 defines the CurrentColor Graphits 
State Variable to have immediately after execution of the SetColorSpace Operator for the 
corresponding ISO/IEC 10 180 color-space. 

NOTE 63 A color specified in a color-space with a procedure argument may be transformed in a device-independent 
manner to a color specified in a color-space without any procedure arguments. There is, therefore, no need when 
implementing the style language with output to an ISO/IEC 10180 device to be able to compile an arbitrary expression 
into the language defined in ISO/IEC 10 180. 

A display-group flow Object class is formatted to produce the concatenation of the areas 
produced by each of its children. It has a Single principal port. Its children shall all be displayed, 
and it is itself displayed. 

NOTE 65 It will, therefore, Cause a line break in a Paragraph even if the display-group has no content. 

The following characteristics are applicable: 

- coalesce-id: is a string specifying the coalesce-id of the flow Object, or #f if the flow 
Object has no coalesce-id. This characteristic is not inherited. The default value is #f. If the 
areas from two or more flow objects with the same coalesce-id are flowed into the Same top- 
float, bottom-float, or footnote zone of acolumn-set area, then the areas from the 
second and subsequent such flow objects shall be discarded. A value other than ##f is allowed 
for this characteristic only if the flow Object is flowed into a top-f lost, bottom-f lost, 
or f ootnote zone of a column-set. 

-Position-preference: is either #f or one of the Symbols top or bot t om. This applies 
if the flow Object is directed into a port on a column-set-sequence flow Object that is flowed 
into both the top-float and bottom-float zones of a column-subset and indicates whether the 
areas from this flow Object may be flowed into only one 0% the zones. This characteristic is not 
inherited. The default value is #f. 

197 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

-space-before: is an Object of type display-space specifying space to be inserted before, in 
the placement direction, the areas produced by the flow Object. This characteristic is not 
inherited. The default is for no space before to be inserted. 

-space-after: is an Object of type display-space specifying space to be inserted after, in 
the placement direction, the areas produced by the flow Object. This characteristic is not 
inherited. The default is for no space after to be inserted. 

-keep-with-previous?: is a boolean specifying whether the flow Object shall be kept in 
the Same area as the previous flow Object. This characteristic is not inherited. The default 
value is #f. 

-keep-with-next?: is a boolean specifying whether the flow Object shall be kept in the 
same area as the next flow Object. This characteristic is not inherited. The default value is ##f. 

-break-before: is ##f oroneofthesymbols page,page-region,column, or column- 
set specifying that the flow Object shall Start an area of that type. This characteristic is not 
inherited. The default is #f. 

-break-after :is#foroneofthesymbols page,page-region,column, or column- 
set specifying that the flow Object shall end an area of that type. This characteristic is not 
inherited. The default is #f. 

keep : is one of the following: 

- #t meaning that the areas produced by this flow Object shall be kept together within the 
smallest possible area. 

- the Symbol page indicating that the areas produced by the flow Object shall lie within the 
same Page; in this case, the flow Object shall have an ancestor flow Object of class page- 
sequence. 

- the Symbol column-set indicating that the areas produced by the flow Object shall lie 
within the Same column set; in this case, the flow Object shall have an ancestor of class 
column-set-sequence. 

- the Symbol column indicating that the areas produced by the flow Object shall lie within 
the same column set, and that the first column that each area spans in the column set shall 
be the Same. 

- ##f indicating that this characteristic is to be ignored. 

This characteristic is not inherited. The default value is #f. 

-may-violate-keep-before?: is a boolean which, if true, specifies that constraints 
imposed by the keep : characteristics of ancestor flow objects on the relative positioning of 
this flow Object and its previous flow Object may not be respected. This characteristic is not 
inherited. The default value is ##f. 

198 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

-may-violate-keep-after?: is a boolean which, if true, specifies that constraints 
imposed by keep : characteristics of ancestor flow objects on the relative positioning of this 
flow Object and its next flow Object may not be respected. This characteristic is not inherited. 
The default value is #f. 

12.6.3 Simple-Page-sequence Flow Object Class 

The facilities in this clause require the simple-Page feature. 

A simple-Page-sequence flow Object class is formatted to produce a sequence of page areas. A 
simple-Page-sequence flow Object has a Single principal port that accepts any displayed flow 
Object. 

NOTE 66 The simple-Page-sequence flow Object is intended for Systems that wish to provide a very simple page 
layout facility. More complex page layouts tan be obtained with the Page-sequence and column-set-sequence flow 
Object classes. 

A simple-Page-sequence flow Object shall not be allowed within the content of any other flow 
Object class. 

A simple-Page-sequence may have a Single-line header and footer containing text that is constant 
except for a page number. 

NOTE 67 A document tan contain multiple simple-Page-sequences. For example, each chapter of a document could 
be a separate simple-Page-sequence; this would allow the chapter title within a header or footer line. 

The page shall be filled from top to bottom. The display-size for the contents of the simple-page- 
sequence shall be the value of the Page-width: less the value of the lef t-margin : and 
right-margin: characteristics. 

A simple-Page-sequence flow Object has the following characteristics: 

- Page-width : is a length specifying the total width of the Page. The initial value is system- 
dependent. 

- page -height : is a length specifying the total height of the Page. The initial value is 
system-dependent. 

- Ie f t -margin : is a length specifying the left margin. The initial value is Opt. 

- right -margin : is a length specifying the right margin. The initial value is Opt. 

-top-margin: is a length specifying the distance from the top of the page to the top of the 
area Container used for the content of the simple-Page-sequence. The initial value is Opt. 

NOTE 68 The header line is within the top margin. 

199 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179: 1996(E) C3 ISO/IEC 

-bottom-margin: is a length specifying the distance from the bottom of the page to the 
bottom of the area Container used for the content of the simple-Page-sequence. The initial 
value is Opt. 

NOTE 69 The footer line is within the bottom margin. 

-header-margin: is a length specifying the distance from the top of the page to the 
placement path for the header line. The initial value is Opt. r 

-footer-margin: is a length specifying the distance from the bottom of the page to the 
placement path for the footer line. The initial value is Opt. 

- le f t -he ader : is an unlabeled sosofo containing only inline flow objects that is aligned 
with the left margin of the page in the header line. This characteristic is not inherited. The 
default value is an empty sosofo. 

- Center-header : is an unlabeled sosofo containing only inline flow objects that is centered 
between the left and right margins of the page in the header line. This characteristic is not 
inherited. The default value is an empty sosofo. 

-right-header: is an unlabeled sosofo containing only inline flow objects that is aligned 
with the right margin of the page in the header line. This characteristic is not inherited. The 
default value is an empty sosofo. 

- le ft - f oo t er : is an unlabeled sosofo containing only inline flow objects that is aligned 
with the left margin of the page in the footer line. This characteristic is not inherited. The 
default value is an empty sosofo. 

- Center- f oo ter : is an unlabeled sosofo containing only inline flow objects that Ps centered 
between the left and right margins of the page in the footer line. This characteristic is not 
inherited. The default value is an empty sosofo. 

- right - f ooter : is an unlabeled sosofo containing only inline flow objects that is aligned 
with the right margin of the page in footer line. This characteristic is not inherited. The 
default value is an empty sosofo. 

-writing-mode: isoneofthesymbols left-to-right or right-to-left. This 
determines the writing-mode of the header and footer lines. The initial value is le f t -t o - 
right. 

(Page-number-sosofo) 

Returns an indirect-sosofo whose content is a sequence of Character flow objects representing the 
page number of the page on which the first area resulting from the indirect flow Object specified 
by the indirect-sosofo occurs. 

(current-node-Page-number-sosofo) 

200 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

Returns an indirect-sosofo whose content is a sequence of Character flow objects representing the 
page number of the primary flow Object of the current node. 

NOTE 70 This is intended to handle Cross references in conjunction with process-element-with-id. 

12.6.4 Page-sequence Flow Object Class 

A Page-sequence flow Object is formatted to produce a sequence of page areas. The structure and 
positioning of the page areas shall be controlled by Page-models. 

A Page-sequence flow Object has the following characteristics: 

- initial -Page-model s : is a list of Page-models used for the initial pages. The initial 
value is the empty list. 

- repeat-Page-models : is a list of Page-models used for pages after the initial pages. The 
initial value is the empty list. 

- f orte-last-page : is either ##f or one of the Symbols front or back specifying the 
required type sf the last page of the Page-sequence. If the last page is not of the required type, 
then an additional blank page shall be generated. A value of #f indicates that the last page 
may be of either type. The initial value is ##f. 

- forte- f irs t -page : is either ##f or one of the Symbols front or back specifying the 
required type of the first page of the Page-sequence. If the value is not #f, then the parent 
flow Object shall be of type root; if there is a preceding flow Object, then it shall be of type 
Page-sequence. If the value of the forte-last-page: characteristic of the preceding 
Page-sequence is not #f, it shall have the opposite type to the specified value of the 
characteristic. If the last page sf the preceding Page-sequence is not of the opposite type to 
the value specified for this characteristic, then the preceding Page-sequence shall have an 
additional blank page added. If there is no preceding flow Object and the value is not #f, then 
it shall be an error if the specified type of the first page is not the actual type as determined by 
the f irs t -Page- type : characteristic. The initial value is #f. 

- f irs t -Page- type : is either one of the Symbols front or back indicating that the first 
page of the Page-sequence is a front or back Page, or the Symbol parent indicating that the 
type of the first page shall be determined by the parent flow Object. The initial value is 
parent. A value of parent shall be allowed only if the parent flow Object is the root flow 
Object. In this case, if there is a preceding flow Object, then it shall be of type Page-sequence, 
and the first page shall be a front or back page if the last page of the preceding Page-sequence 
was a back or front Page; if there is no preceding flow Object, then the first page shall be a 
front Page. This characteristic does not Cause additional pages to be generated; it merely 
states that this page will be of the specified type when it is printed and bound. The value shall 
be parent unless the value of the forte-f irst-page : characteristic is ##f. 

NOTE 71 This information makes it possible to determine which pairs of pages are spreads. 

201 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

- blank-back-Page-model : is a Page-model that shall be used for the final page if it was a 
back page and was required only because of the forte-last-page: or forte-f irst- 
page : characteristics, or it is #/f if the normal Page-model should be used for the final Page. 
The initial value is H. 

- blank-front -Page-model : is a Page-model that shall be used for the final page if it was 
afront pageand wasrequiredonly becauseofthe forte-last-page: or force-first- 
page : characteristics, or it is #f if the normal Page-model should be used for the final Page. 
The’initial value is #f. 

-justify-spread?: is a boolean specifying whether the bottom of each page in a spread 
shall be justified. The initial value is #ff. 

- Page-category : specifies the category of the page areas resulting from this page- 
sequence flow Object. It may be any expression language Object for which the equal? 
procedure is defined. The category of an area is used by procedures defined in 12.5.1.2. 

- binding-edge: is one ofthe Symbols left,right,top, or bottom specifyingtheedge 
of a front page to be bound. This affects whether a side of the page is considered to be on the 
inside or outside. The initial value is le ft. 

There shall be an applicable Page-model for every page produced by the Page-sequence. 

The ports of a Page-sequence flow Object are determined by the Page-models. 

12.6.4.1 Page-model 

A Page-model is the specification of a set of possible hierarchies of areas. 

(Page-model? obj) 

Returns #t if obj is of type Page-model, and otherwise retums #f. 

[ 1 SS] Page-model-definition = (def ine-Page-model Page-model-name [[page-region- 
specification+ I width-specification I height-specification I filling-direction-specification? I 
decoration-specijiication”]l ) 

[ 1891 Page-model-name = variable 

def ine-Page-model binds Page-model-name to a Page-model Object. 

The top-level area is the page area. The page area contains a number of sub-areas called page- 
regions. The layout Order of the Page-regions corresponds to the Order of their specification in 
the Page-model-definition. Page-regions may overlap. 

[ 1901 Page-region-specification = ( region [[x-origin-specification I y-origin-specification B 
width-specification I height-specification P decoration-specification* I jilling-direction- 
specification? I header-specification? I footer-specification? D Page-region-jlow-map?]] > 

202 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOLIEC ISO/IEC 10179:1996(E) 

A Page-region-specification specifies an area Container with fixed dimensions that is filled to 
produce a Page-region area. Esch Page-region has a Single predominant filling-direction. 

NOTE 72 Included-container-area flow objects may use a different filling direction. 

It is possible to have display areas with different placement directions on the Same page using 
multiple Page-regions, as illustrated in Figure 15. 

Page Region 1 - 
(Area Container 1) 

Starting 
edge of / 
area B  

Display Area A  

i area H 

h, I  A  

(Area Container 

(a) Starting edge 
of area Container 1 

(c) Starting edge 
of area Container 2 

(b) Ending edge 
of area Container 1 

(d) Ending edge 
of area Container 2 

Figure 15 - Multiple Filling Directions on a Single Page 

[ 19 l] Page-region-flow-map = ( f 1 ow Port-specifier+ ) 

A Page-region-jZow-map specifies that areas resulting from formatting flow objects directed into 
any of the ports identified by one of the Port-specifiers may be assigned to this Page-region. 

If there is no Page-region-flow-map, then ( f low # f ) is the default. 

203 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISWIEC 10179:1996(E) 0 ISO/IEC 

If a Port-specifier occurs in more than one Page-region-flow-map in a Page-region-specification 
in a Page-model-definition, then the Page-regions shall be filled in the Order in which their page- 
region-specifications occur in the Page-model-definition. 

[ 1921 Port-specifier = identifier I # f 

Bi Port-specifier that is an identifier specifies a port with that name; a Port-specifier of # f 
specifies the principal port. . 

[ 1931 header-specification = (header generated-area-clauses ) 

A header-specification specifies areas to be generated at the beginning of a Page-region or 
column. 

[ 1941 footer-specification = ( f oo t er generated-area-clauses ) 

A header-speciflcation specifies areas to be generated at the end of a Page-region or column. 

[ 1951 generated-area-clauses = [[height-specification? I width-specification? I jilling-direction- 
specification? I contents-alignment-specification? I generate-specification]] 

generated-area-clauses specifies areas to be generated. 

[ 1961 generate-specification = ( genera t e expression ) 

The expression shall evaluate to an unlabeled sosofo specifying only displayed flow objects. 

[197] x-origin-specification = (x-origin expression) 

The expression shall evaluate to a length which specifies the 
area Container with respect to its parent’s coordinate System. 

[ 1981 y-origin-specification = ( y- o r i g in expression ) 

The 
area 

expression shall evaluate to 
Container with respect to its 

a length which specifies the 
parent’ s coordinate System. 

[ 1991 width-specification = ( wi d t h expression ) 

The expression shall 
direction) of the area 

x component of the origin of the 

y component of the origin of the 

evaluate to a length which specifies the width (size in the positive x 
Container with respect to its parent’s coordi nate System. 

[200] height-specification = ( he i gh t expression ) 

The expression shall evaluate to a length which specifies the height (size in the 
direction) of the area Container with respect to its parent’s coordinate System. 

positive y- 

[201] decoration-specification = (decorate expression) 

204 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC 

The expression shall evaluate to a decoration-area Object. The area is decorated by the Object as 
explained in 12.5.3. 

[202] filling-direction-specification = (filling-direction expression) 

The expression shall evaluate to one of the Symbols lef t-to-right, right-to-lef t, or 
t op - t o - bo t t om specifying the filling-direction of the area Container. 

If the filling-direction is not specified on the Page-region, it shall be inherited from the page- 
model. It shall be an error if it is not specified on either the Page-region or the Page-model. 

[203] contents-alignment-specification = (contents-alignment expression ) 

The expression shall evaluate to one of the Symbols s tar t, end, Center, or j us t i f y 
specifying the alignment of the Child areas within the area Container in the filling-direction of the 
area Container. The default is s tar t. 

12.6.5 Column-set-sequence Flow Object Class 

A column-set-sequence flow Object is formatted to produce a sequence of column-set areas. A 
column-set area is a display area. A column-set area is produced by creating and filling an area 
Container. A column-set area contains a set of parallel columns. Typically, column-set areas 
may be used to fill Page-regions; however, column-set areas may also be used to fill other 
column-set areas. The structure and positioning of each column-set area shall be controlled by 
the column-set-model to which it conforms. A column-set-sequence flow Object shall only be 
displayed. 

A column-set-sequence has the following characteristics. 

- column-set -model -map : is a list of lists each with two members, the first a Page-model 
and the second a column-set-model; whenever an area from this column-set-sequence is 
placed in an area whose nearest ancestor of type Page-region uses the specified Page-model, 
then the specified column-set-model shall be used. The initial value is the empty list. 

- column- se t -model : is a column-set-model specifying the default column-set-model to 
use if none of the column-set-models specified in the column- set -model -map : 
characteristic are applicable or #f if there is no default column-set-model. If the value is #f, 
then it shall be an error if a result area is to be placed within a Page-region whose Page-model 
is not listed in the value of the column- set -model -map : characteristic. The initial value 
is #f. 

-Position-preference: is either ##f or one of the Symbols top or bot t om. This applies 
if the flow Object is directed into a port on a column-set-sequence flow Object that is flowed 
into both the top-float and bottom-float zones of a column-subset and indicates whether the 
areas from this flow Object may be flowed into only one of the zones. This characteristic is not 
inherited. The default value is #kf. 

205 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISO/IEC 10179:1996(E) 0 I[SO/IEC 

-span : is a strictly positive integer specifying the number of columns that the areas resulting 
from this flow Object shall span. This characteristic shall apply if the flow Object is directed 
into a port on a column-set-sequence flow Object that is flowed into the top-float, bottom- 
float, or body-text zone of a spannable column-subset. The initial value is 1. 

-span-weak?: is a boolean specifying whether the areas resulting from this flow Object span 
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow Object is 
directed into a port on a column-set-sequence flow Object that is flowed into the top-float, . 
bottom-float, or body-text zone of a spannable column-subset and has a span : characteristic 
with a value greater than 1. The initial value is #f. 

-space-before: is an Object of type display-space specifying space to be inserted before, in 
the placement direction, the areas produced by the flow Object. This characteristic is not 
inherited. The default is for no space before to be inserted. 

- space-af ter : is an Object of type display-space specifying space to be inserted after, in 
the placement direction, the areas produced by the flow Object. This characteristic is not 
inherited. The default is for no space after to be inserted. 

-keep-with-previous?: is a boolean specifying whether the flow Object shall be kept in 
the same area as the previous flow Object. This characteristic is not inherited. The default 
value is #f. 

-keep-with-next?: is a boolean specifying whether the flow Object shall be kept in the 
same area as the next flow Object. This characteristic is not inherited. The default value is ##f. 

-break-before: is #f oroneofthesymbois page,page-region,column, or column- 
set specifying that the flow Object shall Start an area of that type. This characteristic is not 
inherited. The default is #f. 

-break-after: is#foroneofthesymbols page,page-region,column, or column- 
se t specifying that the flow Object shall end an area of that type. This characteristic is not 
inherited. The default is #f. 

- keep : is one of the following: 

- #It meaning that the areas produced by this flow Object shall be kept together within the 
smallest possible area. 

- the Symbol page indicating that the areas produced by the flow Object shall lie within the 
Same Page; in this case, the flow Object shall have an ancestor flow Object of class page- 
sequence. 

- the Symbol column- se t indicating that the areas produced by the flow Object shall lie 
within the same column set; in this case, the flow Object shall have an ancestor of class 
column-set-sequence, 

206 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

- the Symbol column indicating that the areas produced by the flow Object shall he within 
the same column set, and that the first column that each area spans in the column set shall 
be the Same. 

- #kf indicating that this characteristic is to be ignored. 

This characteristic is not inherited. The default value is #f. 

-may-violate-keep-before?: is a boolean which, if true, specifies that constraints 
imposed by the keep : characteristics of ancestor flow objects on the relative positioning of 
this flow Object and its previous flow Object may not be respected. This characteristic is not 
inherited. The default value is #f. 

-may-violate-keep-after?: is a boolean which, if true, specifies that constraints 
imposed by keep : characteristics of ancestor flow objects on the relative positioning of this 
flow Object and its next flow Object may not be respected. This characteristic is not inherited. 
The default value is #f. 

A column-set-sequence flow Object has a port for each port listed in a column-subset-flow-map 
for any of its column-set-models. 

12.651 Column-set-model 

A column-set-model specifies the possible hierarchy of areas for each column-set. For some 
possible examples of column-sets and column-subset configurations, see Figures 16 and 17. 

207 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

Column-Sets and Column-Subsets 

Filling-direction 
of column-set 

Column 1 Column 2 

Column-Subset 1 

Column A Column B 

Column-Subset 2 

Figure 16 - An Example of Column-Subsets 

208 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

2a la 2b Ib 

2a la Ib 2b 

1 and 2 are column-subsets 

a and b are consecutive columns 
in the sets 

Figure 17 - Another Example of Column-Subsets 

The top-level area in the hierarchy is the column-set area. A column-set area shall have a filling- 
direction. If the column-set-model-definition does not contain a filling-direction-specification, 
then the filling-direction of the parent area shall be used. The size of the column-set area shall be 
fixed in the direction perpendicular to the filling-direction. It tan be fixed either by a width- 
speciflcation or a height-specification or because this direction is the direction perpendicular to 
the area’s placement direction. The size of a column-set area in the filling-direction may be 
fixed, or it may grow according to the areas flowed into it. 

The area Container that produces the column-set shall be filled in a more complicated way than 
normal area Containers. Areas are placed in the column-set area in such a way that they satisfy a 
number of different constraints. 

209 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

The most basic constraint is that the areas shall not overlap. This constraint does not apply to 
decoration areas. 

There is a partial ordering defined on the areas that have been placed in a column-set area. This 
is called the layout Order. 

NOTE 73 The layout Order corresponds to the Order in which the areas should be read. 

A fundamental constraint on the filling of an area Container is that if two areas placed in the 
column-set area Container come from the Same stream, then they shall be placed so that their 
layout Order is consistent with their Order in the stream. 

The column-set area is divided geometrically in a direction parallel to the filling-direction into a 
number of columns. 

NOTE 74 When an area is said to be divided in some direction, this means that it is divided in such a way that the 
dividing line is in that direction. 

A column is not an area Container. Esch column has an extent that is fixed in the direction 
perpendicular to the filling-direction. 

Esch column is a member of exactly one column-subset. The layout Order of columns in a 
column-subset is the Order of the column-specifications in a column-subset specification. There 
is no layout Order defined between columns in different column-Sets. 

NOTE 75 It is for this reason that the layout Order is a partial Order. 

210 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

column-subset 1 

Figure 18 - Multiple Column-Subsets 

A column-subset is defined to be spannable unless a column in the column-subset is 
geometrically between any two other consecutive columns in the column-subset. For example, 
see Figure 19. 

211 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISO/IEC 10179:1996(E) 0 ISO/IEC 

la lc Ib 

Non-spannable 
columns in a 
column-subset 

a, b, and c are consecutive 
columns in the column-subset 

Figure 19 - Non-spannable Column-Subsets 

Esch area to be placed in a column-set area shall be associated with a Single column-subset. If 
the filling-direction of the column-set area is top-to-bottom, each area that is placed in the 
column-set area shall be placed so that the left edge is aligned with the left edge of a column in 
the column-subset and the right edge is aligned with the right edge of a column in the Same 
column-subset. If the filling-direction of the column-set area is left-to-right or right-to-left, each 
area that is placed in the column-set area shall be placed so that its top edge is aligned with the 
top edge of a column in the column-subset and its bottom edge is aligned with the bottom edge of 
a column in the Same column-subset. An area may span more than one column only if the 
column-subset is spannable. The number of columns in the column-subset that an area spans 
shall be equal to the value of the span : characteristic of the flow Object from which the area 
Comes. 

An area that is to be placed in a column-set area shall be created in such a way that its size in the 
direction perpendicular to the filling direction is such that it exactly spans the required number of 
columns. In other words, the display-size of the area shall be equal to the distance between one 
edge of the first column it spans and the opposite edge of the last column it spans. 

212 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISOIEC 10179:1996(E) 

NOTE 76 This is an exception to the general principle that an area to be placed in an area Container is created so that 
the area’s size in the direction perpendicular to the area’s placement direction is equal to the size of the area Container in 
the direction perpendicular to the area container’s filling-direction. 

Esch area that is to be placed in a column-set area Container is labeled with a Zone, which 
constrains the placement of the area relative to other areas. The allowed zones are top-f loat, 
body-text,bottom-float, and footnote. Anarealabeledwithonezoneshallbe 
positioned so that it precedes, in the filling-direction, an area that is labeled with a zone that is 
Pater in the list, unless there is no column that is spanned by both areas. For example, see Figure 
20 . 

Page 

0 l 
I I 
D I Body-text 
i 
$ 
1 

Body-text g 
Zone 1 

1 

t zone I 
l 
I 
I 

Column Column 

An area labeled with the footnote zone shall span exactly one column. 

Figure 20 - Cohmn-set areas 

213 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

NOTE 77 Full-width footnotes in a multi-column layout may be achieved using a nested-column-set. 

An area that spans more than one column may span either weakly or strongly depending on the 
valueofthe span-weak?: characteristic on the flow Object from which the area Comes. An 
area that spans more than one column strongly is defined to follow in the layout Order any areas 
that: 

- are in the Same column-subset as the area, 

- precede the area geometrically in the filling-direction, 

- have a span that is completely included in the span of the area, and 

- are labeled with the Same Zone as the area. 

An area that spans more than one column weakly is defined to follow in the layout Order exactly 
those areas that it would follow if it occupied only the first of the columns that it spans. 

Two or more column-subsets may be tied together. Column-subsets that are tied together shall 
have the same number of columns. When an area spans strongly more than one column of a 
column-subset, then the layout Order of each column-subset that is tied to that column-subset 
shall be modified as if an empty area had been created and placed at the Same Position in the 
filling-direction as the spanning area and with the Same size in the filling-direction as the 
spanning area so that it spans the corresponding columns of the ried-column-subset; this area tan 
overlap the spanning area. 

NOTE 78 A sequence of columns containing sidenotes is usually tied to the sequence of columns containing the text 
to which the sidenotes refer. 

When the spanning area is synchronized using the s ide- sync procedure with an area in a tied- 
column-subset that does not span, then it shall be placed in the first column in the tied column- 
subset: 

- whose corresponding column in the other column-subset is spanned by the spanning area, and 

- which is not covered by the spanning area. 

[204] column-set-model-definition = (define-column-set-model variable [[column- 
subset-specification* I jill-out-specification? I tied-column-subset-specification* I filling- 
direction-specification? I width-specification? I height-specification? i decoration- 
specification*]] > 

A column-set-model-definition defines variable to be an Object of type column-set-model. 

(column-set-model? obj) 

Returns #t if obj is of type column-set-model, and otherwise returns #f. 

214 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOLIEC ISOIEC 10179:1996(E) 

[205] fill-out-specification = ( f i 11 -out expression ) 

The expression shall evaluate to a boolean. If it is #t, then each column-set area shall be filled 
out in the filling-direction to the maximum size allowed by the area in which it is placed. 

[206] column-subset-specification = ( column- subse t [[column-specification+ I column- 
subset-flow-map I top-float-space-below-specification? I bottom-float-space-above- 
speciflcation? I balance-specification? I just&specification? I justiJjl-limit-specification? I 
justi!-last-limit-specification? I length-deviation-specification? I length-decrease-order- 
specification? I align-lines-specification?]] ) 

For each column-subset in the column-set-model, there shall be a column-subset-specification. 

[207] column-subset-flow-map = ( f low ( (Port-specijier zone-name+) )+ ) 

[208] Zone-name = top-float Ibody-text Ibottom-floatl footnote 

A column-subset-fZow-map specifies that areas resulting from flow objects directed in port- 
specifier shall be labeled with one of the specified Zone-names. Multiple Zone-names may be 
specified for a Single Port-specifier only if the Zone-names are t op- f loa t and bot t om- 
float. 

[209] top-float-space-below-specification = (top-float-space-below expression) 

The expression shall evaluate to an Object of type display-space specifying the size of a space to 
be added. For each column in the column-set that is spanned by an area in the top-float Zone, a 
space of the specified size shall be added immediately after all the areas that span the column and 
that are in the top-float Zone. 

[2 101 bottom-float-space-above-specification = (bottom-float-space-above 
expression ) 

The expression shall evaluate to an Object of type display-space specifying the size of a space to 
be added. For each column in the column-set that is spanned by an area in the bottom-float Zone, 
a space of the specified size shall be added immediately before all the areas that span the column 
and that are in the bottom-float Zone. 

[2 1 l] balance-specification = (bal ante ? expression ) 

The expression shall evaluate to a boolean. A value of #lt indicates that a column-subset in the 
last column-set produced by a column-set-sequence shall be balanced. A value of #f indicates 
that it shall not be. If a column-subset is balanced, then free space shall be allocated evenly 
among all the columns in the column-subset. If a column-subset is not balanced, then free space 
shall be allocated to the columns in reverse Order. The default is for the column-subset not to be 
balanced. 

[212] justify-specification = ( j us t i f y? expression) 

215 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-4  

IS O IE C  1 0 1 7 9 :1 9 9 6 ( E )  0  IS O /IE C  

T h e  express ion  shal l  eva lua te  to  a  b o o l e a n  speci fy ing w h e th e r  th e  co lumn-subse t is to  b e  
justif ied. If a  c o l u m n  subse t is to  b e  justif ied, th e  f ree  space  shal l  b e  d is t r ibuted b e fo r e  a n d  a fte r  
th e  a r e a s  in  th e  co lumn-subse t acco rd ing  to  th e  m i n i m u m  a n d  m a x i m u m  a l l owed  space  speci f ied 
in  th e  d isp lay spaces.  O therwise,  al l  f ree  space  shal l  b e  d is t r ibuted a t th e  e n d  o f e a c h  c o l u m n . 
T h e  d e faul t  is fo r  th e  co lumn-subse t n o t to  b e  justif ied. A  co lumn-subse t m a y  on ly  b e  justi f ied if 
th e c f i l l -out-specif icat ion speci f ies th a t th e  co lumn-se t  is to  b e  fille d  o u t. 

[2 1 3 ] justify-lim it-specif icat ion =  (  j us  t i f y- 1  imi  t express ion)  . 

T h e  express ion  shal l  eva lua te  to  a  n u m b e r  b e tween  0  a n d  1 0 0 . If th e  a m o u n t o f f ree  space  in  a  
c o l u m n  as  a  p e r c e n ta g e  o f th e  to ta l  s ize o f th e  c o l u m n  exceeds  this, th e n  th a t c o l u m n  shal l  n o t b e  
justif ied. T h e  d e faul t  is 1 0 0 . 

[2  1 4 1  justify-last-lim it-specif icat ion =  (justify-last-l imit express ion)  

T h e  express ion  shal l  eva lua te  to  a  n u m b e r  b e tween  0  a n d  1 0 0 . A  c o l u m n  shal l  n o t b e  justi f ied if 
th e  a m o u n t o f f ree  space  in  a  c o l u m n  in  th e  last co lumn-se t  in  a  co lumn-se t -sequence  as  a  
p e r c e n ta g e  o f th e  to ta l  s ize o f th e  c o l u m n  exceeds  th e  n u m b e r  r e tu m e d  by  th e  express ion.  T h e  
d e faul t  is 0 . 

[2  1 5 1  l e n g th-devia t ion-speci f icat ion =  ( l eng th-dev ia t ion  express ion)  

T h e  express ion  shal l  eva lua te  to  a  posi t ive l e n g th . W h e n  a  co lumn-subse t is b e i n g  justi f ied o r  
b a l a n c e d , th e n  th e  l e n g ths  o f th e  co lumns  m a y  dif fer by  u p  to  th is a m o u n t. T h e  d e faul t  is O p t. 

[2  1 6 1  l e n g th-decrease-order -spec i f i ca t ion  =  ( l eng th - d e c r e a s e - O r d e r  express ion)  

T h e  express ion  shal l  eva lua te  to  o n e  o f th e  fo l low ing  Symbo ls : 

-  f o r w a r d  speci fy ing th a t as  co lumns  p rog ress  in  th e  fo r w a r d  d i rect ion the i r  l e n g th  shal l  n o t 
increase,  

-  backward  speci fy ing th a t as  co lumns  p rog ress  in  th e  backward  d i rect ion the i r  l e n g th  shal l  
n o t increase,  

o r  # f imp ly ing  n o  a d d i tio n a l  constra int  o n  th e  re lat ive l e n g th  o f th e  co lumns.  

[2  1 7 1  a l ign- l ines-speci f icat ion =  (  a  1  i g n -  1  i n e  s ?  express ion  )  

T h e  express ion  shal l  eva lua te  to  a  b o o l e a n  speci fy ing,  if t rue, th a t a n  a tte m p t shal l  b e  m a d e  in  th e  
course  o f d ist r ibut ing f ree  space  to  k e e p  l ines in  di f ferent  co lumns  a l i g n e d . 

[2  1 8 1  co lumn-speci f ica t ion =  ( co lumn  [[width-speci f icat ion? I h e i g h t-speci f icat ion? I x -or ig in-  
speci f lcat ion? I y-or ig in-speci f icat ion? I fo o tn o te - s e p a r a tor-speci f icat ion? I heade r -spec i fica tio n ?  
I fo o ter-speci f icat ion?] ]  )  

If th e  co lumn-se t  filling-d i rec t ion  is to p - to - b o tto m , th e n  th e  co lumn-speci f ica t ion shal l  c o n ta in  a  
width-speci f lcat ion a n d  a n  x-or ig in-speci’cat ion.  If th e  co lumn-se t  filling-d i rec t ion  is r ight- to-  

2 1 6  

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179: 1996(E) 

left or left-to-right, then the column-specijikation shall contain a height-specijkation and a y- 
origin-specification. These specifications give the geometry of the column. 

[2 191 footnote-separator-specification = (footnote-separator generated-area-clauses) 

A footnote-separator-specification specifies areas that shall be generated immediately before the 
areas in the footnote zone if the footnote zone contains any areas. 

[220] tied-column-subset-specification = ( t i e column-subset-specijication column-subset- 
speci!cation+ ) 

A tied-column-subset-specification specifies two or more column-subsets that are tied together. 
See Figure 18. 

NOTE 79 This may be used, for example, with sidenotes. 

12.6.6 Paragraph Flow Object Class 

A Paragraph flow Object represents a Paragraph. It has a Single principal port. The contents of 
this port may be either inlined or displayed. Inline flow objects are formatted to produce line 
areas. Displayed flow objects implicitly specify a break, and their areas shall be added to the 
resulting sequence of areas. A Paragraph flow Object may only be displayed. 

NOTE 80 Typically, a break implies that a new line is to be started. 

The following characteristics are applicable: 

- lines : is a Symbol specifying how the content of the Paragraph shall be broken into lines in 
the formatted output, as follows: 

- wrap specifying that lines shal 

- as is specifying that lines shal 1 be broken only after Character flow objects for which the 
record-end?: characteristic is true. 

1 be broken so that they fit in the available space. 

- as i s -wrap specifying that lines shall be broken after Character flow objects for which 
the record-end?: characteristic is true, and as necessary to make lines fit in the 
available space. 

- as i s - truncate specifying that lines shall be broken only after Character flow objects 
forwhichthe record-end?: characteristic is true, and that lines that do not fit the in the 
available space shall be truncated. 

- none specifying that lines shall not be broken at all. 

NOTE 81 This is useful in tables when the table-auto-width feature is present to ensure that the width 
of a column is made large enough so that the content of a cell fits on a Single line. 

217 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 lISO/IEC 

In all cases, line breaks shall also be allowed where explicitly specified with the break- 
bef ore : or break-af ter : characteristics. The initial value is wrap. 

- as i s - truncate- char : is either #/f or a char Object that determines the glyph to be 
inserted when the lines : characteristic has the value asis- truncate and a line is 
truncated. The initial value is #f. 

-asis-wrap-char: is either ##f or a char Object that determines the glyph to be inserted at . 
the end of a line when the lines : characteristic has the value asis-wrap and the line is 
broken other than after a Character flow Object for which the record-end? : characteristic 
is true. The initial value is #f. 

-asis-wrap-indent: is a length-spec giving an indent to be added to the start-indent when 
the 1 ines : characteristic has the value as i s -wrap for a line following a break other than 
after a Character flow Object for which the record-end? : characteristic is true. The initial 
value is ##f. 

- f irst-line-align: is either #f, #t, or a char Object. If it is not #f, then the quadding: 
and last -1 ine-quadding : characteristics are ignored for the first line of the Paragraph, 
and the first line shall be aligned using an alignment Point in the line. If the value is a char 
Object, then the alignment Point shall be the Position Point of the first area produced by the 
first occurrence on the line of a Character flow Object with a char : characteristic equal to 
that char Object; otherwise, the alignment Point shall be the Position of the first alignment- 
Point flow Object in the line. If alignment-Point-of f set : is not #f, then the first line 
of the Paragraph shall be aligned so that the percentage of the line length (that is, the display- 
size less the applicable Start and end indents) before the alignment Point is equal to the value 
ofalignment-Point-offset:. If alignment-Point-offset: is#f,thenthe 
Paragraph is an externally aligned Paragraph and shall have an ancestor of class table-cell or 
aligned-column. Furthermore, the area Container in which the areas from this Paragraph are 
placed shall be the same as the area Container in which the areas from that ancestor are placed; 
in this case, the Paragraph shall be aligned so that its alignment Point is aligned with other 
such Paragraphs in the table-column or aligned-column. If an extemally aligned Paragraph 
occurs in a table-cell, then the table-auto-width feature shall be enabled. The initial 
value is ##f. 

- alignment-Point-of fset : is either #f or a number between 0 and 100 specifying the 
percentage of the line length (that is, the display-size less the Start and end indents) before the 
alignment Point. The initial value is 50. 

-ignore-record-end?: is a boolean specifying whether a record-end shall be ignored. If 
this characteristic is true, then a Character with the record-end? property true shall be 
ignored. The initial value is #f. 

-expand-tabs?: is either ##f or a strictly positive integer specifying the tab interval. When 
a tab interval is specified, each Character flow Object that has the input - tab? : 
characteristic true shall be treated as equivalent to the smallest strictly positive number of 
spaces that when added to the number of Character flow objects following the last preceding 
record-end Character flow Object shall be a multiple of the tab interval. The initial value is 8. 

218 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179:1996(E) 

- line-spacing : is a length-spec giving the normal spacing between the placement paths of 
lines in the Paragraph as described in 12.6.6.1. The initial value is 12pt. 

- line-spacing-priority: is either an integer or the Symbol forte specifying the 
priority of any conditional space before the line. This shall be interpreted in the Same manner 
as the priori ty : argument for the display-space procedure. The initial value is 0. 

- m in-pre-line-spacing : is a length-spec specifying the m inimum size of the line in the 
placement direction before the placement path as described in 12.6.6.1. A value of #f shall 
also be allowed, specifying that the value is determined from the paragraph’s font. The initial 
value is ##f. 

- m in-pos t - 1 ine-spacing : is a length-spec specifying the m inimum size of the line in 
the placement direction after the placement path as described in 12.6.6.1. A value of #f shall 
also be allowed, specifying that the value is determined from the paragraph’s font. The initial 
value is #f. 

- m in-leading : is either ##f or a length-spec specifying the m inimum space between the line 
areas in the placement direction as described in 12.6.6.1. A value of #f means that the line 
spacing shall not be automatically adjusted to take into account the size of the content of the 
lines. The initial value is #f. 

- f irs t -line-s tart -indent : is a length-spec giving an indent to be added to the start- 
indent for the first line. The length may be negative. The initial value is Opt. 

- last - 1 ine - end- indent : is a length-spec giving an indent to be added to the end-indent 
for the last line. The length may be negative. The initial value is Opt. 

- hyphenation-char : is a char that is used to determine the glyph that is inserted when 
hyphenation is performed. The characteristics of the Character flow Object preceding the 
hyphenation Point shall determine the mapping of the Character to a glyph, as well as the font 
resource and font-size of the glyph. The initial value is # \ - (the hyphen Character). 

- hyphenat ion- ladder - coun t : is a strictly positive integer specifying the maximum 
number of consecutive lines ending with the Same glyph as the glyph determined by the value 
of the hyphenat ion-char : characteristic, or #f indicating that there is no lim it. The 
initial value is #f. 

- hyphenation-remain-char-count: is apositiveintegerspecifyingtheminimum 
number of characters in a hyphenated word before the hyphenation Character. This is the 
m inimum number of characters in the word left on the line ending with the hyphenation 
Character. The initial value is 2. 

- hyphenation-push-char-count : is a positive integer specifying the m inimum number 
of characters in a hyphenated word after the hyphenation Character. This is the m inimum 
number of characters in the word pushed to the next line after the line ending with the 
hyphenation Character. The initial value is 2. 

219 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISOIEC 10179: 1996(E) OISO/IEC 

-hyphenation-keep: is either ##f or one of the following Symbols: 

- spread means that both Parts of a hyphenated word shall lie within a Single spread. 

- page means that both Parts of a hyphenated word shall lie within a Single Page. 

- column means that both Parts of a hyphenated word shall lie within a Single column. 

The initial value is #f. 

-hyphenation-exceptions: is a list of strings. Esch string is a word which may contain 
hyphen characters, # \ -, indicating where hyphenation may occur. If a word to be 
hyphenated occurs in the list, it may only be hyphenated in the specified places. The initial 
value is the empty list. 

NOTE 82 The determination of a word is system-dependent. 

- line-breaking-method : is #f or a string specifying a public identifier for the line- 
breaking-method to be used for this Paragraph. The initial value is #f. 

- 1 ine- compos i t ion-me thod : is #f or a string specifying a public identifier for the line- 
composition-method to be used for this Paragraph. The initial value is #f. 

NOTE 83 Typically, the line-composition-method: uses characteristics declared 
characteristic-declaration or an application-char-characteristic+property-declaration. 

using an application- 

- impl ici t -bidi -method : is #f or a string specifying a public identifier for the method to 
be used for implicitly determining the directionality of the content of the Paragraph. This 
includes both the writing-mode of characters, which, when this characteristic is #f, is 
specified with the writing-mode characteristic, and how portions of content with a common 
writing-mode are nested within each other, which, when this characteristic is #f, is specified 
with embedded-text flow objects. It is part of the semantics of the method which 
characteristics of Character flow objects, if any, it uses. A method may be specific to a 
particular Character repertoire, in which case, it may not make use of any characteristics. It 
may be part of the semantics of a method for certain glyph Substitutions to be applied 
depending on the writing-mode that is determined for a Character, and possibly also on 
characteristics of the Character. The initial value is #f. 

-glyph-alignment-mode: is oneofthesymbols base,center,top,bottom, or font 
specifying the alignment mode to be used for glyphs. f ont means that the nominal alignment 
mode of the font in the flow object’s writing-mode should be used. The initial value is f ont. 

-font-family-name: is either #/f, indicating that any font family is acceptable, or a string 
giving the font family name property of the desired font resource. The initial value is iso- 
serif. 

NOTE 84 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso- seri f, 
iso-sanserif, and iso-monospace. 

220 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/IEC ISO/IEC 10179: 1996(E) 

This characteristic is applicable when the glyph-alignment -mode : is f ont or when 
m in-pre-line-spacing:ormin-post-line-spacing:are#f. 

- f ont -weight : is either #f, indicating that any font weight is acceptable, or one of the 
Symbols not-applicable,ultra-light,extra-light,light,semi-light, 
medium,semi-bold,bold,extra-bold, or ultra-bold, givingtheweightproperty 
of the desired font resource. The initial value is medium. This characteristic is applicable 
whenthe glyph-alignment-mode: is font orwhen m in-pre-line-spacing: or 
m in-post-line-spacing:is##f. 

- font-posture: is either #f, indicating that any posture is acceptable, or one of the Symbols 
not-applicable,upright,oblique,back-slanted-oblique,italic,or 
back-slanted-italic, giving the posture property of the desired font resource. The 
initial value is upright. This characteristic is applicable when the glyph-alignment- 
mode: is font orwhen m in-pre-line-spacing:ormin-post-line-spacing: is 
#f . 

- f ont - s truc ture : is either #f, indicating that any structure is applicable, or one of the 
Symbols not-applicable,solid, or outline. The initial value is so 1 id. This 
characteristic is applicable when the glyph-alignment-mode : is f ont or when m in- 
pre-line-spacing:ormin-post-line-spacing:is#f. 

- f ont-proportionate-width: is either #f, indicating that any proportionate width is 
acceptable,oroneofthe Symbols not-applicable,ultra-condensed,extra- 
condensed,condensed,semi-condensed,medium,semi-expanded,expanded, 
extra-expanded, or ultra-expanded. Theinitialvalueis medium. This characteristic 
is applicable whenthe glyph-alignment-mode: is font orwhen m in-pre-line- 
spacing: ormin-post-line-spacing: is#f. 

- f ont -name : is either #kf, indicating that any font name is acceptable, or a string which is the 
public identifier for the font name property of the desired font resource. When the value is a 
string,thevaluesofthe font-family-name:,font-weight:,font-posture:, 
font-structure:, and font-proportionate-width: characteristics are notusedin 
font selection. The initial value is #f. This characteristic is applicable when the glyph- 
alignment-mode: is fontorwhenmin-pre-line-spacing:ormin-post-line- 
spacing: is#f. 

- f on t - s i ze : is a length specifying the body size to which the font resource should be 
scaled. The initial value is 1Opt. This characteristic is applicable when m in-pre-line- 
spacing: ormin-post-line-spacing: is##f. 

-numbered-lines?: is #t if the lines produced by this Paragraph shall be considered for the 
purposes of line numbering, and #f otherwise. The initial value is #k 

- l ine-number : is either #f or an unlabeled sosofo containing only inline flow objects. If it 
is a sosofo, then for each line in the Paragraph, the sosofo is formatted to produce a Single 
inline area that is positioned as an attachment area for the line. See 12.3.4. The initial value 
is #f. 

221 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


NOTES 

ISOIEC 10179:1996(E) 0 ISO/IEC 

85 The sosofo 
procedure. 

86 The rules for the posi tioning of an attachment area mean that line numbers are usually Position .ed so that the 
edges nearest the line are aligned . Different alignments tan be achieved by using the line-field flow Object class. 

may include indirect flow objects that refer to the line’s number by using the line-number 

-line-number-side: isoneofthesymbols start,end,spread-inside,spread- 
outside,page-inside, or Page-outside specifyingthe sideofthelineforthe 
attachment specified with the line-number : characteristic. A value of spread-inside 
or spread-outside shall be allowed only if the flow Object has an ancestor of class page- 
sequence. A value of page - ins ide or page-out s ide shall be allowed only if the flow 
Object has an ancestor of column-set-sequence. 

- line-number-sep : is a length-spec specifying the Separation for the attachment specified 
with the 1 ine-number : characteristic. 

-quadding: isoneofthesymbols start,end,spread-inside,spread-outside, 
Page-inside,page-outside,center, or justify specifyingthe alignmentoflines 
other than the last line in the Paragraph in the direction determined by the writing-mode. A 
value of spread-inside or spread-outside shall be allowed only if the flow Object 
has an ancestor of class Page-sequence. A value of Page- inside or Page-outside shall 
be allowed only if the flow Object has an ancestor of column-set-sequence. The initial value is 
Start. 

-last-line-quadding: isoneofthesymbols relative,start,end,spread- 
inside,spread-outside,page-inside,page-outside,center, or justify 
specifying the alignment of the last line of the Paragraph in the direction determined by the 
writing-mode. This shall apply also to any line in the Paragraph that immediately precedes a 
break. A value of relative means that the value of the quadding : characteristic shall be 
used, except when that value is j us t i f y, in which case, a value of s tar t shall be used. A 
value of spread-inside or spread-outside shall be allowed only if the flow Object 
has an ancestor of class Page-sequence. A value of Page- inside or Page-outside shall 
be allowed only if the flow Object has an ancestor of column-set-sequence. The initial value is 
relative. 

- last - line- j us t i f y-l imi t : is a length-spec specifying the maximum amount of free 
space in the last line that shall Cause the last line to be justified rather than aligned as specified 
by the last-line-quadding: characteristic. The initial value is 0. 

- justi fy-glyph-space-max-add : is a length-spec specifying the maximum space that 
may be added between glyphs in Order to justify a line. The initial value is Opt. 

-justify-glyph-space-max-remove: is a length-spec specifying the maximum space 
that may be removed between glyphs in Order to justify a line. The initial value is Opt. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/IEC ISO/IEC 10179:1996(E) 

-hanging-punct?: is a boolean specifying whether the Paragraph shall be formatted with 
the punctuation characters hanging into the margin or gutter of a column. The initial value is 
#f . 

- widow-count : is a positive integer specifying the m inimum number of lines of the 
Paragraph that shall be kept together at the beginning of an area. If the widow-count : is n, 
then no break shall be allowed between the last n lines of the Paragraph. The initial value is 2. 

- orphan-count : is a positive integer specifying the m inimum number of lines of the 
Paragraph that shall be kept together at the end of an area. If the orphan-count : is n, then 
no break shall be allowed between the first n lines of the Paragraph. The initial value is 2. 

- language : is #f or a Symbol specifying the ISO 639 language code in upper-case. This 
affects line composition in a system-dependent way. The initial value is #f. 

- coun try : is #ff or a Symbol specifying the ISO 3 166 country code in upper-case. This 
affects line composition in a system-dependent way. The initial value is #f. 

-Position-preference: is either ##f or one of the Symbols top or bot t om. This applies 
if the flow Object is directed into a port on a column-set-sequence flow Object that is flowed 
into both the top-float and bottom-float zones of a column-subset and indicates whether the 
areas from this flow Object may be flowed into only one of the zones. This characteristic is not 
inherited. The default value is ##f. 

-writing-mode: isoneofthesymbols left-to-right,right-to-left, or top- 
t o-bo t t om. The direction determined by the writing-mode shall be perpendicular to the 
placement direction. The initial value is 1 e ft - to - r ight. This controls the orientation of 
the placement path of the lines. 

- s tar t - indent : is a length-spec specifying the indent for the edge of the area at the Start in 
the direction of the writing-mode. The initial value is Opt. This applies only to lines from the 
Paragraph itself. 

- end-indent : is a length-spec specifying the indent for the edge of the area at the end in the 
direction of the writing-mode. The initial value is Opt. This applies only to lines from the 
Paragraph itself. 

-span: is a strictly positive integer specifying the number of columns that the areas resulting 
from this flow Object shall span. This characteristic shall apply if the flow Object is directed 
into a port on a column-set-sequence flow Object that is flowed into the top-float, bottom- 
float, or body-text zone of a spannable column-subset. The initial value is 1. 

-span-weak?: is a boolean specifying whether the areas resulting from this flow Object span 
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow Object is 
directed into a port on a column-set-sequence flow Object that is flowed into the top-float, 
bottom-float, or body-text zone of a spannable column-subset and has a span : characteristic 
with a value greater than 1. The initial value is #f. 

223 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISO/IEC 10179:1996(E) 0 ISO/IEC 

-space-before: is an Object of type display-space specifying space to be inserted before, in 
the placement direction, the areas produced by the flow Object. This characteristic is not 
inherited. The default is for no space before to be inserted. 

-space-after: is an Object of type display-space specifying space to be inserted after, in 
the placement direction, the areas produced by the flow Object. This characteristic is not 
inherited. The default is for no space after to be inserted. 

-keep-with-previous?: is a boolean specifying whether the flow Object shall be kept in 
the same area as the previous flow Object. This characteristic is not inherited. The default 
value is #f. 

-keep-with-next?: is a boolean specifying whether the flow Object shall be kept in the 
same area as the next flow Object. This characteristic is not inherited. The default value is #K 

-break-before: is#foroneofthesymbols page,page-region,column, or column- 
se t specifying that the flow Object shall Start an area of that type. This characteristic is not 
inherited. The default is #f. 

-break-after :is#foroneofthesymbols page,page-region,column, or column- 
se t specifying that the flow Object shall end an area of that type: This characteristic is not 
inherited. The default is #f. 

- keep : is one of the following: 

- #t meaning that the areas produced by this flow Object shall be kept together within the 
smallest possible area. _ 

- the Symbol page indicating that the areas produced by the flow Object shall lie within the 
same Page; in this case, the flow Object shall have an ancestor flow Object of class page- 
sequence. 

- the Symbol column- se t indicating that the areas produced by the flow Object shall lie 
within the same column set; in this case, the flow Object shall have an ancestor of class 
column-set-sequence. 

- the Symbol column indicating that the areas produced by the flow Object shall lie within 
the Same column set, and that the first column that each area spans in the column set shall 
be the Same. 

- #f indicating that this characteristic is to be ignored. 

This characteristic is not inherited. The default value is #K 

-may-violate-keep-before?: is a boolean which, if true, specifies that constraints 
imposed by the keep : characteristics of ancestor flow objects on the relative positioning of 
this flow Object and its previous flow Object may not be respected. This characteristic is not 
inherited. The default value is ##f, 

224 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 lSO/IEC ISO/IEC 10179: 1996(E) 

-may-violate-keep-after?: is a boolean which, if true, specifies that constraints 
imposed by keep : characteristics of ancestor flow objects on the relative positioning of this 
flow Object and its next flow Object may not be respected. This characteristic is not inherited. 
The default value is ##f. 

The line-Progression direction for inline areas in the Paragraph is the placement direction of the 
Paragraph. 

12.6.6.1 Line Spacing 

The size of the line areas produced by the Paragraph shall be m in-pre-line-spacing : 
beforetheplacementpathand m in-post-line-spacing: after the placement path. If m in- 
leading : is not #f, the size of the line shall be increased to cover all the areas in the line. If the 
previous area is a line, then conditional space shall be added, if necessary, before the line so that 
the total distance between the previous line’s placement path and this placement path is the value 
of the 1 ine- spacing : characteristic. If the previous area is not a line, then conditional space 
shall be added, if necessary, before the line so that the total distance between the end of the 
previous area and this placement path is the value of the 1 ine- spac ing : characteristic less the 
value ofthe m in-post-line-spacing: characteristic.If m in-leading: is not#f,then 
additional conditional space shall be added, if required, to make the space between the previous 
area and this one no less than the value of m in-leading : . The conditional space has the 
priority specified by the line-spacing-priority: characteristic. 

12.6.7 Paragraph-break Flow Object Class 

Paragraph-break flow objects tan be used to make a Paragraph flow Object represent a sequence 
of Paragraphs. The Paragraphs are separated by paragraph-break flow objects, which are atomic. 
Paragraph-break flow objects are allowed only in Paragraph flow objects. All the characteristics 
that are applicable to a Paragraph flow Object are also applicable to a paragraph-break flow 
Object. The characteristics of a paragraph-break flow Object determine how the Portion of the 
content of the Paragraph flow Object following that paragraph-break flow Object up to the next 
paragraph-break flow Object, if any, is formatted. 

NOTE 87 The paragraph-break flow Object inherits from its containing Paragraph flow Object in the usual way. 

The f irs t - 1 ine - s tar t - inden t : characteristic is applicable to the line following a 
paragraph-break flow Object, and the last - 1 ine-end- indent : characteristic is applicable 
to the line preceding a paragraph-break flow Object. 

NOTE 88 It is recommended that paragraph-break flow objects be used only if there is no other way of specifying the 
desired formatting. 

12.6.8 Line-field Flow Object Class 

The line-field flow Object class is inlined and has inline content. It produces a Single inline area. 
The width of this area is equal to the value of the f ield-width : characteristic. If the content 
of a line-field area cannot fit in this width, then the area grows to accommodate the content and, 
if the line-field occurs in a Paragraph, there shall be a break after the line-field. 

225 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 ISO/IEC 

It has a Single principal part. 

It has the following characteristics: 

- f ield-width: is a length-spec specifying the width of the area produced by the flow 
Object. The initial value is Opt. 

- field-align: is one of the Symbols Start, end, or Center specifying the alignment of . 
the contents of the field. The initial value is s tar t. 

-writing-mode: isoneofthesymbols left-to-right,right-to-left, or top- 
to -bo t tom. The direction determined by the writing-mode shall be perpendicular to the 
placement direction. The initial value is 1 e ft - t o -right. 

-inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited 
before and after each area produced by this flow Object. This applies only to line breaks 
introduced by the formatter to make lines fit in the available space. The initial value is ##f. 

- break-bef ore-priori ty : is an integer that affects whether a break is allowed before 
this flow Object. The break priority of a potential breakpoint is the maximum of the break- 
after-priority of the flow Object immediately preceding the potential breakpoint and the break- 
before-priorities of the flow Object immediately following the potential breakpoint, and any 
characters immediately following that Character for which the drop- a f t er - 1 ine - 
break? : characteristic is true. A break shall be allowed at a potential breakpoint only if the 
break priority is even. This characteristic is not inherited. The default value is 0. 

- break-af ter-priority: is an integer that affects whether a break is allowed after this 
flow Object as described in the specification of the break-bef ore-priori ty : 
characteristic. This characteristic is not inherited. The default value is 0. 

A line-break shall be allowed immediately before and after a line-field used in a Paragraph. 

12.6.9 Sideline Flow Object Class 

Use of this flow Object requires the s idel ine feature. 

A sideline flow Object is used to contain flow objects that have an attachment area (see 12.3.4) 
consisting of a line parallel to the placement direction. A sideline flow Object has a Single 
principal port which tan contain both inlined and displayed flow objects. For each display area 
produced by its content, the sideline flow Object adds an attachment. For each inline area 
produced by its content, the sideline flow Object annotates that area so as to Cause the Paragraph 
in which the flow Object occurs to add an attachment area to the line in which that inline area 
occurs. 

NOTE 89 Sidelines are often used to mark changes. 

This is illustrated in Figure 14. 

226 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISO/.IEC ISOIEC 10179:1996(E) 

A sideline flow Object has the following characteristics: 

-sideline-side: isoneofthesymbols start,end,both,spread-inside,spread- 
outside,page-inside, or Page-outside, specifyingthe sideofthelineareaforthe 
sideline attachment. A value of spread-inside or spread-outside is allowed only if 
the flow Object has an ancestor of class Page-sequence. A value of Page-inside or page- 
out s ide is allowed only if the flow Object has an ancestor of column-set-sequence. A value 
of bo th means that there shall be a sideline attachment on both sides of the line area 
containing the text. 

-sideline-sep: is a length-spec specifying the Separation for the sideline attachment. A 
negative value is allowed. 

- color : is an Object of type color that specifies the color in which the flow object’s marks 
should be made. The initial value is the default color in the Device Gray color space. 

- layer : is an integer specifying the layer of the marks of the areas resulting from the flow 
Object. An area shall be imaged after any area whose layer has a lower value. The initial 
value is 0. 

- line-cap : is one of the Symbols butt, round, or Square specifying the cap style for the 
line. The initial value is bu t t. 

- 1 ine -dash : is a list of one or more lengths that specifies the dash Pattern of the line. The 
first length specifies the number component of the CurrentDashPattem graphics state variable 
in ISO/IEC 10180. The remaining lengths specify the vector component of the 
CurrentDashPattem graphics state variable. The initial value is a list conta 
OPt . 

- line-thickness : is a length that specifies the thickness of the line or 
value is lpt. 

ning the length 

ines. The initial 

- 1 ine- repea t : is a strictly positive integer that specifies the number of parallel lines to be 
drawn. For example, a value of 2 indicates a double line. The initial value is 1. 

- 1 ine- sep : is a length that gives the distance between the Centers of parallel lines. The 
initial value is lpt. 

Sidelines on consecutive areas in a Single area Container which have no space between them 
should be drawn as a Single line. 

12.6.10 Anchor Flow Object Class 

Use of this flow Object requires the page feature. 

An anchor flow Object is atomic and serves only as a flow Object to be synchronized. It may be 
either inlined or displayed. If inlined, it produces a Single area with zero size in the escapement 
direction. If displayed, it produces a Single area with zero size in the placement direction. The 

227 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISOIEC 10179:1996(E) 0 ISO/IEC 

resulting area will be kept with the first area resulting from the flow Object that follows unless the 
anchor-keep-with-previous?: characteristicistrue. 

Anchor flow objects have the following characteristics: 

-anchor-ke ep-with-prev ious?: is 
shall be kept with the last area of the prev 

a boolean 
ious flow 

specifying whether the resulting area 
Object instead of the first area resultin g 

from the following flow Object. The initial value is #f. . 

-display?: is a boolean specifying whether the flow Object is displayed rather than inlined. 
This characteristic is not inherited. The default value is #f. 

-span: is a strictly positive integer specifying the number of columns that the areas resulting 
from this flow Object shall span. This characteristic shall apply if the flow Object is directed 
into a port on a column-set-sequence flow Object that is flowed into the top-float, bottom- 
float, or body-text zone of a spannable column-subset. The initial value is 1. 

-span-weak?: is a boolean specifying whether the areas resulting from this flow Object span 
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow Object is 
directed into a port on a column-set-sequence flow Object that is flowed into the top-float, 
bottom-float, or body-text zone of a spannable column-subset and has a span : characteristic 
with a value greater than 1. The initial value is #f. 

-inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited 
before and after each area produced by this flow Object. This applies only to line breaks 
introduced by the formatter to make lines fit in the available space. The initial value is #f. 

- break-bef ore-priori ty : is an integer that affects whether a break is allowed before 
this flow Object. The break priority of a potential breakpoint is the maximum of the break- 
after-priority of the flow Object immediately preceding the potential breakpoint and the break- 
before-priorities of the flow Object immediately following the potential breakpoint, and any 
characters immediately following that Character for which the drop- a f t er - 1 ine - 
break? : characteristic is true. A break shall be allowed at a potential breakpoint only if the 
break priority is even. This characteristic is not inherited. The default value is 0. 

- break-af ter-priority : is an integer that affects whether a break is allowed after this 
flow Object as described in the specification of the break-before-priority: 
characteristic. This characteristic is not inherited. The default value is 0. 

12.6.11 Character Flow Object Class 

A Character flow Object is atomic. Flow objects of this class tan only be inlined. Flow objects of 
this class have the following characteristics: 

- char : is an Object of type char specifying the Character. This characteristic is not inherited. 
If it is not specified, and there is a current node, and the current node has a char property, 
then the value of the char property shall be used as the value of this characteristic. If the 
value of the char-map : characteristic is not #f, then it is applied to the value of the char 

228 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


OISO/IEC ISO/IEC 10179:1996(E) 

property, and the result is used as the value of the characteristic. This characteristic may be 
used to control hyphenation as well as possibly being used in the selection of the glyph. 

- char-map : is either #kf or a procedure that is applied in the construction of the default value 
of the char : characteristic. The initial value is ##f. 

- glyph-id : is an Object of type glyph-id specifying the glyph that shall be imaged in the 
resulting area or #f if no image is associated with the resulting area. This characteristic is not 
inherited. If this characteristic is not specified, it is computed using the value of the char : 
characteristic: if the blank? property of the Character is true, then the value of the 
characteristic shall be #f; otherwise, the value of the characteristic shall be the value of the 
glyph-id property of the Character, which shall not be #f in this case. 

- glyph-subs t - table : is either #kf or a glyph-subst-table or a list of glyph-subst-tabl 
specifying Substitutions to be performed on the glyph-id specified by the glyph- id : 
characteristic. If the value is a list, then the Substitutions shall be performed in the spec 
Order. The initial value is #f. 

es 

fied 

-glyph-subst 
public identifier 

-method: is either 
specifying a method 

#f or a string or a list 
for performing glyph 

of strings. Esch string shall be a 
Substitution. The initial value is #f. 

NOTE 90 This allows for tontext-dependent glyph Substitution and for glyph Substitutions that involve multiple 
@Y PhS* 

- glyph-reorder-method: is either #kf or a string or a list of strings. Esch string shall be a 
public identifier specifying a method for reordering glyphs. The initial value is #f. 

NOTE 91 This is typically used for Indic scripts. 

-writing-mode: isoneofthesymbols left-to-right,right-to-left, or top- 
to-bo t t om. The direction determined by the writing-mode shall be perpendicular to the 
placement direction. The initial value is le ft - to-r ight. This controls which writing- 
mode of the font resource is used for the metrics of the glyph. 

-font-family-name: is either ##f, indicating that any font family is acceptable, or a string 
giving the font family name property of the desired font resource. The initial value is i so - 
serif. 

NOTE 92 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso- s er i f, 
iso-sanserif, and iso-monospace. 

- f ont -weight : is either #f, indicating that any font weight is acceptable, or one of the 
Symbols not-applicable,ultra-light,extra-light,light,semi-light, 
medium,semi-bold,bold,extra-bold, or ultra-bold, givingtheweightproperty 
of the desired font resource. The initial value is medium. 

-fon 
not 

t-posture: 
-applicabl 

1s 

e, 

either #f, indicating 
upright,obliqu 

that any posture 
e,back-slan 

1s 

te 
acceptable, or one of the sy 
.d-oblique,italic, or 

pmbols 

229 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


ISO/IEC 10179:1996(E) 0 ISO/IEC 

back-slanted-italic, giving the posture property of the desired font resource. The 
initial value is upr ight. In addition, the value ma th is allowed specifying that the font 
posture shall be the value of the math- f ont -pos ture : characteristic. 

-math-font-posture: specifies the posture property of the desired font resource to be 
used when the f ont -pos ture : characteristic has the value math. It shall have the value #f 
oroneofthesymbols not-applicable,upright,oblique,back-slanted- 
oblique,italic, or back-slanted-italic. This characteristicis notinherited.The 
default value is the value of the math- f ont -pos ture Character property of the char : 
characteristic. 

- f ont - s t ruc ture : is either #f, indicating that any structure is applicable, or one of the 
Symbols not-applicable, solid, or outline. Theinitialvalueis solid. 

- f ont-proportionate-width: is either ##f, indicating that any proportionate width is 
acceptable,oroneofthesymbols not-applicable,ultra-condensed,extra- 
condensed,condensed,semi-condensed,medium,semi-expanded,expanded, 
extra-expanded, or ultra-expanded. Theinitialvalueis medium. 

- f ont -name : is either #f, indicating that any font name is acceptable, or a string which is the 
public identifier for the font name property of the desired font resource. When the value is a 
string,thevaluesofthe font-family-name:, font-weight:, font-posture:, 
font-structure:, and font-proportionate-width: characteristics arenotusedin 
font selection. The initial value is #K 

- f ont - si ze : is a length specifying the body size to which the font resource should be 
scaled. The initial value is 1Opt. 

- s tre tch- f ac tor : is a number specifying the factor by which the Character should be 
stretched. This characteristic is not inherited. The default is 1. 

NOTES 

93 It is implementation- and font-dependent how this is achieved. 

94 This is designed primarily for math delimiters of various kinds. The size of the delimiter is determined by the 
product of the font-size and the stretch-factor, but the visual appearance is designed to be consistent with glyphs 
with that font-size. 

-hyphenate?: is a boolean specifying whether hyphenation is allowed. The initial value is 
#f . 

- hyphenat ion-me thod : is a string specifying a public identifier for a hyphenation method 
or #f. The initial value is ##f. 

- kern? : is a boolean specifying whether keming (escapement adjustment) is allowed. If true, 
then keming shall be performed as specified in 8.8.1.6 of ISO 9541-1 according to the kern- 

230 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


0 ISOLIEC ISOIEC 10179:1996(E) 

mode : characteristic. Escapement adjustment is not performed for glyphs whose escapement 
adjustment indicator property has the value non-adjusting. The initial value is ##f. 

- kern-mode: is one ofthe Symbols loose,normal,kern, tight, or tauch specifying 
the escapement adjustment mode. The initial value is normal. 

-ligature?: is a boolean specifying whether ligatures are allowed. The initial value is #f. 

-allowed-ligatures: is a list of allowed ligatures. Esch member of the list shall be 
either a glyph-id or a char. Only ligatures whose result is one of the glyph-ids in the list or is 
equal to the glyph-id property of one of the chars in the list shall be used. The initial value is 
the empty list. 

-space?: is a boolean specifying whether the flow Object is a space. This characteristic is 
not inherited. This affects only whether the inline-space specified as the value of the 
inline-space-space : characteristic is applicable to this flow Object. The default value 
is the value of the space? Character property of the char : characteristic. 

-inline-space-space: is an Object of type inline-space which is applicable to the flow 
Object if it is a space. This is in addition to any space from the escapement-space- 
before: and escapement-space-after: characteristics. 

- escapement-space-before : is an Object of type inline-space specifying space to be 
added before the first result area in the escapement direction. The initial value is ( inline- 
space Opt). 

- escapement-space-af ter : is an Object of type inline-space specifying space to be 
added after the last result area in the escapement direction. The initial value is ( inline- 
space Opt). 

-record-end?: is a boolean specifying whether the flow Object is a record-end. Flow 
objects for which the record-end? : characteristic is true shall be treated differently by 
Paragraphs for which the lines : characteristic has the value asis or for which the 
ignore-record-end? : characteristic is true. This characteristic is not inherited. The 
default value is the value of the record-end? Character property of the char : 
characteristic. 

- input - tab? : is a boolean specifying whether the flow Object is a tab on input. This 
characteristic is not inherited. Character flow objects that are tabs shall be treated differently 
by Paragraphs for which the expand- tabs property is not #K The default value is the value 
of the inpu t - tab? Character property of the char : characteristic if the char : 
characteristic was not explicitly specified, and otherwise #f. 

-input-whitespace-treatment: isoneofthefollowingsymbols: 

- preserve specifying no special action. 

231 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d


-- 

ISO/IEC 10179:1996(E) OISO/IEC 

- collapse specifying that a Character flow Object for which the input- 
whitespace?: characteristic is true shall be ignored if the preceding flow Object was a 
Character flow Object also with the input -whi tespace? : characteristic true. 

- ignore specifying that any Character flow Object for which the input-whitespace? : 
characteristic is true shall be ignored. 

The initial value is preserve. . 

-input-whitespace?: is a boolean specifying whether the Character shall be considered 
as whitespace on input. This characteristic is not inherited. The default value is the value of 
the input-whitespace ? Character property of the char : characteristic if the char : 
characteristic was not explicitly specified, and otherwise #f. 

-punct?: is a boolean specifying whether the Character should be treated as punctuation for 
the purposes of formatting the Paragraph with hanging punctuation. This shall only take 
effectifthe hanging-punct?: characteristic of the Paragraph is true. This characteristic is 
not inherited. The default value is the value of the punct? Character property of the char : 
characteristic. 

- break-bef ore-priori ty : is an integer that affects whether a break is allowed before 
this Character. The break priority of a potential breakpoint is the maximum of the break-after- 
priority of the Character immediately preceding the potential breakpoint and the break-before- 
priorities of the Character immediately following the potential breakpoint, and any characters 
immediately following that Character for which the drop-af ter-line-break? : 
characteristic is true. A break is allowed at a potential breakpoint only if the break priority is 
even. This characteristic is not inherited. The default value is the value of the break- 
bef ore-priori ty Character property of the char : characteristic. 

NOTE 95 For example, for ideographs, the break-bef ore-priority: and break-after-priority: 
characteristics would typically be 0 and 0, for a Latin letter 1 and 1, and for a space Character 2 and 3. 

- break-af ter-priority : is an integer that affects whether a break is allowed after this 
Character as described in the specification of the break-bef ore-priori ty : 
characteristic. This characteristic is not inherited. The default value is the value of the 
break-af ter-priori ty Character property of the char : characteristic. 

-drop-after-line-break?: is a boolean specifying whether this Character should be 
discarded if it follows a line break. This characteristic is not inherited. The default value is 
thevalueofthe drop-after-line-break? characterpropertyofthe char: 
characteristic. 

-drop-unless-before-line-break?: is a boolean specifying whether this Character 
shall be discarded unless it precedes a line break. This characteristic is not inherited. The 
defaultvalueisthevalueofthe drop-unless-before-line-break? Character 
property of the char : characteristic. 

232 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
17

9:1
99

6

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

