INTERNATIONAL ISO/IEC

STANDARD

10179

First edition
1996-04-01

Information technology — Processing
languages — Document Style Semantics

and Specification Language (DSSSL

)

Technologies de I'information — Langages de traitement — $émantique
de présentation de. documents et langage de spécifications (DSSSL)

1IEC fe

ference number

g ISO/IEC 10179:1996(E)

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

Contents Page

1 SCOPE ceveetietieteteicict et 1
2 CONFOIINANCE ...vveeeeeeeeeeeeeeeeieeeeeeeeeesasrssbaeesssssreeeessesasetteeesessnrasseaesenstns 2
3 NOIMALIVE REFETEIICES .veeeneeeeeiitieeeeeeeeeeeeeteeeeciteeeerreeeesrteeessbeeeesnneee s 3
G DIELINIIONS 1vvveeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeiessrssaaeaessbareeeeseasreeeeeeesesasnaaeesenns 4
5 Notation and CONVENLIONScccoovevirerireeeeiirrrrreeeesireereeesesimseeeeeesssnn 7

7.3 LeXical CONVENIONS ...c.cccoviiiiiiiiiieieieieeeeeeeeierrerreereeeeereereeeeeeeeseeaeeens 27
7.3.1 Case SeNSIIVILY ...oceeeeirieniieiiieieee e 27

© ISO/IEC 1996
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office « Case Postale 56 * CH-1211 Genéve 20 Switzerland
Printed in Switzerland

ii

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

7.3.2 TAENtfIers ...cc.covieieiiieiieeeecet et 28
7.3.3 Tokens, Whitespace, and COmmentsccceeuvevreeerreresreennene. 28
8 Expression Languageccccecveveveriinieienieesieeeeeeeeee e 29
8.1 Overview of the Expression Languageccccceevvvevevieceneereennnns 30
8.2 BasiC CONCEPLS....c..cvrueriieiieiirieiesieie ettt 30
8.2.1 Variables and Regions..........c.ccevuevireninieieiineccisesiesie e 30
8.2.2 True and FalSecccecveeiieieiiiieieeceecceceeee e 31
8.2.3 External Representations..............cc.vcuveeveeueeereeeeeeeecreeerereseesseennens 31
8.2.4 Disjointness of TYPES.......cccceveerrvrriereeeeseereireeeeeion e eereeeeneerenn, 31
8.3 EXPIeSSIONSeecvireieriieiieiieniieieeieereereeeee e ooy rashe e e e eieenes 32
8.3.1 Primitive Expression TYpesccccooevevvrewsuroensc oo 32
8.3.1.1 Variable Reference.........cccovvvveeveereeec A o 32
8.3.1.2 LiteralS....ccoenieiirieiriinienieieieeee e e N ere s et 33
8.3.1.3 Procedure Call.........ccocovvereieeeee N eeeeeee e, 34
8.3.1.4 Lambda EXpPression.............,éobeduceueneeeceneiinenes b, 34
8.3.1.5 Conditional Expression......»...cccoconeennnccenie b, 36
8.3.2 Derived Expression Typessd.....ccccevveeveneevienncvencenecfovevieninncee, 36
8.3.2.1 Cond-expression........n T eiecierieererieieeereneeeses o 36
8.3.2.2 Case-expression,... L. .cecenerenienieneeseenieneseniene e 37
8.3.2.3 And-expressiony......cccceeererreeneneenieeeeeeeeeesese e 37
8.3.2.4 Or-exXpressionccoeeieverieesieieneeeeneeseeeeeeeese e 38
8.3.2.5 Binding eXPressionsccceeeevveveeeeceevenieneenieeseefoosienieneeies 38
8.3.2.6 Named-let........c.cccooeeeverninnieieieeeeneeeieeeeec feeece, 39
8.3.2.7 QuaSIqUOLAtIONcovveuvereeierieeeieneneeieeeseeseese s fe 40
8.4 Definitions.......ccccvvvivieiieieiieiieieeiceee et ere e e 41
8.5 Standard Procedures..........ccceccevierievvinieneenienceeneeene e, 43
8.5:1 Booleans..........ccocuvevierieeiieniecieeeeeeeseeeeeee e e 43
8.5.1.1 Negationcccceveeieneeniininienieneeienesieseeeseeseene oot 43
8.5.1.2 Boolean Type Predicatecccceevveveenenieeeene e, 44
8.5.2 EqUIVAIENCEoveiiiiiicicicirieeccteee e e 44
8.5.3 Pairs and Listscccceverereeieeeneenieneeieeeeesenese e 45
8.5.3.1 Pair Type Predicatecccoecvvevrevcrvnreereeeeseeneess e, 46
8.5.3.2 Pair Construction Procedureccoccevvevvevveceec oo, 46
8.5.3.3 car Procedure...........cocovnvreriieneieeeieeeeeseeee e 46
8.5.3.4 cdr Procedureoceeveverieneninieieneseneseneee o 47
8.5.3.5 c...r Procedures..........ccceeevmrienienieeenieieieneeeeee e 47
8.5.3.6 Empty List Type Predicate..........coceeveveeneccnvcnscfovcniniinininns 48
8.5.3.7 List Type Predicatecccoceovenviirineniennesecsesec oo 48
8.5.3.8 List CONStIUCIONcecveieieeiieieieiieeceeieneeieniete e teere e 48
8.5.3.9 List Lengthccooiiiiiiieeiieeeeeeeeee e 48
8.5.3.10 Lists Appendance...........ccccoeeveeieririeniienieieie et 49
8.5.3.11 List ReVersal........ccoccoceriiiiriiieeiieeeee et 49
8.5.3.12 Sublist EXtractioncccecevirerienierieiiriesieisiesieeese e s sseneneas 49
8.5.3.13 LSt ACCESS c.veveiiieeiieieie ettt sttt sttt e an e 49
8.5.3.14 List Membershipcccoevveieniiciiieiececreceeeeeeeeevee e 50
8.5.3.15 AsSOCIation LiStSccceevierirsiiiiieieseccieecieereeee e eveeene s 50
8.5.4 SYMDOIS.....cooiiiiiiiiiieeee ettt 50
8.5.4.1 Symbol Type Predicateccceeveeieeevrierierieneeieee et 51

iii

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

8.5.4.2 Symbol to String Conversioncccoceeevveiiiiicnciiiccnicencne, 51
8.5.4.3 String to Symbol Conversionc.ccccevveveverereeccencnnennenneens 51
8.5.5 KeYWOrdS......ccuemmeurrriiiiiiiiiciciciicicc e 51
8.5.5.1 Keyword Type Predicatecccoceriviiiciiinincniiccccice 52
8.5.5.2 Keyword to String Conversion.............cceevevveiruinicninencnncinennene, 52
8.5.5.3 String to Keyword Conversion...........ccccecereevevciencrinineenennenne. 52
8.5.6 Named CONStANtS...........ccceevvirireieeerieenieeteete ettt e ae e 52
8.5.7 Quantities and Numbers 52
8.5.7.1 Numericql TYPES.....c.coveeeriiriienieneeeieeeeieeieeteneeeneeee e 52
8.5.7.2 EXACINESY ...cvevvenrieieienieiereeiecet sttt 53
8.5.7.3 Implementation ReStrictions............cccevvevuirenicncnninceiiccncnneene 54
8.5.7.4 Syntax off Numerical Constantsc..cccevervrieneesienninereenennes 55
8.5.7.5 Number Type Predicatescccoceeereireniivcnieicincnicicnnenne. 56
8.5.7.6 Exactnes§ Predicates...........coccceceriiniiniiniiniincniinicececeens 56
8.5.7.7 Comparigon Predicatesccceveveriercenencnerncienecceccneenene 56
8.5.7.8 Numericgl Property Predicates.............cccccocevviiniiiiinncicnnnn, 57
8.5.7.9 Maximum and Minimum.........cccccccceerirniniinienieeercenteeireeeenne 57
8.5.7.10 Additioncoveveuiieieieieeeete e 57
8.5.7.11 Multiplifationc..cccceviiviiniriiiiiniinininicteenrcene et 58
8.5.7.12 SUDBLIACHON.ccveeieeieiieeiieiieececre ettt ere el S8
8.5.7.13 DIVISION ...oeiuiiiiiiniiiieeeieete ettt sttt e 58
8.5.7.14 Absolute Value..........cooevuiriinininieiiiinieeceeeeceee e e e 58
8.5.7.15 Numberftheoretic Division.......cc.cceceeverveneininiinieee Reenenne 59
8.5.7.16 Real to Integer Conversion..........ccecceeeeernivenceeercie s Bdbenneennneennne 59
8.5.7.17 e" and Natural Logarithmc.cccceeueururnnrii e 60
8.5.7.18 Trigonometric FUunctionsccccooceeveevenicadnrenncnienieseenee, 60
8.5.7.19 Inverse [[rigonometric Functions...........qe{hceeiencnninerncennen. 60
8.5.7.20 Square ROOtcceovvviriiiiiiriicene e 61
8.5.7.21 EXPONEMtiation.........cccceceeruerienueeesmihceeeeneeeeeere e seesseenrensennes 61
8.5.7.22 Exactneps CONVErSioN.........ccceecoee.Toueiieeiensicrieieesie et 61
8.5.7.23 Quantity to Number Conversion...........cceccveeeeeeeeeeneecenneeeennnen. 61
8.5.7.24 Number{to String CONVEISION.........cceerveuereerirrerieriererienseninienes 61
8.5.7.25 String tg Number Conversion............ceceeveeveereenreeereeveeveennnns .63
8.5.8 Characters |........ccccoeee D0 leiiiiiiiietceeee ettt 63
8.5.8.1 Charactef Properties)ccccevviemveeecreeieereeeieeeeeeeeeeeeee e 64
8.5.8.2 Languagg-dependent Operations............c.ccceeeeveerevrenreereesienenens 64
8.5.8.3 Charactet TypePredicate...........ccceeeveeveeeecriieciecereeveeeeene 67
8.5.8.4 Charactet-Comparison-Predicates s 67
8.5.8.5 Case-insensitive Character Predicates............ccccceeveervecreeennnnen. 67
8.5.8.6 Character Case CONVETSIONcccccevueereeeerrieiieieeiesreeeiee e 68
8.5.8.7 Character Propertiescccceevvvuerveevienrieiiecieeieecteeeve e 68
8.5.9 SHIINES ..ottt 68
8.5.9.1 String Type Predicateccccevviiviimnnieiiicieeeeceeeee e 69
8.5.9.2 String CoNStruCtion..........c.cocieviirierrieiiieie et eeee e ere e 69
8.5.9.3 String Length......cccccvvviiiiiiiiiieee e 69
8.5.9.4 StrINZ ACCESS ..couvivuieiieeieetietteetieete ettt e ereeeae st e sneeeneas 69
8.5.9.5 String Equivalence............c.ccceeeuiiiiiiiiiiiiicicceeeeeee e 69
8.5.9.6 String COMPAriSON.........cccvverrieniiereeiieeieeeeeceeeeeee e 69

iv

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

8.5.9.7 Substring EXtraction..........cccccvvvueuiiiiiiiiiiniciciniceieecicneniceeienns 70
8.5.9.8 String Appendance..........ccccceevvriiiiiiiiiinicin 70
8.5.9.9 Conversion between Strings and Listsccccoceeeeciecenercennnenne. 70
8.5.10 Procedures.........coooeeeeerciiiiiiinieetee 70
8.5.10.1 Procedure Type Predicatecccccovviriininniniiniciiiiicicnnen, 70
8.5.10.2 Procedure AppliCation..........c.ccceeueeveenrerenenneniiiceinieicsreiennes 71
8.5.10.3 Mapping Procedures over Lists..........ccceceviininininininninnenene. 71
8.5.10.4 External Procedurescc.ceouevueveeieireeeenienericecneecneenene 71
8.5.11 Date and Timecceeeveeerveeeeeseeenieenieeeeeeeeeese o [erveeesnnensnenane 72
8.5.12 Error Signaling.........ccccceverevvevveneeneneceenece@imradees foeeeeinenennn, 72
8.6 Core Expression Languageccocevevenecsi Nl 72
8.6.1 Syntax......ccocervvvvierneeeneceieneeeneeenneA T e 72
8.6.2 Procedures.........ccevvveeeveenciieciieeee @ Nereeneeeeeenenfoiecne 74
9 GIOVES ...vevueeierrerriereenieientesseestesresresesses s Nseeessesssesssssesseoessscsissnssnnnnes 75
9.1 Nodal Properties........c.cccceeveveestoiad e 76
9.2 Grove Plans......c..cccovvineeeenn M e 77
9.3 Property Set Definition ...l eeceeceeeeeeeenececnneienecnforeieciiicne, 78
9.3.1 Common Attributes...c.. 7 eeeeeerenieereneeneeseneese e, 78
9.3.1.1 Component Names'.\.........c.ccccceuecveirvirenccrncncnenc o 78
9.3.1.2 Specification DOcumentscoceecevvevvnvvnveccfoeriivinniinnnnnnn. 79
9.3.2 Modules....... 0 ettt | 79
9.3.3 Data Type Definition.........ccccccecvvvvniiveininincnncncnns o, 80
9.3.4 Class Definition...........ceceeveevervevinincncnicincncnnciess o 81
9.3.5 Property Definition...........coccevvevvinicniinninncincnnni v, 81
9.3.6 Normalization Rule Definition.........c..cccccvvvevicnii i, 82
9.4 Intrinsic Propertiesccoccecmvevvevrenenciricscscnennnfoviiiiiinnncne, 83
9.5 Auxiliary GIOVeS........coceeevvvueririicninniennienecnenennne [, 84
9.6 SGML Property Set........cccceeeereerneenrensenseneeneneeeneefeciiiiiiiiii, 84
9.7 DSSSL SGML Grove Plan..........cccoceveniivininicniifoeiiiiininn, 122
10 Standard Document Query Language..........cccccocceevccfovinnninnnnne. 123
10.1 Primitive Procedurescccccevveevueernevecvcnnvcniccsfeviiennnicnnnn. 123
10.1.1 Application Binding.........ccccecvvviiviniininninnnnncfovinecienn 123
10.1.2 Node LiStsoccvvvveeieeeierieneeninneeeieeieeeeseenenseesfeseensneenennes 124
10.1.3 Named Node Lists........cccccvvereeceneneenrcncennecnincferinicnninnenn, 124
10.1.4 Error Reportingccoceeveecveevereenenensicnenenennnscfocsienennenncnnn, 125
10.1.5 Application Name Transformationcccecceiferininninncnnnn 125
10.1.6 Property Values.........ccccocuevereenieninciencncncncenenced e 125
10.1.7 SGML Grove Constructionccceeeeeevveereineieiii b, 126
10.2 Derived Proceduresccoceeeerieriernieenenieeeeeseeieceeeeesee e 126
10.2.1 HyTime SUpport.......ccccoeceviiriuiriiiiiiiniiiieecniccnreniceie e 126
10.2.2 List OPerations........ccccoverevviniieiiieninieniisneniesinsieieie e enns 130
10.2.3 Generic Property Operations..............cccoeeevenieinisreniesinenencnnns 137
10.2.4 Core Query Languageccccevveerieriecieiicciiniiiiinicnieciecne, 143
10.2.4.1 NaVIigationccccveeeveeeieeniieeiieeeeeeeee et et 143
10.2.4.2 COUNtING....ccoeeiiriiieeeeieeeeeeteteeice ettt 143
10.2.4.3 Accessing Attribute Values........c.ccceoveeieviriencencincecniceinnnns 144
10.2.4.4 Testing Current Locationcccoevevvieniicninienininnnecnnneennnns 145
10.2.4.5 Entities and NOtationscccccceevrveevienencninninccninicncneenes 146

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/MEC
10.2.4.6 Name Normalization............ccoeeeeiieiimiiieiieiciiciiicccicc e, 147
10.2.5 SGML Property Operations.............ccoeveiriiinieiinisieinieisieincnes 147
10.3 Auxiliary Parsing.......ccccccocoemneiinieimeiniiiicecce e 149
10.3.1 Word Searching.........ccceeerveiriiiniiiciinicccincieecseee s 149
10.3.2 Node Regular EXpressions..........coceevviiiieieiiiiiiieciiiieieens 150
10.3.3 Regexp CONSIUCTOTS.couviiiiiniririeiieeiieieiesieie et 151
10.3.4 Regular Expression Searching Procedures..............cc.cccoeveinne. 152
11 Transformation Language 152
111 FeaturesS. .. foeeieeeie ettt 153
11.2 ASSOCIAtIONSuvevieerereeeeeeeeeeieeieres ettt 153
11.3 Transform-EXPression.......coccveeciiiiiiimiienienenieie e 154
11.3.1 SUDZIrOVEFSPEC ..ceveeuviiiiiiiiiieie ettt 155
11.3.2 Create-SPEC ..oovveveveiereieerieieiiniiine ettt sttt 156
11.3.3 Result-nolde-1ist........cceevereerneeniieiiiiiiiiniicicc e 158
11.3.4 Transform-grove-SPeCccoevreerviruimienimnieirenrenieere e eeesiesiens 159
11.3.5 SGML Prolog Parsingcccovviiiimimrnieiiicicicccci 159
11.4 SGML Dodument GEneratorcccoecueviniiiirieiiiieeeereeieninnens 159
11.4.1 Verification Mappingccccocevvveriinimniiniiniiiicicccc 160
11.4.2 TransSHteqation........ccccevcvveeeeiieeerniier ittt 161
12 Style Langualgecccoeeeeiiiiiriiiiiiiiiicicceeiceie s 162
12.1 Features....Joo it 162
12.2 FIoW ODbjJEqt TTEEc.eeververeeeniiiciiiiiiienieieieicre e b s 164
12.3 AT€AS ..o et (g 164
12.3.1 Display ATreasccccccverieviiiiininineiienieneee e S 165
12.3.2 INlNE ATEaS.....cccieieieeieeieieeeeee e e 168
12.3.3 Inlined and Displayed Flow Objectsd5 T 171
12.3.4 Attachmgnt Areasccocceveeueneeneenennrenelhieieceee, 172
12.4 Flow Objegt Tree ConstructioniNemeeeiiiicniciiiniinnennens 173
12.4.1 Construction Rulesccccoeeevensem SN T 173
12.4.2 Primary FIow ObjJectcoeevreeeer o 176
12.4.3 S0SOfOS..|.coiiiiiiiieciee s B e 176
12.4.4 Multi-prdcess Feature....... .l 180
12.4.5 SEYIES ..o feeiiiiieiee e i et 180
12.4.6 Charactefistic SpecifiCation..........cccccevvirvvenieeriecniiieniicnieenn, 181
12.4.7 Synchrorjization of Flow Objectscccceveriirvcnicniiniinnnn 184
12.5 Common Data Types and Procedurescccceeveevenienecnennen. 185
12.5.1 Layout-driven Generated TeXt...........ccccoeveirieniniiininicniciinn, 185
12.5.1.1 ConstruetingIndirect-Soesefos——rrrrrerrerrerrerrerreereerees 186
12.5.1.2 Layout NUMDbEIriNg........c.cecverierieniiiieniieieeie e 187
12.5.1.3 Reference Values.......ccccoovieriiiiniiiniieniieniiieecee e 188
12.5.2 Length Specification.........cccccceenieniiiieiiiienicieiceiceeceee 190
12.5.3 Decoration ATCASccceerverireeierinieieieniesie e siesie e eeeeeeaees 190
12.5.4 SPACES ...eoouiiiiiiiiicicteet ettt 191
12.5.4.1 Display SPaces........ccoceecueeiirieriieeieeieeeee et 191
12.5.4.2 Inline SPACES....c..cecerveeiirieriienieeniieniteste e eie e esaesve e 191
12.5.5 Glyph Identifiers........ccccocveevirienieniieiieietere e 192
12.5.6 Glyph Substitution Tablescccccccevcerniiniiiniieieeeeeee 192
12.5.7 Font Information..........c.ccocvvininiiiiiinininineeieeie e 193

vi

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISOMEC ISO/IEC 10179:1996(E)
12.5.8 AdAIESSES ...ttt 194
12.5.9 COlOT ...ttt ettt 195
12.6 Flow ObjJect Classes......ccceverueruierrerieienieeieneeeeieeteeeeeessessenseeneas 197
12.6.1 Sequence Flow Object Class........cccocevevieenieienrenieeeenieceerennes 197
12.6.2 Display-group Flow Object.........cccocevirmrininirieieieeeeveeeene 197
12.6.3 Simple-page-sequence Flow Object Class............ccccevveerernennene. 199
12.6.4 Page-sequence Flow Object Classccoceeivveeiereninienienieienns 201
12.6.4.1 Page-model..........ooooeeeerieeiniiiiininiiiiiiiiiiiiaiseeeeeeeeeeeenennns 202
12.6.5 Column-set-sequence Flow Object Class...........(c5) cooeieneneennnn. 205
12.6.5.1 Column-set-model..........cccoereeinrinieenenee e o, 207
12.6.6 Paragraph Flow Object Class...........ccccooyerieeteeeeeee oo, 217
12.6.6.1 Line Spacing........c.cecevvevvevevevenenencfbe oo e 225
12.6.7 Paragraph-break Flow Object Class(y,.teveveeveeesdeeeieeieienee. 225
12.6.8 Line-field Flow Object Class ...,.....bucceeueevecveeeeeec e, 225
12.6.9 Sideline Flow Object Class ..« ereeeveeieeneneeeefreieee, 226
12.6.10 Anchor Flow Object Class\».".......cccovevevevennccncesfoeeieieen 227
12.6.11 Character Flow ObjectClass...........ccoeeereveveeec e 228
12.6.11.1 Character Properties®.........cccccocevveerieneenennveences e 234
12.6.12 Leader Flow Object/Classccccoeeeeneneneseces e 236
12.6.13 Embedded-text\Flow Object Class........ccccecevvevefeerieiincnnenne, 237
12.6.14 Rule Flow Object Class.........cccovvevreereeieneenirceene e 238
12.6.15 External-graphic Flow Object Classcccoeeedenieinnnnnn. 242
12.6.16 Included-container-area Flow Object Class..........Jo.ccccoceeenenee. 247
12.6.17 Score Flow Object Classceceveeveereneneneneesc b 251
12.6.18 -Box Flow Object Class.........cocceevereeeneenesenieesedeecceees 253
12.6.19-Side-by-side Flow Object Class..........cccceveerereeecdeverienieieinnns 258
12:6.20 Side-by-side-item Flow Object Class..........cooceedoverrrrenieninnne 260
12.6.21 Glyph-annotation Flow Object Class......c..c.ccoceedeveniiniinncnns 261
12.6.22 Alignment-point Flow Object Class..........cocooeceedeverirninrencnns 262
12.6.23 Aligned-column Flow Object Class.........ccooceveeedevenreinnnn, 262
12.6.24 Multi-line-inline-note Flow Object Classdererveiennens 265
12.6.25 Emphasizing-Mark Flow Object Classc..co.o.foercnincnnnn. 266
12.6.26 Flow Object Classes for Mathematical Formulae |................... 267
12.6.26.1 Math-sequence Flow Object Class.........ccccceeceedoerrecinnnnn, 267
12.6.26.2 Unmath Flow Object Classcc.ccevceemeeveneencc e, 268
12.6.26.3 Subscript Flow Object Class...........ccccoeeeeeerevcesdeereeciiienns 269
12.6.26.4 Superscript Flow Object Class.........cccceeeevvveeedenieiine, 269
12.6.26 .5 Qr‘ripf Elow nhjpr‘t [T N 269
12.6.26.6 Mark Flow Object Class.........ccccovevieirienieinenieecineneseean 271
12.6.26.7 Fence Flow Object Class.........coceevieviererceninienieienie e 272
12.6.26.8 Fraction Flow Object Class.........ccceoervereererienienenienienienneans 272
12.6.26.9 Radical Flow Object Classc.ccevuerierereeeinieienieeiaienens 273
12.6.26.10 Math-operator Flow Object Classccoceverrerereruenennnn 274
12.6.26.11 Grid Flow Object Class......c..ccceevuevienirenirnieiecesieeieneennens 275
12.6.26.12 Grid-cell Flow Object Class.........cccceevveiiueerereeeeeeeeeennenen 276
12.6.27 Flow Object Classes for Tables.........ccccocevueirirenirccrcreeennenne. 276
12.6.27.1 Table Flow Object Classcccceeereerienenieniieieeeeceireieaens 271
12.6.27.2 Table-part Flow Object Class.........ccccevevierieninerreenienieienenn 280

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

12.6.27.3 Table-column flow Object...........ccoevvviivenieiiieeieiecee 282
12.6.27.4 Automatic Table-width Computation...........ccccccoevuirinnnnnen. 284
12.6.27.5 Table-row Flow Object Class......c..cccoeueervieeveercricniiirieinnnns 284
12.6.27.6 Table-cell Flow Object Classcceveeeereeieenicneenienenee 284
12.6.27.7 Table-border Flow Object Class.........cccoeuviviiniininiiiniinnnnn, 287
12.6.28 Flow Object Classes for Online Displaycccceeivviiiinnins 289
12.6.28.1 Scroll Flow Object Classoocveeiiriviriiiniiiiiiincicinn, 289
12.6.28.2 Multi-made Flow Object Class 290
12.6.28.3 Link F'tow Object Classcoceeuieniiiiiiiiiciiencie e 290
12.6.28.4 Marginalia Flow Object Class...........cccccueiriiiiiiiiiicinnnn 291
Annex A: Further Informationc.ccoocoeeiiiiniiiiiinninniccecencee, 292

viii

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system
for worldwide standardization. National bodies that are members of ISO
or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal
with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other. jnternational
organizations, governmental and non-governmentalcinJiajson with ISO
and IEC, also take part in the work.

In the field of information technology, ISOcand IEC have pstablished a
joint technical committee, ISO/IEC JTC 1.'Draft Internatipnal Standards
adopted by the joint technical committee/are circulated to jnational bodies
for voting. Publication as an International Standard requires approval by at
least 75% of the national bodies casting a vote.

International Standard ISOAEC 10179 was prepared by Jqint Technical
Committee ISO/IEC JT€1, Information technology.

Annex A of this Intérnational Standard is for information pnly.

ix

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

Introduction

This International Standard defines the Document Style Semantics and
Specification Language (DSSSL) used to specify the formatting and
transformation of SGML documents. The initial focus of DSSSL is on
formatting for both paper and electronic media and on the transformation
of SGML documents marked up according to different DTDs. DSSSL
may be used wit i iri ificati

or constraining the document type definitions.

The main objectiye of this International Standard is to provide a language
for expressing fogmatting and other document processing specifications in
a formal and rigofous manner so that these specifications may be
processed by a brpad range of formatters, either natively or using a
translation mechdnism.

The DSSSL style|language allows users to specify the types of formatting
to be applied to various objects during composition, layout, and
pagination. The IDSSSL transformation language allows users to specify
the transformatiop of documents from one application of SGML markup
into another.

DSSSL is designgd for specifications that apply to a class of dpcuments.
These specificatipns are applicable to all possible SGML decuments for
an SGML application as well as to a particular SGML document.

The DSSSL specification languages are declarative,They are not intended
to be complete pfogramming languages, although they contain constructs
normally associafed with such languages. DSSSL specifications can be
unambiguously parsed and interpreted by heterogeneous systems. In
addition, DSSSL|specifications may be'used by existing formatting
systems through the use of ‘front-end’) DSSSL processors and translators.
DSSSL has no bijas toward batch ‘or'interactive formatting systems and
does not prescribe any pre-defined formatting algorithms.

The standardization of formatting semantics is provided in DSSSL
through a set of Basic'structures known as flow objects and an associated
set of formatting|characteristics that are applied to those objects. DSSSL
provides mechanisms for defining and extending the semantic constructs
so that DSSSL application designers can construct DSSSL applications
best suited to their application environments.

0.1 Background

The concepts behind DSSSL are associated with the development of
generic coding and specifically with SGML, the Standard Generalized
Markup Language (ISO 8879).

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© [SO/IEC

ISO/IEC 10

179:1996(E)

Historically, electronic manuscripts contained control codes or macro
calls that caused the document to be formatted in a particular way
(‘specific coding’). In contrast, generic coding, which began in the late

1960s, uses descriptive tags (for example, ‘heading’ rathe

r than ‘Space 3

lines; 14 point Bodoni’). Central to the concept of generic coding is the
separation of the information content of documents from the format or
appearance of the content. The generic coding concept gained

prominence in the early 1970s and came to fruition with t

e development

of SGML.

While SGML provides the language for modeling-classes

bf documents, it

does not prescribe any particular model or predefined tag set. A set of
rules (consisting primarily of a DTD and its'supporting dgcumentation)
that applies SGML to a class of documents‘is known as a SGML

application.

SGML standardizes the representation of the document st
it to users to develop their own‘techniques for interfacing
and other processors, such as general purpose translators.

fucture, leaving
with formatters
DSSSL is

standardized architecture for formatting and other processing

designed to support this'\second class of applications by p{Viding a

specifications, allowing users to interchange such specifi
standardized framework.

A DSSSE'specification is normally external to the SGML

tions within a

document to

whichhit applies, and thus multiple specifications may be gpplied to a

given SGML document to yield various presentations of t

SGML provides the ability to distinguish between the intri
structure of a document, on the one hand, and the specific
processing it on the other. With DSSSL, formatting and o

he same data.

nsic content and
ations for
her processing

specifications may be interchanged in conjunction with SGML documents
to provide the standardized specification of document disilay while

preserving the essential distinction between content and f

rmat.

xi

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

xii

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

INTERNATIONAL STANDARD ©S01EC ISO/IEC 10179:1996(E)

Information technology — Processing languages — Document Style
Semantics and Specification Language (DSSSL)

1 Scope

This International Standard is designed to specify the processing of valid SGML| documents.

DSSSL defines the semantics, syntax, and processing model of two languages fqr the
specification of document processing:

a) The transformation language for transforming SGML documents marked up |n accordance
with one or more DTDs into other SGML{documents marked up in accordange with other
DTDs. The specification of this transformation process is fully defined by thjs International
Standard.

b) The style language, where the résult is achieved by applying a set of formatting characteristics
to portions of the data, and the specification is, therefore, as precise as the application
requires, leaving some formatting decisions, such as line-end and column-end decisions, to
the composition and layout process.

The DSSSL style language is intended to be used in a wide variety of environmgnts with
typographic requirements ranging from simple single-column layouts to complex multiple-
column layouts. This International Standard does not standardize a formatter nor does it
standardize)composition or other processing algorithms. Rather, it provides the means whereby
an implementation may externalize ‘style characteristics’ and other techniques for associating
style:information with an SGML document.

DSSSL provides a mechanism for specifying the use of ‘external processes’ to manipulate data.
The nature of these processes is outside the scope of DSSSL, but may include typical data
management functions, such as sortin i ing; typical iti ions, such as
hyphenation algorithms; and graphics or multimedia processes for non-SGML data.

Documents that have already been formatted or do not contain any hierarchical structural
information or generic markup are not within the field of application of this International
Standard.

DSSSL expresses specifications to be performed by some processor that accepts an input
document and produces an output document. DSSSL is independent of the type of formatter,
formatting system, or other transformation processor.

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

DSSSL includes

a) Constructs that provide access to, and control of, all possible marked-up information in an
SGML document, as well as mechanisms for string processing to allow for the manipulation
of non-marked up data. This is provided by the Standard Document Query Language (SDQL)

b)

c)

d)

e)

NOTE 1 String processing is necessary so that no special ‘markers’ need be embedded in the source d

This International Standard is intended for use in a wide variety of SGML application
environments, ipeluding both electronic publishing and conventional printing.

2 Confaormance

DSSSL includes two independent languages, the transformation language and the style
which specify processing of an SGML document. A DSSSL specification contains a nl|1mber of

component of DSSSL.

ocument to

indicate presentational changes. The display of a dropped or raised capital letter in a larger point size pt the
beginning of a line or paragraph is an example of a case where string processing may be used to.jsolatg the first

character or group of characters in order to achieve a desired presentational effect.

Provisions for specifying the relationship between one or more SGMLIdocuments ak

input to

a transformation process and zero or more resulting SGML documents’as the outpuf of the

process.

Provisions for specifying the relationships between the SGML document(s), as expessed in
the source Document Type Definition(s), and the result ofthe formatting process. The output
of the formatting process may be an ISO/IEC 10180 Standard Page Description Larjguage

(SPDL) document or it may be a document in some other, possibly proprietary, form.

Provisions for describing the typographic style 'and layout of a document.

Definitions of a machine-processable syntax for the representation of a DSSSL spegification

and its various components.

Provisions for creating new DSSSL characteristics and their associated values, as w¢ll as new
flow object classes. These‘are declared in the declarations for the style language pgrtion of

the DSSSL specification;

language,

process specifications, each of which uses either the style Tanguage or the transformation
language. A process specification that uses the style language is a style-specification. A process
specification that uses the transformation language is a transformation-specification.

If a style-specification complies with all the provisions of this International Standard, it is a
conforming DSSSL style-specification. If a transformation-specification complies with all the
provisions of this International Standard, it is a conforming DSSSL transformation-specification.

In both the style language and transformation language, some facilities are optional. Each
optional facility is associated with a named feature. A process specification that makes use of an

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

optional facility shall enable the feature with which it is associated using the features element
type form.

A conforming DSSSL system shall support the style language, the transformation language, or
both the style language and the transformation language.

The documentation for a conforming DSSSL system shall state whether it supports the
transformation language or the style language or both and, for each language that the system
supports, shall state which features of the language it supports.

A conforming DSSSL system that supports the style language shall be able-to process any
conforming SGML document using any conforming DSSSL style-spetification that enables only
features of the style language that the DSSSL system is documented to support.

A conforming DSSSL system that supports the transformation-language shall be fable to process
any conforming SGML document using any conforming DSSSL transformation-specification

that enables only features of the transformation language-that the DSSSL system|is documented
to support.

3 Normative References

The following standards contain proyisions which, through reference in this text,|consititute
provisions of this International Standard. At the time of publication, the editions|indicated were
valid. All standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to invéstigate the possibility of applying the most recent editions of the
standards indicated below:, Members of IEC and ISO maintain registers of curreptly valid
International Standards.

ISO 639:1988, Code for the representation of names of languages.
ISO 316611993, Codes for the representation of names of countries.
ISOAEC 6429:1992, Information technology — Control functions for coded chalacter sets.

ISO 8601:1988, Data elements and interchange formats — Information exchange —
Representation of dates and times.

ISO 8879:1986, Information processing — Text and office systems — Standard Generalized
Markup Language (SGML).

ISO/IEC 9070:1991, Information technology — SGML support facilities — Registration
procedures for public text owner identifiers.

ISO/IEC 9541-1:1992, Information technology — Font information interchange — Part 1:
Architecture.

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©1S0/IEC

ISO/IEC 9541-2:1992, Information technology — Font information interchange — Part 2:
Interchange Format.

ISO/IEC 9945-2:1993, Information technology — Portable Operating System Interface (POSIX)
— Part 2: Shell and Utilities.

ISO/IEC 10180:1995, Information technology — Processing languages — Standard Page

Descrintion Lancuace (SPDL)
r (=] (=] \ 7

ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded GCharacter
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO/IEC 10744:1992, Information technology — Hypermedia/Time-based Structuring [Language
(HyTime).

4 Definitions

For the purposes of this International Standard, the definitions given in ISO 8879 and the
following definitions apply.

4.1 area
A rectangular box with a fixed width and height produced by the formatting of a flow gbject. An
area can be imaged on a presentation meédium to produce a set of marks.

4.2 association
A triple consisting of a query-eXxpression, a transform-expression, and a priority-expregsion. The
priority-expression default$fe 0. Associations are used to control the transformation process.

4.3 atomic flow object
A flow object that:has no ports.

4.4 auxiliary grove
A groveccreated by parsing nodes in another grove.

4.5 “characteristic
A named parameter of a flow object.

4.6 complete grove

The grove that would be built using a grove plan that selected all the classes and properties from
the property set.

4.7 component name

A name defined in a property set with three variants: a reference concrete syntax name, an
application name, and a full name.

4.8 creation origin
The node relative to which the position of a node in a result grove is specified.

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

4.9 descendants
The union of the subtrees of the children of a node.

4.10 enumerator
A possible value of an enumeration data type.

4.11 flow object

wwmwmwﬁ a class, which
specifies the kind of task, and characteristics which further parameterize the task.

4.12 formatting process
The process partially specified by the style language.

4.13 grove
A set of nodes connected into a graph by their nodal properti€s. A grove is built using a grove plan.

4.14 grove plan
A set of classes and properties selected from a property set.

4.15 grove root
The unique node in a grove that has no origin.

4.16 intrinsic property
A property that is automatically part of a property set, without being defined in the property set.

4.17 line-progression-direction
A direction associated.with inline areas. The line-progression-direction is pergendicular to the
inline-progression-direction of the inlined area.

4.18 nodal property
A propertyswhose value is a node or list of nodes. Nodal properties are categorized by their
property-set as subnode, irefnode, or urefnode.

419 node
An ordered set of property assignments. A node is a member of a grove, and bglongs to a class
defined in the grove plan used to build its grove.

420 Py
TV UL I 11X
For a node x, the node that exhibits for a subnode property a value that includes x. Every node in
a grove other than the grove root has a unique origin.

4.21 origin-to-subnode relationship
The subnode property of the origin of a node that includes the node in its value.

4.22 port
A point on a flow object in a flow object tree to which an ordered list of flow objects can be
attached. A port is either the principal port of the flow object or it is named.

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E) © ISO/EC

4.23 primitive data type
A data type that has no super type. The primitive data type of a data type is the data type itself, if
the data type has no super type, and otherwise the primitive data type of the super type of the data

type.

4.24 property assignment
The assignment of a property value to a property name.

4.25 property set
A set of classes and properties with associated definitions.

4.26 process specification
The combination of the specification in a process specification element(@nd the specifications in
any other process specification elements that the process specification element is declared to use.

4.27 process specification element
An instance of a transformation-specification or style-specifieation element type form.

4.28 process specification part
A section of the process specification coming from a single process specification element. Any
process specification elements referred to using the use attribute are separate parts. A part of a
process specification takes precedence over any later parts of the process specification

4.29 siblings (of a node)
The other nodes in the grove that occur'in the value of the origin-to-subnode relationship property
of the origin of the node.

4.30 sosofo
A specification of a sequence of flow objects.

4.31 source grove
The grove parsedto create an auxiliary grove.

4.32 spread
Consécutive back/front pair of pages in a page-sequence.

4.33 stream

A "] d it oF £1 i + ttoobad ¢ et of o £losy ohaaot
Al UITULVIVU TIOU UL 1T1IUVY UUJ\I\«lD alttavIiivua tu'a ll\llt Il ariouvy UUJV\rt.

4.34 subgrove
The union of a node and the values of the subnode properties of the node.

4.35 subtree
A node together with the subtrees of its children.

4.36 synchronization set
A set of flow objects in different streams whose relative positioning is constrained.

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

4.37 transformation process
The process specified by the transformation language. It transforms one or more SGML
documents into zero or more other SGML documents.

4.38 tree
The subtree of a node that has no parent.

4.39 verification grove

5.1

The grove that would be built by parsing the SGML document or subdocument generated from
the result grove using a grove plan that included all classes and properties of,the §GML property
set.

4.40 zone
One of four named subdivisions of a column. The four zones are: top-float, body-text, bottom-
float, and footnote. The positioning of an area to be placed in'a.¢olumn-set area dontainer can be
controlled by labeling it with the name of a zone.

Notation and Conventions

Syntax Productions

In this International Standard, formal@yntax is described in a manner similar to I$O 8879 with
the following exceptions.

A sequence of expressions indicates that the expressions shall occur in the order shown. The ,
operator is not used.

The occurrence indicators ?, +, and * have higher precedence than sequencing, which in turn has
higher precedence than the connectors | and &. For example,

ab lcd*
is equivalent to

(ab) l(c(d*))

syntactic-literal

In a syntax production, double square brackets ([[]]) can be used to surround an or group. The

meaning of this is similar to an and group. However, if any of the members of the or group have
a * or + occurrence indicator, then they can occur the number of times indicated but intermixed

with other members of the group. For example,

[[a*lb+lcld?]]

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

5.2

means a sequence containing only a’s, b’s, ¢’s, and d’s in which any number of a’s occur, one or

more b’s, exactly one ¢, and at most one d.

Procedure Prototypes

Each procedure is defined by a procedure prototype:

(foo a b)

This indicates that the identifier foo is bound in the top-level environment to a.proced
has two arguments.

If the name of an argument is also the name of a type, then that argument’shall be of tk
type. The following naming conventions for arguments also implytype restrictions:

— obj: any object

— list: list

— @ quantity

— x: real number

— y- real number

— n: integer

— k: exact non-negative int€ger

If the procedure also accepts keyword arguments, the prototype is of the form:

(foo a b #1key keyl: key2:)

ure that

e named

This indicates that the procedure in addition accepts two keyword arguments. The nanes of the
keyword arguments indicate the keywords that are used to specify them and do not copstrain the

type.

DSSSL Overview

A key feature of generalized markup is that the formatting and other processing information

associated with the document is separate from the generic tags embedded in it.

In any generalized markup scheme, there is a method for associating processing specifications
with the SGML markup. This method of association allows the information to be attached to
specific instances of elements as well as to general classes of element types. The primary goal of

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(KE)

DSSSL is to provide a standardized framework and methods for associating processing

information with the markup of SGML documents or portions of documents.

DSSSL is intended for use with documents structured as a hierarchy of elements. For the

purpose of describing in detail the concepts of DSSSL in the subsequent clauses
International Standard, SGML terminology is used.

of this

DSSSL enables formatting and other processing specifications to be associated with these

6.1

elements to produce a formatted document for presentation. For example, a designer may wish
to specify that all chapters begin on a new recto page and that all tables begin with a page-wide
rule to be positioned only at the top or bottom of the page. During the DSSSL transformation
process, formatting information may be added to the result of the transformation| This

information may be represented as SGML attributes. These, in turn, may be use
language to create formatting characteristics with specific values.

Areas of Standardization

DSSSL provides four distinct areas of standardization:

by the style

a) A language and processing model for traisforming one or more SGML docutpents into zero

or more other SGML documents.

This is called the transformation language. This transformation is controlled by the
transformation-specification. A transformation-specification contains a list of associations.
An association contains up-to three parts: the query-expressions, the transform-expressions,
and the optional priority-expressions. Functionally, this specification allows the user to
specify the creation of-new structures, the replication of existing structures, an the reordering

and regrouping of existing structures.

b) A language for specifying the application of formatting characteristics onto aj
document:

The process that applies formatting and other formatting-related processing ¢
an SGML document is called the formatting process. This process is contro
specification. A style-specification contains a sequence of construction rules.
several kinds of construction rules. For more details, refer to 12.4.1.

h SGML

haracteristics to
led by the style-
There are

ing process, DSSSL

does not standardize the process itself, but merely standardizes the form and semantics of the style language
controlling a portion of the process. The remaining formatting functions, such as line-breaking, column-breaking,
page-breaking, and other aspects of whitespace distribution, are not standardized and are under control of the

formatter.

c) A query language, Standard Document Query Language, used for identifying portions of an

SGML document.

SDQL is part of both the DSSSL transformation language and the DSSSL style language. It
is used for navigating through the hierarchical structure of the SGML document, identifying

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

the relevant pieces of the SGML markup and content on which processing is to be performed.

SDQL adds additional data types to the DSSSL expression language. In addition to

the full

query language, this International Standard defines a subset called the core query language.
For more information on the core query language, see 10.2.4. For a complete discussion of the

full SDQL, see clause 10.

d) An expression language.

the DSSSL style language. It is used to create and manipulate objects. In addition t

Language as defined in the IEEE Scheme standard, R*RS. DSSSL uses only the fu
side-effect free subset of Scheme. See clause 8 for a complete discussion of the DS
expression language.

6.20 Conceptual Model
The DSSSL conceptual model has two distinct processes: (1) a transformation process
be used alone.

An illustration of the DSSSL conceptual.médel is shown in Figure 1.

DSSSL Specification

AN

-\
J v

SGML SGML SSSL-driven

Document Document ormatter

v
Source Transformation Result Formatting Output of
Document Process Document Process Formatter

Figure 1 - DSSSL Conceptual Model

The DSSSL expression language is used in SDQL, the DSSSL transformation larigdage, and

the full

expression language, this International Standard defines a subset called the. core expression
language. See 8.6. The DSSSL expression language is based on the Scheme Progrzlmming

ctional,
SSL

and (2) a

formatting process. The two processes may be used in conjunction with each other, or gach may

The shaded areas indicate the parts of the processing model that are standardized by DSSSL.

10

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10

179:1996(E)

6.3 DSSSL Languages

6.3.1

Each of the DSSSL processes is controlled by the appropriate DSSSL language.
transformation language controls the transformation process. Likewise, the style
controls aspects of the formatting process.

The Transformation Language

The
language

The transformation process transforms an SGML document into another SGME
the control of the transformation-specification. The SGML document that(s, the
transformation process may then be used as input to the formatting process.

In the transformation process, a user identifies portions of the SGML document
mapped or transformed. For each node matching the specified portions of SGM
structure, the transformation is accomplished according to the specification desc
structures to be created.

Hocument under
result of this

hat are to be
L content and
ribing the new

All operations performed in this transformation process are independent of the Igter formatting

process. Operations during the transformation proeess may include the following:

— Combining structures

SGML structures may be reordered and regrouped to create totally new struc

ures. For

example, footnotes that are inline with footnote references according to the spurce DTD may
be collected to place the fodtnotes at the end of each chapter when the documlent is formatted.

— Creating new elementSywith user-specifiable relationships to other elements

New structures or-attributes may be created. For example, special formatting

descriptions

such as the need for a 3-point rule, expressed as an SGML attribute, may be gssociated with

every fifth'row in a table to provide visual impact.
— Associating new descriptions with particular sequences of content
A sequence of elements in the source document may trigger the association

formatting characteristics. For example, a paragraph following a warning m
be presented differently from all other paragraphs.

different
be required to

— Associating new descriptions with particular components of content

An association may be used to attach special formatting to particular strings of text that may
not be specially tagged in the source document, as, for example, in the replacement of the

character string ‘ISO’ with the ISO logo.

DSSSL allows formatting information to be associated with, and dependent on, any combination
of the above. Both the content and structure of the SGML document can be modified.

11

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

6.3.1.1

The transformation language can be used to facilitate the formatting process as indicated in the
examples above, or it can be used to enhance or modify documents created in accordance with a
DTD that has changed over time. It may also be used to transform documents using a public
DTD into a proprietary or ‘in-house’ DTD.

The importance and use of the transformation language will vary depending on the SGML

application, the DSSSL application, the capabilities of the formatter, and the implementation.
Many formatting applications may require no transformation process at all

Components of the Transformation Process

The component processes are:

a)

b)

c)

Grove Building Processor

An SGML document is input to this process. The SGML docunient or subdocumentfis parsed
and is represented by a collection of nodes called a grove.-A’ grove is similar to an ¢lement

tree, but may include other subtrees, for example, a subtree of attribute values. Reldti
in a grove are expressed in terms of properties. For a-complete description of the gro
SGML property definitions, see clause 9.

Transformer

The input to the transformation process includes the SGML document as created duri
grove building step and the transfermation-specification.

onships
ve and

ng the

The transformation-specification consists of a collection of associations. Each assog¢iation

specifies the transformation of like objects in the source document into objects in the

result

grove. Key to this gransformation is that not only can each object be mapped to an gxplicit

location in the result-grove, but it can also be mapped to a location using the result pf
transforming seme other source object as a reference point.

The output-of the transformation process is the result grove. The transformation prqcess may
operate-on multiple SGML documents as input to the process, and likewise may trapsform
thém) into multiple SGML documents. For a complete description of the transformation

process, see clause 11.

SGML-Generator

~7

The transformation process produces a grove that must be converted to an SGML document
for interchange, validation, and input to the formatting process. The SGML generator is used
for this purpose. The output of the SGML generator shall be a valid SGML document. For a

complete description of the SGML generator, see 11.4.

The model of the transformation process is illustrated in the Figure 2. Note that the shaded areas
indicate the components of the DSSSL specification standardized by this International Standard.

12

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

aial

Source Result
Grove Groves

Figure 2 — The Transformation Process

g.3.1.2 Model for Coded Characters, Characters, and Glyph Identifiers
There are three distinct components.of this model:

— the coded characters in the-SGML source document,

— the characters in the'grove,

— the glyph identifiers of the final result document.

The characters'in the SGML source document are typically encoded in accordange with a
particular character encoding standard, such as ISO 8859-1 (‘Latin 1’). The SGML declaration
contains a specification of the character set either in the form of a description or fin terms of
codepoints in one or more particular, normally standardized or at least registered, coded

character sets. It is, however, permitted to refer to a private coded character set as well as giving
just a description as a minimum literal of the coded character.

Fhere-are manycharactercoding-schemes—Some-of-these-use-non-spacing-chardcters together
with a base character to represent a character with a diacritic. SGML also permits the use of
entity references to represent ‘non-keyable’ characters. For example, a lower case e with acute
accent may be represented, in the same document, as

— a single character,

— a non-spacing diacritic and e (2 characters),

— an e and combining diacritic (2 characters),

13

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISO/IEC

6.3.2

— the entity reference é.
This variation may cause problems in searching using regular expressions.

In DSSSL, the input characters are ‘normalized’ into a sequence of characters that each
represents a specific ‘meaning’ regardless of how it was originally encoded — as a single

character, as multiple characters in a particular character set, or as an entity reference. Each
DPDSSQY _cpnacification dofinac o canglag chorontor ranartotes Tho oboeo ot rtoira oh ll inClude

DSSSE-speeification-defines-a-single-characterrepertoire—The-characterrepertoire-sh
all characters used in the DSSSL specification, in the source groves, and in the flow\ohject tree;
therefore, only these characters may be used. The declaration of each character alse)includes a set
of properties that may be significant in the formatting process, for example, that the character

represents a ‘word space’.

The DSSSL specification, which may have been encoded using a different coded chargcter set
than the source document, is also translated into a sequence of characters belonging to|the same
repertoire as the characters used in the DSSSL trees. All comparisons, such as matchipg an
element name, are performed by comparing these characters-tather than using the coded
characters of the original SGML document.

A sequence of characters in the input grove may be\manipulated by a transformation prpcess into
another sequence under the control of a character-to-character map. This technique is tlypically
used when parts of the source document contain transliterated text.

The characters in the input grove to the formatter are transformed into glyph identifier$ during
the formatting process. The transformation is controlled by character-to-glyph and ligature-to-
glyph maps in which one or more-characters are mapped into one or more glyph identifiers. The
map to be used is not fixed for'a’document, but is expressed as a formatting characterigtic that
may be specified for an argator for a portion of the input grove. Ligatures are specified by
mapping more than onge Character to a single glyph.

Additional propetties specify the font to be used. This information, together with the glyph
identifier, selects-an actual shape to be used in rendering. Hyphenation points are deteymined
based on the characters, but width calculations are based on the metrics of the actual rgndering
shapes (ie.; based on the glyphs).

The Style Language

Thetermm“formmattimg - wien used i this Imermationat Standard means any combination of the
following:

— the process that applies presentation styles to source document content and determines its
position on the presentation medium,

— the selection and reordering of content in the result document with respect to its position in
the input document,

— the inclusion of material not explicitly present in the input document, such as the generation
of new material,

14

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

6.3.2.1

6.3.2.2

— the exclusion of material from the input document in the result document.

DSSSL defines the visual appearance of a formatted document in terms of formatting
characteristics attached to an intermediate tree called the flow object tree. DSSSL allows enough
flexibility in the specification so that it is not tied to a set of composition or formatting
algorithms, i.e., line-breaking, page-breaking, or whitespace distribution algorithms, used by any
particular formatting system. These aspects of the layout process are specific to individual

npliementation LD) [Nationd dNdarg NC-0 dKINEg g
expressed in terms of constraints and other formatting characteristics that gove
process. The output of the formatter, undefined in this International Standard;‘is
document suitable for printing or imaging.

The formatting process uses the style-specification, which may include construc

rules may be
the formatting
formatted

lion rules, page-

model definitions, column-set-model definitions, and other general and application-defined

declarations and definitions.

Components of the Formafting Process

The conceptual processes that constitute the formatting process are as follows:
a) Build grove from SGML document.

b) Apply construction rules to the objects in the source grove to create the flow

¢) Define page and column gedmetry by characteristics on the page-sequence fl

pbject tree.

bw object and

column-set sequence flow.objects referring to page-models and column-set-models,

respectively.

d) Compose and-lay-out the content based on the rules specified by the semantid

object classes and the values of the characteristics associated with those obje
object (an\instance of a flow object class) is formatted to produce a sequence
explicit dimensions and positioned by a parent in the flow object tree.

Grove Building

The formatting process uses the same grove building step as the transformation }
convert the SGML document into a grove of hierarchically structured objects. H

information_see clause 9

s of the flow
'ts. Each flow
of areas having

brocess to
or more

6.3.2.3

Flow Object Tree

The grove is then further processed, using the construction rules, to create a flow object tree
consisting of flow objects with the appropriate formatting and page-layout characteristics. For
the formal definition of the construction rules, see 12.4.1. Each flow object (except an atomic
flow object) has one or more sequences of flow object children. Each sequence of flow object
children is attached to a point of a flow object called a port. The port is either the principal port of

the flow object, or it may be named.

15

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

A flow object class defines a set of formatting characteristics that apply to some category of flow
objects. Each flow object class also defines a set of port names. The class of a child flow object
shall be compatible with the class and port name of the port to which it is attached. The flow
objects attached to any particular port are ordered, but there is no order defined between flow

objects attached to different ports of the same flow object.

The process of creating the flow object tree includes the following steps:

6.3.2.4

a) Formatting characteristics are associated with each flow object.

b) Nodes representing data characters from the grove are converted to character flow o

bjects.

Each character flow object has characteristics governing glyph selection.and’style parameters

such as font family, font weight, etc.
In constructing the flow object tree, SDQL may be used to identify portions of the SGM
document that have specific formatting characteristics as well as'those that can be treats
together for purposes of flowing onto the same column or page-The content that is floy
together is placed as a sequence of flow objects in a port of thie parent in the flow tree.

NOTE 3 For example, if a document consists of several normal paragraphs and some footnote paragraphs
footnote paragraphs can be grouped as the content of a port 6fthé parent flow object that represents the fog
Similarly, the normal paragraphs can be grouped in a port-of a flow object representing a sequence of colu

Flow Object Classes

The flow object classes and the characteristics that apply to them define the formatting
appearance and behavior of the contents of the document.

The following flow object classes are provided in this International Standard:
Sequence flow object class
Display-group-flow object class
Simple-page-sequence flow object class

Page-sequence flow object class

ColuMn-Set-Sequence 110w object Tiass
Paragraph flow object class
Paragraph-break flow object class
Line-field flow object class

Sideline flow object class

L
ed
ed

the
tnote.
mnns.

16

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

Anchor flow object class
Character flow object class
Leader flow object class

Embedded-text flow object class

Rule flow object class

External-graphic flow object class
Included-container-area flow object class
Score flow object class

Box flow object class

Side-by-side flow object class
Glyph-annotation flow object class
Alignment-point flow object class
Aligned-column flow objecticlass
Multi-line-inline-note flow object class
Emphasizing-mark flow object class
Flow object classes for mathematical formulae
Flow-object classes for tables

Flow object classes for online display

In addition, DSSSL applications may define their own set of flow object classes|as well as their

[~" own set of characteristics that may apply to these or to DSSST -defined flow object classes.

6.3.2.5 Areas

The result of formatting a flow object is a sequence of areas. An area is a rectangular box with a
fixed width and height. There are two types of areas: inline areas that are parts of lines and
display areas that are not directly parts of lines.

Both types of areas are positioned by a process of filling. The exact nature of the filling process
is different for each of these types of areas. See 12.3 for more information on the filling of areas.

17

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

6.3.2.6

A display area is positioned by being filled into an area container. The size of an area container

may grow in the filling-direction, but is fixed in the other direction.

Page and Column Geometry

Page layout in DSSSL is specified by page-model characteristics on the page-sequence flow

object and column-set-model characteristics on the column-set sequence flow object.

6.3.2.7

The page-sequence flow object is formatted to produce a sequence of page areas. A palge—model

is the specification of the possible structure and positioning of the area hierarchy(of-thg
including the height and width of the page and the specification of page-regions. ‘Page-
are area containers with fixed dimensions into which formatted content is placed as sp¢

the page-region-flow-map. The page-region-flow-map provides the connection betwee
name and a page-region. Each of the page-regions may have a header and a footer spec
For complete information on the page-sequence flow object and the‘associated page m
12.6.4 and 12.6.4.1.

The column-set-sequence flow object is formatted to produce a sequence of column-set
column-set area contains a set of parallel columns. The ‘structure and positioning of ea
column-set area is controlled by the column-set-mgdel to which it conforms. A colum
model specifies the possible hierarchy of areas for€ach column-set. Column-sets may Y
The column-set area is divided geometrically.in‘a direction parallel to the filling direct

page,
regions
tcified by
h the port
ification.
bdels, see

areas. A
ch

n-set-

e nested.
on into a

number of columns. Associated with each column-set may be zones that constrain the placement

of areas relative to other areas in the filling-direction. The allowed zones are: top-floa
text, bottom-float, and footnote.

, body-

The column-set-model specifie§the possible structure and positioning of the area hierj(r)chy of

the column-set through the column-subset specification, the filling-direction specificati
and height specifications;.etc. The column-subset specification includes a column-subs

map that indicates the ports from which the contents are flowed into the specified zone,

column-set-model.also supports spanning. For complete information on the column-sg
sequence flow.ébject, see 12.6.5; for complete information on the column-set-model, s
12.6.5.1.

Expression Language

The'formatting process uses the core expression language defined in 8.6 or, as an optio

n, width
et-flow-
The
t
ce

nal

featnre the full expression lnngnagp as described in 8

Figure 3 illustrates the model of the formatting process.

18

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

i

ISO/IEC 10179:1996(E)

Figure 3 - Formatting Process

6.3.2.8 Model for Coded Characters, Charactérs, and Glyph Identifiers

The formatting process uses the model for coded characters, characters, and glyp
described in 6.3.1.2.

DSSSL Specifications

A DSSSL specification is an SGML document conforming to the DSSSL docume
The DSSSL document architecture is a document architecture conforming to the
Form Definition Requirements of ISO/IEC 10744,

An SGML document can declare its conformance to the DSSSL document archit
including a token ArcBase in the APPINFO parameter of its SGML declaration
following declarations in its DTD:

<?ArcBase DSSSL>
<!NOTATION DSSSL PUBLIC "ISO/IEC 10179:1996//NOTATION

= N o
Grove Flow Object
o I Y I N gy romar [s
IProcessor d b b Lonstructor |O e jl IDoc mentl
Source Flow Object
Grove Tree

h identifiers

ht architecture.
Architectural

ecture by
and the

DSSST, Architecture Definition Document//EN"

-- A document architecture conforming to the
Architectural Form Definition Requirements of
ISO/IEC 10744. -
>

<!ATTLIST #NOTATION DSSSL

-- Support attributes for all architectures --
ArcFormA -- Attribute name: architectural form --

NAME #FIXED DSSSL

ArcNamrA -- Attribute name: attribute renamer -
NAME #FIXED DNames

ArcBridA -- Attribute name: bridge functions --

19

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISONEC
NAME #FIXED DBrid
ArcDocF -- Architectural form name: document element --
CDATA #FIXED dsssl-specification
ArcVer -- Architecture version identifier --

>

CDATA #FIXED "ISO/IEC 10179:1996"

<!ENTITY DSSSL SYSTEM CDATA DSSSL>

DSSSL Document Architecture

The DSSSL document architecture is defined by the following meta-DTD:

<!-- DSSSL Document Architecture -->

<!ENTITY % declarations

"features | baseset-encoding | literal-described-echar | add-name-char$

| add-separator-chars | standard-chars | otherwchars

| combine-char | map-sdata-entity | char-repertoire | sgml-grove-planh"

<!element

<lattlist

<!element

<lattlist

dsssl-specification - O

((%declarations;)*,
(style-specification | transformation-specification
| external-specificatdon)+)>

dsssl-specification

dsssl NAME dsssl-specification

version CDATA #FIXED "ISO/IEC 10179:1996"

transformation-specification - O

((%declarations;)*, transformation-specification-body*)>
transformation-specification

dsss1T\NAME transformation-specification

id\ID #IMPLIED

desc CDATA #IMPLIED

- human readable description of specification --

partial (partial | complete) complete
-- is the specification complete is or is it just a fragment
to be used in other specifications? --

<l!lelement

use

-- reftype(transformation-specification|external-specification) --
IDREFS #IMPLIED -- Default: none --

entities

-- entities available to be specified as DTD for validation
of result document --
ENTITIES #IMPLIED -- Default: none --

style-specification - O
((%$declarations;)*, style-specification-body*)>

20

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

<lattlist style-specification
dsssl NAME style-specification
id ID #IMPLIED
desc CDATA #IMPLIED
-- human readable description of specification --

partial (partial | complete) complete
-- is the specification complete is or is it just a fragment
to be used in other specifications? --

use -- reftype(style-specification]|external-specification) --
IDREFS #IMPLIED -- Default: none --
>

<l-- Assign a local ID to a specification in another document. --%
<lelement external-specification - O EMPTY>
<tattlist external-specification
dsssl NAME external-specification
id ID #REQUIRED

document -- document containing spec”--
ENTITY #REQUIRED
specid -- id of spec in document' --
NAME #IMPLIED -- Default: first spec in documenf --
>
<!-- Declares features used by (specification. -->

<lelement features - O (#PCDATA)
-- lextype (featurename*)\ -->
<lattlist features
dsssl NAME features
>

<!-- Map character numbers in a base character set to character npmes;
not needed when system knows a character set, and all characters
in character .set have universal code. -->
<lelement baseset-encoding - O (#PCDATA)
-- lextype ((number, charname)?*) -->

<lattlist baseset-encoding
dsssl NAME baseset-encoding

name CDATA #REQUIRED -- public identifier of baseset --
>

<!-- Map a character described in the SGML declaration with a minfimum literal
to—a—character—name
<lelement literal-described-char - O (#PCDATA)
-- lextype(charname) -->
<lattlist literal-described-char
dsssl NAME literal-described-char

desc CDATA #REQUIRED -- the literal description --
>
<1-- Declare additional characters allowed in name within DSSSL notation. -->
<lelement add-name-chars - O (#PCDATA)
-- lextype (charname*) -->

<lattlist add-name-chars

21

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC
dsssl NAME add-name-chars
>
<!-- Declare additional characters allowed as separators within
DSSSL notation. -->
<!lelement add-separator-chars - O (#PCDATA)
-- lextype (charname*) -->
<lattlist add-separator-chars
dsssl NAME add-separator-chars
>
<1-- Define characters associating names with universal codes. --x
<lelement standard-chars - O (#PCDATA)
-- lextype((charname, number))*) -->
<lattlist standard-chars
dsssl NAME standard-chars
>
<1-- Define characters with no universal codes. -&>
<'element other-chars - O (#PCDATA)
-- lextype (charname*) -->
<lattlist other-chars
dsssl NAME other-chars
>
<!-- Map an SDATA entity onto a c¢haracter. -->
<lelement map-sdata-entity -:.00 (#PCDATA)
-- lextype (charname) -->
<lattlist map-sdata-entity
dsssl NAME map-=sdata-entity
name CDATA-#IMPLIED -- Default: mapping uses replacement text fonly --
text CDATA“#IMPLIED -- Default: mapping uses name only --
>
<!-- Declaré cHaracter combining. -->

<lelemerit\combine-char - O (#PCDATA)
-- lextype(charname, charname, charname+) -->
<lattlist combine-char
dsssl NAME combine-char

<!-- Declare a character repertoire. -->
<'!element char-repertoire - O EMPTY>
<lattlist char-repertoire
dsssl NAME char-repertoire
name -- public identifier for repertoire --
CDATA #REQUIRED
>
<!-- Declare the grove plan for the SGML property set.
<l!element sgml-grove-plan - O EMPTY>
<lattlist sgml-grove-plan
dsssl NAME sgml-grove-plan

-—>

22

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TIEC 10179:1996(E)

modadd -- names of modules to be added to default grove
NAMES #IMPLIED -- Default: none added --

<!element style-specification-body - - CDATA
-- content uses notation of DSSSL style language -->
<lattlist style-specification-body
dsssl NAME style-specification-body
content ENTITY #CONREF -- Default: syntactic content --

plan --

<!element transformation-specification-body - - CDATA
-- content uses notation of DSSSL transformation language -~->
<lattlist transformation-specification-body
dsssl NAME transformation-specification-body
content ENTITY #CONREF -- Default: syntactic-content --

The element type form dsssl-specification istacontainer for one or mor
specification element type forms. Declaration elemients in a dsssl-specific
apply to all the process specification elements.in the dsssl-specification

There are two types of process specification element type forms. The element ty
transformation-specificationspecifies a transformation process. Thq
form style-specification specifies a formatting process. Instances of the
forms are called process specification elements. Each process specification elem
contained, or it may make use;of other process specification elements of the sam

e process
ation element
element.

pe form
element type
se element type
ent may be self-
e type. Process

specification elements are identified by an SGML unique identifier. A process
element in one SGML d6cument may use a process specification element in ano
document by using the-external-specification element type form to as
unique identifierto.the process specification element in the other document. The
a process specification element with the process specification elements that it us
specification.

A user specifies processing of an SGML document by identifying a process speg

element. The manner in which these elements are identified is system-dependent.

NOTE 4 A system may identify a process specification element with a system identifier for the d
optional unique identifier for the element within the document, with the first process specification

ecification

her SGML
ign a local
combination of
eS 1S a process

ification

cument and an
element in a

document being used if no unique identifier is specified.

Each process specification element may contain elements, called body elements, whose content

specifies processing in a process-specific notation. For a transformation-

specification, this notation is the DSSSL transformation language; for a style-

specification, this notation is the DSSSL style language. In addition, each
specification element may contain declaration elements that contain information
these notations.

process
needed to parse

The process specification described by a sequence of process specification elements is
considered as a sequence of parts, where each part consists of declarations expressed using

23

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

7141

7.1.2

element type forms, and a specification in the process-specific notation, called the body of the
part. The parts from a sequence of process specification elements consist of the sequence of
parts from the first process specification element, followed by the sequence of parts from the
next process specification element, and so on. The sequence of parts from a single process
specification element consists of a part constructed from the content of the process specification
element followed by the sequence of parts from the sequence of process specification elements
that it uses. The declarations in the first part comprise the declarations contained in the process
specification element together with those contained in the dsss1-specification element

that contains the process specification element. The body of the first part consists of thg
concatenation of the body elements contained in the process specification element:

A process specification shall be processed by first processing the declarations of all of the parts,
and then processing the bodies of all of the parts in order. Within a single-part, there shall not be
conflicting declarations; when two declarations in different parts conflict, the declaratiop in the
earlier part shall take precedence. Similarly, within the body of a singlé part, there shall|not be
conflicting specifications, but when two specifications in the bodiesof different parts cqnflict,
the specification in the earlier part shall take precedence.

The declarations of a process specification shall specify how each bit combination occufring in
the bodies of the parts of the specification and in alkthe SGML input documents are to be
converted to characters. Declarations may occur inany order. In particular, character najnes may
be used before they are declared.

Every character name used either in declatations or in body elements shall be declared psing
either a standard-chars element type form, an other-chars element type form, jor a

char-repertoire element type form.

All declaration element type.forts other than the char-repertoire, features, and sgml-
grove-plan element type’forms require the charset feature.

Features

The features’element type form declares the features used by a specification. A propess
specification‘shall declare all the features that it uses.

The-content of the element shall be a list of feature names.

This declaration is cumulative.

SGML Grove Plan

The sgml-grove-plan element type form names additional modules that should be included
in the grove plan for the SGML property set. The modadd attribute specifies the modules to be
added. The following modules are included automatically:

— baseabs

— prlgabs0

24

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

713

— instabs

For the transformation language, the prigabs1 module is also included automatically.

This declaration is cumulative.

Character Repertoire

7.1.4

The char-repertoire element type form declares that the specification uses
repertoire whose public identifier is given by the name attribute.

A char-repertoire element is equivalent to a sequence of instances-of the el
forms baseset-encoding, literal-described-char, add-name-chal
separator-chars, standard-chars, other-chars, and map-sdata-s
character-property-declaration and added-char-properties-declaration language

Standard Characters

he character

ement type
rs, add-
ntity, and of
forms.

The standard-chars element type form declares the names of characters in the character

repertoire which correspond to characters defined in ISO/IEC 10646-1 or ISO/IE
character in ISO/IEC 10646-1 or ISO/IEC 6429 is identified by its code in the co
character set, called its universal code.

The content of the element shall be a list of pairs of character names and number:

C 6429. A
rresponding

expressed in

decimal. It declares that each character name corresponds to the character with the universal

code specified by the following number.

A process specification-shall declare character names for each of the following character

numbers in ISO/IEC-10646-1: 32 (space), 34 (quotation mark), 35 (number sign)

39

(apostrophe), 40 (left parenthesis), 41 (right parenthesis), 42 (asterisk), 43 (plus sjgn), 45

(hyphen-minus), 46 (full stop), 47 (solidus), 48 to 57 (digit zero to digit nine), 58
(semicolon), 60 (less-than sign), 61 (equals sign), 62 (greater-than sign), 63 (ques
to 90 (Latin capital letter A to Latin capital letter Z), 92 (reverse solidus), and 97

(colon), 59
tion mark), 65
to 122 (Latin

smallJetter a to Latin small letter z). It shall also declare character names for eac
following character numbers in ISO/IEC 6429: 10 (line feed), and 13 (carriage rej

It shall be an error for a single character name to occur more than once in the

standard-chars element
name in any later parts.

type form takes precedence over any declaration

sta

of the
urn).

ndard-

for that character

A system may inherently know for a base character set identified by a public identifier with an
ISO owner identifier how bit combinations in that character set correspond to universal codes.
Thus, if a base character set has a formal public identifier that includes an ISO owner identifier,
and, for each character used by the document character set from that base character set, exactly
one character name is declared using the standard-chars element type form, then no
baseset-encoding element type form is required for that base character set.

25

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

7.1.5 Other Characters

7.1.6 Baseset Encoding

7.1.

The other-chars element type form declares the names of characters in the character
repertoire which do not correspond to characters defined in ISO/IEC 10646-1 or ISO/IEC 6429.

The content of the element shall consist of a list of character names.

—EXAMPLE]

<other-chars>
logoSGML runic-f runic-u
</other-chars>

These declarations are cumulative.

The baseset-encoding element type form specifies how-bit combinations in an SGML
document whose meaning was declared in the SGML declaration to be that of a charactgr number
in a base character set are to be converted to charactets.

The content of a baseset-encoding element Shall consist of a list of pairs of corresponding
character numbers, specified in decimal, and character names. It specifies the charactgr names
corresponding to character numbers in theieharacter set whose public identifier is givep by the
name characteristic.

Conflicts between baseset-engoding elements are resolved separately for each chjaracter

number. There can be multiplebaseset-encoding elements for the same base chafacter set,
but it shall be an error to have two specifications for the same character number in the jame base
character set in a single-part.

EXAMPLE 2

<baseset-enc¢oding name="Character set for the Viking age runic script"
31 runic-€

32 runic-u

</bagéset-encoding>

v

f Literal Described Character

The 1iteral-described-char element type form specifies that bit combinations in an
SGML document whose meaning was declared in the SGML declaration using a minimum literal
equal to the value of the desc attribute are to be converted to the character whose name is
specified in the content of the element.

EXAMPLE 3

<literal-described-char desc="SGML User’s Group logo">
logoSGML
</literal-described-char>

26

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

7.1.8

Sdata Entity Mapping

The map-sdata-entity element type form declares that a reference to an internal SDATA
entity whose name is equal to the value of the name attribute and/or whose replacement text is
equal to the value of the text attribute represents the character whose name is given in the
content of the element. The content of the element shall be a single character name.

If the grove plan includes the entity-name property for the sdata node class

then an

7.1.9

.1.10

111

7.2

SDATA entity shall be mapped by first searching for a mapping for its name and
mapping is found, searching for a mapping for its text.

EXAMPLE 4

then, if no

<map-sdata-entity name="Alpha" textz"[Alpha]“>greekA</map-sdata—enEity>

<map-sdata-entity name="V.Beta" text="[V.Beta]">greekBx/map-sdata

Separator Characters

The add-separator-chars element type formdeclares characters as separaf
allowed in whitespace in the DSSSL transformation’and style languages.

These declarations are cumulative.

Name Characters

ntity>

or-characters

The add-name-chars element'type form declares additional characters as addpd-name-

characters allowed in identifiers in the DSSSL transformation and style languagg
These declarations arelcumulative.

Character Combination

The combine-char element type form contains a list of three or more characte
declares that a sequence of characters comprising the second and following chara
replaced by the first character. Use of this element type form requires the combi
feature.

Public Identifiers

S.

 names. It
cters shall be
ne-char

7.3

7.3.1

Within this International Standard, public identifiers shall conform to the canonical string form

of a public identifier defined in ISO/IEC 9070.

Lexical Conventions

Case Sensitivity

Upper- and lower-case forms of a letter are always distinguished.

27

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

7.3.2

NOTE 5 Traditionally Lisp systems are case-insensitive.

Identifiers
[1] identifier = initial (subsequent* final)? | peculiar-identifier

[2] initial = letter | special-initial | added-name-character

7.3.8

[3] letter=alblcl..lzlalIBICIL..12Z

[4] special-initial = special | :

[5] special=!IsIsl&l*1/I<l=I>12171_1I"

[6] subsequent = initial | digit | special-subsequent

[7] special-subsequent= . | + 1~

[8] final = letter | special | added-name-character | digit) special-subsequent
[9] peculiar-identifier=+1-1...

Most identifiers allowed by other programming languages are also acceptable in DSS$L. In
addition to letters and digits, identifiers:may contain the characters $%&*/ : <=>?"_"i+-. and
any characters declared as added-name-characters by the add-name-chars or chgr-
repertoire element type forms:An identifier shall not begin with a character that chn begin a
number; however, +, -, and . ¢ are identifiers. An identifier shall not end with : (unless the

entire identifier is :).
NOTE 6 ... are three period characters and not a single ellipsis character.

Tokens, Whitespace, and Comments

[10] tokeén-= identifier | keyword | boolean | number | character | string | named-constgnt | glyph-
identifier| (1)1 1.1°1,1,@

[11] delimiter = whitespace | (1) 1" | ;

[12] whitespace = space | record-start | record-end | tab | form-feed | separator-character
[13] comment = ; any-character-except-record-end*

[14] atmosphere = whitespace | comment

[15] intertoken-space = atmosphere*

Whitespace characters are spaces, record starts, record ends, and separator-characters.
Whitespace is used for improved readability and, as necessary, to separate tokens from each

28

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

other, a token being an indivisible lexical unit such as an identifier or number, but is otherwise
insignificant. Whitespace may occur between any two tokens, but not within a token.
Whitespace may also occur inside a string, where it is significant.

A semicolon (;) indicates the start of a comment. The comment continues to the end of the
record on which the semicolon appears. Comments are invisible, but the record end is visible as
whitespace. This prevents a comment from appearing in the middle of an identifier or number.

intertoken-space may occur on either side of any token, but not within a tokefr:

Tokens which require implicit termination (identifiers, numbers, characters, dot} and # !
constants) may be terminated by any delimiter, but not necessarily by, anything ¢lse.

Expression Language

The expression language is inspired by the Scheme Programming Language defjned in the IEEE
Scheme standard, R*RS. The following specification‘is based on this definition,

The expression language differs from Scheme)in a number of ways:

— The expression language uses only the functional, side-effect free subset of Scheme. Features
of Scheme that are not useful in the absence of side-effects have been removgd (for example,
begin).

— The vector data type is_not provided.

— A character objectiis uniquely identified by its name rather than its code.

— Dependencies-in Scheme on the ASCII character set have been removed.

— The number data type is a subtype of a more general quantity data type that adds the concept
of dimension to a number.

—-Continuations are not provided.

— Some optional features of R*RS are not provided.

— The gcd and 1cm procedures are not provided.
— Keyword arguments are provided.

In addition, DSSSL specifies certain choices that the definition of Scheme leaves open to
implementations.

A subset of the expression language, called the core expression language, is defined in 8.6.

29

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.1

Overview of the Expression Language

Following Algol, the expression language is statically scoped. Each use of a variable is
associated with a lexically apparent binding of that variable.

The expression language has latent as opposed to manifest types. Types are associated with
values (also called objects) rather than with variables. (Some authors refer to languages with

. rpesas-wealkdy-typed-or-dynamieally-typedlanguages)—Other language ith-lafent types
are other dialects of Lisp, APL, and Snobol. Languages with manifest types (sometimep referred
to as strongly typed or statically typed languages) include Algol 60, Pascal, and, €!

All objects created in the course of a computation, including procedures, have unlimited extent.
No expression language object is ever destroyed. The reason that implemientations do pot
(usually!) run out of storage is that they are permitted to reclaim the-storage occupied by an
object if they can prove that the object cannot possibly matter to.any future computatign. Other
languages in which most objects have unlimited extent include gther dialects of Lisp and APL.

Implementations are required to be properly tail-recursiye:. This allows the execution of an
iterative computation in constant space, even if the it€rative computation is described by a
syntactically recursive procedure. Thus, with a tailsrecursive implementation, iterationy may be
expressed using the ordinary procedure-call mechanics, so that special iteration constrycts are
useful only as syntactic sugar.

Procedures are objects in their own right:-"Procedures may be created dynamically, storgd in data
structures, returned as results of prog¢edures, and so on. Other languages with these properties
include Common Lisp and ML.

Arguments to procedures are-always passed by value, which means that the actual argyment
expressions are evaluated-before the procedure gains control, whether the procedure ngeds the
result of the evaluation or not. ML, C, and APL are three other languages that always pass
arguments by valtie: This is distinct from the lazy-evaluation semantics of Haskell, or the call-by-
name semantics-ef Algol 60, where an argument expression is not evaluated unless its [value is
needed by the procedure.

The expression language, like most dialects of Lisp, employs a fully parenthesized prefix
notation for expressions and (other) data; the grammar of the expression language generates a
sublanguage of the language used for data.

8.2

8.2.1

Basic Concepts

Variables and Regions

Any identifier that is not a syntactic-keyword may be used as a variable. A variable may name a
value. A variable that does so is said to be bound to the value. The set of all visible bindings in
effect at some point is known as the environment in effect at that point. The value to which a
variable is bound is called the variable’s value.

30

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

Certain expression types are used to bind variables to new values. The most fundamental of these
binding constructs is the lambda expression, because all other binding constructs can be
explained in terms of lambda expressions. The other binding constructs are let, let*, and
letrec expressions.

Like Algol and Pascal, and unlike most other dialects of Lisp except for Common Lisp, the
expression language is a statically scoped language with block structure. To each place where a
variable is bound in i] i t within which
the binding is effective. The region is determined by the particular binding cdmsfruct that
establishes the binding; if the binding is established by a lambda expression; for e ample, then its
region is the entire lambda expression. Every reference to, or assignment of, a vpriable refers to
the binding of the variable that established the innermost of the regighis containi g the use. If
there is no binding of the variable whose region contains the use, then the use refers to the
binding for the variable in the top-level environment, if any; if-there is no binding for the
identifier, it is said to be unbound.

8.2.2 True and False

Any expression language value may be used as/a boolean value for the purpose df a conditional
test. All values count as true in such a test eXceépt for #f. This International Standard uses the
word ‘true’ to refer to any value that countsas true, and the word “false’ to refer {o #f.

8.2.3 External Representations
An important concept in the expiession language (and Lisp) is that of the externall representation
of an object as a sequence of characters. For example, an external representation of the integer 28
is the sequence of characters ‘28’, and an external representation of a list consist ng of the

integers 8 and 13 is the-sequence of characters ‘ (8 13)’.

The external representation of an object is not necessarily unique. The list in the previous
paragraph also has the representations ‘(08 13)’and ‘(8 . (13 . () B R

Many objects have external representations, but some, such as procedures, do nof.

Anexternal representation may be written in an expression to obtain the correspanding object.

External representations may also be used for communicating between processes|defined in this

International Standard-

The syntax of external representations of various kinds of objects accompanies the description of
the primitives for manipulating the objects.

8.2.4 Disjointness of Types

No object satisfies more than one of the following predicates:

boolean?
pair?

31

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

8.3

8.3.1

8.3.1.1

symbol?
keyword?
quantity?
char?
string?
procedure?

These predicates define the types boolean, pair, symbol, keyword, quantity, char (or character),

3IFINg, and procednre:.

Expressions

An expression is a construct that returns a value, such as a variable reference, literal, procedure
call, or conditional.

[16] expression = primitive-expression | derived-expression

Expression types are categorized as primitive or derived. Primitive expression types incjude
variables and procedure calls. Derived expression types dré not semantically primitive But can
instead be explained in terms of the primitive constructs. They are redundant in the strictsense of
the word, but they capture common patterns of usage, and are, therefore, provided as copvenient
abbreviations.

Primitive Expression Types

[17] primitive-expression = variablé-reference | literal | procedure-call | lambda-expression I
conditional .

Variable Reference
[18] variable-reference = variable

An expression‘consisting of a variable is a variable reference. The value of the variable feference
is the valuéito which the variable is bound. It shall be an error to reference an unbound |variable.
EXAMPLE 5

(define x 28)

b'd = 28

[19] variable = identifier
[20] syntactic-keyword = expression-keyword | else | =>|define

[21] expression-keyword = quote | lambda | 1f | condlandlorlcasellet|let*|
letrec | quasiquote | unquote | unquote-splicing

Any identifier that is not a syntactic-keyword may be used as a variable. DSSSL languages may
reserve identifiers as syntactic-keywords in addition to those listed above.

32

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

8.3.1.2 Literals
[22] literal = quotation | self-evaluating
[23] quotation = ' datum | (quote datum)

(quote datum) evaluates to datum.

[24] datum = simple-datum | list

[25] simple-datum = boolean | number | character | string | symbol | keyword | named-constant |
glyph-identifier

datum may be any external representation of an expression language object. This[notation is used
to include literal constants in expressions. A glyph-identifier is-allowed only within a style-
language-body.

EXAMPLE 6
(quote a) = a
(quote (+ 1 2)) = (+ ¥?2)

(quote datum) may be abbreviated as""datum. The two notations are equivalent in all

respects.

EXAMPLE 7

‘a =\a

() = ()

‘(+ 1 2) = (+ 1 2)

’ (quote a) = (quote a)
"ra = (quote a)

[26] self-evaluating = boolean | number | character | string | keyword | named-cpnstant | glyph-
identifier

Boolean constants, numerical constants, character constants, string constants, kgywords,named
constants, and glyph identifiers evaluate ‘to themselves’; they need not be quot¢d.

EXAMPLE 8

' "abc" = "abc"
"abc" = "abc"
'145932 = 145932
145932 = 145932
‘#t = #t

#t = #t
abc: = abc:
‘abc: = abc:

33

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/MTEC 10179:1996(E)

© ISO/IEC

8.3.13

Procedure Call
[27) procedure-call = (operator operand*)
[28] operator = expression

[29] operand = expression

8.3.1.4

A procedure call is written by simply enclosing in parentheses expressions for the progedure to

be called and the arguments to be passed to it. The operator and operand expressions
evaluated, and the resulting procedure is passed the resulting arguments.

EXAMPLE 9
(+ 3 4) = 7
((if #£ + *) 3 4) = 12

Lre

If more than one of the operator or operand expressions sighals an error, it is system-dependent

which of the errors will be reported to the user.

A number of procedures are available as the values of variables in the initial environment; for

example, the addition and multiplication procedutes in the above examples are the val

variables + and *. New procedures are created by evaluating lambda expressions.

Procedure calls are also called combinations.

NOTE 7 In contrast to other dialects of Lisp, the operator expression and the operand expressions are aly

evaluated with the same evaluation rules.

Lambda Expression

[30] lambda-expréssion = (lambda (formal-argument-list) body)

bes of the

ays

A lambda expression evaluates to a procedure. The environment in effect when the lambda

expression-was evaluated is remembered as part of the procedure. When the procedur

called-with some actual arguments, the environment in which the lambda expression v
evaluated shall be extended by binding the variables in the formal argument list to the
corfesponding actual argument values, and the body of the lambda expression shall be

e 1s later
as

evaluated

in the extended environment. The result of the body shall be returned as the result of {

he

procedure call.

EXAMPLE 10
(lambda (x) (+ x x)) = a procedure
((lambda (x) (+ x x)) 4) = 8
(define reverse-subtract

(lambda (x y) (- y x)))
(reverse-subtract 7 10) = 3

(define add4

34

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

(let ((x 4))
(lambda (y)
(add4 6)

(+ xy))))

= 10

[31] formal-argument-list = required-formal-argument* (# ! optional optiona
argument*)? (# ! rest rest-formal-argument)? (# ! key keyword-formal-argume

[32] required-formal-argument = variable

I-formal-
nt*)?

[33] optional-formal-argument = variable | ((variable initializer))
[34] rest-formal-argument = variable

[35] keyword-formal-argument = variable | ((variable initializer).)
[36] initializer = expression

When the procedure is applied to a list of actual arguihents, the formal and actua
processed from left to right as follows:

a) Variables in required-formal-arguments-dre’bound to successive actual argu
with the first actual argument. It shall.bean error if there are fewer actual arg
required-formal-arguments.

b) Next variables in optional-formal-arguments are bound to remaining actual a
there are fewer remaining actual arguments than optional-formal-arguments,
variables are bound to the result of evaluating initializer, if one was specified

to #f. The initializeri$.evaluated in an environment in which all previous forn

have been bound.

c)

then it’shall be an error if there are any remaining actual arguments.

d))If # ! key was specified in the formal-argument-list, there shall be an even nu
remaining actual arguments. These are interpreted as a series of pairs, where t
of each pair is a keyword specifying the argument name, and the second is the

the argument name is not the same as a variable in a keyword-formal-argume

arguments are

r:Lents starting

ments than

'guments. If
hen the

and otherwise
hal arguments

If there is a rest-formal-argument, then it is bound to a list of all remaining actual arguments.
These remaining actual arguments are also eligible to be bound to keyword-fo
arguments. If there is no rest-formal-argument and there are no keyword-form

rmal-
al-arguments,

mber of

e first member
corresponding
all be an error if

nt, unless there

is a rest-formal-argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for a particular

keyword-formal-argument, then the variable is bound to the result of evaluati

ng initializer if

one was specified, and otherwise to #f. The initializer is evaluated in an environment in which

all previous formal arguments have been bound.

NOTE 8 Use of #!key in a formal-argument-list in the transformation language or style language requires the

keyword feature.

35

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.3.1.5

8.3.2

8.3.2.1

It shall be an error for a variable to appear more than once in a formal-argument-list.

EXAMPLE 11

((lambda x x) 3 4 5 6) = (3 4 5 6)

((lambda (x y #!rest z) 2z)

345 6) = (5 6)

((lambda (x y #!optional z #!rest r #!key i (3 1)) (list x y z i: i j: 3))

34514i: 6 1i: 7) = (345 1i: 6 j: 1)

Conditional Expression

[37] conditional = (if test consequent alternate)
[38] test = expression

[39] consequent = expression

[40] alternate = expression

A conditional is evaluated as follows: first, test is evaluated. If it yields a true value, then

consequent is evaluated and its value is returned. Otherwise, alternate is evaluated andits value
is returned.

EXAMPLE 12
(if (> 3 2) ’'yes ’'no) = yes
(if (> 2 3) ’'yes ’‘no) = no
(if (> 3 2)

(- 3 2)

(+ 3 2)) =1

Derived Expression-Types

[41] derived-expression = cond-expression | case-expression | and-expression | or-expfession |
binding-expression | named-let | quasiquotation

Condrexpression

[42} cond-expression = (cond cond-clause+) | (cond cond-clause* (else expressipn))

[43] cond-clause = (test expression) | (test) | (test => recipient)
[44] recipient = expression

A cond-expression is evaluated by evaluating the fest expressions of each successive cond-clause
in order until one of them evaluates to a true value. When a test evaluates to a true value, then the
result of evaluating the expression in the cond-clause is returned as the result of the entire cond
expression. If the selected cond-clause contains only the test and no expression, then the value
of the test is returned as the result. If the cond-clause contains a recipient, then recipient is
evaluated. Its value shall be a procedure of one argument; this procedure is then invoked on the

36

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

value of the test. If all tests evaluate to false values, and there is no else clause, then an error is
signaled,; if there is an else clause, then the result of evaluating its expression is returned.

EXAMPLE 13

(cond ((> 3 2) ‘’‘greater)
((< 3 2) ’less)) = greater

(cond ((> 3 3) ’'greater)

8.3.2.2

8.3.2.3

(< 3 3) Tess)
(else 'equal)) = equal

Case-expression

[45] case-expression = (case key case-clause+) | (case key cdse-clause* (el se
expression))

[46] key = expression
[47] case-clause = ((datum*) expression)

All the datums shall be distinct. A case-expression is evaluated as follows. key is evaluated and
its result is compared against each datum. H the result of evaluating key is equal|(in the sense of
equal?) to a datum, then the result of evaluating the expression in the corresponding case-

clause is returned as the result of theicase-expression. If the result of evaluating|key is different
from every datum, and if there is an-else clause, then the result of evaluating its gxpression is the
result of the case-expression; otherwise, an error is signaled.

EXAMPLE 14

(case (* 2 3)

((2 3 5 7) “prime)

((1 4 6 8 9)~"composite)) = composite
(case (car \4(c d))

((a e@\o u) ’'vowel)

((w)y 'semivowel)

(else ’‘consonant)) = consonant

And-expression

[48] and-expression = (and test*)

The test expressions are evaluated from left to right, and the value of the first expression that
evaluates to a false value is returned. Any remaining expressions are not evaluated. If all the
expressions evaluate to true values, the value of the last expression is returned. If there are no
expressions then #t is returned.

EXAMPLE 15
(and (= 2 2) (> 2 1)) = #t
(and (= 2 2) (< 2 1)) = #f

37

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©1S0MEC
(and 1 2 ‘c ' (f g)) = (£ g)
(and) = #t
8.3.2.4 Or-expression

[49] or-expression = (or test*)

The test expressions are evaluated from left to right, and the value of the first expression that

8.3.2.%

evaluates to a true value is returned. Any remaining expressions are not evaluated. Jf
expressions evaluate to false values, the value of the last expression is returned. If-thes
expressions then #f is returned.

EXAMPLE 16

(or (= 2 2) (> 2 1)) = #t
(or (= 2 2) (<2 1)) = #t
(or #f #f #f) = #f

Binding expressions
[50] binding-expression = let-expression | let*-expression | letrec-expression
The three binding constructs let, let*, and Tetrec give the expression language a

structure, like Algol 60. The syntax of the thiree constructs is identical, but they differ
regions they establish for their variable bindings. In a 1et expression, the initial valug

all
€ are no

block
in the
'S are

computed before any of the variables become bound; in a 1et * expression, the bindinjgs and

evaluations are performed sequentially; while in a 1etrec expression, all the binding
effect while their initial values are*being computed, thus allowing mutually recursive d

[51] let-expression = (let bindings body)
[52] bindings = (hinding-spec*)

[53] bindingéspec = (variable init)

[54] init’=expression

It(shall be an error for a variable to appear more than once in any bindings. The inits a|
evaluated in the current environment, the variables are bound to the results, and the re

5 are in
efinitions.

re
bult of

evaluating body in the extended environment is returned. Each binding of a variable has body as

its region.

EXAMPLE 17

(let ((x 2) (y 3))
(* xy)) = 6

(let ((x 2) (y 3))

(let ((x 7)
(z (+ x¥)))
(* z x))) = 35

38

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

See also named-let.
[55] let*-expression = (let* bindings body)

A let*-expression is similar to a let-expression, but the bindings are performed sequentially from
left to right, and the region of a binding indicated by a binding-spec is that part of the let*-
expression to the right of the binding-spec. Thus, the second binding is done in an environment
in which the first binding is visible, and so on.

EXAMPLE 18
(let ((x 2) (y 3))
(let* ((x 7)
(z (+ x y)))
(* z x))) = 70

[56] letrec-expression = (letrec bindings body)

Each variable in a binding-spec is bound to the result.of evaluating the corresponding init, and
the result of evaluating body in the extended environment is returned. The inits gre evaluated in
the extended environment. Each binding of a variable in a binding-spec has the gntire letrec-
expression as its region, making it possibleo define mutually recursive procedurgs. It shall be an
error if the evaluation of an init references:the value of any of the variables. In thg most common
uses of letrec, all the inits are lambda-expressions, and this restriction is satisfjed
automatically.

EXAMPLE 19

(letrec ((even?
(lambda, (n)
(if . (zero? n)
#t
(odd? (- n 1)))))
(odd?
(lambda (n)
(if (zero? n)
#£f
(even? (- n 1))))))
(even? 88))
= #t

.3.2.6 Named-let

[57] named-let = (let variable (binding-spec*) body)

Named let has the same syntax and semantics as ordinary let except that variable is bound
within body to a procedure whose formal arguments are the bound variables and whose body is
body. Thus, the execution of body may be repeated by invoking the procedure named by
variable.

39

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

8.3.2.7

EXAMPLE 20

(let loop ((numbers ’(3 -2 1 6 -5))
(nonneg ’())
(neg ' ()))
(cond ((null? numbers) (list nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)

(cons (car numbers) nonneg)
neg)

((< (car numbers) 0)
(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))))
= ((6 1 3) (-5 -2))

Quasiquotation
The following grammar for quasiquote expressions is not context-free. It is presented as|a recipe
for generating an infinite number of production rules. Imagine)a copy of the following fules for
D=1,2,3,.... Dkeeps track of the nesting depth.

[58] quasiquotation = quasiquotation_1

[59] template_O = expression

[60] quasiquotation_D = ‘template_D | tquasiquote template_D)

[61] template_D = simple-datum |list-template_D | unquotation_D

[62] list-template_D = (template-or-splice_D*) | (template-or-splice_D+ . template_D) |
' template_D | quasiquotation_D+1

[63] unquotation_B'= , template_D-1| (unquote template_D-1)
[64] template-or-splice_D = template_D | splicing-unquotation_D

[65] splicing-unquotation_D =, @template_D-1| (unquote-splicing template_D4l)

Oor-a—5p HItGUHoOTartonN

Iy guasiquotations, a list-template_D may sometimes be confused with either an unquos

D-or-sp wa-unguolation_D

takes precedence.

‘Backquote’ or ‘quasiquote’ expressions are useful for constructing a list structure when most but
not all of the desired structure is known in advance. If no commas appear within the template,
the result of evaluating * template is equivalent to the result of evaluating ' template. Ifa
comma appears within the template, however, the expression following the comma is
evaluated (‘unquoted’), and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the following
expression shall evaluate to a list; the opening and closing parentheses of the list are then

40

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

‘stripped away’ and the elements of the list are inserted in place of the comma at-sign expression
sequence.

EXAMPLE 21

‘(list ,(+ 1 2) 4) = (list 3 4)

(let ((name ’‘a)) ‘(list ,name ’,name))
= (list a (quote a))

‘(a ,(+ 1 2) ,@(map abs ‘(4 -5 6)) b)
— (a 3—4—5—F6 b)

‘((foo , (- 10 3)) ,@(cdr "(c)) . ,(car ’'(comns)))
= ((foo 7) . cons)

Quasiquote forms may be nested. Substitutions are made only for unquoted components
appearing at the same nesting level as the outermost backquote. The nesting levell increases by
one inside each successive quasiquotation and decreases by one inside each unquptation.

EXAMPLE 22

‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) £f)
= (a ‘(b ,(+ 1 2) ,(foo 4 d) ek Y
(let ((namel 'x)
(name2 ‘y))
‘(a ‘(b ,,namel ,’,name2 d) e))
= (a ‘(b ,x ,'y d) e)

The notations *template_D and (quésiquote template_D) are identical in all respects.
, expression is identical to (unquote expression), and , @expression is identicgl to
(unquote-splicing expression).

EXAMPLE 23
(quasiquote (list((unquote (+ 1 2)) 4)) = (list 3 4)
' (quasiquote (Iist (unguote (+ 1 2)) 4))
= ‘(list ; (¥ 1 2) 4) 1i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior may result if any of the symbols quasiquote, unquotie, or
unquete-splicing appear in positions within a template other than as des¢ribed above.

8.4_‘Definitions

[66] definition = variable-definition | procedure-definition

Definitions may take two possible forms.

[67] variable-definition = (define variable expression)

This syntax is primitive.

[68] procedure-definition = (define (variable formal-argument-list) body)

This form is equivalent to

41

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

(define variable
(lambda (variable formal-argument-list) body)) .

A definition that does not occur within an expression is known as a top-level definition.

A top-level definition

(define variable expression)

evaluates expression in the top-level environment and binds variable to the result in-the|top-level

environment.

EXAMPLE 24

(define add3
(lambda (x) (+ x 3)))

(add3 3) = 6
(define first car)
(first (1 2)) = 1

A single variable shall not be defined by more than one top-level definition in any progess

specification part. A top-level definition of a variable in a process specification part is
that variable has been defined at the top level in 4 prévious process specification part.

The expression in a top-level definition shall not be evaluated until all top-level variab
would be referenced by evaluating the expression have been defined.

NOTE 9 This constraint does not prevent; the’definition of mutually recursive procedures, because evalual
lambda expression does not reference variables that occur free within it.

It shall be an error if it is.impossible to evaluate all the expressions occurring in top-leyel

definitions in such a way;that this constraint is not violated.

The built-in definition of a variable may be replaced by a top-level definition. The rep
definition shall be used for all references to that variable, even those that occur in proc
specification\parts preceding the part that contains the first top-level definition.

NOTE 10/ This rule is not easy to implement, but it allows built-in procedures to be added in future versid
International Standard without changing the meaning of any conforming DSSSL specifications.

gnored if
See 7.1.

es that

ling a

lacement
PSS

ns of this

Iégl bedy — dﬂii’!titﬂ’l CAPTCISTOTT

Definitions may also occur at the beginning of a body. These are known as internal definitions.
The variable defined by an internal definition is local to the body. The region of the binding is the

entire body. For example,

(let ((x 5))
(define foo (lambda (y) (bar x vy)))
(define bar (lambda (a b) (+ (* a b) a)))
(foo (+ x 3))) = 45

42

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

A body containing internal definitions may always be converted into a completely equivalent
letrec expression. For example, the 1et expression in the previous example is equivalent to

(let ((x 5))
(letrec ((foo (lambda (y) (bar x vy)))
(bar (lambda (a b) (+ (* a b) a))))
(foo (+ x 3))))

Just as for the equivalent letrec expression, it shall be possible to evaluate each expression of

8.5

every internal definition in a body without referring to the value of any variable peing defined.

Standard Procedures

This section describes the expression language's built-in procedures: The initial [or ‘top-level’)
environment starts out with a number of variables bound to useful values, most df which are
primitive procedures that manipulate data. For example, the‘yariable abs is bound to a
procedure of one argument that computes the absolute value of a number, and th¢ variable + is

bound to a procedure that computes sums.

It shall be an error for a procedure to be passed(an argument of a type that it is not specified to
handle.

8.5.1 Booleans
[70] boolean = #t | #£
The standard boolean objects for true and false are written as #t and #f. What really matters,
though, are the objects that the conditional expressions (i f, cond, and, or) tredt as true or
false. The phrase ‘a true value’ (or sometimes just ‘true’) means any object treated as true by the
conditional expressions, and the phrase ‘a false value’ (or ‘false’) means any object treated as
false by the conditional expressions.
Of all the standard values, only #f counts as false in conditional expressions. Except for #f, all
standard values, including #t, pairs, the empty list, symbols, numbers, strings, and procedures,
count\as true.
NOTE 11 Programmers accustomed to other dialects of Lisp should be aware that the expression language
distinguishes both #f and the empty list from the symbol nil.
Boolean constants evaluate to themselves, so they don't need to be quoted in expressions.
EXAMPLE 25
#t = #t
#f = #f
"#f = #f

8.5.1.1 Negation

(not obj)

43

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E) © ISO/IEC

not returns #t if ob7 is false, and returns #f otherwise.

EXAMPLE 26

(not #t) = #£
(not 3) = #f
(not (list 3)) = #f
(not #f) = #t
(not ‘" ()) = #f
(mot (I1ist)) = #L
(not ‘nil) = #f

8.5.1.2 | Boolean Type Predicate

(boolean? obj)

boolean? returns #t if ob7 is either #t or #f and returns #f otherwise.

EXAMPLE 27

(boolean? #f) = #t
(boolean? 0) = #f
(boolean? ' ()) = #f

8.5.2 | Equivalence

(equal? obj; objp)

The equal ? procedure defines an equivalence relation on objects. It returns #t if ob3j; and ob3j,
should be regarded as the same object, and otherwise returns #f. For objects that have external
representations, two objects shall'be the same if their external representations are the same. If
each of obj; and ob7, is of:type boolean, symbol, char, pair, quantity, or string, then the
equal? procedure shall-réturn #t if and only if:

— obj; and obj,.are both #t or both #f.

— obj; and,0b7, are both symbols and

(string=? (symbol->string objl)
(symbol->string obj2))
= #t

=
D

obi.and ob7. a
=t =2

exact or both inexact.

— obj; and obj, are both strings and are the same string according to the string="?
procedure.

— obj and obj, are both characters and are the same character according to the char="?
procedure.

— obj; and ob3j, are both the empty list.

44

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

— ob3j, and obj, are both pairs and the car of obj; is equal? to the car of obj, and the cdr of

obj; is equal? to the cdr of obj,.

If one of ob3j, and obj, is a procedure and the other is not, then equal? shall return #f. If obj,
and ob3j, are both procedures then equal? shall return #f if obj, and obj, would return a

different value for some arguments, and otherwise shall return either #t or #f.

NOTE 12 In other words equality for procedures is not well defined.

8.5.3

Pairs and Lists

A pair (sometimes called a dotted pair) is a record structure with two fields called the car and cdr
fields (for historical reasons). Pairs are created by the procedure cons. The car apd cdr fields are

accessed by the procedures car and cdr. Pairs are used primarily to represent li

5ts. A list may

be defined recursively as either the empty list or a pair whose ¢dr is a list. More precisely, the set

of lists is defined as the smallest set X such that:
— The empty list is in X.
— If 1istis in X, then any pair whose cdr field contains 1ist is also in X.

The objects in the car fields of successive pairs of a list are the elements of the lis

. For example,

a two-element list is a pair whose car is\the first element and whose cdr is a pair whose car is the
second element and whose cdr is the.empty list. The length of a list is the numbgr of elements,

which is the same as the number \of pairs.

The empty list is a special object of its own type (it is not a pair); it has no elemen
is zero.

s and its length

NOTE 13 The abové definitions imply that all lists have finite length and are terminated by the enjpty list.

[71] list =-{datum*) | (datum+ . datum) | abbreviation

The mest general notation (external representation) for pairs is the ‘dotted’ notat
where c is the value of the car field and c, is the value of the cdr field. For exa
is.a pair whose car is 4 and whose cdr is 5. Note that (4 5) is the external rg
a pair, not an expression that evaluates to a pair.

on (<1 C2)
mple (4 5)
presentation of

A more streamlined notation may be used for Histsthe etements of the fistaresim

ply enclosed in

parentheses and separated by spaces. The empty list is written () . For example,

(abcde)
and
(a. (b. (c. (d@. (e. ON)N))

are equivalent notations for a list of symbols.

45

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

A chain of pairs not ending in the empty list is called an improper list. Note that an improper list

is not a list. The list and dotted notations may be combined to represent improper lists:

(abc . d

is equivalent to

(@ . (b . (c . d)))

8.5.3.1

8.5.3.2

8.5.3.3

Whether a given pair is a list depends upon what is stored in the cdr field.
[72] abbreviation = abbrev-prefix datum

[73] abbrev-prefix="1'1,1,@

Within literal expressions, the forms ’ datum, *datum, , datum, and(, @datum denote the two-

element list whose first element are the symbols quote, quasigudte, unquote, and
unquote-splicing, respectively. The second element in-éach case is datum. This

convention is supported so that arbitrary expressions and portions of the specification may be
represented as lists. That is, according to the DSSSL exptession language grammar, every

expression is also a datum, and a transformation-language-body is a sequence of datunys.

Pair Type Predicate

(pair? obj)

Returns #t if obj is a pair, and otherwise returns #f.

EXAMPLE 28

(pair? "(a . b)) = #t
(pair? ’(a b c)) = #t
(pair? ' ()) = #f

Pair Construction Procedure

(cons Objl Objz)

Returns a pair whose car is obj; and whose cdr is ob7,.

EXAMPLE 29

(cons 'a ’()) = (a)

(cons ’(a) ‘(b c 4d)) = ((a) b c d)
(cons "a" ’'(b c)) = ("a" b c)
(cons ‘a 3) = (a . 3)
(cons ‘(a b) ’'c) = ((a b) . ¢)

car Procedure

(car pair)

46

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

Returns the contents of the car field of pair. Note that it shall be an error to take the car of the

empty list.

EXAMPLE 30

(car '(a b c)) = a
(car '((a) b c 4d)) = (a)
(car (1 . 2)) = 1
(car ’()) = error

8.5.3.4 cdr Procedure

(cdr pair)

Returns the contents of the cdr field of pair. Note that it shall be(an error to takg the cdr of the

empty list.

EXAMPLE 31

(cdr ’((a) b c d)) = (b c d)
(cdr " (1 . 2)) = 2

(cdr ' ()) = error

8.5.3.5 c...r Procedures

(caar pair)

(cadr pair)

(cdar pair)

(cddr pair)

(caaar pair)
(caadr pair)
(cadar pair)
(caddr pair)
(cdaar pair)
(cdadxy pair)
(cddax’ pair)
(cdddr pair)
(Caaaar pair)
(caaadr pair)

(caadar pair)

(caaddr pair)
(cadaar pair)
(cadadr pair)
(caddar pair)
(cadddr pair)
(cdaaar pair)
(cdaadr pair)
(cdadar pair)
(cdaddr pair)

47

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

8.5.3.6

8.5.3.7

8.5.3.8

(cddaar pair)
(cddadr pair)
(cdddar pair)
(cddddr pair)

These procedures are compositions of car and cdr, where for example caddr could be defined

by

. P S T S
—(def e caddr—{tambda—txr—<car

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of these

procedures in all.

Empty List Type Predicate

(null? obj)

Returns #t if ob7j is the empty list, and otherwise returns #f.

List Type Predicate

(list? obj)

Returns #t if ob7 is a list, and otherwise returns)#f. By definition, all lists have finite le

are terminated by the empty list.

EXAMPLE 32

(list? ’"(a b c)) = #t
(list? " ()) = %t
(list? "(a . b)) =S N-H#E

List Construction
(list obj ..)
Returns a list of its arguments.

EXAMPLE 33

(list 'a (+ 3 4) ’c)
(Vist)

=
=

(a 7 c)
()

ngth and

8.5.3.9

List Length

(length list)

Returns the length of 1ist.

EXAMPLE 34

(length '(a b c))
(length ’(a (b) (c d e)))
(length ’())

LUl

w

48

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

8.5.3.10

Lists Appendance

(append list ..)

Returns a list consisting of the elements of the first 1ist followed by the elements of the other

lists.

EXAMPLE 35

8.5.3.11

8.5.3.12

(append ’ (x) ‘' (y)) = (xvy)
(append ‘(a) ‘(b c d)) = (a b c d)
(append ‘(a (b)) " ((c))) = (a (b) (c))

The last argument may actually be any object; an improper list results if the last 4
a proper list.

EXAMPLE 36

(append ’(a b) ’(c . d)) = (abc . d
(append ' () ‘a) = a

List Reversal
(reverse 1list)
Returns a list consisting of the elements.of 1ist in reverse order.

EXAMPLE 37

(reverse ‘(a b c¢)) = (c b a)
(reverse ‘(a (b c) d(e (f)))) = ((e (£)) d (b c) a)

Sublist Extraction

(list-tail, list k)

irgument is not

Returns the sublist of 1ist obtained by omitting the first k elements. List-taj1 could be

defined by

(define list-tail
(lambda (x k)
(if (zero? k)
X

(list-tail (cdr x) (- k 1)))))

8.5.3.13

List Access

(list-ref list k)

Returns the kth element of 1ist. (This is the same as the car of (list-tail

list k).)

49

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISO/IEC
EXAMPLE 38
(list-ref "(a b c d) 2) = cC
(list-ref "(a b ¢ 4d)
(inexact->exact (round 1.8))) = c

8.5.3.14

List Membership

(member obj list)

8.5.3.1%

8.5.4

|_property needed to represent identifiers_so most implementations of Tisp dialects use|

Returns the first sublist of 11ist whose car is equal? to obj, where the sublists of \Zi|st are the

non-empty lists returned by (list-tail list k) for k less than the length,0f)Ii s
does not occur in 11ist, then #f (not the empty list) is returned.

EXAMPLE 39

(member ‘a ’‘(a b c¢)) = (a b c)
(member ‘b ’‘(a b c)) = (b c)
(member ‘a ‘(b c d4d)) = #f

Association Lists

(assoc obj alist)

alist (for ‘association list’) shall be a list of pairs. This procedure finds the first pair
whose car field is equal? to obj and returfs-that pair. If no pairin alist has obj
then #f (not the empty list) is returned.

EXAMPLE 40

(define e ’'((a 1) (b 2) (e, 3)))
(assoc ’'a e) = (a, 1)
(assoc 'b e) = ..(b*2)
(assoc 'd e) = #f

t. If obj

inalist
hS its car,

NOTE 14 Although«they are ordinarily used as predicates, member and assoc do not have question mayks in their

names because they return useful values rather than just #t or #f.

Symbols

Symbols are objects whose usefulness rests on the fact that two symbols are identical
sense of equal?) if and only if their names are spelled the same way. This is exactly

in the
the

internally for that purpose. Symbols are useful for many other applications; for instan
may be used the way enumerated values are used in Pascal. Typically, two symbols m
compared for equality in constant time, no matter how long their names.

[74] symbol = identifier

them
ce, they
ay be

The rules for writing a symbol are exactly the same as the rules for writing an identifier.

50

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

8.5.4.1 Symbol Type Predicate

(symbol? obj)

Returns #t if obj is a symbol, and otherwise returns #f.

EXAMPLE 41

(symbol? ’‘foo) = #t
(symbol? (car ’'(a b))) = #t
(symbol? "bar") = #f
(symbol? ’‘nil) = #t
(symbol? ‘()) = #f
(symbol? #f£f) = #f

B.5.4.2 Symbol to String Conversion

(symbol->string symbol)

Returns the name of symbol as a string.

EXAMPLE 42
(symbol->string ‘flying-fish) = "flying-fish"
(symbol->string

(string->symbol "Malvina")) = "Malvina"

B.5.4.3 String to Symbol Conversion

(string->symbol string)

Returns the symbol whose name is string. This procedure may create symbo|s with names
containing special characters, but it is usually a bad idea to create such symbols|because they
have no external.representation. See symbol->string.

EXAMPLE 43
(equal?/ 'mISSISSIppi ‘mississippi) = #f
(equal? ’'bitBlt (string->symbol "bitBlt")) = #t

(&qual? ‘JollyWog
(string->symbol
(symbol->string ‘JollyWog))) = #t
(string=? "K. Harper, M.D."

(syvmbol->gstring
=Y 4

(string->symbol "K. Harper, M.D.")) = #t

8.5.5 Keywords

Keywords are similar to symbols. The main difference is that keywords are self-evaluating and
therefore do not need to be quoted in expressions. They are used mainly for specifying keyword
arguments.

[75] keyword = identifier :

51

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

8.5.5.1

8.5.5.2

8.5.5.3

8.5.6

8.5.7

8.5.7.1

A keyword is a single token; therefore, no whitespace is allowed between the identifier and the :.

The : is not considered part of the name of the keyword.
Keyword Type Predicate

(keyword? obj)

Returns #t if obj is a keyword, and otherwise returns #f.

Keyword to String Conversion
(keyword->string keyword)
Returns the name of keyword as a string.

EXAMPLE 44

(keyword->string Argentina:) = "Argentina"

String to Keyword Conversion

(string->keyword string)

Returns the keyword whose name is string.

EXAMPLE 45

(string->keyword "foobar") = foobar:
Named Constants
[76] named-constant = #!'optional | #!rest | #!key

Named-constants areused in formal-argument-lists. They are self-evaluating. The name
have their own unique (unnamed) type that is distinct from the type of any other object.

Quantities:and Numbers

Numerical Types

d objects

The expression langnage provides a quantity data type which represents lengths and qu

ntities

derived from lengths, such as areas and volumes. The SI meter is used as the base unit for
representing quantities. The name of this unit is m. Any quantity may be represented as the

product of a number and the base unit raised to the power of an integer. The dimension

of a

quantity is the power to which the base unit is raised when the quantity is so represented. A

quantity with dimension 0 is dimensionless.

It is convenient to be able to express quantities not only in terms of the base unit but also in terms

of other derived units.

[77] unit-declaration = (define-unit unit-name expression)

52

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

expression shall evaluate to a quantity. A unit-declaration declares the derived quantity unit-
name to be equivalent to this quantity. In this context, unit-name is a separate token.

Derived units for centimeters, millimeters, inches, picas, and points, corresponding to the
following declarations, are pre-defined.

(define-unit cm 01lm)
(define-unit mm 001m)

.5.7.2

0.

0.
(define-unit in 0.0254m)
(define-unit pt 0.0003527778m)
(define-unit pica 0.004233333m)

The number data type is considered to be a subtype of quantity that represents dijnensionless
quantities. The expression language provides two types of number: reals and int¢gers. Integers
are considered to be a subtype of reals, and reals are a subtype of\numbers. For gxample, the
integer 3 is also considered to be a real number, which, in turi, is considered to be a
(dimensionless) quantity. The types quantity, number, real,'and integer are defingd by the
predicates quantity?, number?, real?, and inteder?.

Angle (or more precisely, plane angle) is considered to be a dimensionless quantjty (the ratio of
two lengths). The integer 1 is equivalent to 1 radian. It is recommended that raq be declared as
the name of a derived unit equal to the dimensionless quantity 1.

Exactness

It is necessary to distinguish between quantities that are represented exactly and those that may
not be. For example, indexesdnto data structures shall be known exactly. In ordgr to catch uses
of inexact quantities whereexact quantities are required, the expression languagg explicitly
distinguishes exact frontinexact quantities. This distinction is orthogonal to the dimension of

type.

Quantities are either exact or inexact. A quantity is exact if it was written as an exact constant or
was derivedfrom exact quantities using only exact operations. A quantity is inexact if it was
written as an inexact constant, if it was derived using inexact ingredients, or if it was derived
using inexact operations. Thus, inexactness is a contagious property of a quantity.

If two implementations produce exact results for a computation that did not invo}ve inexact
intermediate results, the two ultimate results shall be mathematically equivalent. | This is
generally not true of computations involving inexact quantities since approximate methods such

a5 fioating point arithmetic may be used; but impiememntations stoutd mmake the tesult as close as
practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact arguments.
If the operation is unable to produce an exact result, then it may either report the violation of an
implementation restriction, or it may silently coerce its result to an inexact value.

With the exception of inexact->exact, the operations described in this section shall
generally return inexact results when given any inexact arguments. An operation may, however,
return an exact result if it can prove that the value of the result is unaffected by the inexactness of

53

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.5.7.3

__different from the supported range for inexact numbers of that type. For example, an

its arguments. For example, multiplication of any quantity by an exact zero may produce an
exact zero result, even if the other argument is inexact.

Implementation Restrictions

Implementations may also support only a limited range of numbers of any type, subject to the
requirements of this section. The supported range for exact numbers of any type may be

implementation that uses floating point numbers to represent all its inexact real numbgrs may
support a practically unbounded range of exact integers while limiting the rangef ingxact reals
(and, therefore, the range of inexact integers) to the dynamic range of the floating point format.
All implementations are required to support exact integers between -2147483647 and
2147483647.

An implementation shall support exact integers throughout the range’of numbers that may be
used for indexes of lists and strings or that may result from computing the length of a list or
string. The length and string-length procedures shallreturn an exact integer, and it shall
be an error to use anything but an exact integer as an index." Furthermore, any integer constant
within the index range, if expressed by an exact integer syntax, shall indeed be read ag an exact
integer, regardless of any implementation restriction$ that may apply outside this rangg. Finally,
the procedures listed below shall always return an exact integer result provided all the
arguments are exact integers and the mathematically expected result is representable ak an exact
integer within the implementation:

—

+ - *
quotient remainder modulo
max min abs
floor ceiling truncate
round expt

If one of these procedures is unable to deliver an exact result when given exact arguments, then it
may either report a\violation of an implementation restriction or it may silently coercelits result
to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strategies for
inexaet\numbers.

This International Standard recommends, but does not require, that the IEEE 32-bit and 64-bit
floating point standards be followed by implementations that use floating point repres¢ntations,

and that implementations using other representations should match or exceed the precision
achievable using these floating point standards.

In particular, implementations that use floating point representations shall follow these rules. A
floating point result shall be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If, however,
an exact quantity is operated upon so as to produce an inexact result (as by sqrt), and if the
result is represented as a floating point number, then the most precise floating point format

54

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

8.5.7.4

available shall be used; but if the result is represented in some other way, then the representation
shall have at least as much precision as the most precise floating point format available.

If an implementation encounters an exact numerical constant that it cannot represent as an exact
quantity, then it may either report a violation of an implementation restriction, or it may silently
represent the constant by an inexact quantity.

Syntax of Numerical Constants

[78] number = num-2 | num-8 | num-10 | num-16
[79] num-2 = #b sign? digit-2+

[80] num-8 = #o sign? digit-8+

[81] num-16 = #x sign? digit-16+

[82] num-10 = #4d7? sign? decimal exponent? unit?.
[83] decimal = digit-10+ | . digit-10+ | digit-10+ . digit-10*
[84] exponent = exponent-marker sign?digit+
[85] exponent-marker = e

[86] unit = unit-name (sign?(digit-10+)?

[87] unit-name = letter+

[88] sign=+1+4

[89] digit=2=011

[90). digit-8=011121314151617

[91] digit-10 = digit

[92] digit-16 =digit-10lalblcldlel £

[93] digit=0111213141516171819

A quantity may be written in binary, octal, decimal, or hexadecimal by the use of a radix prefix.
The radix prefixes are #b (binary), #o (octal), #d (decimal), and #x (hexadecimal). With no
radix prefix, a quantity is assumed to be expressed in decimal.

A numerical constant is inexact if it contains a decimal point, an exponent or a unit, otherwise, it
is exact.

55

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/MTEC 10179:1996(E)

© ISO/IEC

8.5.7.5

8.5.7.6

NOTE 15 The examples used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact quantity. Some examples also assume that certain numerical constants written using an
inexact notation may be represented without loss of accuracy; the inexact constants were chosen so that this is likely to

be true in implementations that use floating point numbers to represent inexact quantities.

A numerical constant may have a unit suffix. Each unit-name shall be the name of the base unit
or shall be declared by a unit-declaration. A unit-name shall not be an exponent-marker. If no

number follows the unit-name, the constant is multiplied by the quantity associated with
A TTamber-wi O STgIor-asign—o oHows-theunit-name—the-constantis-multiph

quantity associated with the number name raised to the power of the following numbep

number with a sign of - follows the unit-name, the constant is divided by the quantity a

with the unit-name raised to the power of the absolute value of the following mumber.

Number Type Predicates

(quantity? obj)
(number? obj)
(real? obj)
(integer? obj)

These type predicates may be applied to any kind of argument, including non-quantitie
return #t if the object is of the named type, and otherwise they return #f. In general, if
predicate is true of a quantity, then all higher, type predicates are also true of that quant

the unit.

ed by the

Ifa
ssociated

5. They

type
ty.

Consequently, if a type predicate is false for a'quantity, then all lower type predicates are also

false for that quantity.

If x is an inexact real number, then\(integer? x) is true if and only if (= x (rou
EXAMPLE 46

(real? 3) = #t

(integer? 3.0) = #t

nd x)).

NOTE 16 The behaviprt of these type predicates on inexact quantities is unreliable, since any inaccuracy ray affect

the result.

Exactnéss Predicates

(éxact? Qq)
(dnexact? Q)

8.5.7.7

These numerical predicates provide tests for the exactness of a quantity. For any quantity,

precisely one of these predicates is true.

Comparison Predicates

(= aq @ g3)
(< g a@ gz ..)
(> aq a g3 ..)

(<= q @ g3 ..)

56

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(>= a ¢ g3 -)

These procedures return #t if their arguments are (respectively): equal, monotonically increasing,
monotonically decreasing, monotonically nondecreasing, or monotonically nonincreasing.

These predicates are required to be transitive.

The dimensions of all the arguments shall be identical.

8.5.7.8

NOTE 17 While it is not an error to compare inexact quantities using these predicates, the results'may be unreliable
because a small inaccuracy may affect the result; this is especially true of = and zero?.

Numerical Property Predicates

(zero? Q)
(positive? Q)
(negative? q)
(odd? n)
(even? n)

These predicates test a quantity for a particular)property, returning #t or #f. See pote above.

§.5.7.9 Maximum and Minimum

(max q; @ ..)

(min ql Q2)

These procedures return the maximum or minimum of their arguments. The dimepsions of all the
arguments shall be identieal; the dimension of the result shall be the same as the dimension of the
arguments.

EXAMPLE 47

(max 3 4) = 4 ; exact

(max 319 4) = 4.0 ; inexact
NOTE 18 If any argument is inexact, then the result shall also be inexact (unless the procedure cap prove that the
inaccuracy is not large enough to affect the result, which is possible only in unusual implementations). If min or max
is used to compare quantities of mixed exactness, and the numerical value of the result cannot be represented as an
inexact quantity without loss of accuracy, then the procedure may report a violation of an implemgntation restriction.

8.5.7.10 Addition

(+ (@)})

Returns the sum of its arguments, which shall all have the same dimension. The result shall have
the same dimension as the arguments.

57

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.5.7.11

EXAMPLE 48

(+ 3 4) = 7
(+ 3) = 3
(+) = 0

Multiplication

(* di)

8.5.7.1]

™

8.5.7.18

Returns the product of its arguments. The dimension of the result shall be the sumcof the
dimensions of the arguments.
EXAMPLE 49

(* 4)
(*)

il

Subtraction

(- [e4] qz)
(- q
(- g @)

With two or more arguments, returns the difference of its arguments, associating to thq left; with
one argument, returns the negation of its argument. The dimensions of all the argumens shall be
identical. The dimension of the result shall be the same as the dimension of the arguments.

EXAMPLE 50

(- 3 4) =) -1
(- 3 405) = -6
(- 3) = -3

Division
(/ a1 @)

(/7
(/ qi\d)

With two or more arguments, returns the quotient of its arguments, associating to the left; with
One argument, returns 1 divided by the argument. The dimension of the result shall be{the

8.5.7.14

direrence ol the dimensions or €ach oI e arguments.

EXAMPLE 51
(/ 3 45) = 3/20
(/7 3) = 1/3

Absolute Value

(abs q)

Returns the magnitude of its argument.

58

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10

179:1996(E)

8.5.7.15

EXAMPLE 52

(abs -7) = 7

Number-theoretic Division

(quotient n; mp)
(remainder n; mn,)

(modulo n. ns)
T 4

These procedures implement number-theoretic (integer) division: For positive i
ny, if n3 and n4 are integers such that n; = nyn3 +n4 and 0 < ny < n,, then'the fol

(quotient n; ny) =
(remainder nj ny) = ny
(modulo n; ny) = n

For integers n; and n, with n, not equal to 0,

(= np (+ (* Ny (quotient ny m))
(remainder n; m,))}
= At

provided all numbers involved in that computation are exact. The value returned
always has the sign of the product of its arguments. remainder and modulo di
arguments — the remainder is either'zero or has the sign of the dividend, wher
always has the sign of the divisor;

EXAMPLE 53

(modulo 13 4) = 1

(remainder 13 4) = 1

(modulo -13 4) = 3

(remainder -13 4) = -1

(modulo.13 -4) = -3

(remainder 13 -4) = 1

(mgdulo -13 -4) = -1

(remainder -13 -4) = -1

(remainder -13 -4.0) = -1.0 ; inexact

tegers nj and
owing is true.

by quotient
ffer on negative
pas the modulo

8.5.7.16

Real to Integer Conversion

(floor x)
(ceiling x)
(truncate x)
(round x)

These procedures return integers.

59

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TIEC 10179:1996(E)

© ISO/IEC

8.5.7.17

8.5.7.18

floor returns the largest integer not larger than x. ceiling returns the smallest integer not
smaller than x. truncate returns the integer closest to x whose absolute value is not larger than
the absolute value of x. round returns the closest integer to x, rounding to even when x is

halfway between two integers.

NOTES

19 round rounds to even for consistency with the default rounding mode specified by the IEEE floating point

standard.

20 If the argument to one of these procedures is inexact, then the result shall also be inexact. If an.exact
needed, the result should be passed to the inexact->exact procedure.

EXAMPLE 54

(floor -4.3)
(ceiling -4.3)
(truncate -4.3)
(round -4.3)

tiul
-~

(floor 3.5)
(ceiling 3.5)
(truncate 3.5)
(round 3.5)

LI |
W e Ww
cooo

; inexact

U

(round 7)

¢" and Natural Logarithm
(exp Xx)
(log x)

Returns e raised to the power of x. 1og computes the natural logarithm of x (not the bg
logarithm). If x is zero Or negative, an error shall be signaled.

Trigonometric.Functions

(sin x)
(cos (Xx)
(tan x)

alue is

se-ten

s84n, cos, and tan return the sine, cosine, and tangent of their arguments, respectively.

8.5.7.19

result shall be a number.
Inverse Trigonometric Functions

(asin x)
(acos x)
(atan x)
(atan g @)

The

60

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©)SO/EC ISO/IEC 10179:1996(E)

asin, acos, and atan return the arcsine, arccosine, and arctangent of their arguments,
respectively. The result shall be a number. The two-argument variant of atan returns the angle
of the complex number whose real part is the numerical value of g, and whose imaginary part is
the numerical value of g;; the dimensions of g; and g, shall be identical.

asin returns a value in the range -/2 to /2. acos returns a value in the range O to . atan
returns a value in the range -n/2 to /2.

8.9.7.20 Square Root

(sqrt q)

Returns the square root of g. The dimension of g shall be even. The diménsion of|the result shall
be half the dimension of g. If g is negative, an error is signaled.

8.8.7.21 Exponentiation

(expt X1 X3)

Returns x, raised to the power x,. (expt x; 0) s defined to be equal to 1.

8.5.7.22 Exactness Conversion

(exact->inexact Qq)
(inexact->exact Q)

Exact->inexact returns apsinexact representation of g. The value returned is [the inexact
quantity that is numerically €losest to the argument. If an exact argument has no r¢gasonably close
inexact equivalent, then'a-violation of an implementation restriction may be reported.

Inexact->exact returns an exact representation of g. The value returned is the exact
quantity that is numerically closest to the argument. If an inexact argument has np reasonably
close exact-&quivalent, then a violation of an implementation restriction may be reported.

These'procedures implement the natural one-to-one correspondence between exaft and inexact
intégers throughout an implementation-dependent range.

8.5.7.23 Quantity to Number Conversion

tquarntity=—>rumber—g)

Returns the number of the quantity g.

8.5.7.24 Number to String Conversion

(number->string number)
(number->string number radix)

61

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISO/IEC

Radix shall be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to 10. The
procedure number->string takes a number and a radix and returns as a string an external
representation of the given number in the given radix such that

(let ((number number)
(radix radix))
(equal? number
(string->number (number->string number
radix)

radix)))
is true. It shall be an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression may be satisfied by a r¢sult that
contains a decimal point, then the result contains a decimal point and is.expressed using the
minimum number of digits (exclusive of exponent and trailing zero€s) needed to make the above
expression true; otherwise, the format of the result is unspecified.

The result returned by number->string never contains‘an-explicit radix prefix.

NOTE 21 If number is an inexact number represented using fldating-point numbers, and the radix is 10,[then the
above expression is normally satisfied by a result containing-a‘decimal point. The unspecified case allow$ for
infinities, NaNs, and non-floating-point representations.

(format-number n string)

Returns a string representation of n. string specifies the format to use as follows:
— 1 meansuse 0, 1,2 ...

— 01 means use 00, 01,-02;*... 10, 11 ... 100, 101 ... and similarly for any number of|leading
Zeros;

— a means use0,4, b, c, ... z, aa, ab, ...
— Ameansiuse 0, A, B, C, ... Z, AA, AB, ...

— JiMNmeans use 0, i, 1i, iil, 1v, v, Vi, Vii, Viil, IX, X, ...

<< I meansuse 0, I, I, IIT, IV, V, VI, VII, VIII, IX, X, ...

(format-number-list Iist obj; obj,)

Returns a string representation of 1ist, where 1ist is a list of integers. obj; specifies the
format to use for each number. It shall be either a single string specifying the format to use for
all numbers in the same manner as format-number or a list of strings with the same number of
members as 1ist specifying the format to use for each string in the same manner as format-
number. obj, is either a single string or a list of strings specifying the separator to be used
between the strings representing each number; it shall contain either a single string or a list of
strings with one fewer members than 1ist.

62

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

8.5.7.25

8.5.8

String to Number Conversion

(string->number string)
(string->number string radix)

Returns a number of the maximally precise representation expressed by the given string.
radix shall be an exact integer, either 2, 8, 10, or 16. If supplied, radixis a default radix that
may be overridden by an explicit radix prefix in string (e.g., "#0177"). If radix is not

number, then string->number returns #f.

EXAMPLE 55

(string->number "100") = 100
(string->number "100" 16) = 256
(string->number "le2") = 100.0
Characters

The character object represents a character.

[94] character = #\ any-character | #\ character-name

[95] character-name = letter (letter | digit| - | .)+

Characters are written using the notation # \character or #\ character-name. For
— #\a: lower-case letter ‘a!

— #\A: upper-case Jetter ‘A’

— #\ (: left parenthesis

— #\ the'space character

—< #\space: the preferred way to write a space

If the character in #\any-character is alphabetic, then the character following an
shall be a delimiter character such as a space or parenthesis. This rule resolves t

—supplicd; themr the defautt tadix s 10— strimgis ot asymtacticatty vatid motation for a

example:

y-character
he ambiguous

; ; space
representation of the space character or a representation of the character ‘#\ s’
representation of the symbol ‘pace.’

to be either a
followed by a

The character-name shall be the name of a character declared in the character repertoire

declaration.

Characters written in the #\ notation are self-evaluating. That is, they do not have to be quoted in

expressions.

63

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.5.8.1

8.5.8.2

Character Properties
Every character has a set of named properties. Each property has a default value.
[96] character-property-declaration = (declare-char-property identifier expression)

This declares identifier to be a character property with the default value equal to the value of
expression.

[97] added-char-properties-declaration = (add-char-properties keyword-argument-list
character+)

[98] keyword-argument-list = (keyword expression)*

The added-char-properties-declaration adds properties to each of the'characters. The keyword-
argument-list specifies the properties to be added. The keyword specifies the property name, and
the expression specifies the property value. Each property either'shall be a property that is pre-

defined in this International Standard or it shall be explicitly.declared using a character
property-declaration.

The following character property is pre-defined:

— numeric-equiv: is an integer giving.the numeric equivalent of the character or #f. The
default value is #f.

Additional properties are pre-defined’for the style language.

Language-dependent Operations

Certain operations on chdracters such as case-conversion and collation are dependent gn the
natural language for.which the characters are being used. The language data type descfibes how
language-dependent operations should be performed. Expressions may be evaluated with respect
to a current language. It shall be an error to call procedures which use the current langpage if
there is nowcurrent language.

Some-of the procedures that operate on characters ignore the difference between upper|case and
lower case. The procedures that ignore case have ‘~ci’ (for ‘case-insensitive’) embedded in
their names. These procedures always behave as if they converted their arguments to upgper case.

These procedures all use the current language. See 8.5.8.5 for these procedures.
(language? obj)

Returns #t if ob7 is of type language, and otherwise returns #f.
(current-language)

At any point in a computation there may be a current language. current-language returns
the current language if there is one, and otherwise returns #f.

64

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10

179:1996(E)

[99] default-language-declaration = (declare-default-language expression)

A default-language-declaration declares the current language which is used initi
evaluation of an expression. The expression shall evaluate to a language object.

(with-language language proc)

ally in the

The with-language procedure calls proc, which shall be a procedure of no arguments, with

8.8.8.2.1

8.5.8

2.1.1

language as the current language.

Language Definition

[100] language-definition = (define-language variable [[collation-specific
toupper-specification? | tolower-specification?]])

A language-definition defines variable to be an object of type language.

Collation

[101] collation-specification = (collate [[multizcollating-element-specificatig
symbol-specification*1] order-specification)

A collation-specification determines the'relative order of strings.

NOTE 22 The syntax of the collation-specification is based on ISO 9945-2, which contains examj
the reader.

ation? |

on* | collating-

les that may assist

[102] multi-collating-element-specification = (element multi-collating-elemept string)

[103] multi-collatings€lement = identifier

When two strings are compared, each string is divided up into collating elements
element is-€ither a single character or a sequence of consecutive characters that ig
a singleunit. A multi-collating-element-specification declares that the sequence

Each collating
to be treated as
of characters in

the stting is to be treated as a collating element. Within the order-specification, this collating
elément is identified by the multi-collating-element. Identifiers declared as multitcollating-

elements shall be distinct from those used as weight-identifiers.

[104] collating-symbol-specification = (symbol weight-identifier)

[105] weight-identifier = identifier

A collating-symbol-specification declares that weight-identifier is a symbolic ide
weight, which may be used within the order-specification.

[106] order-specification = (order sort-rules collation-entry*)

[107] sort-rules = (level-sort-rules+)

ntifier for a

65

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

Each order specification defines a number of different comparison levels. If two strings compare
equal at the first level, they are compared at the second level. If they also compare equal at the
second level, they are compared at the third level. This process is repeated until there are no
more levels or until the strings compare unequal. The number of levels in the order specification
is determined by the number of level-sort-rules.

[108] level-sort-rules = sort-keyword | ((sort-keyword+))

[109] sort-keyword = forward | backward | position

The level-sort-rules determine for each level how the strings are to be compared» At a given
level, each collating-element in the strings to be compared is assigned zero or more
weights. This results in an ordered list of weights for each string.

The backward and forward sort-keywords determine the comparison direction for the level.
If the backward sort-keyword is specified, then comparison proceeds from the last weight to the
first; otherwise, it proceeds from the first weight to the last.

If the position sort-keyword is specified, then the position of the collating element
corresponding to each weight is considered when comparing weights. When comparing two
weights with different positions, the weight with the earlier position (in the comparison
direction) shall collate first.

A single level-sort-rules shall not contaiti.both forward and backward.

[110] collation-entry = ((collatingzélement level-weight*)) | weight-identifier | collat{ng-
element

Each collation entry is assoeiated with a weight determined by its position in the order
specification. The first collation entry is associated with the lowest weight, the second with the
next lowest weight\and so on.

When a collatioh-entry is a weight-identifier, then the effect of the collation-entry is tolassociate
the weight=identifier with the weight with which the collation-entry is associated.

A cellation-entry that contains a collating-element serves two purposes. First, it assigns weights
for.each level to the collating-element. Second, it makes collating-element stand for the weight
associated with the collation-entry when the collating-element is used in a weight

If a level-weight is not specified for some level, then the single weight associated with the
collation-entry shall be assigned. For example, a collation-entry of #\a is equivalent to a
collation-entry of (#\a #\a).

[111] collating-element = character | multi-collating-element | #t

When #t is used as a collating-element, then the specified weights are assigned to all collating
elements to which no weight has been explicitly assigned by a collation-entry.

66

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

[112] level-weight = weight | weight-list
[113] weight-list = (weight*)
The level-weight specifies the weights to be assigned for a particular level.

[114] weight = weight-identifier | multi-collating-element | character | string

8.5.8

Specifying a string is equivalent to specifying a list of the characters it contains,

(char-ci=? char; char,)
(char-ci<? char; chary)
(char-ci>? char; char)
(char-ci<=? char; chary)
(char-ci>=? char; char,)

.2.1.2 Case Conversion
[115] toupper-specification = (toupper case-conversion-list)
[116] tolower-specification = (tolower case-conversion-list)
[117] case-conversion-list = ((character character))*
In the case-conversion-list, the upper-case or lowerscase equivalent of the first cIaracter in each
pair is the second character in that pair according as the case-conversion-list occurs in a toupper-
specification or a tolower-specification.
.5.8.3 Character Type Predicate
(char? obj)
Returns #t if ob7 is a charactér, and otherwise returns #f.
.5.8.4 Character Comparison-Predicates
(char=? chary char,)
(char<? chary charp)
(char>?char; chary)
(char<=? char| char,)
(chax>=? char| chary)
These procedures impose a total ordering on the set of characters. All the procedpires other than
char="? use the current language.

67

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.5.8.6

8.5.8.7

8.5.9

These procedures are similar to char="? etc., but they treat upper-case and lower-case letters as
the same. All these procedures use the current language. For example, (char-ci=? #\A
#\a) returns #t.

Character Case Conversion

(char-upcase char)

_(char-downcase char)

The procedures return the upper- or lower-case equivalent of char as defined by the cquent
language. If char has no upper- or lower-case equivalent, char is returned.

Character Properties
(char-property symbol char)
(char-property symbol char obj)

Returns the value of the property symbol of char. If symbol'is not a character propeity, an
error is signaled. If char does not have a property symbodl, then obj is returned, or if pbj was
not specified, the default value of the property is returned:

Strings

Strings are sequences of characters.
[118] string = " string-element* "
[119] string-element = any-character-other-than-"-or-\| \ " | \\ | \character-name ;

Strings are written as sequences of characters enclosed within doublequotes ("). A doublequote
may be written inside a string by escaping it with a backslash (\), as in

"The word \"reeursion\" has many meanings."

A backslash'may be written inside a string by escaping it with another backslash. Any gharacter
may be written inside a string by writing its name after a backslash. The name shall be followed
by a semi-colon, unless there are no following characters in the string, or the following ¢haracter
is not\a subsequent. The name used here is the same as the name used in #\ syntax for characters.

A STFNg CONStant may CONUNUE from One record 1o the next and strattcomtaimthe tharacters that
separate the two records in the entity.

The length of a string is the number of characters that it contains. This number is a non-negative
integer that is fixed when the string is created. The valid indexes of a string are the exact non-
negative integers less than the length of the string. The first character of a string has index 0, the
second has index 1, and so on.

In phrases such as ‘the characters of string beginning with index start and ending with
index end,’ it is understood that the index start is inclusive and the index end is exclusive.

68

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

8

®

.5.9.1

Thus, if start and end are the same index, a null substring is referred to, and if start is zero

and end is the length of string, then the entire string is referred to.

Some of the procedures that operate on strings ignore the difference between upper and lower
case by converting the strings to upper case before performing the operation. The versions that

ignore case have ‘-ci’ (for ‘case-insensitive’) embedded in their names.

String Type Predicate

5.9.2

5.9.3

16.9.4

15.9.5

(string? obj)

Returns #t if ob7j is a string, and otherwise returns #f.

String Construction

(string char ..)

Returns a string composed of the arguments.
String Length

(string-length string)

Returns the number of characters in thégiven string.

String Access

(string-ref string k)

k shall be a valid index of string. string-ref returns character k of string using zero-

origin indexing.
String Equivalence

(string=2? string; string,)
(st¥ing-ci=? string; string,)

Return #t if the two strings are the same length and contain the same characters if the same
positions, and otherwise return #f. string-ci="? treats upper- and lower-case l¢tters as though
they were the same character, but string="? treats upper- and lower-case lettery as distinct

characters. string-ci1="7 uses the current language.

(string-equiv? string; string, k)

Returns #t if the two strings compare the same at the first k comparison levels of the collation
specification of the current language, and otherwise returns #f. k shall be strictly positive.

8.5.9.6 String Comparison

(string<? string; string,)

69

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISO/IEC

(string>? <string| string,)
(string<=? string; string,)
(string>=? string; string,)
(string-ci<? string, string,)
(string-ci>? string; string,)
(string-ci<=? string; string,)

(string-ci>=? string| string,)

8.5.9.7

8.5.9.8

8.5.9.9

8.5.1

8.5.10.

These procedures are the lexicographic extensions to strings of the corresponding ofdgrings on
characters. For example, string<? is the lexicographic ordering on strings induced py the
ordering char<? on characters. If two strings differ in length but are the same up to the length
of the shorter string, the shorter string is considered to be lexicographically less than the longer
string. These procedures use the current language.

Substring Extraction

(substring string start end)

Returns a string formed from the characters of stringbeginning with index start (inclusive)
and ending with index end (exclusive).

String Appendance
(string-append string ..)
Returns a string formed by the concatenation of the given strings.

Conversion between Strings,and Lists
(string->list string)
(list->string chars)

string->1igtyreturns a list of the characters that make up the given string. list-pstring
returns a string formed from the characters in the list chars. string->list and 1jist-
>string.are inverses so far as equal ? is concerned.

Procedures

Procedure Type Predicate

(procedure? obj)

Returns #t if obj is a procedure, and otherwise returns #f.

EXAMPLE 56

(procedure? car) = #t
(procedure? ’car) = #f
(procedure? (lambda (x) (* x x)))

= #t

70

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(procedure? ’(lambda (x) (* x x)))
= #f

8.5.10.2 Procedure Application

(apply proc args)
(apply proc arg; .. args)

—Procshall be a procedure and args shall be a list. The first (essential) form-calls proc with the

elements of args as the actual arguments. The second form is a generalization gf the first that
calls proc with the elements of the list (append (list arg; ..) ards) as|the actual

arguments.

EXAMPLE 57

(apply + (list 3 4)) = 7

(define compose
(lambda (f g)
(lambda args
(f (apply g args)))))

((compose sgrt *) 12 75) = 30
8.5.10.3 Mapping Procedures over Lists
(map proc list; list, ..)
The 1ists shall be lists, and.proc shall be a procedure taking as many argumenis as there are
lists. If more than one 11ist is given, then they shall all be the same length. map applies proc
element-wise to the elements of the 11ists and returns a list of the results, in ordé¢r from left to
right.
EXAMPLE 58
(map cadr Y'((a b) (d e) (g h))) = (b e h)
(map.(lambda (n) (expt n n))
‘(1 2 3 405)) = (1 4 27 256 3125)
(map + (1 2 3) (4 5 6)) = (579)
8.5.10.4 External Procedures

(external-procedure string)

Returns a procedure object which when called shall execute the external procedure with public

identifier string. If the system is unable to find the external procedure, then #f i

s returned. The

arguments passed to the procedure object shall be passed to the external procedure. If the number
or type of arguments do not match those expected by the external procedure, then an error may

be signaled. The result of the external procedure shall be returned as the result of
procedure object.

the call of the

71

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

8.5.11

External procedures should be side-effect free, and implementations are free to assume that they
are. They should be used to retrieve information from the system rather than to change the state
of the system.

Date and Time

(time)

1)

8.5.12

8.6

Lo re 4
LI o CLIITg N7

(time->string k boolean)

t ime returns the number of seconds since 1970-01-01 00:00:00 GMT as an integer.

time->string converts an integer representation as returned by t ime-of the time and date
into a string in the format of ISO 8601.

If the boolean argument is present and true, then the string represéntation shall be in GMT;
otherwise the string shall be in local time.

(time<? string; string,)
(time>? string; string,)
(time<=? string; string,)
(time>=? string; string,)

These procedures impose a total orderingon the set of strings that represent dates and fimes in
ISO 8601 format. It shall be an errorif'any argument does not represent a date or time jn ISO
8601 format.

Error Signaling

(error string)

error signals anetror. The string argument describes the error. The action a systgm takes
when an errof is signaled is system-dependent. In particular, the manner in which the ¢rror is
reported to-the user is system-dependent. It should, however, use stringin its report|and
describe'the context in which the error occurred. No value is returned from error.

Core Expression Language

8.6.1

This clause defines a subset of the expression language called the core expression language. In
the core expression language, only those expressions and definitions allowed by the productions
in this clause are permitted, and only those procedures with prototypes in this clause are
available. Any expression or definition that is valid in the core expression language has the same
meaning that it does in the full expression language.

Syntax

[120] expression = primitive-expression | derived-expression

72

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

[121] primitive-expression = variable-reference | literal | procedure-call | conditional

[122] variable-reference = variable

[124] literal = quotation | self-evaluating

[125] quotation = ‘datum | (quote datum)
[126] datum = simple-datum i list

[127] simple-datum = boolean | number | character | string | symbol\keyword | glyph-identifier
[128] list = (datum*) | ' datum
[129] self-evaluating = boolean | number | character | string | keyword | glyph-id| entifier
[130] procedure-call = (operator operand*)

[131] operator = expression

[132] operand = expression

[133] conditional = (if test cousequent alternate)
[134] test = expression

[135] consequent =gxpression

[136] alternate = expression

[137] derived-expression = cond-expression | case-expressioﬁ | and-expression ||or-expression
[438] cond-expression = (cond cond-clause+) | (cond cond-clause* (else dxpression))

[139] cond-clause = (test expression)

[140] case-expression = (case key case-clause+) | (case key case-clause* (else
expression))

[141] key = expression
[142] case-clause = ((datum*) expression)
[143] and-expression = (and fest*)

[144] or-expression = (or test*)

73

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

8.6.2

[145] definition = (define variable expression)

Procedures

(not obj)
(boolean? obj)
(equal? obj; obj,)

(list? obj)

(list obj ..)
(length 1list)
(append 1ist ..)
(reverse 1list)
(list-tail list k)
(list-ref list k)
(member obj list)
(symbol? obj)
(keyword? obj)
(quantity? obj)
(number? obj)
(real? obj)
(integer? obj)

(= aq ¢ g3)

(< q a a3)

(> aq @ gz -)

(<= g ¢ g3)
(>= g @ a3)
(max g @ ..)

(min g g ..)

(+ g1)

(* g)

(- g &)

(a1 @)
(/ q)

(abs q)

(quotient n; n,)
(remainder n; mp)
(modulo n; mp)

(floor x)

(ceiling x)

(truncate x)

(round x)

(sart q)
(number->string number)

74

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(number->string number radix)
(string->number string)
(string->number string radix)
(char? obj)

(char=? char| char,)
(char-property symbol char)
(char-property symbol char obj)

tstrimg?—obH

(string char ..)
(string-length string)
(string-ref string k)
(string=? string; string,)
(substring string start end)
(string-append string ..)
(procedure? obj)

(apply proc args)
(external-procedure string)
(time)

(time->string k)
(time->string k boolean)
(error string)

Groves

A grove is a set of nodes'constructed according to a grove plan. Every node in the grove belongs

to a named class in the-grove plan. A node is a set of property assignments, each
property name and\a property value.

consisting of a

A grove plan defines a set of classes and, for each class, an ordered set of properties.

For each-property assignment of a node, there is a unique corresponding property
class whose name is the same as the name part of the property assignment. This
the property of the property assignment. The value part of a property assignment

of the node’s
is referred to as
is referred to as

a value of the property of the property assignment. A node is said to exhibit a value v for a

property p if there is a property assignment of the node whose property is p and v
s v Tl\ 1o hich thao o a avhibitc o A a_qra o o—aotha 1

node.

hose value part
perties of the

The ordering of the properties of a class determines for nodes of that class the ordering of the

corresponding property assignments.

Every property value has a data type. The definition of a property declares a certain data type to
be possible for values of the property. This data type is referred to as the declared data type of

the property.

75

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

9.1

In addition to simple abstract data types such as boolean or string, there are three special data
types called the nodal data types, whose values are nodes or lists of nodes. These are described
in 9.3.3.

The definition of a property may also allow that property to have a null value in certain
circumstances, instead of a value having the declared data type. This null value is the unique
object of the null data type. The null data type can never be used as a declared data type.

Nodal Properties

A property of a class may be a subnode property. The declared data type of asubnode [property
shall be nodal. When a node exhibits a value for a subnode property, all the riodes in the value of
the property are in the same grove as the node exhibiting the value. Thewvalues of suby ode

properties of nodes in the grove can be viewed as connecting all the'nodes in the grove{into a
single tree with labeled branches. More precisely,

— in any grove there is a unique node called the grove root that does not occur in the yalue of
any subnode property of a node.

— for every node n, other than the grove root, there.is a unique node o and there is a upique
property p such that both

— pis a subnode property, and
— o exhibits a value for p that.is;0r includes n.
o is called the origin of n and p is called the origin-to-subnode relationship of n.

— for every node n, other than the grove root, there exists a sequence of nodes m,m,|... my
such that m, is the grove root, my is n, and, for each I <i <k - I, m; is the origin of|m; , ;.
This tree is referred to as the subnode tree. It is often useful for applications to deal with certain
subtrees of the subnode tree in which all the children of a node occur as part of the valpe of a
single ptoperty of the node. For this purpose, one property of the class can be distingyished as
the children property for the class. This is done indirectly by making one property thel content
property for the class. If the data type of this property is nodal, then this is the children property,
otherwise the primitive data type of the data type shall be char or string and the property is the

dara property of the Tiode.—The termciitdren as appiied toanode refers tothenodes-occurring as
the value of the children property. The data of a node that has a children property is the data of
each of its children separated by the value of the data separator property, if any, of the class. A
node has a parent if its origin has a children property which includes that node in its value; if a
node does have a parent, its parent will be the same as its origin. The term free without
qualification refers to the tree formed using these parent/children relationships. The ancestors of
a node comprise the parent of the node, if any, together with the ancestors of the parent of the
node. The tree root of a node, x, is x if x has no ancestors or otherwise is the node that is an
ancestor of x and that has no ancestors. The siblings of a node are an empty set for the grove root

76

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

and are otherwise the nodes in the value of the origin-to-subnode relationship property of the

node’s origin other than the node itself.

NOTE 23 A node can have siblings even if it does not have a parent because its origin-to-subnode relationship

property need not be the children property of its origin.

The subtree of a node is the node together with the subtrees of its children. The descendants of a

node are the subtrees of children of the node. A total ordering called tree order i

s defined on the

—_setof nodes in the Subtree of any node: this Ordering corresponds to a pre-order yraversal of the

9.2

subtree in which a node is visited before its children.

There are two possibilities for properties with a declared data type that ds\nodal b
subnode properties:

— The property may be an irefnode (internal reference) property; for such a pro

it which are not

berty the nodes

in the value are in the same grove as the node that exhibifs‘the value. The subnode and

irefnode properties connect all the nodes in a grove into a single directed graph.

the properties may be considered as labeling the arcs of the graph.

— The property may be a urefnode (unrestrictéd reference) property; for such a

The names of

property the

nodes in the value may be in different groves from the node that exhibits the value. Thus, the

subnode, irefnode, and urefnode properties connect the nodes in multiple groy
a graph. The set of groves thus conniected is called a hypergrove.

Grove Plans

A grove plan specifies a selection of classes and properties from a property set. 4
defined by a property.set definition expressed in SGML as described in 9.3.

For any source.for'the grove, the property set determines the complete grove tha
using a grove plan that selected all the classes and properties from the property s

es together into

\ property set is

would be built
et.

NOTE,24-The complete grove contains all the information that the parser is capable of making avpilable about the

sourée-of the grove. For any particular application, much of this information may be irrelevant. T’
proyides a way for an application to get a grove that contains just the information it requires.

The grove to be constructed from the grove plan shall be the same as a grove ob

he grove plan

ained by

modifying the complete grove in the following manner:

— To mark the subgrove of a node, first mark the node itself; then for each subnode property, if
the property is included in the grove plan, mark the subgrove of each node in the value whose

class is included in the grove plan. The nodes to be included in the grove are

determined by

marking the subgrove of the grove root. Only nodes thereby marked will be included in the

constructed grove.

— A node in the constructed grove only exhibits values for those properties that
be included in the grove.

are specified to

77

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

— If a node in the complete grove exhibits a value for an intrinsic property whose semantics are
that it is the name of a non-intrinsic property exhibited by the node, then if the non-intrinsic
property is not included in the grove plan, the node in the constructed grove shall exhibit a
null value for the intrinsic property.

— If a node in the complete grove exhibits a value for an intrinsic property whose semantics are
that it is a list of names of non-intrinsic properties exhibited by the node, then the node in the

I hall exhibi lue for the infrinsi hat is obtained from the
value in the complete grove by removing the names of any of the non-intrinsic ptoperties not
included in the grove plan.

— If a node in the complete grove exhibits a value for an irefnode property 'that has a geclared
value of node, but the value of the property is not marked for inclusion in the constfucted
grove, then the node shall exhibit a null value for that property in.the constructed gfove.

— If a node in the complete grove exhibits a value for an irefnode property that has a declared
value of nodelist or nmndlist, then the value in the constrictéd grove is obtained by|removing
from the value exhibited for the property in the complete grove all nodes that are not marked
for inclusion in the constructed grove.

9.3 Property Set Definition

Property set definitions are described fully‘in the Property Set Definition Requirements of ISO/
IEC 10744. This clause presents a simplified version that includes only those details rjecessary
for the understanding of this International Standard.

The top-level element is a propset element. The psn and fullnm attributes specify a short
SGML name and a long déscriptive name. At various places within the property set, the

following elements ar€ allowed:

— desc contajns a description of the object that is being defined by the element in which it
occurs.

— not¥econtains notes about the object being defined.

9.3.1 Common Attributes

9.3.1.T Component Names

The name of a class, property, or enumerator is not a simple string but a triple of strings, each
appropriate for use as a name in a different context:

— The reference concrete syntax (RCS) name is appropriate for use in a context where a valid
name in the SGML reference concrete syntax is required.

— The application name specifies a name that is appropriate for use as an identifier in a
programming or scripting language. An application name can include multiple words

78

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

separated by spaces; the name must be transformed to be a valid identifier in the language in

which it is to be used, using the normal conventions of that language for multi
identifiers. For example, the application name ‘processing instruction’, when

-word
bound to a

programming language, might become ‘ProcessingInstruction’, ‘processing-instruction’, or

‘PROCESSING_INSTRUCTION’, depending on the language.

— The full name is an unabbreviated name appropriate for use in documentation.

3.1.2

9.3.2

A three-part name of this kind is called a component name.
These three names are specified by attributes as follows:

— rcsnm specifies the RCS name of the property.

— appnm specifies the application name of the property; this defaults to the RC$ name.

— fullnm specifies the full name of the property; this-defaults to the applicatiop name.

Specification Documents

Various elements occurring in a property set.define components by referencing them in a

specification document. These elements use the following common attributes:

— sd specifies the specification document; this defaults to SGML. Formally, the yalue is the
name of a notation. Other allowed values are GenFac for the General Faciliti¢s of ISO/IEC

10744 and DSSSL.

— clause specifies the applicable clause of the specification document; for SG
the notation of ISO/IEC 13673.

Modules

A property set definition is divided into named modules each described by a psmo
The-attributes have the following meaning:

= rcsnm gives the RCS name of the module.

ML this uses

Hule element.

— f11llnm gi\mc the full name

— dependon lists the names of the modules on which this module depends.

— required specifies whether the module is required, that is, shall be included

in every grove

plan. A value of required means that it is required; a value of nrequire means that it is

not. The default is nrequire.
Including a module in a grove plan is equivalent to including in the grove plan:

— all the classes and properties defined within the module,

79

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

9.3.3

— any modules on which the module depends, and, recursively, any modules on which they
depend.

In addition to modules defined in property sets, there are a number of intrinsic modules defined
in this International Standard that are automatically part of every property set. Properties defined
in intrinsic modules are called intrinsic properties. Intrinsic modules are treated as occurring
before all non-intrinsic modules.

Data Type Definition

Every data type is defined by a datadef element. The attributes have the following njeaning:
— rcsnm gives the RCS name of the data type.

NOTE 25 There is no application name for a data type, because when the property set is used in a progrhmming or
scripting language, each abstract data type has to be explicitly bound to one'of the data types provided py the
language.

— fullnm gives the full name of the data type.

— nodal specifies whether the data type is nodalithe allowed values are nodal ornopnodal;
the default is nonnodal.

— listof allows formal specification of the semantics of a data type in the case wherg the data
type is an ordered list or array of some other data type; that other data type is specified as the
value of the attribute.

— super allows for the formal specification of a subtyping hierarchy among defined d3ta types;
the value of the attribute-is a list of the names of the super types.

The primitive data fype of a data type is the data type itself if the data type has no super fype, and
otherwise is the (primitive data type of the super type.

Some data‘types are defined in the following intrinsic module:

<psmodule rcsnm=intrdt fullnm="intrinsic data types" required>
<datadef rcsnm=node nodal>

<desc>

A single node

<datadef rcsnm=nodelist listof=node nodal>
<desc>
An ordered list of zero or more nodes.

<datadef rcsnm=nmndlist fullnm="named node list" super=nodelist nodal>
<desc>

This is a node list in which each node is uniquely identified within
the node-list by a name, which is the value of one of its properties.
A named node list identifies, for each class of node that occurs in
it, a property of that class, which has data type string, whose value
serves as the name of nodes of that class within that named node list.

80

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

In addition, a named node-list also identifies, for each class of node
that occurs in it, a normalization rule to be applied to a

string before it is compared against the name of a node of that class
in the process of name space addressing.

<datadef rcsnm=enum fullnm=enumeration>

<desc>

This is used for a data type that represents one of an enumerated set
of values, called enumerators. The possible enumerators are

9.3.4

9.3.5

definmed T eacihr context—Tmwhrtchrtheemumdata—type—ts—used:
<datadef rcsnm=char fullnm=character>

<datadef rcsnm=string listof=char>

<datadef rcsnm=integer>

<datadef rcsnm=intlist fullnm="integer list" listof=integer>
<datadef rcsnm=strlist fullnm="string list" Aistof=string>
<datadef rcsnm=compname fullnm="component/name">

<desc>

A component name, that is, a name with)three variants, an RCS namq,
an application name, and a full nam&.,

<datadef rcsnm=cnmlist fullnm="component name list" listof=compnanje>

</psmodule>

Class Definition

A class is defined by-a'classdef element. In addition to the component name pttributes and
specification document attributes, the following attributes are allowed:

— conprepidentifies the content property of the class, if any.

— dsepprop identifies the data separator property of the class, if any. A class ¢an have a data
separator property only if it has a children property (i.e., a nodal content propgrty).

— mayadd identifies a category of classes that is used in the definition of the verification
mapping in the transformation language. See 11.4.1. Only the value mayadd is allowed for
1s attribute. The attribute name can be omitted for this atribute.

Property Definition

A property is defined by a propde £ element. In addition to the component name attributes and
specification document attributes, the following attributes are allowed:

— cn specifies the class to which this property belongs. When a propdef element occurs
within a classdef element, the property belongs to that class. Otherwise, the cn attribute

81

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

shall be specified, specifying the class name. A value of #all means that it belongs to all
classes of node; a value of #grove means that it belongs to the node at the root of the grove.

— datatype specifies the RCS name of the data type, as defined by a datadef element.

— ac specifies the classes allowed in the value of the property; this applies only if the data type

is nodal. The default is that any class is allowed in the value.

— acnmprop applies when the data type is nmndlist and specifies for each of the

allowed in the property value the name of the property that serves as the nameof a

tlasses
node of

that class in the named node list. There shall be one property name for each ¢lass ip ac.

— strnorm specifies a string normalization rule applicable to the value. It applies when the
data type is a string, is a list of strings, or has a super type that is a-string. The default is for no
normalization to be applied. Each string normalization rule shall-be defined by a normdef

element.

NOTE 26 The upper-case substitution that SGML performs on géneral names when the reference corjcrete syntax

is used is an example of a string normalization rule.

— noderel specifies whether the property is asubnode, irefnode, or urefnode prope

applies only if the data type is nodal. The attribute name is usually omitted for this

— vrfytype categorizes the property as-€ither derived, optional, or other for purpos

defining the verification mappingin the transformation language. See 11.4.1. The

rty; this
attribute.

es of
default is

other. A property set shall not alléw a node in a complete grove to exhibit an empty value for

a property that has a declared data type of nodelist or nmmdlist and a vrfytype of o

NOTE 27 This does not prohibit a node from exhibiting a null value for such a property.

ptional.

— strlex gives a lexical type. The value is a lexical type defined by a 1exdef element. The

lexical typeof'a property is not used in this International Standard. The semantics
types are defined in ISO/IEC 10744.

A propdef can have subelements of the following types in addition to desc and no
elements:

-~ when specifies a condition that shall be satisfied for a node to exhibit a value with

of lexical

Le

the

9.3.6

declared data type. If this condition is not satisfied, the node shall exhibit a null value for this

property.

— enumdef defines the possible enumerators when the data type is enum. It has only the

component name attributes.

Normalization Rule Definition

A string normalization rule is defined by a normdef element. It has an rcsnm attribute and the

specification document attributes.

82

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

TCNNMNL N 1N1M0 . 1000 /TN
O ISO/EC ISO/IEC 10179:1996(E)
9.4 Intrinsic Properties

The following module defines the intrinsic properties of all nodes:

<psmodule rcsnm=intrbase fullmm="intrinsic base® required>

<propdef rcsnm=classnm appnm="class name" datatype=compname>

<desc>

The name of the node’s class.

<propdef cn="#all" rcsnm=grovroot appnm=*grove root" datatype=node irefnode>

<propdef cn="#all" rcsnm=subpns appnm="subnode property names"
datatype=cnmlist>
<desc>

The names of all the subnode properties exhibited by the’node.

<propdef cn="#all" rcsnm=allpns appnm="all property names" datatyge=cnmlist>
<desc>
The names of all the properties exhibited by the“Miode.

<propdef cn="#all" rcsnm=childpn appnm="children property name"
datatype=compname>

<desc>

The name of the children property.

<when>

The class has a children property.

<propdef cn="#all" rcsnm=datapn dppnm="data property name" datatype=compname>
<when>
The class has a data property.

<propdef cn="#all" rcsnm=dseppn appnm="data sep property name"
fullnm="data separatdpy property name" datatype=compname>
<when>

The class has a.data separator property.

<propdef cns="#all" rcsnm=parent datatype=node irefnode>
<when>
The node\has a parent.

<propdef cn="#all" rcsnm=treeroot appnm="tree root" datatype=node [irefnode>
<note>

The value of this property for a node shall be the node itself
if the node has no parent.

</note>

<propdef cn="#all" rcsnm=origin datatype=node irefnode>
<when>
The node is not the grove root.

<propdef cn="#all" rcsnm=otsrelpn appnm="origin-to-subnode rel property name"
fullnm="origin-to-subnode relationship property name" datatype=compname>
<when>

The node is not the grove root.

</psmodule>

<psmodule rcsnm=intrhy fullnm="intrinsic hytime">

83 \

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

9.5

9.6

<datadef rcsnm=grovepos appnm="grove position" strlex=GROVEPOS>
<desc>

A list each of whose members is either (a) an integer, (b) a pair
consisting of a component name and a string, (c) a pair consisting of
a component name and an integer, or (d) a component name

<propdef cn="#all" rcsnm=grovepos appnm="grove position" sd=GenFac
datatype=grovepos>

<desc>
The position of a node in a grove.

<propdef cn="#all" rcsnm=treepos appnm="tree position" sd=GenFac
datatype=intlist

strlex="marker+">

<desc>

The position of a node in its tree in treeloc format.

<propdef cn="#all" rcsnm=pathpos appnm="path position! 'sd=GenFac
datatype=intlist

strlex=" (marker,marker)+">

<desc>

The position of a node in its tree in pathlo€ format.
</psmodule>

<propdef cn="#grove" rcsnm=ptreert appnm="principal tree root" sd=GenFaf
datatype=node
irefnode>

Auxiliary Groves

It is sometimes convenient to-group nodes in a grove in an application-dependent manner. This
is done by using nodes in the grove as the source for a further parse, called an auxiliary parse. A
grove created by an auxiliary parse is called an auxiliary grove. The grove parsed to crgate the

auxiliary grove is.¢alled the source grove of the auxiliary grove. Each node in an auxiligry grove
has an intrinsic-urefnode property, source, that points to those nodes in the source grgve from
which it was.derived.

<propdef, cn="#all" rcsnm=source datatype=nodelist urefnode sd=DSSSL>

SGML Property Set

The property set for SGML is:

<!-- SGML Property Set -->

<!doctype propset public "ISO/IEC 10744:1993/DTD Property Set//EN"
"sgmlprop.dtd">

<propset psn="sgmlprop" fullnm="SGML Property Set">

<desc>

Defines the classes and properties to be used in the construction of
groves from the parsing of SGML documents.

Classes and properties are classified as follows:
o Abstract or SGML document string (SDS)

84

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

o SGML declaration, document prolog, or document instance
o Required only for support of datatag, rank, shortref, link, subdoc,
formal.

ESIS corresponds roughly to the combination of baseabs (base abstract),

prlgabs0, and instabs (instance abstract).

</desc>

<!--Note: Clause numbering conforms to the rules specified in Clause 6.3
of ISO/IEC 13673, which defines how the components of
ISO/TEC—8879—hourd e tdertified—withim corformance—tegts.
The first number/letter represents the clause number, (Igtters
can be treated as hexadecimal in this document), the\seqond
number identifies the sub-clause, the third the
sub-sub-clause, and the fourth the
sub-sub-sub-clause (if any) with the final number/letteqy
identifying the paragraph number. (Productions,
notes and items in a list are counted as/separate paragyaphs.)
Where figures are referred to, the cladse; sub-clause, gnd
sub-sub-clause numbers are replaced by “FIG and the
sub-sub-sub-clause number is replaced by the figure numier.
As an extension to ISO/IEC 13673,\stubclauses in clause 4
are referred to using numbers of\“the form 4xxxy where x3jx
is the decimal subclause number and y is the paragraph rjumber
as normal.

<!-- Base abstract classes and properties -->
<psmodule rcsnm=baseabs fullnm="base abstract">

<classdef rcsnm=sgmldoc\‘appnm="sgml document" clause="62001">
<desc>
The parsed SGML document or subdocument. The root of the grove.

<propdef subndde" rcsnm=sgmlcsts appnm="sgml constants" datatype=nqde
ac=sgmlcsts ¢lause="41170 41180">

<propdef\ rcsnm=appinfo appnm="application info"
fullnm="application information" datatype=string strlex=mindata
clatise="d6001">

<désc>

Application information provided by the SGML declaration.
<when>

A literal was specified as the value of the APPINFO parameter
of the SGM declaration app icable to the document /subdocument

<propdef subnode rcsnm=prolog datatype=nodelist
ac="doctpdcl 1lktpdcl comdcl pi ssep" cn=sgmldoc clause="71001">

<propdef subnode rcsnm=epilog datatype=nodelist ac="comdcl pi ssep"
cn=sgmldoc clause="71002">

<desc>

Other prolog following the document instance.

<classdef rcsnm=sgmlcsts appnm="sgml constants" clause="b6004 c2101">
<desc>

85

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/MTEC 10179:1996(E)

© ISO/IEC

A holding pen for selected nodes intrinsic to all SGML documents,
which may be needed as irefnodes elsewhere.

<note>

This has no properties unless the srabs (shortref abstract)
or linkabs (link abstract) modules are included.

<classdef rcsnm=attasgn appnm="attribute assignment"
conprop=value dsepprop=tokensep clause="79002">

<desc>

An attribute assignment, whether specified or defaulted.

<note>

In the base module because of data attributes.

<propdef subnode rcsnm=value datatype=nodelist
ac="attvaltk datachar sdata intignch entstart entend" clause=%79401">

<note>
If the attribute value is tokenized,

otherwise, they are of the other allowed types.

<when>

The attribute is not an impliable attribute for which there is no

attribute specification.

<propdef rcsnm=name datatype=string strlex=name strnorm=general

clause="93001">

<propdef rcsnm=implied datatype=boolean'clause="b3407">

<desc>
True if and only if the attribute¥is

for which there is no attributelspecification.

<propdef rcsnm=tokensep appnm="token sep" fullnm="token separator"

datatype=char clause="79400">
<desc>

The separator between\the tokens of the value. Always equal
to the SPACE characteér in the concrete syntax.

<when>
The node has two'or more children of

<classdef (r¢snm=attvaltk appnm="attribute value token" conprop=token

clause=*79305">
<propdef rcsnm=token datatype=string

<classdef rcsnm=datachar appnm="data

I 3 Lgaans
nprop=Cciar—Crause= >zvUz

the children are of type attvaltk;

an impliable attribute

class attvaltk.

strlex=nmtoken clause="93003">

char" fullnm="data character"

<propdef rcsnm=char fullnm=character
<desc>

The character returned by the parser

<classdef rcsnm=sdata

datatype=char clause="92003">

to the application.

fullnm="internal specific character data entity reference result"

conprop=char clause="92101">

<propdef rcsnm=sysdata appnm="system data" datatype=string clause="43041">

<note>

86

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© SO/IEC

ISO/IEC 10179:1996(E)

The replacement text of a specific character data entity is treated
as system data when referenced.

<propdef rcsnm=char fullnm=character datatype=char sd=DSSSL>

<desc>

The character associated with the SDATA entity by the map-sdata-entity
architectural form.

<when>

A character has been associated with the SDATA entity by the

mMap-Sdata-entity architecturat form.

<classdef rcsnm=pi fullnm="processing instruction" clause="80000">]
<desc>
Processing instruction.

<propdef rcsnm=sysdata appnm="system data" datatype=string clause=|"80002">
</psmodule>

<!-- Prolog-related abstract classes and properties, level 0 -->
<psmodule rcsnm=prlgabs0 fullnm="prolog abstract level 0" dependonkbaseabs>

<propdef irefnode rcsnm=govdt appnmstgoverning doctype" datatype=nbde
ac=doctype

cn=sgmldoc clause="71004">
<desc>

The document type that goverms.the parse. When there are more thah one
"active" document types specified, each active document type gives| rise
to a separate parse, which} in turn, creates a separate sgmldoc grpve.

<propdef subnode rcsnmrdtlts appnm="doctypes and linktypes"
fullnm="document types and link types"
datatype=nmndlist{ac="doctype linktype" acnmprop="name name" cn=sgpldoc
clause="71001"5>
<desc>

The document'types and link types declared in the prolog, in declafation
order.

<classdef rcsnm=doctype appnm="document type" clause="bl000">
<desc>

The abstraction of a document type declaration.

<note>

It includes entities declared in that declaration’s DTD,
entities treated as being declared therein bacaucsae they

occur in a link type for which that DTD is the source DTD,
and entities declared in the base declaration which may be
referenced when this document type is active.

<propdef rcsnm=name datatype=string strlex=name strnorm=general clause="b1002">
<desc>

The name associated with the DTD by the document typé declaration;

necessarily also the name of the type of the outermost element.

<propdef rcsnm=govrning appnm=governing datatype=boolean clause="71005">
<desc>

87

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

True if either this was the active document type or there was
no active document type and this is the base document type.
<note>

The "governing" document type governs the parsing process.

If more than one document type is specified as "active",

each active document type gives rise to a separate parse,

for which it is the governing document type, and thereby
produces a separate grove.

<propdef subnode rcsnm=genents appnm="general entities" datatype=nmndlibt
ac=entity acnmprop=name clause="b1004">
<desc>

The general entities of the document or subdocument declared in-~the DTD[
<note>

Includes entities not explicitly declared, as discussed abowe
in the description of this class.

<note>

If the DTD provides a default declaration for undeclared
general entity names, there is no entry in the list
corresponding to this declaration, nor any entry for” any

such undeclared name. (But such entities are in the

entities property of the sgmldoc class.) See Qfltent following.

<propdef subnode rcsnm=nots appnm=notatiens./datatype=nmndlist ac=notatipn
acnmprop=name clause="b1005">

<classdef rcsnm=entity clause="60000">
<propdef rcsnm=name datatype=st¥ing strlex=name strnorm=entity clause="P3001">

<propdef rcsnm=enttype appnm="entity type" datatype=enum clause="a5502"

\4

<enumdef rcsnm=text fullnm="SGML text">
<enumdef rcsnm=cdata>

<enumdef rcsnm=sdata>

<enumdef rcsnm=ndata>

<enumdef rcsnm=subdoc appnm=subdocument>
<enumdef rcsgnm=pi>

<propdef) resnm=text fullnm="replacement text" datatype=string clause="92101">
<wheny

The.entity is an internal entity.

<propdef subnode rcsnm=extid appnm="external id" fullnm="external identjifier"

dat.al._ypc:—uudc cu,—czu,id \,laubc— aluul
<when>
The entity is an external entity.

<propdef subnode rcsnm=atts appnm=attributes

datatype=nmndlist ac=attasgn acnmprop=name clause="b4120">

<desc>

A list of data attribute assignments, one for each declared attribute of
the entity in the order in which they were declared in the attribute
definition list declaration.

<when>

The entity is an external data entity.

88

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef rcsnm=notname appnm="notation name" datatype=string strlex=name
strnorm=general clause="79408">

<when>

The entity is an external data entity.

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001">
<when>
The entity is an external data entity.

<classdef rcsnm=notation fullnm="data content notation" clause="14p00">
<propdef rcsnm=name datatype=string strlex=name strnorm=general clpuse="79441">

<propdef subnode rcsnm=extid appnm="external id" fullnm=‘external fidentifier"
datatype=node ac=extid clause="al601">

<classdef rcsnm=extid appnm="external id" fullnm="external identiffier"
clause="al600">

<propdef rcsnm=pubid appnm="public id" fullnm="public identifier"
datatype=string strlex=mindata clause="alg{2">

<when>

The external identifier contained an-explicit public identifier.

<propdef rcsnm=sysid appnm="systemh id" fullnm="system identifier"
datatype=string clause="al603">

<when>

The external identifier contained an explicit system identifier.

<propdef optional rcsnmigensysid appnm="generated system id"
fullnm="generated system identifier"

datatype=string>

<desc>

The system identifier generated by the system from the external
identifier and other information available to the system.
<when>

The extexnal identifier is not the external identifier of

the default entity.

</psSmodule>

&4 - Document instance related abstract classes and properties -->

<psmodule rcsnm=instabs fullnm="instance abstract" dependon=baseabs>

<propdef subnode rcsnm=docelem appnm="document element" datatype=node
ac=element cn=sgmldoc clause="72003">

<desc>

The document element for the governing document type.

<propdef irefnode rcsnm=elements datatype=nmndlist ac=element acnmprop=id
cn=sgmldoc clause="73001">

<desc>

All the elements in the document which have unique identifiers in the
order in which they are detected by the parser: parents occur

before children; siblings occur in left-to-right order.

89

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

<propdef irefnode rcsnm=entities datatype=nmndlist ac=entity acnmprop=name

cn=sgmldoc clause="94410">

<desc>

The explicitly declared general entities from the governing document
type, followed by the defaulted entities.

<note>

This includes both internal and external entities. It does not
include unnamed entities.

<propdef subnode rcsnm=dfltents appnm="defaulted entities" datatype=nmiy
ac=entity acnmprop=name cn=sgmldoc clause="94412">

<desc>

An entity for each entity name in the document that referenced
the default entity in the governing document type.

<!-- Attribute value token -->

<propdef irefnode rcsnm=entity datatype=node ac=entity cn=attvaltk
clause="79401">

<when>

Declared value of attribute is ENTITY or ENTITIES.

<propdef irefnode rcsnm=notation datatypesnode ac=notation cn=attvaltk
clause="79408">

<when>

Declared value of attribute is NOTATION.

<propdef irefnode rcsnm=referent datatype=node ac=element cn=attvaltk
clause="79403">

<when>

Declared value is IDREF wx) IDREFS.

<classdef rcsnm=element conprop=content clause="73000">

<propdef rcsnm=gi fullnm="generic identifier" datatype=string strlex=nj
strnorm=general~clause="78001">

<desc>

Generic identifier (element type name) of element.

<propdef derived rcsnm=id fullnm="unique identifier" datatype=string
strlex=name strnorm=general clause="79403">

<when>

X unique identifier was specified for the element.

hdlist

pme

<propdef subnode rcsnm=atts appnm=attributes

datatype=nmndlist ac=attasgn acnmprop=name clause="79301">
<desc>

A list of attribute assignments, one for each declared attribute
of the element in the order in which they were declared in the
attribute definition list declaration.

<propdef subnode rcsnm=content datatype=nodelist

ac="datachar sdata element extdata subdoc pi msignch ignrs ignre repos
usemap uselink entstart entend ssep comdcl msstart msend ignmrkup"

clause="76001">

90

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<classdef rcsnm=extdata appnm="external data"
fullnm="reference to external data" clause="a5500">
<desc>

The result of referencing an external data entity.

<propdef rcsnm=entname appnm="entity name" datatype=string strlex=name
strnorm=entity clause="a5101">

[<propder irernode rcsnm-entity datatype-node ac=entity clause="94410">

</psmodule>

<!-- Base SDS classes and properties -->

<psmodule rcsnm=basesds0 fullnm="base SGML document $tring level (
dependon=baseabs>

<!-- Sdata -->

<propdef optional rcsnm=entname appnm="entity name" datatype=string
strlex=name strnorm=entity cn=sdata clause="a5101">

<propdef irefnode rcsnm=entity datatype=node ac=entity cn=sdata
clause="94410">

<!-- Processing instruction -->

<propdef rcsnm=entname appnm="entity name" datatype=string strlexsname
strnorm=entity cn=pi clause="a5101">

<when>

The processing instrugtion resulted from referencing a PI entity.

<propdef irefnod€ rcsnm=entity datatype=node ac=entity cn=pi
clause="94410">

<when>

The processing instruction resulted from referencing a PI entity.

<!-- Entity -->

<propdef rcsnm=dflted appnm=defaulted datatype=boolean cn=entity
clause="94412">

<desc>

True if this was created because of a reference to the default entity.

</psmodule>

<psmodule rcsnm=basesdsl fullnm="base SGML document string level 1"
dependon=basesds0>

<propdef subnode optional rcsnm=entref appnm="entity ref"
fullnm="entity reference" datatype=nodelist

ac="gendelm name ssep entstart entend refendre shortref" cn=pi
clause="94401">

<desc>

The markup of the entity reference.

91

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC
<note>
ssep, entstart, and entend may occur only in a name group in a named
entity reference.
<when>
The processing instruction resulted from referencing a PI entity with
a named entity reference or a short reference.
<propdef subnode optional rcsnm=open appnm="open delim"
fullnm="open delimiter" datatype=node ac=gendelm cn=pi clause="80001">
<when>
The processing instruction did not result from referencing a PI entity!
<propdef subnode optional rcsnm=close appnm="close delim"
fullnm="close delimiter" datatype=node ac=gendelm cn=pi clausé€x"80001">
<when>
The processing instruction did not result from referencingh\a’ PI entity.
<!-- Attribute -->
<propdef irefnode rcsnm=attspec appnm="attribute Gpgec" fullnm="attributle

specification"

datatype=nodelist ac="name ssep gendelm literal attvalue" cn=attasgn
clause="79002">

<when>

The attribute was specified rather tham defaulted or implied.

<propdef irefnode rcsnm=attvalsp appnm="attribute value spec"
fullnm="attribute value specification" datatype=node
ac="attvalue literal" cn=attasgn, clause="79301">

<when>

The attribute is not implied:

<!-- Data character -->

<propdef rcsnm=intrplch appnm="interp replaced char"
fullnm="interprétation replaced character" datatype=char cn=datachar
clause="al704">

<desc>

The charaéter that was replaced.

<note>

When @\sequence of RE and/or SPACE characters in a minimum literal
is weéplaced by a single SPACE character, then the first

character is represented by a datachar possibly with an intrplch
Pproperty, and the other characters are represented by an intignch.

<wherns

The data character replaced another character

when a literal was interpreted: a SPACE character that replaced a
RE or SEPCHAR in an attribute value literal or an RE in a minimum
literal.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist

ac="gendelm name refendre" cn=datachar clause="95001">

<when>

The data character was the replacement of a named character reference.

92

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef subnode optional rcsnm=numcref appnm="numeric char ref"
fullnm="numeric character reference" datatype=nodelist

ac="gendelm name crefcnum refendre" cn=datachar clause="95001">

<when>

The data character was the replacement of a numeric character reference.

<!-- Specific character data -->

<propdef subnode optional rcsnm=markup datatype=nodelist

clause="94401">
<note>

ssep,/entstart, and entend can occur only in a name group in'‘a named
entity reference.

<classdef rcsnm=ssep appnm="s sep" fullnm="s separator?)mayadd
clause="62100">

<propdef rcsnm=char fullnm=character datatype=char’ clause="92003">|

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatypeé=nodelist

ac="gendelm name refendre" clause="950Q1">

<when>

The character was the replacement of{a named character reference.

<classdef rcsnm=comment clause="a3002">

<propdef subnode optional rcsnm=open appnm="open delim"
fullnm="open delimiter" datatype=node ac=gendelm clause="a3002">

<propdef rcsnm=chars (fullnm=characters datatype=string clause="92101">
<desc>
The characters in(the comment (excluding the com delimiters).

<propdef subnode optional rcsnm=close appnm="close delim"
fullnm="close delimiter" datatype=node ac=gendelm clause="a3002">

<classdef rcsnm=comdcl appnm="comment decl" fullnm="comment declarjpation"
conprop=markup mayadd clause="a3001">

<propdef subnode rcsnm=markup datatype=nodelist ac="comment ssep"
clause="a3001">

<classdef rcsnm=ignmrkup appnm="ignored markup" conprop=markup
clause="77002 94405 c3007">
<desc>
Ignored markup. Either a start-tag or end-tag that is ignored because
it contains a document type specification that contains a name group
none of the names in which is the name of an active document type, or
a general or parameter entity reference that is ignored because it
contains a name group none of the names in which is the name of an
active document or link type, or a link set use declaration that is
ignored because its link type name is not an active link type,
or a general entity reference in an attribute value literal in
a start-tag that is itself ignored markup, or an entity declaration

93

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

that is ignored because the entity was already declared.

<propdef subnode rcsnm=markup datatype=nodelist
ac="gendelm name ssep attvalue literal entstart entend refendre"
clause="74001 75001 94401 c3001">

<classdef rcsnm=entstart appnm="entity start" conprop=markup>
<desc>
The start of the replacement text of an entity.

3 - £ i = A £u
e T—a PP moamet—C o r—TreT

<note>
The end shall be marked by an entend node. This is the result of an
entity reference that was replaced by the parser.

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref">
<desc>

The markup of the entity reference.

<propdef optional rcsnm=entname appnm="entity name}~datatype=string
strlex=name strnorm=entity>

<propdef irefnode rcsnm=entity datatype=node d&CFentity clause="a5201">

<classdef rcsnm=entend appnm="entity end’,‘clause="94500">
<desc>
The end of an entity reference that was'replaced by the parser.

<classdef rcsnm=msignch appnm="mdtkéd section ignored char"
fullnm="marked section ignored .¢&haracter" clause="a4204">
<desc>

A character that has been ignored within a marked section.

<propdef rcsnm=char fullnm=character datatype=char clause="92101">

<classdef rcsnm=intignch appnm="interp ignored char"
fullnm="interpretation ignored char" clause="79303 al704">
<desc>

A character,in/a literal that was ignored when the literal was

interpreted*~“an RS in an attribute value literal or in a minimum literdl,

an RE oxr“SPACE character in a minimum literal that immediately
followed another RE or SPACE character in a minimum literal,

or an~RE or SPACE character that was the first or last character
id a minimum literal.

fullnm="named character reference" datatype=nodelist

ac="gendelm name refendre" clause="95001">

<when>

The character was the replacement of a named character reference.

<propdef rcsnm=char fullnm=character datatype=char clause="92101">

<classdef rcsnm=gendelm appnm="general delim" fullnm="general delimiter"
clause="FIG30">

<desc>

A general delimiter.

94

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">

<note>

This may happen only for a delimiter that is the first child
of its parent or the value of a close delimiter property.
<when>

The first character of the delimiter was entered with a named

character reference.

<propdef rcsnm=role datatype=string strnorm=rcsgener clause="96001 FIG30">
<desc>
The name of the delimiter role.

<propdef optional rcsnm=origdelm appnm="original delim"
fullnm="original delimiter" datatype=string clause="92102 FIG22">
<desc>

The delimiter as originally entered before any~upper-case substitytion.

<classdef rcsnm=name clause="93001">
<desc>

A name within markup.

<note>

Names in attribute values are represented by nodes of type attvaltk
rather than name.

<propdef rcsnm=origname appnm=‘original name" datatype=string clause="93005">
<desc>

The characters of the name as originally entered before
any upper-case substitution.

<classdef rcsnm=rhame appnm="reserved name" clause="d4701">
<desc>
A token in markup that is recognized as a reserved name.

<propdef x¢snm=refname appnm="ref name" fullnm="reference name"
datatype=string strnorm=rcsgener clause="d4704">

<desae>

The,'vreference reserved name.

<propdef optional rcsnm=origname appnm="original name" datatype=stfring
clause="93005">
<desc>

e = (P 13 " ST -
TIT oot vet Imame— oS orIrgrnarry cncerea oerore any apper-case

substitution.

<classdef rcsnm=literal conprop=value clause="al201 79302 al70l1 al603">
<desc>

A parameter literal, attribute value literal, minimum literal, or
system identifier.

<propdef subnode optional rcsnm=open appnm="open delim"
fullnm="open delimiter" datatype=node ac=gendelm clause="96100 FIG30">

<propdef subnode rcsnm=value datatype=nodelist

95

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISOMEC
ac="entstart entend datachar sdata intignch"
clause="al202 91001 al702 80002">
<desc>
Interpreted value of literal.
<note>
If the literal is an attribute value literal for a tokenized value,
the value of the literal represents the attribute value before
tokenization but after interpretation.
<propdef subnode optional rcsnm=close appnm="close delim”
fullnm="close delimiter" datatype=node ac=gendelm clause="96100 FIG30"'>
<classdef rcsnm=number clause="93002">
<desc>
A number in markup that is not a character number in
a character reference.
<note>
Numbers in attribute values are represented by nodes JSf type attvaltk
rather than number.
<propdef rcsnm=digits datatype=string strlex=numbet clause="93002">
<classdef rcsnm=crefcnum appnm="char ref char number"
fullnm="character reference character number" clause="95001">
<desc>
A character number occurring in a chaxacter reference.
<note>
The numeric value of the number i< “determined by the char property of
the datachar node.
<propdef optional rcsnm=ndigits appnm="n digits" fullnm="number of digilts"

datatype=integer clause=%95003 93002">
<desc>
The number of digits\uséd to specify the value.

<classdef rcsnm=refendre appnm="ref end re" fullnm="reference end RE"
clause="94502">

<desc>

An RE in markup that is used as a reference end.

<clasgsdéf rcsnm=attvalue appnm="attribute value" clause="79400">
<dese>

An attribute value specification that is an attribute value
rather than an attribute value literal.

notae

Do not confuse this with the attasgn class.

<propdef rcsnm=value datatype=string clause="93005">
<desc>
The value before any upper-case substitution.

<classdef rcsnm=nmtoken appnm="name token" clause="93003">
<desc>

A name token in markup.

<note>

This is used only for name tokens in name token groups in

96

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

declared values. Name tokens in attribute values are represented by
nodes of type attvaltk rather than nmtoken.

<propdef rcsnm=origname appnm="original name token" datatype=string
clause="93005">

<desc>

The characters of the name token as originally entered before

any upper-case substitution.

X Iassdef TCSIMEMS S tar b ap P “Marked SectIonr start

fullnm="marked section declaration start" conprop=markup clause=!ad002">
<desc>
The part of a marked section declaration preceding the marked\sectlion.

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm rname ssep entstart entend comment ignmrkup! clause="af4002">
<note>

First child will be gendelm for mdo, last will be ,gendelm for
dso.

<propdef rcsnm=status datatype=enum clause="“a4201">
<desc>
Effective status of marked section.

<enumdef rcsnm=ignore>
<enumdef rcsnm=cdata>
<enumdef rcsnm=rcdata>
<enumdef rcsnm=include>
<enumdef rcsnm=temp>

<classdef rcsnm=msend appnm="marked section end" conprop=markup
clause="a4003">

<propdef subnode Optional rcsnm=markup datatype=nodelist ac=gendelm
clause="FIG3e FIG3h">

<note>

Will be a«wgendelm for the msc and a gendelm for the mdc.
</psmodule>

< 1%~'SGML Declaration-related abstract classes and properties -->

<psmodule rcsnm=sdclabs fullnm="sgml declaration abstract" dependon=baseabs>

<propdef rcsnm=sgmlver appnm="sgml version" datatype=string strlex=mindata

cn=sgmldoc clause="d0002">

<desc>

The minimum literal specified as the first parameter of the SGML
declaration applicable to this document or subdocument.

<propdef subnode rcsnm=docchset appnm="document char set"
fullnm="document character set" datatype=node ac=charset cn=sgmldoc
clause="d1001">

<propdef subnode rcsnm=capset appnm="capacity set" datatype=node
ac=capset cn=sgmldoc clause="d2001">

97

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISOMEC
<propdef rcsnm=synscope appnm="syntax scope"
fullnm="concrete syntax scope" datatype=enum cn=sgmldoc clause="d3002">
<enumdef rcsnm=instance>
<enumdef rcsnm=document>
<propdef subnode rcsnm=dclsyn appnm="decl syntax"
fullnm="declared concrete syntax" datatype=node ac=syntax cn=sgmldoc
clause="d4001">
<propdef subnode rcsnm=refsyn appnm="ref syntax"
fullnm="reference concrete syntax" datatype=node ac=syntax cn=sgmldoc
clause="d4002 e0001 FIG70">
<desc>
The reference concrete syntax used for the SGML declaratién“and,
if the concrete syntax scope is INSTANCE, the prolog.
<note>
Not a property of sgmlcsts because it depends on the\document charactey
set.
<propdef irefnode rcsnm=prosyn appnm="prolog symtax"
fullnm="prolog concrete syntax" datatype=nodé ac=syntax cn=sgmldoc
clause="d4001">
<desc>
The concrete syntax for the prolog.
<propdef subnode rcsnm=features f@llnm="feature use" datatype=node
ac=features cn=sgmldoc clause="d5001">
<classdef rcsnm=charset appam="char set" fullnm="character set"
conprop=chdescs clause="d1000">
<propdef subnode rcsnm=chdescs appnm="char descs"
fullnm="character descriptions" datatype=nodelist ac=chardesc
clause="d1101">
<classdef resam=chardesc appnm="char desc" fullnm="character descripti¢n"

3 s lause=ldllas

clause="dl122">

<propdef rcsnm=descnum appnm="desc set number"
fullnm="described set character number" datatype=integer clause="d1123

<propdef rcsnm=nchars appnm="n chars" fullnm="number of characters"

<propdef rcsnm=basenum appnm="base set number"
fullnm="base set character number" datatype=integer clause="dl124">
<when>

Character description included a base set character number.

<propdef rcsnm=baseset appnm="base char set" fullnm="base character set
datatype=string strlex=mindata clause="d1111">

<desc>

The public identifier of the base character set.

<when>

"

98

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

Character description included a base set character number.

<propdef rcsnm=desclit appnm="desc literal"
fullnm="description literal" datatype=string strlex=mindata
clause="al701">

<when>

Character description not entered as base set number.

<classdef rcsnm=syntax fullnm="concrete syntax" clause="d4000">
<note>

This represents a concrete syntax bound to this document’s document
character set. Characters are characters in the document character set
not in the syntax reference character set.

<propdef rcsnm=shunctrl appnm="shunchar controls" datatype=boolears
clause="d4204">

<desc>

True if SHUNCHAR included CONTROLS.

<propdef rcsnm=shunchar fullnm="shunned charac¢ter numbers"
datatype=intlist clause="d4201">

<propdef subnode rcsnm=synchset appnm=%syntax ref char set"
fullnm="syntax-reference character set'! datatype=node ac=charset

clause="d4301">

<propdef rcsnm=re fullnm="recoxd:'end" datatype=char clause="d4401'

Vv

<propdef rcsnm=rs fullnm="rxrecord start" datatype=char clause="d44(Q1">
<propdef rcsnm=space datatype=char clause="d4401">

<propdef subnode xcsnm=addfuns appnm="added function chars"
fullnm="added function characters" datatype=nmndlist ac=addfun
acnmprop=name (clause="d4401">

<propdef _reshm=lcnmstrt datatype=string clause="d4503">
<propdef rcsnm=ucnmstrt datatype=string clause="d4504">

<propdef rcsnm=lcnmchar datatype=string clause="d4505">

<propdef rcsnm=ucnmchar datatype=string clause="d4506">

— — Ll

fullnm="substitute general names" datatype=boolean clause="d4507">
<desc>
True if GENERAL YES is specified in NAMECASE.

<propdef rcsnm=substent appnm="subst entity names"
fullnm="substitute entity names" datatype=boolean clause="d4507">
<desc>

True if ENTITY YES is specified in NAMECASE.

<propdef subnode rcsnm=gdasns appnm="general delim assocs"
fullnm="general delimiter role associations"

929

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

datatype=nmndlist ac=dlmrlas acnmprop=role clause="d4611">

<desc>

There is a term for every general delimiter role whether or not

it is changed from that prescribed by the reference concrete syntax.
The terms occur in alphabetical order of their (abstract-syntax)
role names.

<propdef rcsnm=srdelms appnm="shortref delims"”
fullnm="short reference delimiters" datatype=strlist clause="d4621">

<propdef subnode rcsnm=slitasns appnm="syntax literal assocs"
fullnm="syntax literal associations" datatype=nmndlist ac=synlitas
acnmprop=refname clause="d4701">

<desc>

The syntax literal/reserved name associations specified by ghe. concrete
syntax. There is a term for every reserved name whether or“not

it is changed from that prescribed by the reference concrete syntax.
The terms occur in alphabetical order of the syntacticliterals.

<propdef rcsnm=attcnt datatype=integer clause="FIG4l">
<propdef rcsnm=attsplen datatype=integer clausez"FIG42">
<propdef rcsnm=bseqglen datatype=integer clause£)FIG43">
<propdef rcsnm=dtaglen datatype=integer clause="FIG44">
<propdef rcsnm=dtemplen datatype=integer clause="FIG45">
<propdef rcsnm=entlvl datatype=integer.glause="FIG46">
<propdef rcsnm=grpcnt datatype=integex clause="FIG47">
<propdef rcsnm=grpgtcnt datatype=integer clause="FIG48">
<propdef rcsnm=grplvl datatype=integer clause="FIG49">
<propdef rcsnm=litlen datatype=integer clause="FIG4a">
<propdef rcsnm=namelen datatypé=integer clause="FIG4b">
<propdef rcsnm=normsep datatype=integer clause="FIG4c">
<propdef rcsnm=pilen datatype=integer clause="FIG4d">
<propdef rcsnm=taglen datatype=integer clause="FIG4e">
<propdef rcsnm=taglylidatatype=integer clause="FIG4f">

<classdef rcsnm=addfun appnm="added function char"
fullnm="added function character" clause="d4400">

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="d4402">

<propdef rcsnm=class fullnm="function class" datatype=enum clause="d440
<eénumdef rcsnm=funchar>
<enumdef rcsnm=msichar>

3" >

Cllullldcf LLDIllll—ll\bUb}.laL
<enumdef rcsnm=msschar>
<enumdef rcsnm=sepchar>

<propdef rcsnm=char fullnm=character datatype=char clause="95003">
<desc>

Character assigned to function.

<classdef rcsnm=dlmrlas appnm="delim role assoc"
fullnm="delimiter role association" clause="d4610">
<desc>

The association, made by a concrete syntax, of a character string with

100

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

————Phe—string—to—beusedinthe document-

an abstract-syntax delimiter role.

<propdef rcsnm=role datatype=string strnorm=rcsgener clause="d4612">
<desc>
The name of the role.

<propdef rcsnm=delm appnm=delim fullnm=delimiter datatype=string
strnorm=general clause="d4611">
<desc>

<classdef rcsnm=synlitas appnm="syntactic literal assoc"
fullnm="syntactic literal association" clause="d4700">
<desc>

<propdef rcsnm=synlit appnm="syntactic literal"
datatype=string strnorm=rcsgener clause="d4702">
<desc>

The syntactic literal. (More precisely, the.name which when encldsed in
double quotation marks becomes the syntactic literal.)

<propdef rcsnm=resname appnm="reservéd)name" datatype=string strlgx=name
strnorm=general clause="d4702">

<desc>

The reserved name to be used in“the document.

<note>

In the reference concrete syntax, the syntactic literal is
identical to the reserved-mname.

<classdef rcsnm=capset appnm="capacity set" clause="d2000">

<propdef rcsnm=taotalcap datatype=integer clause="FIG51">
<propdef rcsnm=entcap datatype=integer clause="FIG52">
<propdef rcsnm=entchcap datatype=integer clause="FIG53">
<propdef rcsnm=elemcap datatype=integer clause="FIG54">
<propdefl ncsnm=grpcap datatype=integer clause="FIG55">
<propdef) rcsnm=exgrpcap datatype=integer clause="FIG56">
<propdef rcsnm=exnmcap datatype=integer clause="FIG57">
<propdef rcsnm=attcap datatype=integer clause="FIG58">
<propdef rcsnm=attchcap datatype=integer clause="FIG59">
<propdef rcsnm=avgrpcap datatype=integer clause="FIG5a">
<propdef rcsnm=notcap datatype=integer clause="FIG5b">
<propdef rcsnm=notchcap datatype=integer clause="FIG5c">

<propdef rcsnm=idcap datatype=integer clause="FIG5d">
<propdef rcsnm=idrefcap datatype=integer clause="FIG5e">
<propdef rcsnm=mapcap datatype=integer clause="FIG5f">
<propdef rcsnm=lksetcap datatype=integer clause="FIG5g">
<propdef rcsnm=lknmcap datatype=integer clause="FIG5h">

<classdef rcsnm=features fullnm="feature use" clause="d5000">
<propdef rcsnm=datatag datatype=boolean clause="d5101">

<desc>
True if DATATAG is YES.

101

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISO/IEC

<propdef rcsnm=omittag datatype=boolean clause="d5101">
<desc>
True if OMITTAG is YES.

<propdef rcsnm=rank datatype=boolean clause="d5101">
<desc>
Trye if RANK is YES.

<propder ICSNM=Shorttag datatype-bootiear Trause="a5+61"
<desc>
True if SHORTTAG is YES.

<propdef rcsnm=simple datatype=integer clause="d5201">
<desc>

0 if SIMPLE is NO.

<propdef rcsnm=implicit datatype=boolean clause="d5201">
<desc>

True if IMPLICIT is YES.

<propdef rcsnm=explicit datatype=integer clause="d5201">
<desc>
0 if EXPLICIT is NO.

<propdef rcsnm=concur datatype=integer. ‘¢lause="d5301">
<desc>
0 if CONCUR is NO.

<propdef rcsnm=subdoc datatype=integer clause="d5301">
<desc>

0 if SUBDOC is NO.

<propdef rcsnm=formal (datatype=boolean clause="d5301">
<desc>

True if FORMAL is* YES.

</psmodule>

<!-- SGML.\Déclaration-related SGML document string classes and propertjes -->

<psmodule rcsnm=sdclsds fullnm="SGML declaration SGML document string"
dependon=basesdsl>

<propdef subnode optional rcsnm=sgmldcl appnm="sgml decl"
fullnm="SGML declaration" datatype=node ac=sgmldcl cn=sgmldoc
clause="d0001">

<when>

SGML declaration was explicitly present.

<propdef rcsnm=sdcltype appnm="sgml decl type"
fullnm="SGML declaration type" datatype=enum cn=sgmldoc clause="62300">

<enumdef rcsnm=explicit>
<desc>
The SGML declaration was explicitly specified.

102

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<enumdef rcsnm=implied>
<desc>
The SGML declaration was implied.

<enumdef rcsnm=inherit>

<desc>

The SGML declaration comes from the SGML document of which
this is a subdocument.

<classdef rcsnm=sgmldcl appnm="sgml decl" fullnm="SGML declaratior
conprop=markup clause="d0000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="ssep comment name number rname literal gendelm" clause="d0001">
<note>

Also includes any s separators before the SGML declaration;
last child is gendelm for mdc delimiter.

</psmodule>
<!-- Prolog-related abstract classes and Properties, level 1 -->

<psmodule rcsnm=prlgabsl fullnm="proleg abstract level 1"
dependon=prlgabs0>

<propdef subnode rcsnm=attdefs.appnm="attribute defs"
fullnm="attribute definitiong™ datatype=nmndlist ac=attdef acnmprgp=name
cn=notation clause="b3002">

<propdef irefnode rcsnmsattdef appnm="attribute def"
fullnm="attribute definition" datatype=node ac=attdef cn=attasgn
clause="b3003">

<propdef irefrnode rcsnm=elemtype appnm="element type" datatype=node ac=elemtype
cn=element clause="b2101">

<propdefi\subnode rcsnm=dfltent appnm="default entity" datatype=node ac=dfltent
clause="*a5105" cn=doctype>
<whén>

The, DTD declared a default for undeclared entity names. (Each sudh
undeclared name is associated with an entity using this node as
a pattern, but in certain cases, the system may not select the
same entity for each name.)

<propdef subnode rcsnm=elemtps appnm="element types" datatype=nmndlist
ac="elemtype rankstem" acnmprop="gi rankstem" cn=doctype clause="b2101" >
<desc>

Generic identifiers or rank stems used to name elements. °
<propdef subnode rcsnm=parments appnm="parameter entities"
datatype=nmndlist ac=entity acnmprop=name cn=doctype
clause="b1004" >

<note>

Includes entities not explicitly declared, as discussed above in
the description of this class.

103

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

<classdef rcsnm=elemtype appnm="element type"
fullnm="element type definition" clause="b2000">

<propdef rcsnm=gi fullnm="generic identifier" datatype=string
strlex=name strnorm=general clause="78002">

<propdef rcsnm=omitstrt appnm="omit start tag" datatype=boolean
clause="b2202">

<desc>

True if start-tag minimization was "O".

<when>

Element type declaration specified omitted tag minimization.

<propdef rcsnm=omitend appnm="omit end tag" datatype=booleap
clause="b2203">

<desc>

True if end-tag minimization was "O".

<when>

Element type declaration specified omitted tag mifimization.

<propdef rcsnm=contype appnm="content type" datatype=enum clause="b2300

<enumdef rcsnm=cdata>
<desc>
Declared content of CDATA.

<enumdef rcsnm=rcdata>
<desc>
Declared content of RCDATA.

<enumdef rcsnm=empty>
<desc>
Declared content of EMPTY.

<enumdef rcsnm=any>
<desc>
Content model ~of ANY.

<enumdefy) xcsnm=modelgrp appnm="model group">
<descy

Content model that is a model group.

<propdef subnode rcsnm=modelgrp appnm="model group" datatype=node

' >

o
—ac=modetgrpcrause—"b2462

<when>
Element type declaration includes content model that has a model group.

<propdef rcsnm=excls appnm=exclusions datatype=strlist clause="b2521">
<when>
Contype is any or modelgrp.

<propdef rcsnm=incls appnm=inclusions datatype=strlist clause="b2511">
<when>
Contype is any or modelgrp.

104

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef subnode rcsnm=attdefs appnm="attribute defs"
fullnm="attribute definitions" datatype=nmndlist ac=attdef acnmprop=name
clause="b3003">

<classdef rcsnm=modelgrp appnm="model group" conprop=tokens
clause="b2402">

<desc>

A model group or a data tag group.

<note>
- ca a 2 v wiry v - “ePre —sw — v - a RoTe - wavyw, T eOte v v SOoRRec Or
equal to seq whose first token is an elemtk and whose second toker
is a pcdatatk.

<propdef rcsnm=connect appnm=connector datatype=enum clause="b241Q">
<desc>

Connector used within model group.

<enumdef rcsnm=and>
<enumdef rcsnm=or>
<enumdef rcsnm=seq>

<propdef rcsnm=occur appnm="occur indicater" fullnm="occurrence irjdicator"
datatype=enum clause="b2420">

<when>

Model group has an occurrence indicdtor.

<enumdef rcsnm=opt>
<enumdef rcsnm=plus>
<enumdef rcsnm=rep>

<propdef subnode rcsnm=tokens appnm="content tokens" datatype=nodeglist
ac="modelgrp pcdatatkyelemtk" clause="b2403">

<classdef rcsnm=pcdatatk appnm="pcdata token" clause="b2404">
<classdef rcsnm=elemtk appnm="element token" clause="b2405">

<propdef. rcsnm=gi fullnm="generic identifier" datatype=string
strlex=pame strnorm=general clause="b2405">

<propdef rcsnm=occur appnm="occur indicator" fullnm="occurrence indicator"
datatype=enum clause="b2405">

<when>

Element token has an occurrence indicator.

<enumdef rcsnm=opt>
<enumdef rcsnm=plus>
<enumdef rcsnm=rep>

<classdef rcsnm=attdef appnm="attribute def" fullnm="attribute definition"
conprop=dfltval clause="b3003">

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="b3201">

<propdef rcsnm=dcltype appnm="decl value type"

105

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

fullnm="declared value prescription type" datatype=enum clause="b3301">

<enumdef rcsnm=cdata>
<enumdef rcsnm=entity>
<enumdef rcsnm=entities>
<enumdef rcsnm=id>
<enumdef rcsnm=idref>
<enumdef rcsnm=idrefs>
<enumdef rcsnm=name>

<enumdef rcsnm=names>

<enumdef rcsnm=nmtoken>

<enumdef rcsnm=nmtokens>

<enumdef rcsnm=number>

<enumdef rcsnm=numbers>

<enumdef rcsnm=nutoken>

<enumdef rcsnm=nutokens>

<enumdef rcsnm=notation>

<enumdef rcsnm=nmtkgrp appnm="name token group">
<desc>

The declared value was a name token group.

<propdef rcsnm=tokens datatype=strlist clause£"bB3301">
<desc>

A list of strings specifying the allowed~tokens.
<when>

Declared value is a name token group,oOx' a notation.

<propdef rcsnm=dflttype appnm="défault value type" datatype=enum
clause="b3401">

<enumdef rcsnm=value>
<desc>
The default value was ‘@n attribute value specification without #FIXED.

<enumdef rcsnm=fixed>
<enumdef rcsnm=required>
<enumdef rcsnm=current>
<enumdef rcsnm=conref>
<enumdef xcsnm=implied>

<propdef subnode rcsnm=dfltval appnm="default value" datatype=nodelist
acz="attvaltk datachar sdata intignch entstart entend" clause="b3409">
<when>

The default value includes an attribute value specification.

<propdef irefnode rcsnm=curgrp appnm="current group" datatype=nodelist
ac=attdef clause="b3001">

<desc>

All the attdef nodes that represent the same attribute definition
and which will therefore share the same current value.

<note>

There will be as many members as there were associated element types
in the attribute definition list declaration

that declared this attribute definition.

<when>

The default value type is CURRENT.

106

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef rcsnm=curattix appnm="current attribute index" datatype=i
clause="b3001">
<desc>
The number of
declaration wi
<note>
All the attdef nodes in the value of the curgrp property of an att
node will exhibit the same value for the curattix property.
[TwWo attdef modes will Share the same current value just in case th
exhibit the same value for the curattix property.
<when>
The default value type is CURRENT.

tribute definitiong in the document type

1S 1n 1 U

ed at 1
h a default value type of CURRENT.

p ing
t

<classdef rcsnm=dfltent appnm="default entity">
<propdef rcsnm=enttype appnm="entity type" datatypé=enum clause="4g

<enumdef rcsnm=text fullnm="SGML text">
<enumdef rcsnm=cdata>
<enumdef rcsnm=sdata>

" <enumdef rcsnm=ndata>
<enumdef rcsnm=subdoc appnm=subdocument>
<enumdef rcsnm=pi>

<propdef rcsnm=text datatype=string fullnm="replacement text"
clause="92101">

<when>

The default entity declaration declares an internal entity.

<propdef subnode rcsnm=extid appnm="external id"

fullnm="external identifier" datatype=node ac=extid clause="al601"
<when>

The default entity 'declaration declares an external entity.

<propdef subnode rcsnm=atts appnm=attributes
datatype=nmndlist ac=attasgn acnmprop=name clause="b4120">
<desc>

A listof data attribute assignments, one for each declared attrib
entity*in the order in which they were declared in the attribute
definition list declaration.

<when>

The default entity declaration declares an external entity.

nteger

def

ey

5502">

v

ute of the

<propdef rcsnm=notname a =" ! " = i

strnorm=general clause="79408">
<when>
The default entity declaration declares an external entity.

<propdef irefnode rcsnm=notation datatype=node ac=notation clause=
<when>
The default entity declaration declares an external entity.

</psmodule>

<!-- Prolog-related SDS classes and properties -->

K=name

"b4001">

107

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

<psmodule rcsnm=prlgsds fullnm="prolog SGML document string"
dependon=basesdsl>

<propdef irefnode rcsnm=entdcl appnm="entity decl"
fullnm="entity declaration" datatype=node ac=entdcl cn=entity
clause="a5001">

<propdef irefnode rcsnm=entdcl appnm="entity decl"
fullnm="entity declaration" datatype=node ac=entdcl cn=dfltent
clause="a5001">

<propdef irefnode rcsnm=notdcl appnm="notation decl"
fullnm="notation declaration" datatype=node ac=notdcl cn=notation
clause="b4001">

<propdef irefnode rcsnm=attdldcl appnm="attribute def list decl"
fullnm="attribute definition list declaration" datatypé=node ac=attdlddl
cn=notation clause="b4111">

<when>

The notation has an associated ATTLIST.

<propdef irefnode rcsnm=eltpdcl appnm="elemeht type decl"
fullnm="element type declaration" datatype=node ac=eltpdcl cn=elemtype
clause="b2001">

<propdef irefnode rcsnm=attdldcl appnm="attribute def list decl"
fullnm="attribute definition list’declaration"

datatype=node ac=attdldcl cn=elemtype clause="b3001">

<when>

The element type has an associated ATTLIST declaration.

<propdef irefnode rcsnm=doctpdcl fullnm="document type declaration"
datatype=node ac=doctpdcl cn=doctype clause="bl001">

<propdef irefnode rcsnm=attvalsp appnm="attribute value spec"
fullnm="attribute value specification"
datatype=node~ac="attvalue literal" cn=attdef clause="79002">
<when>

Defaultwvalue includes attribute value specification.

<classdef rcsnm=doctpdcl fullnm="document type declaration" mayadd
clatise="b1000">

—<propdel Subnode TCSNM=Markup Jatatype=TodeIisT

ac="ssep comment name rname literal msstart msend msignch entstart entend
comdcl pi eltpdcl entdcl notdcl attdldcl usemap srmapdcl'
clause="b1001">

<note>

First child is gendelm for mdo delimiter; last is gendelm

for mdc delimiter. If there is an external entity, its entend node

will appear immediately before the gendelm for the dsc delimiter,

if there is one, and otherwise immediately before the gendelm node

for the mdc delimiter.

<propdef irefnode rcsnm=doctype appnm="document type" datatype=node

108

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

ac=doctype clause="b1008">

<propdef subnode rcsnm=entity datatype=node ac=entity clause="b1008">
<when>
Document type declaration includes external identifier.

<classdef rcsnm=attdldcl appnm="attribute def list decl"
fullnm="attribute definition list declaration" mayadd clause="b3000">

———<propdef—subnode—resam=markup—datatype=nodelist
ac="ssep comment entstart entend gendelm name nmtoken attvalue lifieral"”
clause="b3001">

<propdef irefnode rcsnm=asseltps appnm="assoc element types)
fullnm="associated element types" datatype=nodelist ac=elemtype
clause="b3001">

<desc>

The element types to which the attribute definition-list is appligable,
ordered as their names occur in the attribute definition

list declaration. This does not include undefined element types.

<propdef irefnode rcsnm=assnots appnm="assec notations"
fullnm="associated notations" datatype£nodelist ac=notation clausg¢="b3001">

<classdef rcsnm=eltpdcl appnm="element type decl"
fullnm="element type declaration"mayadd clause="b2000">

<propdef subnode rcsnm=markup.datatype=nodelist
ac="ssep comment entstart entend gendelm name number" clause="b20(¢1">

<propdef irefnode rcsnm=elemtype appnm="element type"
fullnm="element type/- datatype=node ac=elemtype clause="b2101">

<classdef rcsnm=entdcl appnm="entity decl" fullnm="entity declaration"
mayadd clausez"a5000">

<desc>

An entity.declaration that is not ignored.

<propdef) subnode rcsnm=markup datatype=nodelist
ac=lentstart entend ssep comment gendelm name rname literal attvalue"
clause="a5001">

xpropdef subnode rcsnm=entity datatype=node ac=entity clause="a5201">
<desc>
The entity declared by the entity declaration.

<classdef rcsnm=notdcl appnm="notation decl"
fullnm="notation declaration" mayadd clause="b4000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment literal name rname" clause="b4001">

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001">
<desc>
The declared notation.

109

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E) © ISO/IEC

</psmodule>

<!-- Document instance-related SDS classes and properties -->

<psmodule rcsnm=instsds0 fullnm="instance SGML document string level 0">
<propdef derived rcsnm=included datatype=boolean cn=element>

<desc>
True if and only if the element was an included subelement.

<propdef derived rcsnm=momitend appnm="must omit end tag" datatypesbgolean
cn=element clause="b2209">

<desc>

True if and only if the end tag for the element had to be omitted
because the element had a declared content of empty or

an explicit content reference.

</psmodule>

<psmodule rcsnm=instsdsl fullnm="instance SGML ddcument string level 1'
dependon="instsds0 basesdsl">

<!-- Element -->

<propdef subnode optional rcsnm=starttag ‘appnm="start tag" datatype=nodelist
ac="gendelm name ssep entstart entend literal attvalue" cn=element
clause="74001">

<note>

First child is gendelm for stag®.

Nodes of type entstart and enfend can occur only

in the document type specification.

<when>

A start-tag was specifiled for the element.

<propdef subnode optional rcsnm=endtag appnm="end tag" datatype=nodelist
ac="gendelm name ssep entstart entend ignmrkup" cn=element clause="75001">
<note>

First child~is/gendelm for etago or net. Nodes of type entstart,
entend, and“ignmrkup can occur only in the document type specification
<when>

An end=tag (not a data tag) was specified for the element.

<({ -+ Data character -->

clause="7610a">

<desc>

True if and only if this character is an RE that was deemed to occur
at a point other than that at which it in fact occurred.

<note>

A node of type repos will indicate the position at which

it in fact occurred.

<propdef irefnode rcsnm=repos appnm="re position" datatype=node cn=datachar
ac=repos clause="7610a">
<desc>

110

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

The position at which this RE character in fact occurred.

<when>

This character is an RE that was deemed to occur at a point other
than that at which it in fact occurred.

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref" cn=extdata
clause="94401 94402">

<desc>

The markup of the entity reference.
<note>

ssep, entstart, and entend can occur only in a name group in. &)nanled
entity reference.

<classdef rcsnm=ignrs appnm="ignored rs" clause="76101">
<desc>
An RS that was ignored because of the rules in 7.6(1) of ISO 8879.

<propdef subnode optional rcsnm=namecref appnm=‘named char ref"
fullnm="named character reference" datatype=nedelist

ac="gendelm name refendre" clause="95001"x

<when>

The character was the replacement of aMamed character reference.

<classdef rcsnm=ignre appnm="ignored»re" clause="76100">
<desc>

An RE in content that was ignozed because of the rules in 7.6.1 of] ISO
8879.

<note>

This occurs at the point(where the RE originally occurred rather
than at the point it was‘'determined that the RE should be ignored.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist

ac="gendelm name refendre" clause="95001">

<when>

The character was the replacement of a named character reference.

<clasgdef rcsnm=repos appnm="re position" clause="7610a">
<desc>

Th& original position of an RE that was deemed by the rules of clause
7+6.1 of ISO 8879 to occur at some point other than that at which [it
in fact occurred.
<note>

For each node of tyvpe repos thara will b a n-ede—e—f—‘ey?e—éa-‘ea-e-ha-f

with a property movedre that is true.

<propdef irefnode rcsnm=re appnm="record end" datatype=node ac=datachar
clause="7610a">

<desc>

The character for which this is the repos.

</psmodule>

<!-- Datatag-related abstract classes and properties -->
<psmodule rcsnm=dtgabs fullnm="datatag abstract" dependon=baseabs>

111

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

<propdef derived rcsnm=datatag datatype=boolean cn=element clause="73201">

<desc>

True if and only if a data tag served as the end tag of the element.
<note>

The data characters comprising the data tag will follow the element in
the content of the containing element.

cn=elemtype clause="b2444">
<when>
The model group was a data tag group.

<propdef rcsnm=dtgptemp appnm="data tag padding template" datatype=stri
cn=elemtype clause="b2445">

<when>

The model group was a data tag group whose data tag pattern included a
data tag padding template.

</psmodule>

<!-- Rank-related abstract classes and propgrties -->
<psmodule rcsnm=rankabs fullnm="rank abstract"” dependon=prlgabsl>

<propdef derived rcsnm=ranksuff appnm="rank suffix" datatype=string
cn=elemtype clause="b2114">
<when>

The element type in the element type declaration included a rank suffis.

<propdef rcsnm=rankstem appnm="rank stem" datatype=string cn=elemtype
clause="b2113">

<when>

The element type in thevelement type declaration used a ranked element
or ranked group.

<propdef rcsnmzrankgrp appnm="rank group" datatype=strlist cn=elemtype
clause="b2112"3

<desc>

The rank.stems in the ranked group.

<when>

The gelement type declaration included a ranked group.

<classdef rcsnm=rankstem appnm="rank stem" clause="b2113">

<propdef rcsnm=stem datatype=string strlex=name strnorm=general
clause="b2113">

<desc>

Name of rank stem.

<propdef irefnode rcsnm=elemtps appnm="element types"
datatype=nodelist ac=elemtype clause="b2112">
<desc>

The element types for which this is a rank stem.

</psmodule>

ng

112

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<!-- Shortref-related abstract classes and properties -->
<psmodule rcsnm=srabs fullnm="shortref abstract" dependon=prlgabs0>

<propdef subnode rcsnm=emptymap appnm="empty short ref map"
fullnm="empty short reference map" datatype=node ac=srmap cn=sgmlcsts
clause="b6004">

<desc>

The empty short reference map.

<propdef subnode rcsnm=srmaps appnm="short ref maps"
fullnm="short reference maps" datatype=nmndlist ac=srmap acnmprop{name
cn=doctype clause="bl006">
<note>

Does not include #EMPTY map.

<propdef rcsnm=srmapnm appnm="short ref map name"
fullnm="short reference map name" datatype=string(strlex=rniname
strnorm=general cn=elemtype clause="b6004">

<when>

The element type has an associated short reference map.

<propdef irefnode rcsnm=srmap appnm="short ref map"
fullnm="short reference map" datatype=node ac=srmap cn=elemtype
clause="b6101">

<when>

The element type has an associdted short reference map.

<classdef rcsnm=srmap appnm=t.short ref map" fullnm="short referen¢e map"

clause="b5000">

<propdef rcsnm=name datatype=string strlex=name strnorm=general clause="b5002">

<when>
Map is not the implicitly declared #EMPTY map.

<propdef subnode rcsnm=map datatype=nmndlist ac=srassoc acnmprop=fhortref

clause="b5004" >

<classdef’ rcsnm=srassoc appnm="short ref assoc"
fullhm="short reference association" clause="b5004">

<propdef rcsnm=shortref appnm="short ref"
fullnm="short reference delimiter" datatype=string strnorm=general
clause="b5004">

—_ Ipropder ICSNM=cntiame appin="entity name" datatype=string strlex=name

strnorm=entity clause="b5004">

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="b5001">
</psmodule>

<!-- Shortref-related SDS classes and properties -->

<psmodule rcsnm=srsds fullnm="shortref SGML document string"

dependon=basesdsl>

<classdef rcsnm=usemap appnm="short ref use decl"

113

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

fullnm="short reference use declaration" conprop=markup clause="b6000">

<propdef subnode rcsnm=markup datatype=nodelist

ac="entstart entend ssep comment gendelm name rname ignmrkup"
clause="b6001">

<note>

First child is gendelm for mdo delimiter; last is gendelm for mdc
delimiter.

<propdef irefnode rcsnm=asseltps appnm="assoc element types"
fullnm="associated element types" datatype=nodelist ac=elemtype
clause="al501">

<note>

SGML specifies that this does not include element types which ‘had
already been associated with a map.

<when>

The short reference use declaration includes an associated element
type.

<propdef irefnode rcsnm=srmap datatype=node ac=srmap clause="b6002">

<classdef rcsnm=shortref appnm="short ref"
fullnm="short reference delimiter" clause="e4620">

<propdef rcsnm=origdelm appnm="original\delim"
fullnm="original delimiter" datatype<string clause="96601">
<desc>

The short reference delimiter asXoriginally entered.

<propdef subnode optional rc¢shm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre! clause="95001">

<when>

The first charactepr-of the delimiter was entered with a named
character reference-

<classdef rcsnm=srmapdcl appnm="short ref map decl"
fullnm="short reference mapping declaration" mayadd clause="b5000">

<propdef subnode rcsnm=markup datatype=nodelist

ac="eéntstart entend ssep comment gendelm name rname literal"
clause="b5001">

<note>

First child is gendelm for mdo delimiter; last is gendelm for mdc

delimiter.
<propdef irefnode rcsnm=map datatype=node ac=srmap clause="b5001">
</psmodule>

<!-- Link-related abstract classes and properties -->
<psmodule rcsnm=linkabs fullnm="1link abstract" dependon=prlgabs0>

<propdef subnode rcsnm=emptylks appnm="empty link set" datatype=node
cn=sgmlcsts clause="c3004">
<desc>

ac=linkset

114

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

|~ There is an active explicit link process

Empty link set used to disable current link set.

<propdef subnode optional rcsnm=simplelk appnm="simple link info"
fullnm="simple link information" datatype=nmndlist ac=simplelk
acnmprop=linkset cn=element clause="cl1431">

<when>

Element is the document element and there are active simple link
processes.

<propdetl 1irefnode rcsnm=linkatts appnm="link attributes"
datatype=nmndlist ac=attasgn acnmprop=name cn=element clause="c140R">
<desc>
A list of attribute assignments, one for each declared link‘attriblte
of the element.

<note>

The origin of the link attributes will be the link ruile-

<propdef derived rcsnm=rsltgi appnm="result gi"
fullnm="result element generic identifier" datatype=string strlex=hame
strnorm=general cn=element clause="c2202">
<when>

There is an applicable link rule which is(ah explicit link rule whpse
result element is not implied.

<propdef irefnode rcsnm=rsltelem apphm="result element type"
datatype=node ac=elemtype cn=elemént clause="c2202">

<when>

There is an applicable link »Ule which is an explicit link rule whpse
result element is not implied.

<propdef irefnode rcsnmarsltatts appnm="result attributes"
datatype=nmndlist ac=attasgn acnmprop=name cn=element clause="c220B">
<note>

The origin of thelattributes will be the link rule.
<when>

There is an applicable link rule which is an explicit link rule whpse
result elemerntt is not implied.

<propdef. /irefnode rcsnm=lksetinf appnm="link set info"
fullnm="link set information" datatype=nodelist ac=linkrule cn=elehent
cladse="c2205">
<desc>

Link rules in the current link set whose source element type is implied.
<when>

<propdef irefnode rcsnm=lksetinf appnm="link set info"

fullnm="1link set information" datatype=nodelist ac=linkrule cn=datachar>
<desc>

Link rules in the current link set whose source element type is implied.
<when>

There is an active explicit link process and the character occurs

in content.

<classdef rcsnm=simplelk appnm="simple link info"
fullnm="simple link information" clause="c1430">

115

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/MEC 10179:1996(E) ©ISO/EC
<propdef rcsnm=linktype appnm="link type" datatype=string strlex=name
strnorm=general clause="cl1001">
<desc>
The link type name of the simple link process.
<propdef subnode rcsnm=atts appnm=attributes
datatype=nmndlist ac=attasgn acnmprop=name clause="cl1402">
<classdef rcsnm=linktype appnm="link type">
<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="cl1002">
<propdef rcsnm=active datatype=boolean>
<desc>
True if and only if link type is active.
<propdef rcsnm=1tkind appnm="link type kind"
fullnm="kind of 1link type" datatype=enum clause=z"¢1001">
<enumdef rcsnm=simple>
<enumdef rcsnm=implicit>
<enumdef rcsnm=explicit>
<propdef rcsnm=srcname appnm="source document type name" datatype=strimng
strlex=name strnorm=general clause="¢1302">
<propdef irefnode rcsnm=source appnm="source document type" datatype=nédde
ac=doctype clause="cl305 cl306">
<note>
For a simple link type, this will always be the base document type.
<propdef rcsnm=rsltname appnm="result document type name" datatype=string
strlex=name strnorm=general clause="cl1303">
<propdef irefnode rcsnm=result appnm="result document type" datatype=npde
ac=doctype clause="cl306">
<when>
The link type is an explicit link type.
<propdef subnode rcsnm=inilkset appnm="initial link set" datatype=node
ac=linkset clause="c2004">
<when>
The link type is not simple.
<propdef subnode rcsnm=idlkset appnm="id link set" datatype=node ac=linkset
clause="c2300">
<when>
The link type declaration subset includes an ID link set declaration.
<propdef subnode rcsnm=linksets appnm="link sets" datatype=nmndlist
ac=linkset acnmprop=name clause="c1401">
<note>
Does not include #INITIAL or #EMPTY or ID link set.
<classdef rcsnm=linkset appnm="link set" conprop=lkrules clause="c2000">

116

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="c2003">

<when>

Link set is not #INITIAL nor #EMPTY nor the ID link set.

<propdef subnode rcsnm=lkrules appnm="link rules" datatype=nodelist
ac=linkrule clause="c2002">

<classdef rcsnm=linkrule appnm="link rule" clause="c2002">

<propdef rcsnm=assgis appnm="assoc gis"
fullnm="associated generic identifiers" datatype=strlist strlex=npme
clause="c2101">

<desc>

The names of the associated element types.
<when>

The link rule is not an explicit link rule whosé({source element type
is implied.

<propdef irefnode rcsnm=asseltps appnm="agssoc element types"
fullnm="associated element types" datatypé=nodelist ac=elemtype
clause="c2101">

<when>

The link rule is not an explicit.link rule whose source element tlype
is implied.

<propdef rcsnm=id fullnm="unigue identifier" datatype=string strllex=name
strnorm=general clause="c2301">

<when>

Link rule occurs in IB\link set declaration.

<propdef irefnodelrcsnm=uselink datatype=node ac=linkset clause="[c2104">
<when>
The link rule\ includes a USELINK parameter.

<propdef-¥esnm=uselknm appnm="uselink name" datatype=string strlex=rniname
strnorm=general clause="c2104">

<desc>

Thelink set named by the USELINK parameter.
<when>

The link rule includes a USELINK parameter.

<propdef derived rcsnm=postlkrs appnm="postlink restore" datatypﬁ=boolean

ol =lanl1 01

Ea=a- o)

<desc>
True if the link rule includes a POSTLINK parameter of #RESTORE.

<propdef irefnode rcsnm=postlkst appnm="postlink set" datatype=node
ac=linkset clause="c2101">

<when>

The link set specification did not specify #RESTORE.

<propdef rcsnm=postlknm datatype=string strlex=rniname strnorm=general
clause="c2101">
<desc>

117

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) SISOAEC
The token specified for the link set specification following POSTLINK.
<when>
The link rule includes a POSTLINK parameter.
<propdef subnode rcsnm=linkatts appnm="link attributes"
datatype=nmndlist ac=attasgn acnmprop=name clause="c2102">
<when>
The link rule is not an explicit link rule whose source element type
is implied.
<propdef rcsnm=rsltgi appnm="result gi"
fullnm="result element generic identifier" datatype=string strlexsname
strnorm=general clause="c2202">
<when>
The link rule is an explicit link rule whose result element“\type is
not implied.
<propdef irefnode rcsnm=rsltelem appnm="result elementitype" datatype=rode

ac=elemtype clause="c2202">

<when>

The link rule is an explicit link rule whose résult element type is
not implied.

<propdef subnode rcsnm=rsltatts appnm="restlt attributes"
datatype=nmndlist ac=attasgn acnmprop=name clause="c2203">

<when>

The link rule is an explicit link xH¥le whose result element type is
not implied.

</psmodule>

<!-- Link-related SDS classes and properties -->
<psmodule rcsnm=linksdeifullnm="1link SGML document string"
dependon=basesdsl>

<propdef irefnode rcsnm=lksetdcl appnm="link set decl"
fullnm="1ink (Set declaration" datatype=node ac="lksetdcl idlkdcl"
cn=linkset latse="c2001">

<when>

Link set is not #EMPTY.

<propdef irefnode rcsnm=1lktpdcl appnm="link type decl"
fullnm="1ink type declaration" datatype=node ac=lktpdcl cn=1linktype
¢lYause="cl001">

<classdef rcsnm=1lktpdcl appnm="1link type decl" fullnm="link type declaration"

mayadd clause="cl1000">

<propdef subnode rcsnm=markup datatype=nodelist

ac="ssep comment name rname literal msstart msignch msend
entstart entend pi comdcl entdcl attdldcl lksetdcl idlkdcl®
clause="cl001">

<propdef irefnode rcsnm=linktype appnm="1link type" datatype=node
ac=linktype>

118

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

<propdef subnode rcsnm=entity datatype=node ac=entity clause="cl1004">

<when>
Link type definition includes external identifier.

<classdef rcsnm=lksetdcl appnm="link set decl" fullnm="1link set declaration"

mayadd clause="c2000">

<propdef subnode rcsnm=markup datatype=nodelist

ac="entstart entend ssep comment gendelm name rname literal attvalue"

clause="c2001">

<propdef irefnode rcsnm=linkset appnm="link set" datatype=node
ac=linkset clause="c2001">

<classdef rcsnm=idlkdcl appnm="id link set decl"
fullnm="ID link set declaration" mayadd clause="c2300'>

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name/rname literal attva
clause="c2301">

<propdef irefnode rcsnm=linkset appnm="link set" datatype=node ac
clause="c2301">

<classdef rcsnm=uselink appnm="1link ‘set use decl"

fullnm="1link set use declaration!)conprop=markup clause="c3000">
<desc>

A link set use declaration that is not ignored.

<propdef subnode rcsnm=markup datatype=nodelist

ac="entstart entend ssep comment gendelm name rname ignmrkup"
clause="c3001">

<note>

First child is‘gendelm for mdo delimiter; last is gendelm
for mdc delimiter.

<propdef~derived rcsnm=restore datatype=boolean clause="c3002">
<desc>,
Truetif“the link set specification specified #RESTORE.

Zpropdef irefnode rcsnm=linkset datatype=node ac=linkset clause="
<when>
The link set specification did not specify #RESTORE.

lue"

tlinkset

£3002">

<propdef rTsHm=ikSetmr datatypPe=String StriexX=rITinane StIITorm=gert
clause="c3002">

<desc>

The token specified for the link set specification.

<propdef rcsnm=linktpnm appnm="link type name" datatype=string
strlex=name strnorm=general clause="c3001">

<propdef irefnode rcsnm=linktype appnm="link type" datatype=node
ac=linktype clause="c3001">

</psmodule>

2ral

119

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

<1-- Subdoc-related abstract classes and properties -->
<psmodule rcsnm=subdcabs fullnm="subdoc abstract" dependon=baseabs>

<classdef rcsnm=subdoc appnm=subdocument fullnm="reference to subdocument">

<desc>
The result of referencing a subdocument entity.

<propdef rcsnm=entname appnm="entity name" datatype=string strlex=name

strnorm=entity clause="a5101">
<propdef irefnode rcsnm=entity datatype=node ac=entity clause="c5501y>
</psmodule>

<!-- Subdoc-related SDS classes and properties -->
<psmodule rcsnm=subdcsds fullnm="subdoc SGML document string"
dependon="basesdsl subdabs">

<propdef subnode optional rcsnm=markup datatype=n¢delist

ac="gendelm name ssep entstart entend refendre shortref" cn=subdoc
clause="94401">

<desc>

The markup of the entity reference.

<note>

ssep, entstart, and entend can occur ¢only in a name group in a named
entity reference.

</psmodule>

<!-- Formal public identifiem-related abstract classes and properties -
<psmodule rcsnm=fpiabs fullhm="formal public identifier abstract"”
dependon=baseabs>

<propdef subnode optilonal rcsnm=fpi appnm="formal public id"
fullnm="formal public identifier" datatype=node ac=fpi cn=extid
clause="a2001 >

<when>

FORMAL YES\was specified in the SGML declaration.

<clasgdéf rcsnm=fpi appnm="formal public id" fullnm="formal public identifier"

clause="a2000">
<note>

The string which is the value of each of the string-valued properties

providedby this class s the mimrimumdata—spectfied—as—such—in—the——
governing productions, without any accompanying "//", "-//", "+//"
or s characters.

<propdef rcsnm=ownertp appnm="owner type" datatype=enum clause="a2100">
<desc>
Type of owner identifier.

<enumdef rcsnm=iso>
<enumdef rcsnm=regist appnm=registered>
<enumdef rcsnm=unregist appnm=unregistered>

120

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/EC ISO/IEC 10179:1996(E)

<propdef rcsnm=ownerid appnm="owner id" fullnm="owner identifier"
datatype=string strlex=mindata clause="a2100">

<propdef rcsnm=textclas appnm="text class" fullnm="public text class"
datatype=enum clause="a2210">
<enumdef rcsnm=capacity>
<enumdef rcsnm=charset>
<enumdef rcsnm=document>
<enumdef rcsnm=dtd>
—Erunmde - resmeetenenrts
<enumdef rcsnm=entities>
<enumdef rcsnm=1lpd>
<enumdef rcsnm=nonsgml>
<enumdef rcsnm=notation>
<enumdef rcsnm=shortref>
<enumdef rcsnm=subdoc>
<enumdef rcsnm=syntax>
<enumdef rcsnm=text>

<propdef rcsnm=unavail appnm=unavailable datatype=boolean clause="p2202">
<desc>
True if and only if unavailable text indigator was specified.

<propdef rcsnm=textdesc appnm="text description"
fullnm="public text description" datatype=string strlex=mindata clpuse="a2221">

<propdef rcsnm=textlang appnm="text language"

fullnm="public text language!rdatatype=string clause="a2231">
<when>

The text identifier included a public text language.

<propdef rcsnm=textdseéqg appnm="text designating sequence"
fullnm="public text designating sequence" datatype=string clause="p2241">
<when>

The text identifiier included a public text designating sequence.

<propdef recsnm=textdver appnm="text display version"
fullnm="public text display version" datatype=string clause="a2251|"'>
<when>

The ‘téxt identifier included a public text display version
(that is, there was a // following the public text language
or’ public text designating sequence).

</psmodule>

<!-- String Normalization Rules -->
<normdef rcsnm=general sd=SGML clause="d4506">
<desc>

Declared concrete syntax general namecase substitution.
<normdef rcsnm=entity sd=SGML clause="d4506">

<desc>

Declared concrete syntax entity namecase substitution.
<normdef rcsnm=rcsgener sd=SGML clause="d4506">

<desc>

Reference concrete syntax general namecase substitution.

121

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TIEC 10179:1996(E) ©ISO/IEC

<datadef rcsnm=integer lextype=integer>

<datadef rcsnm=boolean lextype=boolean>

<datadef rcsnm=strlist fullnm="string list" listof=string lextype=strlist>
<datadef rcsnm=intlist fullnm="integer list" listof=int lextype=intlist>

<!-- Lexical Types -->
<!-- Datatypes -->
<lexdef ltn=boolean norm model="[01]">
<lexdef ltn=integer unorm model="'0’|marker">

<lexdef ltn=intlist norm model="1Integer+">

<lexdef ltn=literal spec sd=SGML clause="96107">

<desc>

Delimited literal as in declared concrete syntax. Character reference
can be used to enter delimiter string within literal, as in SGMEL
documents.

<lexdef ltn=strlist norm model="literal, (’,’,literal)*">

<desc>

String list in so-called "comma-delimited ASCII" format, supported by
data base and spreadsheet programs. The literals, gxclusive of their
delimiters, shall conform to the applicable lexical“type of the
individual strings.

<!-- Other lexical types -->

<lexdef ltn=mindata spec sd=SGML clausez"al702">
<desc>Minimum data.

<lexdef 1tn=NAME spec sd=SGML clause="93001">
<desc>Name in declared concrete syntax.

<lexdef 1tn=NMTOKEN spec sd=SGML,'Clause="93004">
<desc>Name token in declared cohcrete syntax.
<lexdef ltn=number spec sd=SGML clause="93002">
<desc>Number in declared concrete syntax.

<lexdef ltn=nmchar spec sd=SGML clause="92103">
<desc>Name character inl.declared concrete syntax.
<lexdef 1tn=ATTNAME umsp provider=element property=atts sd=SGML clausef"b3201">
<desc>Name of attribute of an element.

<lexdef ltn=attspecs spec sd=SGML clause="79001">
<desc>Attributerspecification list.

<lexdef 1tn=ENTITY nmsp provider=sgmldoc property=entities sd=SGML
clause="a5101">

<desc>General entity name.

<lexdef\1tn=IDREF nmsp provider=sgmldoc property=elements sd=SGML
clause="79403">

<@degc>ID of an element (specified in document).

<lexdef 1tn=GI nmsp provider=dtd property=elemtps sd=SGML clause="78001">
—<dege>Element—type—name—(if—dtdeffective—ts—true—
<lexdef ltn=rniname spec sd=SGML>

<desc>A name optionally preceded by an RNI delimiter.

9.7 DSSSL SGML Grove Plan

A DSSSL specification has a single grove plan specified by the sgml-grove-plan
architectural form in the DSSSL specification. See 7.1.2.

122

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

10 Standard Document Query Language

SDQL adds two data types to the expression language, node-1ist and named-node-1list.
It also adds some additional syntax for expressions: in SDQL, in any context in which an
expression is allowed, a special-query-expression is also allowed.

A subset of SDQL called the core guery language is defined in 10.2.4

10.1

0.1.1

The node-1ist data type represents an ordered list of zero or more nodes in(@grove.
NOTES
28 There is no node data type. A single node is represented by a node~11ist with a sjngle member.

29 A node-list will typically be implemented in a lazy fashion. In other words, the internal repredentation of a node-
list is not a list of nodes, but a representation of the specification that constructed the node-list. Fof example, if an
application uses the node-1ist-count procedure on a node-list, it would be inefficient to build {he node-list, count
it, and then discard the node-list; it would be better simply to counfhow many distinct nodes match{the node-list’s
specification.

A node-list with a single member is referred to,as a singleton node-list.
The named-node-1ist data type is a subtype of the node-1ist data type that represents a
node-1ist each of whose members. has a string-valued property that uniquely {dentifies the

node in the node-list.

n1l is used for an argument that’shall be a node-list. sn1 is used for an argument that shall be a
singleton node-list. nn1 is-used for an argument that shall be a named-node-list.

Primitive Procedures
The proceduresin this clause are the primitive procedures, in the sense that all other procedures
in SDQL-ceuld be defined in terms of the procedures in this clause, but no procedure in this

clausevis.capable of being defined in terms of the other procedures in this clause.

Application Binding

(current-node)

Returns a singleton node-list. The semantics of this are defined by the context in which the
SDQL expression occurs.

(current-root)

Returns a singleton node-list. The semantics of this are defined by the context in which the
SDQL expression occurs.

123

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

10.1.2

10.1.

Node Lists

(node-1list? obj)

Returns #t if ob7 is a node-list, and otherwise returns #f.

(node-list-empty? nl)

Returns #t if n1 is the empty node-list, and otherwise returns #f.
nl)

{(node-list-first n

Returns a node-list containing the first member of n1, if any, and otherwise returns the
node-ist.

(node-list-rest nl)

Returns a node-list containing all members of n1 except thefirst, if n1 has at least ong
and otherwise returns the empty node-list.

(node-list nly nlp ..)

Returns the node-list that results from appernding the members of nly, nly, If therg
arguments, returns the empty node-list.

(node-list=? nl; nlp)

empty

member,

are no

Returns #t if n1, and n1, arethé same node-list, that is, they contain the same membes in the

same order, and otherwise-returns #f.
(node-list-no-ordér nl)

Returns a node“list that has the same members as n1 but in an unspecified order.

NOTE 30~An‘implementation may be able to implement (node-list-no-order g) more efficiently than q.

Named Node Lists

(named-node-1ist? ob7y)

Returns #t if ob7 is a named-node-list and otherwise returns #f.

(named-node string nnl)

Returns a singleton node-list comprising the node in nnl whose name is string, if there is such
a node, and otherwise returns the empty node-list. string is normalized according to the string
normalization rule associated with nn1 before being compared to the names of the members of

nnl.

124

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(named-node-list-normalize string nnl symbol)

Returns string normalized according to the normalization rule of the named n
applicable to nodes of class symbol.

(named-node-list-names nnl)

ode list nnl

Returns a list of the names of the members of nnl in the same order as nnl. The result shall be

10.1.4

10.1.5

10.1.6

a list of strings with the same number of members as nn1l.
Error Reporting

(node-list-error string nl)

This signals an error in a similar way to the error procedure. When an error is
node-list-error, the system should report to the user that the error is assog
nodes in nl1. The manner in which this is done is systeinidependent.

Application Name Transformation

In all contexts in SDQL, application names are transformed by replacing each sj
hyphen and adding a question mark (?) to.the application names of properties w
data type is boolean.

Property Values

(node-property propname snl #!key default: null: rcs?:)

Returns the value that-the node represented by snl exhibits for the property pr
node does not exhibit the property propname, then if the default: is supplie
otherwise, an error is signaled. If the node exhibits a null value for the property,
supplied, it.is returned; otherwise, if default: is supplied, it is returned; othet
signaled.

propname shall be a symbol or a string specifying either the application name
specified in 10.1.5) or the RCS name of the property. propname is compared 4
property name in a case-independent manner.

signaled with
iated with the

bace with a
hose declared

ppname. If the

d, it is returned;
then if null: is
wise, an error is

transformed as
gainst the

— An abstract character is represented by an object of type char.

— An abstract string is represented by an object of type string.
— An abstract boolean is represented by an object of type boolean.

— An abstract integer is represented by an object of type integer.

eir abstract data

125

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

— An abstract integer list is represented by a list of integers.

— An abstract string list is represented by a list of strings.

— An enumeration is represented by a symbol whose name is equal to the application name of

the enumerator (transformed as specified in 10.1.5).

A component-name is rpprPanth by a Qymhn] The name of the Qymhnl shall be th

e

10.1.7

10.2

application name (transformed as specified in 10.1.5), unless the rcs? : argumentis
with a true value, in which case the RCS name will be used.

— An abstract component name list is represented by a list of the symbols that represe|
component name.

— An abstract node is represented by a singleton node-list.
— An abstract nodelist is represented by an object of type node-list.
— An abstract nmndlist is represented by an object of type named-node-list.

— Null values have no representation in the expréssion language.

SGML Grove Construction

(sgml-parse string #!key active: parent:)

Returns a node-list containing a-sinigle node that is the root of a grove built by parsing

document or subdocument using the SGML property set. string is the system identi
SGML document entity orfSGML subdocument entity. active: is a list of strings sp
the names of the active. DTD or LPDs. At most one DTD shall be active. If parent:
specified, then the entity to be parsed is an SGML subdocument entity, and the value s
singleton node-list'in the grove in which the subdocument should be treated as being d

supplied

nt each

in SGML
ier of the
ecifying
is

hall be a
bclared.

This uses the default grove plan, which is determined in an application-dependent manjer.

Derived Procedures

For’some procedures, a formal definition in the expression language is supplied. These

formal

10.2.1

Ao finies d + L A1 A P 1 o 11 LI I LW)
SO UU Ot TIa A TCO T TUT S ~ AT UTTITU U TTHHPIC T AUV WU TTU TICCU TIT S UTU VETTTY U

at

arguments meet the requirements indicated by the procedure prototypes and the procedure

description.

HyTime Support

Use of the facilities in this clause in the style or transformation languages requires the hytime

feature.

The grovepos abstract data type is represented by a list each of whose members is

126

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

— an integer,
— a list containing a symbol and a string, or
— a list containing a symbol and an integer.

(value-proploc propname snl #'!key apropsrc?: default:)

propname shall be a symbol or string, interpreted as for the node-property
the member of snl does not exhibit a value for propname or exhibits a null val
default: is supplied, default : shall be returned; otherwise, an erfor shall b
apropsrc?:, if true, has the same effect as specifying an apropsgx¢ attribute
apropsrc for the code proploc form in ISO/IEC 10744.

(list-proploc propname nl #!key apropsrc?:si¥ghore-missing?:

Returns a list of objects, one for each member of n1;where each object is the va

rocedure. If
e, then if
e signaled.
with a value of

ue that the

member of n1 exhibits for propname. propname shall be a symbol or string, ifterpreted as for

the node-property procedure. If some meniber of n1 does not exhibit a value]

for propname

or exhibits a null value, then if ignore-migsing?: is true, the resulting list
object for that member; otherwise, an error. shall be signaled. apropsrc?:, ift
effect as specifying an apropsrc attribute with a value of apropsrc for the ¢
form in ISO/IEC 10744.

(node-list-proploc prepname nl #!key apropsrc?: ignore-misg

Returns the node-list that-results from concatenating the values that each membe
for propname. prqpname shall be a symbol or string, interpreted as for the no
procedure. For the,class of each member of nl, propname shall be nodal. If so
nl does not exhibit a value for propname or exhibits a null value, then if igno
missing?3s true, the resulting node-list shall contain no nodes for that membe

all contain no

s
rIe, has the same

bde proploc

ing?:)

r of n1 exhibits
He-property
ne member of
re—

r; otherwise, an

error shall'be signaled. apropsrc?:, if true, has the same effect as specifying dn apropsrc

attribate with a value of apropsrc for the code proploc form in ISO/IEC 107

(Uistloc dimlist nl #!key overrun:)
(listloc dimlist list #'key overrun:)
(listloc dimlist string #'key overrun:)

44.

This addresses the members of the second argument in the same manner as the 1

istloc

architectural form defined in ISO/IEC 10744. Returns a node-list, list, or string according to the

type of the second argument. dimlist is a list of integers. overrun: is one o
error, wrap, truncate, or ignore. The defaultis error.

(nameloc nmlist nnl #'key ignore-missing?:)

f the symbols

127

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

dscp: stop: min: max: nlword: stem?:)

Returns a node-list containing one member for each member of nmlist, where nmlistisa
string, symbol, or a list of strings and/or symbols. It shall be an error if any member of nmlist
does not match the name of some member of nl, unless ignore-missing?: is true.

(groveloc list nl #!key overrun:)

Returns a list of nodes located in the same manner as with the groveloc architectural form of

OAEC- 10744 LS t18-3 n-the - same-format-as-the representation-o he grovepo

; a lis the s ormat 0s abstract
data type. overrun: is interpreted as with listloc.

(treeloc marklist nl #!key overrun: treecom?:)

Returns a list of nodes located in the same manner as with the treelo¢ architectural form of
ISO/IEC 10744. mark1ist is list of integers. overrun: is interpreted as with 1istj]oc.
treecom? :, if true, corresponds to a treecom attribute with a ¥alue of treecom.

(pathloc dimlist nl #!key overrun: treecom?&)

Returns a list of nodes located in the same manner as/with the pathloc architectural form of
ISO/TEC 10744. dimlist is a list of integers. ove€rrun: is interpreted as with 1istfloc.
treecom? :, if true, corresponds to a t reecomattribute with a value of treecom.

(relloc-anc dimlist nl #!'key overrun:)
(relloc-esib dimlist nl #!key. overrun:)
(relloc-ysib dimlist nl #!key overrun:)
(relloc-des dimlist nl #hkey overrun:)

Returns a list of nodes located in the same manner as with the relloc architectural form of ISO/
IEC 10744. The procedures relloc-anc, relloc-esib, relloc-ysib, and relloc-
des correspond to values for the relation attribute of anc, esib, ysib, and des. dimlist

is a list of integers.\overrun: is interpreted as with listloc.

NOTE 31 Relations of parent and children are handled by parent and children procedures.

(dedtatok nl #!key filter: concat: catsrcsp: catressp: tokensepf

Returns a list of nodes located in the same manner as with the datatok architectural form of
ISO/TIEC 10744.

— filter: is a symbol having one of the values allowed for the £ilter attribute.

— concat: is one of the symbols catshi, catslo, cattk, catshitk, catslotk,

catrhitk, catrlotk, or nconcat interpreted in the same manner as the concat
attribute.

128

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

— catsrcsp:,catressp:, tokensp:, and ascp: are strings interpreted in the same
manner as the attributes with the same name.

— nlword: is a string specifying an ISO 639 language code.
— stem?:, if true, has the same effect as specifying #STEM for the nlword attribute.

— stop: is a list of strings specifying a stop list; the default is the empty list.

— min: is an integer specifying the minimum untruncated token length.
— max: is an integer specifying the maximum untruncated token length.

(make-grove string nl)

make-grove constructs a new grove and returns a node-li$t’containing the grove root. string
is the name of a grove plan. n1 is the source text.

(literal-match string nl #!key level:‘boundary:
min-hits: max-hits:)

(hylex-match string nl #!key norm?: level: boundary:
min-hits: max-hits:)

These functions construct a new groye using the Data Tokenizer Property Set containing one
tokenized string node for each non-overlapping match found in the data of each member of n1.
A node-list of all tokenized string nodes is returned.

— boundary: is one of the symbols sodeod, sodiec, isceod, or isciec]which shall be
interpreted in the same manner as the boundary attribute of the HyLex element defined in
ISO/IEC 10744:

— level wis'a number of comparison levels in the collation specification of th¢ current
language on which string comparison shall be performed; if 1evel: is not specified, strings
shall‘be compared simply by comparing their constituent characters for equaljty.

min-hits: and max-hits: are strictly positive integers specifying the mijnimum and
maximum number of hits: any match whose parent node does not contain a number of hits

within the specified range shall be excluded from the list of nodes returned. [The default for

— norm?: is a boolean specifying whether the lexical model shall be normalized.

(compare proc 1list)

Returns #t if proc applied to each successive pair of strings returns #t, where proc is an
argument of two strings that returns a boolean. This could be defined by:

(define (compare proc 1)
(if (null? 1)
#t

129

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

(let loop ((prev (car 1))
(rest (cdr 1)))
(cond ((null? rest) #t)
((proc prev (car rest))
(loop (car rest) (cdr rest)))
(else #£)))))

(ordered-may-overlap? nl)
—tordered—ro—overtap2—al)

Each node shall be in an auxiliary grove, and the source nodes of all the nodes shall-be |n a single
tree. Returns #t if the source nodes are ordered within that tree, and otherwise returns|#f. For
ordered-no-overlap?, the source nodes are considered to be orderedAf;for each|argument
node, all of its source nodes are before any of the source nodes of the next'argument npde. For
ordered-may-overlap?, the source nodes are considered to be ordered if, for each argument
node, the first of its source nodes is before the first of the source nodés of the next argphment
node.

(span nl symbol)
Each node shall be in an auxiliary grove, and the sourée nodes of all the nodes shall be |n a single
tree. Returns the number of quanta between thedirst and the last source nodes. symbpl

specifies the quantum. It shall have one of the values allowed for the £ilter: argument of the

datatok procedure.

10.2.2 List Operations

These procedures are similar tp-procedures on normal lists.
(empty-node-1list)

Returns an empty node-list.

(node-1list-reduce nl proc obj)

If n1 has no members, returns ob3, and otherwise returns the result of applying nodel-1ist-
reduee to

~< a node-list containing all but the first member of n1,

— proc, and
— the result of applying procto obj and the first member of nl.

node-list-reduce could be defined as follows:

(define (node-list-reduce nl combine init)
(if (node-list-empty? nl)
init
(node-list-reduce (node-list-rest nl)

130

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

combine
(combine init (node-list-first nl)))))

(node-list-contains? nl snl)

Returns #t if n1 contains a node equal to the member of sn1, and otherwise returns #f. This
could be defined as follows:

(define (node-list-contains? nl snl)

(lode-list-reduce nl
(lambda (result i)
(or result
(node-list=? snl 1i)))
#£f))

(node-list-remove-duplicates nl)

Returns a node-list which is the same as n1 except that any‘member of nl whicl is equal to a
preceding member of nl is removed. This could be defimed as follows:

(define (node-list-remove-duplicates nl)
(node-list-reduce nl
(lambda (result snl)
(if (node-list=contains? result snl)
result
(noderlist result snl)))
(empty-node-1ist)))

(node-list-union #!restJlargs)

Returns a node-list containing the union of all the arguments, which shall be node-lists. The
result shall contain no duplicates. With no arguments, an empty node-list shall bg returned. This
could be defined as follows:

(define (node-+list-union #!rest args)
(reduce args
(lambda (nll nl2)
(node-list-reduce nl2
(lambda (result snl)
(if (node-list-contains? result
snl)

result
(node-list result snl)))

nll))

(empEy-node—1ist)
¢ 7+

where reduce is defined as follows:

(define (reduce list combine init)
(let loop ((result init)

(list list))
(if (null? list)
result
(loop (combine result (car list))
(cdr list)))))

131

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©

ISO/IEC 10179:1996(E)

ISO/IEC

(node-list-intersection #!rest args)

Returns a node-list containing the intersection of all the arguments, which shall be node-lists.
The result shall contain no duplicates. With no arguments, an empty node-list shall be returned.

This could be defined as follows:

(define (node-list-intersection #!rest args)

(if (null? args)
(empty-node-1list)

(reduce (cdr args)
(lambda (nll nl2)

(node-list-reduce nll
(lambda (result snl)
(if (node-list-contains? nl2’snl)

(node-list result snl)
result))
(empty-node-list)))

(node-list-remove-duplicates (car args)iN))

(node-list-difference #!rest args)

Returns a node-list containing the set difference of all the’arguments, which shall be nq
The set difference is defined to be those members of the first argument that are not me}
any of the other arguments. The result shall contain no duplicates. With no arguments,

node-list shall be returned. This could be defined as follows:

(define (node-list-difference #!rest) args)

(if (null? args)
(empty-node-list)
(reduce (cdr args)
(lambda (nll.nl2)

(node-list-reduce nll
(lambda (result snl)
(if (node-list-contains? nl2 snl)

result
(node-list result snl)))

(empty-node-list)))
(node-list-remove-duplicates (car args)))))

(node-Yist-symmetric-difference #l!rest args)

Retuinis a node-list containing the symmetric set difference of all the arguments, which

de-lists.
mbers of
an empty

shall be
tly one of

shall be returned. This could be defined as follows:

(define (node-list-symmetric-difference #!rest args)

(if (null? args)
(empty-node-1list)
(reduce (cdr args)

(lambda (nll nl2)
(node-list-difference (node-list-union nll nl2)

node-lists. The symmetric set difference is defined to be those nodes that occur in exac]
} i Mithn 2 pode-list

(node-list-intersection nll nl2)))

(node-list-remove-duplicates (car args)))))

132

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(node-list-map proc nl)

For each member of n1, applies proc to a singleton node-list containing just that member and
appends the resulting node-lists. It shall be an error if proc does not return a node-list when
applied to any member of nl. This could be defined as follows:

(define (node-list-map proc nl)
(node-list-reduce nl
(lambda (result snl)

(node-11st (proc snl)
result))
(empty-node-list)))

(node-list-union-map proc nl)

For each member of n1, applies proc to a singleton node-list containing just thqt member and
returns the union of the resulting node-lists. It shall be an ertor if proc does nof return a node-
list when applied to any member of n1. This could be defined as follows:

(define (node-list-union-map proc nl)
(node-list-reduce nl
(lambda (result snlX)
(node-list-undipon/ (proc snl)
result))
(empty-node&tilist)))

(node-list-some? proc nl)

Returns #t if, for some member of n1, proc does not return # when applied to 4 singleton node-
list containing just that member, and otherwise returns #f. An implementation is allowed, but not
required, to signal an error if, for some member of nl, proc would signal an errpr when applied
to a singleton node-list containing just that member. This could be defined as follows:

(define (node-list-some? proc nl)
(node-list-reduce nl
(lambda (result snl)
(if (or result (proc snl))
#t
#£))
#£))

(node-list-every? proc nl)

Returns #t if, for every member of n1, proc does not return #f when applied to a singleton node-
list containing just that member, and otherwise returns #f. An implementation is allowed to
signal an error if, for some member of nl, proc would signal an error when applied to a
singleton node-list containing just that member. This could be defined as follows:

(define (node-list-every? proc nl)
(node-list-reduce nl
(lambda (result snl)
(if (and result (proc snl))
#t

133

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

134

ISO/IEC 10179:1996(E)

© ISO/IEC

#£))
#t))

(node-list-filter proc nl)

Returns a node-list containing just those members of nI for which proc applied to a singleton
node-list containing just that member does not return #f. This could be defined as follows:

(défine (node-list-filter proc nl)

(node-list-reduce nl

(lambda (result snl)
(if (proc snl)
(node-list snl result)
result))
(empty-node-1list)))

(node-list->1list nl)
Returns a list containing, for each member of n1, a singleton fiode-list containing just
member. This could be defined as follows:

(define (node-list->list nl)
(reverse (node-list-reduce nl

(lambda (reSu¥t snl)

(cons snl result))
())))

(node-list-length nl)

Returns the length of nl. This could’be defined as follows:

(define (node-list-lengthinl)
(node-list-reduce nl

(lambda (result snl)
(+ result 1))
0))

(node-list~reverse nl)

Returns a node-list containing the members of nl in reverse order. This could be defin

(define (node-list-reverse nl)

(node-list-reduce nl

Ll
Ay

hat

ed as
follows:

ol L 1 1.
ot T eSSt T ST

(node-list snl result))
(empty-node-1list)))

(node-list-ref nl k)

Returns a node-list containing the kth member of n1 (zero-based), if there is such a member, and

otherwise returns the empty node-list. This could be defined as follows:
(define (node-list-ref nl i)
(cond ((< i 0)

(empty-node-1list))
((zero? i)

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©1SO/IEC ‘ ISO/IEC 10179:1996(E)

(node-list-first nl))
(else
(node-list-ref (node-list-rest nl) (- i 1)))))

(node-1list-tail nl k)

Returns the node-list comprising all but the first Xk members of n1. If n1 has k or fewer members,
returns the empty node-list. This could be defined as follows:

{define (node-list-tail nl 1)
(cond ((< i 0) (empty-node-list))
((zero? i) nl)
(else
(node-list-tail (node-list-rest nl) (- i 1)))))

(node-list-head nl k)

Returns a node-list comprising the first k members of n1.Ifn1 has k or fewer mjembers, returns
nl. This could be defined as follows.

(define (node-list-head nl i)
(if (zero? i)
(empty-node-list)
(node-list (node-list-first nd)
(node-list-head nl1 M- i 1)))))

(node-list-sublist nl k; ky)

Returns a node-list containing those members of n1 that are preceded in n1 by af least k;
members but fewer than k, niémbers. This is equivalent to selecting those members whose zero-
based index in n1 is greater than or equal to k; but less than k,. This could be dgfined as
follows:

(define (node-1ist-sublist nl i j)
(node-list-head (node-list-tail nl i)
(- 3 1)))

(nodetlist-count nl)

Refurns the number of distinct members of n1. This could be defined as follows

(define (node-list-count nl)
(node-list-length (node-list-remove-duplicates nl)))

(node-list-last nl)

Returns a node-list containing the last member of n1, if nl is not empty, and otherwise returns
the empty node-list. This could be defined as follows:

(define (node-list-last nl)
(node-list-ref nl
(- (node-list-length nl) 1)))

When using node-list-some?, node-list-every?, node-list-filter, and node-
list-union-map, the first argument is often a lambda expression with a variable. A syntax

135

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

that avoids the need to use an explicit lambda expression in this case is provided in this
International Standard.

[146] special-query-expression = there-exists?-expression | for-all?-expression | select-each-
expression | union-for-each-expression

[147] there-exists?-expression = (there-exists? variable expression expression)

An expression

(there-exists? var nl-expr expr)

is equivalent to:

(node-list-some? (lambda (var) expr) nl-expr)
Read this as: there exists a var in nl-expr such that expr.
[148] for-all?-expression = (for-all? variable expression expression)

An expression

(for-all? var nl-expr expr)

is equivalent to:

(node-list-every? (lambda (van)\ expr) nl-expr)
Read this as: for all var in nl-eXpr, expr.
[149] select-each-expression = (select-each variable expression expression)

An expression

(select-each\var nl-expr expr)

is equivalent to:

(node-list-filter (lambda (var) expr) nl-expr)

Read this as: select each varin nl-expr such that expr.

[150] union-for-each-expression = (union-for-each variable expression expression)

An expression

(union-for-each var nl-expr expr)

is equivalent to:

(node-list-union-map (lambda (var) expr) nl-expr)

Read this as: the union of, for each varin nl-expr, expr.

136

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

10.2.3 Generic Property Operations
These procedures work with any grove, but use only intrinsic properties.
The result of many of the following procedures is the mapping of a function on a node over a

node-list, which is defined to be the node-list that results from appending in order the result of
applying the function to each member of the node-list.

(node-list-property propname nl)

Returns the mapping over n1 of the function on a node that returns the value thaf the node

exhibits for the property propname or an empty node-list if the node’does not exhibit a value or
exhibits a null value for propname. propname can be specified in any of the ways allowed for
the node-property procedure. It shall be an error if any node'in nl exhibits 4 non-null, non-
nodal value for propname. This could be defined as follows:

(define (node-list-property prop nl)
(node-list-map (lambda (snl)

(node-property prop snl: default: (empty-node-lilst)))

nl))

(origin nl)
This is equivalent to:

(define (origin nl)
(node-list-property ‘origin nl))

(origin-to-subnode-rel snl)

Returns the value that.the member of snl exhibits for the origin-to-subnode-rel-
property-name'property, or #f if it does not exhibit a value or exhibits a null yalue. This
could be defined as follows:

(define forigin-to-subnode-rel snl)
(node=property ’‘origin-to-subnode-rel-property-name snl default:| #f))

(tree-root nl)

This is equivalent to:

(define (tree-root nl)

L =] i e . Lo . 1)
ot TS T PropercTy cCree—rooTITT)7/

(grove-root nl)
This is equivalent to:

(define (grove-root nl)
(node-list-property ’‘grove-root nl))

(children nl)

137

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

Returns the mapping over n1 of the function on a node that returns the value of the node’s
children property, if any, and otherwise the empty node-list. This could be defined as follows:

(define (children nl)
(node-list-map (lambda (snl)
(let ((childprop (node-property ’‘children-property-name
snl
default: #f)))
(if childprop
(node-property childprop
snl
default: (empty-node-list)\)
(empty-node-1list))))

nl))

(data nlI)
Returns a string containing the concatenation of the data of each.mémber of n1. The data of a

node is:

— if the node has a data property, the value of its data property converted to a string, if
necessary,

— if the child has a children property, the concatenation of the data of each of the childfen of the
node, separated by the value of the data separator property, if it has a non-null valug, or

— otherwise, an empty string.

(parent nl)

This is equivalent to:

(define (parent nl)
(node-list-property ’‘parent nl))

(source nl)

This is equivalent to:

(define) ‘(source nl)
(node-list-property ’source nl))

(Subtree nl)

Returns the mapping over n1 of the function on a node that returns the subtree of a node, where
the subtree of a node is defined to be the node-list comprising the node followed by the subtrees
of its children. This could be defined as follows:

(define (subtree nl)
(node-list-map (lambda (snl)
(node-list snl (subtree (children snl))))
nl))

(subgrove nl)

138

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

Returns the mapping over nl of the function on a node that returns the subgrove of a node, where
the subgrove of a node is defined to be the node-list comprising the node followed by the
subgroves of members of the values of each of the node’s subnode properties. This could be
defined as follows:

(define (subgrove nl)
(node-list-map

(lambda (snl)

(node-list snl
(subgrove
(apply node-list
(map (lambda (name)
(node-property name snl))
(node-property ’subnode-property-namds
snl))))))
nl))

(descendants nl)

Returns the mapping over n1 of the function on a node-that returns the descendapts of the node,
where the descendants of a node are defined to be the result of appending the subjtrees of the
children of the node. This could be defined as follows:

(define (descendants nl)
(node-list-map (lambda (snl)
(subtree (children snl)))
nl))

(ancestors nl)

Returns the mapping over.n1 of the function on a node that returns the ancestors|of the node,
where the ancestors of a node are an empty node-list if the node is a tree root, an¢l otherwise are
the result of appendifig the ancestors of the parent of the node and the parent of the node. This
could be defined (as)follows:

(define (ancestors nl)
(node-list-map (lambda (snl)
(let loop ((cur (parent snl))
(result (empty-node-list)))
(if (node-list-empty? cur)
result
(loop (parent snl)
(node-list cur result)))))

nl))

(grove-root-path nl)

Returns the mapping over n1 of the function on a node that returns the grove root path of the
node, where the grove root path of a node is defined to be an empty node-list if the node is the
grove root, and otherwise is the result of appending the grove root path of the origin of the node
and the origin of the node. This could be defined as follows:

(define (grove-root-path nl)
(node-list-map (lambda (snl)
(let loop ((cur (origin snl))

139

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/TEC 10179:1996(E)

(result (empty-node-list)))
(if (node-list-empty? cur)
result

(loop (origin nl)
(node-list cur result)))))

nl))

(rsiblings nl)

Returns the mapping over n1 of the function on a node that returns the reflexive siblings of the
node, where the reflexive siblings of a node are defined to be the value of the origin=torsubnode
relationship property of the node’s origin, if the node has an origin, and otherwise.the node itself.
This could be defined as follows:
(define (rsiblings nl)
(node-list-map (lambda (snl)
(let ((rel (origin-to-subnode-rel ghl)))
(if rel
(node-property rel
(origin ‘snl)
default: (empty-node-list))
snl)))
nl))
(ipreced nl)
eceding

Returns the mapping over n1 of the function on a node that returns the immediately pr
sibling of the node, if any. This could be'defined as follows:

(define (ipreced nl)

(node-list-map (lambda fsnl)
(let, l'eop ((prev (empty-node-list))

(rest (siblings snl)))
(cond ((node-list-empty? rest)
(empty-node-1list))
((node-1list=? (node-list-first rest) snl)
prev)

(else
(loop (node-list-first rest)

(node-list-rest rest))))))

nl))

¢ifollow nl)

Returns the mapping over n1 of the function on a node that returns the immediately following
sibling of the node, if any. This could be defined as follows:

(define (ifollow nl)

(node-list-map (lambda (snl)
(let loop ((rest (siblings snl)))

(cond ((node-list-empty? rest)
(empty-node-1list))
((node-1list=? (node-list-first rest) snl)
(node-list-first (node-list-rest rest)))

(else

140

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(loop (node-list-rest rest))))))

nl))

(preced nl)
Returns the mapping over nl of the function on a node that returns the preceding siblings of the

node, if any. This could be defined as follows:

(define (preced nl)

(Mode-lList-map (lambda (snil)
(let loop ((scanned (empty-node-list))

(rest (siblings snl)))
(cond ((node-list-empty? rest)
(empty-node-list))
((node-list=? (node-list-first rest) snl)
scanned)

(else
(loop (node-list scanned
(node-list-first resy))

(node-list=rest rest))))))

nl))

(follow nl)
Returns the mapping over n1 of the function on a node that returns the following siblings of the

node, if any. This could be defined as fellows:

(define (follow nl)

(node-list-map (lambda (snYt)
(let Zoop ((rest (siblings snl)))

(cdond ((node-list-empty? rest)
(empty-node-list))
((node-1list=? (node-list-first rest) sj

(node-list-rest rest))

1)

(else
(loop (node-list-rest rest))))))

nl))

(groye-before? snly snly)
Returns #t if sn1l is strictly before snl, in grove order. Itis an error if sn1; and sni, are not

in’the same grove. This could be defined as follows:

(grove-before? snll snl2)

(define
(let ((sorted
(node-list-intersection (subgrove (grove-root snll))
(node-1list snll snl2))))
(and (= (node-list-length sorted) 2)
snll))))

(node-list=? (node-list-first sorted)

(sort-in-tree-order nl)
Returns the members of nl sorted in tree order. Any duplicates shall be removed. It is an error
if the members of n1 are not all in the same tree. This could be defined as follows:

141

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

(define (sort-in-tree-order nl)
(node-list-intersection (subtree (tree-root nl))
nl))

(tree-before? snl; snlp)

Returns #t if snl is strictly before snl, in tree order. Itis an error if snl; and snl, are notin
the same tree. This could be defined as follows:

(define (tree-before? snll snl2)
(let ((sorted
(sort-in-tree-order (node-list snll snl2))))
(and (= (node-list-length sorted) 2)
(node-list=? (node-list-first sorted) snll))))

(tree-before nl)

Returns the mapping over nl of the function on a node that returns those nodes in the $ame tree
as the node that are before the node. This could be defined as follows:

(define (tree-before nl)
(node-list-map (lambda (snl)
(node-list-filter (lambdal (x)
(tree-before? x snl))

(subtree (tree-root snl))))
nl))

(property-lookup propname snik\lf-present if-not-present)

If sn1 exhibits a non-null value forithe property propname, property-1lookup rethrns the
result of applying i f-present to that value, and otherwise returns the result of calling i f-
not-present without arguments. propname can be specified in any of the ways allowed for
the node-property procedure. This could be defined as follows:

(define (property-lcokup name snl if-present if-not-present)
(let ((val (node-property name snl default: #f)))
(cond (val\t{if-present val))

(((node-property name snl default: #t) (if-not-present))
(else (if-present val)))))

(select-by-class nl sym)

Returns a node-list comprising members of n1 that have node class sym. symis eithef the
application name (transformed as specified in 10.1.5) or the RCS name of the class

(select-by-property nl sym proc)

Returns a node-list comprising those members of n1 that have a non-nodal property named sym
that exhibits a non-null value such that proc applied to it returns a true value.

(select-by-null-property nl sym)

Returns a node-list comprising members of nl1 for which the property sym exhibits a null value.

142

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC

ISO/IEC 10179:1996(E)

(select-by-missing-property nl sym)

Returns a node-list comprising members of n1 for which the property sym does not exhibit a

value.
10.2.4 Core Query Language

This clause defines a subset of SDQL. In addition to the procedures defined in this clause, the
current-node, node-list-empty?, node-1list?, parent, and node=}ist-error
procedures are allowed in the subset. This subset is designed so that a node-list pever contains
more than one node and so that any node that it does contain is always of type element.
In the following procedures, the argument that is of type node-list.can be omitted and defaults to
(current-node). osnl (optional singleton node-list) denotes.an argument that shall be a
node-list containing zero or one nodes.

10.2.4.1 Navigation
(ancestor string osnl)
Returns a node-list containing the nearest aficestor of osnl with a gi equal to st{ring, or an
empty node-list if there is no such ancestor or if osn1 is empty.
(gi osnl)
Returns the value of the gi property of the node contained in osnl or #f if osn] is empty or if
osnl has no gi property ora null gi property.
(first-child-gicosnl)
Returns the value of the gi property of the first child of osn1l of class element [or #f if osnl is
empty or has:no such child.
(id_osnl)
Returns the value of the id property of the node contained in osnl or #f if osn] is empty or if
osnl has no id property or a null 1d property.

10:2-4:2—Gounting

(child-number snl)

Returns the child number of snl. The child number of an element is one plus the number of
element siblings of the current element that precede in tree order the current element and that

have the same generic identifier as the current element.

(ancestor-child-number string snl)

143

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

Returns the child number of the nearest ancestor of snl whose generic identifier is string, or
#f if there is no such ancestor.

(hierarchical-number list snl)
Returns a list of non-negative integers with the same number of members as 1ist. 1ist shall

be a list of strings. The last member is the child number of the nearest ancestor of snl whose
generic identifier is equal to the last member of 1ist, the next to last member is the child

number of the nearest ancestor of that element whose generic identifier is equal to the ngxt to last
member, and so on for each member of 1ist.

(hierarchical-number-recursive string snl)
Returns a list of non-negative integers. The last member of the list is the.child number of the
nearest ancestor of the snl element whose generic identifier is equal to string, the ngxt to last
member is the child number of the nearest ancestor of that element'whose generic identifier is
equal to string, and so on for each ancestor of the current glement with generic identifier equal
to string. Note that the length of this list is the nestingdevel of string.
(element-number snl)

Returns the number of elements before or equalto snl with the same gi as snl.

(element-number-list list snl)

Returns a list of non-negative integérs, one for each member of 1ist, which shall be 4 list of
strings, where the i-th integer is-the number of elements that:

— are before or equal tosq,
— have a generic identifier equal to the i-th member of 1ist, and

— if i is greafepthan 1, are after the last element before snl1 whose generic identifier iy equal to
the i-/th'member of 1ist.

NOTES

32,1n effect the counter for each argument is reset at the start of the element referred to by the previous grgument.

10.2.4.3

33 An element is considered to be after its parent.

34 This procedure could be used to number footnotes sequentially within a chapter (by using the last number in the
list). It could also be used to number headings in a document whose DTD lacks container elements.

Accessing Attribute Values

In the following procedures, attribute values are represented as strings by applying the data
procedure to the attribute-assignment node.

144

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISONEC ISO/IEC 10179:1996(E)
(attribute-string string osnl)
Returns a string representation of the attribute with name equal to string of osnl, or #f if
osnl has no such attribute, or the attribute is implied, or osnl is empty.
(inherited-attribute-string string osnl)
Returns a string representation of the attribute with name equal to string of osnl or of the
nearest ancestor of osnl for which this attribute is present and not implied, or #1Lif there is no
such element or osnl is empty. For the purpose of this procedure, a node is-¢onsidered an
ancestor of itself.
(inherited-element-attribute-string string; string;
osnl)
Returns a string representation of the attribute with name equal to string, of the nearest
ancestor of osnl whose generic identifier is equal to string; and for which this attribute is
present and not implied, or #f if there is no such element or osnl is empty. For the purpose of
this procedure, a node is considered an ancestor of ifself.

10.2.4.4 Testing Current Location

(first-sibling? snl)

Returns #t if snl has no preceding sibling that is an element with the same gene
itself, and otherwise returns #f.

(absolute-first-sibling? snl)
Returns #t if sn1-hasno preceding sibling that is an element, and otherwise retut
(last-sibling? snl)

Returns'#t if snl has no following sibling that is an element with the same genej
itselfi;and otherwise returns #f.

tabsolute-last-sibling? snl)

ric identifier as

ms #f.

ic identifier as

Returns #t if snl has no following sibling that is an element, and otherwise returns #f.

(have-ancestor? obj snl)

obj shall be either a string or a list of strings. If obj is a string, then have-ancestor? returns
#t if snl has an ancestor with a generic identifier that matches that string and otherwise returns
#f. If ob7 is a list of strings, then have-ancestor? returns #t if snl has an ancestor with
generic identifier equal to the last member of ob3j, which itself has an ancestor with generic
identifier equal to the next to last member of ob7j, and so on for each member, and otherwise

returns #f.

145

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

10.2.4.5

Entities and Notations
snl here determines the document in which to find the entity.

(entity-public-id string snl)

Returns the value of the public-id property of the value of the external-id property of the general
entity whose name is string in the governing document type of the same grove as snl, or #f if

there is no such entity or the entity has a null value for the external-id property or the-e
has a null value for the public-id property.

(entity-system-id string snl)

Returns the value of the system-id property of the value of the external-id property of tk
entity whose name is string in the governing document type of the.same grove as sn
there is no such entity or the entity has a null value for the external<id property or the e
has a null value for the system-id property.

(entity-generated-system-id string snl)

Returns the value of the generated-system-id propérty of the value of the external-id p1
the general entity whose name is string in the'governing document type of the same
sn1l, or #f if there is no such entity or the entity has a null value for the external-id pro
the external-id has a null value for the generated-system-id property.

(entity-text string snl)
Returns the value of the text property of the general entity whose name is stringin
governing document type.of the same grove as snl, or #f if there is no such entity or t
has a null value for the.téxt property.

(entity-notation string snl)

Returns the'value of the notation-name property of the general entity whose name is s

the governing document type of the same grove as sn1l, or #f if there is no such entity
entity.has a null value for the notation-name property.

(éntity-attribute-string string; string, snl)

xternal-id

le general
1, or #f if
xternal-id

operty of
grove as
perty or

he
he entity

tringin
or the

Returns a string representation of the value of the attribute named string, of the general entity
whose name is string; in the governing document type of the same grove as sn1l, or #f if there

is no such entity or the entity has no such attribute or the attribute is implied.

(entity-type string snl)

Returns the value of the entity-type property of the general entity whose name is string in the
governing document type of the same grove as snl, or #f if there is no such entity or the entity

has a null value for the entity-type property.

146

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

(notation-public-id string snl)
Returns the value of the public-id property of the value of the external-id property of the general
notation whose name is string in the governing document type of the same grove as sn1l, or #f

if there is no such notation or the external-id has a null value for the public-id property.

(notation-system-id string snl)

Returns the value of the system-id property of the value of the external-id propert/ of the general
notation whose name is string in the governing document type of the same groye as snl, or #f
if there is no such notation or the external-id has a null value for the system-id property.

(notation-generated-system-id string snl)

Returns the value of the generated-system-id property of the value of the external-id property of
the general notation whose name is string in the govering document type of the same grove
as snl, or #f if there is no such notation or the external:id has a null value for the generated-
system-id property.

10.2.4.6 Name Normalization
(general-name-normalize string.snl)
Returns string transformed using the general namecase substitution string nornalization rule
of the grove in which snl occurs."This could be defined as follows:
(define (general-name-nefmalize string snl)
(named-node-list-normalize string
(node-property ’‘elements (grove-root (snl))
‘element))
(entity-name-normalize string snl)
Returns string transformed using the entity namecase substitution string normalization rule of
the grove/in which snl occurs. This could be defined as follows:
(define (entity-name-normalize string snl)
(named-node-list-normalize string
(node-property ’‘entities (grove-root |snl))
‘entity))
10.2.5 SGML Property Operations

These procedures make use of particular properties that are defined by the property set for
SGML.

(attributes nl)

This is equivalent to:

(define (attributes nl)
(node-list-property ‘attributes nl))

147

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

(attribute string nl)

Returns the mapping over n1 of the function that returns the member of the value of the

attributes property whose name is equal to string. This could be defined as follows:

(define (attribute name nl)

(Mode-1ist-map (rambda (SIL)
(named-node name (attributes snl)))
nl))

(element-with-id string snl)

Returns a singleton node-list returning the element in the same grove as 'snl whose un
identifier is string, if there is such an element, and otherwise returns the empty node
defaults to (current-node).

(referent nl)

This is equivalent to:

(define (referent nl)
(node-list-property ’‘referent nl))

(match-element? pattern snl)

Returns #t if snl is a node of class €lement that matches pattern. patternis either
single string or symbol. A string Or symbol is equivalent to a list containing just that s
symbol. The list can contain strings or symbols. The element matches the list if the las
symbol matches the gi of the element, and the next to last matches the gi of the elemen
and so on. Each string.or'symbol may optionally be followed by a list containing an e

ique
list. snl

alistora
tring or

t string or
l’s parent,
ven

number of strings or symbols, which are interpreted as attribute name and value pairs all of

which the element-whose gi matches the preceding string or symbol shall have.

For example;

(mat¢hielement? ‘' (el (al vl a2 v2) e2 (a3 v3) e3 e4d) n)

returns true if

— the gi of n is e4,

— the gi of n's parent is e3,

— the gi of n's grandparent is e2,

— n's grandparent has an a3 attribute with a value equal to v3,

— the gi of n's great grandparent is el,

148

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©1SO/EC ISO/IEC 10179:1996(E)

— n's great grandparent has an a2 attribute with a value equal to v2, and
— n's great grandparent has an al attribute with a value equal to v1.
snl defaults to the node-list returned by the current-node procedure.

When a strin

g or symbol in the pattern is compared against a property value, and the property

j = ituti - itution shall also be performed on

the string before comparison.
(select-elements nl pattern)

Returns a node-list comprising those members of n1 that match pattern as defined by the
match-element? procedure.

(g-element pattern nl)
(g-element pattern)

Searches in the subgroves whose roots are each mémbers of n1 for elements matching pattern,
as defined by the match-element? procedure. nl defaults to the node-list reurned by
current-node.

(g-class symbol nl)
(g-class symbol)

Searches in the subgroves whose roots are each members of n1 for nodes whose|class is
symbol. nl defaults to the node-list returned by current-node.

(g-sdata string-“nl)
(g-sdata string)

Searches in'the subgroves whose roots are each members of n1 for nodes whosefclass is sdata
and the'value of whose sysdata property is string. nl defaults to the node-list returned by
current-node.

10.3 Auxiliary Parsing

L e 3 1 ‘n’ord sea_Al.h...
s LASALLLELC)

Use of the facilities in this clause in the style or transformation languages requires the word
feature.

(word-parse nl string)
(word-parse nl)

This builds a new grove by performing an auxiliary parse using the Data Tokenizer Property Set.
string, if specified, is the ISO 639 language code of the language which should be assumed for

149

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

the purposes of determining what constitutes a word. The algorithm to be used is not specified in
this International Standard.

<propset psn=datatok fullnm="Data Tokenizer Property Set">
<classdef rcsnm=tokroot appnm="tokenized root" conprop=strings>
<propdef rcsnm=strings datatype=nodelist ac=tokenstr>

<classdef rcsnm=tokenstr appnm="tokenized string" conprop=string>
<propdef rcsnm=string datatype=string>

For each member of n1, a tokenized string node is created for each word in the dataf|that
member. The root of the auxiliary grove has these tokenized string nodes as children. |A node-
list of all the tokenized string nodes is returned. If a member, x, of n1 contains.another{member,
y, of n1 as a descendant, then the data of y is removed from the data of x before x is pafsed for
words.

(select-tokens nl string)

Returns a node-list containing each member of n1 that is a tokenized-string node with d string
property equal to string.

10.3.2 Node Regular Expressions

Use of the facilities in this clause in the style ot'transformation languages requires the regexp
feature.

The regexp type represents a node regular expression. A node regular expression is an|object
that can be used to perform an auxiliary parse of a grove. This auxiliary parse creates 3 new
grove that contains nodes that group together nodes that correspond to nodes in the original
grove. The semantics of a node'regular expression define for any node-list s and any npde-list t
that is a sublist of s whether t matches the node regular expression with respect to s. [This is
defined inductively for\edch of the procedures that construct regexps. s is referred to ag the
search list.

A node-list s immediately precedes a node-list t with respect to a node-list x that contajns all the
members of both s and ¢ if

— sds€mpty, or

—< t is empty, or

— the member of s that occurs latest in x occurs in x before the element of t that occurs first
in x, and

— there is no node in x that
» follows in x all those members of x that occur in s, and

* precedes in x all those members of x that occur in ¢t.

150

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

(regexp? obj)
Returns #t if ob3j is a regexp, and otherwise returns #f.

10.3.3 Regexp Constructors

The procedures in this section construct regexp objects that are used by the subparsing
procedures.

(regexp-node proc)

Returns a regexp that matches a node-list with respect to any search list-if the node-list contains
exactly one node and proc applied to that node-list returns a true yvalue.

(regexp-seq regexp; regexp; .. regexpp)
Returns a regexp that matches a node-list with respect to a)search list x if the nodg-list can be

split into sublists sy, §y,..., 5, such that regexp; matches s; with respect to the search list x for /
< i< n and such that s; immediately precedes s;,; with respect to x for I <i< n-1|

(regexp-or regexp; regexp, .. regexp,)

Returns a regexp that matches a node-list-with respect to a search list x if, for somg i such that / <
i < n, the node-list matches regexp;avith respect to x.

(regexp-and regexp; regexp, .. regexp,)

Returns a regexp that matches a node-list with respect to a search list x if, for every i such that /
< i < n, the node-list matches regexp; with respect to x.

(regexp-rep* regexp)
Returns a regexp that matches a node-list with respect to a search list x if the node}list is empty or
if there 15"some integer n > I such that the node-list can be split into sublists s1,57,...,5, such that
s; matches regexp for each i such that / <i < n and such that s; immediately prgcedes s;,; with

tespect to x for each i such that / <i<n-1.

(regexp-plus regexp)

Returns a regexp that matches a node-list with respect to a search list x if there is some integer n
>] such that the node-list can be split into sublists sy, 5,,...,5, such that s; matches regexp for
each i such that / <i < n and such that s; immediately precedes s;,; with respect to x for each i
such that / <i<n-1.

(regexp-opt regexp)

Returns a regexp that matches a node-list with respect to a search list x if either the node-list is
empty or the node-list matches regexp with respect to x.

151

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) 0 1S0/1EC

(regexp-range regexp k; kp)

Returns a regexp that matches a node-list with respect to a search list x if there is some integer n
with k; < n < k, such that the node-list can be split into sublists s1,s,,...,5, such that s; matches
regexp for each i such that I <i < n and such that s; immediately precedes s;,; with respect to x
for each i such that 1 < i< n-1. If kj is zero, then the returned regexp shall match the empty
node-list.

10.3.4

(string->regexp string)

Returns the regexp represented by string. It shall be an error if stringis nota Vai[d
representation of an extended regular expression as defined in ISO 9945-2. A normal character in
string matches a node with a char property whose value is that charagter:

NOTE 35 This could be implemented in terms of the above primitives.

Regular Expression Searching Procedures

The procedures in this clause use regexp objects to create a new auxiliary grove using the
Regular Expression Property Set as follows:.

<propset psn=regexp fullnm="Regular Expression Property Set">
<classdef rcsnm=root conprop=groups sd=DSSSL>

<desc>

The root of the grove.

<propdef rcsnm=groups datatype=nodelist ac=group sd=DSSSL>
<classdef rcsnm=group sd=DSSSL>

(regexp-search nl regexp)

Returns a new auxiliary gfove built using the regexp property set. The grove contains fone group
node for each sublist of n that matches regexp with respect to n1. The source propefty of each
group node contain the nodes in the matching sublist.

NOTE 36 The $ource property is an intrinsic property of every node in an auxiliary grove.

(regexp-search-disjoint nl regexp)

This'is the same as regexp-search except that the sublists are disjoint. When two|sublists
ovérlap, if one sublist has a member that occurs in n1 before all members of the other|sublist,
then the first sublist is preferred. If one sublist contains another sublist as a proper su plist, then

1

the containing sublist is preferred.

Transformation Language

This clause describes the DSSSL transformation language. Syntactically, the DSSSL
transformation language is a data content notation as defined by ISO 8879. The content of an
element in this notation is parsed as a transformation-language-body.

152

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

[151] transformation-language-body = [[unit-declaration* | added-char-properties-declaration*
| character-property-declaration* | transliteration-map-definition* | language-definition* |
default-language-declaration? | definition* | association*]]

The transformation language uses the expression language defined in clause 8 and SDQL defined
in clause 10.

A transformation process requires a single grove as input, which is transformed as specified by

11.1

11.2

the associations. An association may cause other groves to be transformed. The|grove being
transformed is referred to as the current grove.

Features

The following features are optional in the transformation language:

— The combine-char feature allows the combine-chat element type form
— The keyword feature allows # ! key in formal-argument-lists.

— The multi-source feature allows use of the transform-grove procedure.
— The multi-result feature allows.multiple result groves.
— The regexp feature allows the.use of node regular expressions described in 10.3.2.

— The word feature allows the use of the facilities for word searching described in 10.3.1.

— The hytime feature-allows the use of the facilities for HyTime location addrepsing described
in 10.2.1.

— The chaxset feature allows the use of the declaration element type forms other than char-
repertoire, combine-char, features, and sgml-grove-plan.

Associations

The transformation process is specified by a collection of associations.

[152] association = (=> query-expression transform-expression priority-expression?)
[153] query-expression = expression

[154] transform-expression = expression

[155] priority-expression = expression

Each association has up to three components:

153

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

— a query-expression returning a node-list; an association is potentially applicable to any node
in the node-list returned by its query-expression.

— a transform-expression that is evaluated for each of the nodes to which the association is
applicable. The value returned describes the node or nodes in the result grove corresponding

to the selected node in the source grove.

— an optional priority-expression that affects whether the association actually applies to a node

11.3

to which it is potentially applicable.

A query-expression shali evaiuate to a node-iist. Al the nodes in the node-iist returne(d by a
query-expression shall be nodes in the current grove or shall be nodes in an|atxiliary grove
whose source grove is the current grove. Auxiliary groves are described.in 9.5. In a query-
expression, the current-root procedure and current-node procedure return a pingleton
node-list containing the root of the current grove.

A priority-expression shall evaluate to an integer. The number/specifies the priority of the
association. If the priority-expression is omitted for an asseciation, the priority of the
association is 0. Larger numbers indicate higher priorities.

Each node to which an association is potentially<applicable has a constituent set of nodes in the
current grove. When the node is in the current grove, the constituent set contains just fhat node.
When the node is in an auxiliary grove, then the constituent set contains the nodes in the current
grove that occur in the value of the souree property of the node in the auxiliary grove.| An
association is actually applicable to any node, 1, to which it is potentially applicable urless some
higher priority association appliesto’a node whose constituent set contains a node that|is in the
constituent set of n.

Transform-expression

Within a transformzexpression, the current-node procedure returns a singleton nodle-list
containing the-node that is being transformed.

Each transform-expression shall return an object of type create-spec or of type transfofm-grove-
spec.or a (possibly empty) list of objects each of type create-spec or transform-grove-spec. Each
create-spec describes a subgrove to be created at a specified place in the result grove. The
subgrove may consist either of a single node or of multiple nodes forming a subgrove rpoted in a
.-;:-ee: he-prace—d hich-the HOE ove-is-to-beereated-may be-spectfred-as root of a
result grove, or it may be specified relative to some other node in the result grove.

For each node that is created in the result grove, links are created from each of the constituent
nodes of the node whose transformation resulted in creation of the node in the result grove to the
created node. These links are referred to as arrows. An arrow is labeled with an expression
language object. The start-point of an arrow is called the transformation origin of its end-point.
The arrow for a node in the source grove says where that node was transformed to. The labels on
the arrows distinguish between different transformations that were applied to a node. The
transform-expression for a node either specifies that the created subgrove shall be the root of a

154

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

result grove or specifies the position of the created subgrove in the result grove relative to a node
in the result grove to which some other node in the source grove was transformed.

11.3.1 Subgrove-spec
The subgrove to be created is described using an object of type subgrove-spec.

(subgrove-spec #!key node: subgrove: class: add: null: remove:
children: sub: label: sort-children:)

Returns an object of type subgrove-spec.

The node: argument shall be a singleton node-list; it specifies thatthe -node at thq root of the
created subgrove shall have the same class as the value of node :, the same non-nodal, non-
intrinsic properties as the value of node : (as modified by theradd: and remove { arguments),
and the same null-valued properties as the value of node : (e€xcept as modified by the null:
and remove : arguments).

The subgrove : argument shall be a singleton node-list; it specifies the creation ¢f a subgrove
that is a copy of the subgrove rooted in the argumient node.

The class: argument is a symbol specifying the class of the node to be created. Exactly one of
the node:, subgrove:, and class ;,arguments shall be specified.

The add: argument specifies non=nodal, non-intrinsic properties with non-null values that shall
be added to the node. The add:“argument shall be a list of two-element lists whosg first member
is the name of a property and whose second member is the value of that property. [The property
shall be a non-nodal, nen-intrinsic property of the node’s class. The value for a property
specified in the add«~argument replaces any value for that property that the node §pecified by
the node : argument had.

The null :(argument is a list of symbols specifying the names of additional non-intrinsic
properties.of the node which shall have null values. This replaces any non-null property which
the node would have by virtue of the node : argument.

The remove: argument is a list of non-intrinsic properties which the node specified by the
node: argument has and which the node to be created should not have; it defaults|to the empty

list. This may be used to remove properties with both null and non-null values.

The sub: argument is a list specifying subnodes for the node at the root of the subgrove returned
by subgrove-spec. The members of the list shall be lists whose first member is a symbol
specifying the name of the subnode property and the rest of whose members are subgrove-specs
specifying the nodes in the value of the property. This argument defaults to the empty list.

The children: argument is a list of subgrove-specs specifying the nodes in the value of the
children property of the node at the root of the subgrove returned by subgrove-spec.

NOTE 37 These can also be specified using the sub: argument, but using children: is often more convenient.

155

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

11.3.

This argument defaults to the empty list.

The label: argument specifies the label for the arrow which shall be created from the
transformed node in the source grove to the node at the root of the subgrove being created in the
result grove. It may be any expression language object. The default value is #f.

The sort-children: argument is a procedure that affects the ordering of the children of the
root node. See 11.3.2.

Classes and properties are named by their application names as defined in the SGML property
set, with the usual transformation described in 10.1.5.

Create-spec

(create-spec? obj)

Returns #t if obj is of type create-spec, and otherwise returns #£.
(create-root obj sg)

Returns a create-spec specifying the creation of the root of a result grove. sg is a subgrove-spec
for the root of the result grove. ob7 is an identifier for the result grove.

(create-sub snl sg #!key propeftbty: label: result-path: optional:
unique:)
(create-preced snl sg #'key" label: result-path: optional: uniqy
(create-follow snl sg #btkey label: result-path: optional: uniqy

create-sub, create-preced, and create-follow return a create-spec specifying that
for each arrow labeledlabel : with a start-point of sn1 the subgrove specified by s¢ shall be
created in the result grove. The evaluation of the create-sub, create-preced, qr
create-folldéwprocedures does not of itself cause the creation of nodes in the resylt grove; a
create-spec that-is not returned by a transform-expression shall be ignored.

labeld)can be any expression language object; it defaults to #£.

Ifoptional: is #f, then it shall be an error if there never is any such arrow; optiqnal:
defaults to #£.

result-path: is a procedure that for each arrow is applied to a result-node-list whose only
member is the end-point of the arrow. result-path: may be applied to this result-node-list at
various points in the construction of the grove. At some point in the construction of the grove, it
shall return a result-node-list that contains exactly one member. This is the creation origin. At
no point shall it return a result-node-list that contains more than one member. If result-
path: is not specified, it defaults to the identity procedure.

For create-sub, property: is a symbol or string specifying a property name. This property
shall be a subnode property of the creation origin, and the subgrove shall be created as a member

156

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

of that property of the creation origin. If the property: argument is omitted, it defaults to the
children property of the creation origin; it shaii not be omitted if the creation origin has no
children property. For create-preced, the subgrove shall be created as a preceding sibling of
the creation origin. For create-follow, the subgrove shall be created as a following sibling
of the creation origin.

Two subgroves are said to have the same creation method if and only if the roots of the
subgroves were created with the same creation origin and same creation procedure and, if the

creation procedure was create-sub, the same propname.

11

If unique: is not #£, then this subgrove shail be the only one that is evercreated with the same
creation method as this one. unique: defaults to #£.

When unique: is #f, the relative order of subgroves created witirthe same creation method is
determined in a way that is independent of the order in which(the subgroves are greated. Let the

immediately dependent siblings of a node be those siblings-of'the node that were
creation origin of that node using the create-followor create-precedp
the dependent siblings of a node be the immediately dependent siblings of the nog
the dependent siblings of the immediately dependent siblings. Let the creation s
subgrove to be inserted be those nodes that were created with the same creation

created with a
rocedures. Let
le together with
iblings of a
rocedure and

with the same creation origin. In addition,4F a’subgrove is to be inserted using create-sub,

then any nodes that will be siblings of thé-inserted subgrove and were created as part of the same
subgrove as the origin node shall be treated as creation siblings. The position of g subgrove to be
inserted is first determined relative.to‘its creation siblings. It is then inserted in sych a way that it
follows all the dependent siblings, of all those creation siblings that it is to follow and precedes all
the dependent siblings of all those creation siblings that it is to precede so that there is no node
between it and its creation.origin that is neither a creation sibling nor a dependent sibling of a
creation sibling.

When the node at_the root of the subgrove is a child of the node that will be the ¢
subgrove, the\position of the subgrove among its creation siblings is determined

rigin of the
by the ordering

predicate ofthe origin node. The ordering predicate is the procedure specified by the sort-

childken: argument to the subgrove-spec procedure. The ordering predic
transforination origins of two nodes in the result grove that are to be compared.

ite is passed the
[t shall return

trué if the first is before the second. If no ordering predicate was specified, then|the tree-
béfore? procedure shall be used as an ordering predicate. In this case, it shall be an error if the
transformation origins of the subgrove and its creation siblings are not all in the same tree. When
the node at the root of the subgrove is not a child of the origin node, then the podition of the

subgrove among its creation siblings is determined in the same way as for the children of a node
with an ordering predicate of grove-before?.

An arrow triggers another arrow if the second arrow was created by a call to a create procedure
that specified the start-point of the first arrow as the first argument and specified the label of the
first arrow as the label: argument. It shall be an error if there is a sequence of arrows where
each arrow triggers the next arrow and where the last arrow has the same start-point and label as
the first arrow.

NOTE 38 This requirement avoids the possibility of an infinite loop.

157

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

11.3.3

Result-node-list

A result-node-list represents a list of nodes in the result grove. A subset of the operations
permitted on node-lists are permitted on result-node-lists. In a prototype, an argument name rnl

shall be of type result-node-list.

NOTE 39 The allowed operations are designed to ensure that if a node in the result grove is contained in the result-
node-list that results from evaluating an expression at some point in the construction of the result grove, then that node

shall be contained in the result-node-Tist that results from evaluating that expression at any subsequent poin
construction of the result grove.

(node-list-union rnl ..)
(node-list-intersection rnl ..)
(children rnl)

(attributes rnl)

(preced rnl)

(follow rnl)

(parent rnl)

(ancestors rnl)

(descendants rnl)

(origin rnl)

(select-by-class rnl sym)
(select-by-property rnl sym proc)
(select-by-null-property rnl sSym)
(select-by-missing-property-¥nl sym)

These procedures behave in the same way as the corresponding operations on node-lists
that the return value is of type-result-node-list rather than node-list.

(select-by-relation rnl i proc)

in the

except

Returns a result-node-list containing those nodes contained in rnl which are such that proc
applied to a result-node-list containing exactly that node returns a result-node-list contaiping i or

more nodes: For example,

(lambda’ (x)
(seélect-by-relation (children x)
1

Hambda—{y)

(select-elements (descendants y) "para"))))
selects those children of a node that have a descendant element with a gi of para.

(select-by-attribute-token rnl string; string,)

Returns a result-node-list containing those nodes in rnl that have an attribute named string;
and that have an attribute with a child of class attribute-value-token with a token property equal

to string, after any applicable string normalization.

158

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

11.3.4 Transform-grove-spec

An object of type transform-grove-spec represents a grove to be transformed in addition to the
current grove.

(transform-grove-spec? obj)

Returns #¢t if ob7 is of type transform-grove-spec, and otherwise returns #f.
(transform-grove snl obj ..)
sn1 shall be the root of a grove. transform-grove creates a new/grove from|snl by adding
a transform-args property to the grove root whose value is a list'containing pb7, ..., and
returns an object of type transform-grove-spec specifying the transformation of that new grove.

(select-grove nl obj)

Returns a node-list containing those members of nL whose grove root has a transform-args
property that contains a member equal to obj.

ke

1.3.5 SGML Prolog Parsing

(sgml-parse-prolog string)

Returns a node-list containing a single node that is the root of a grove built by parsing the prolog
of an SGML document. string is the system identifier of the SGML document fentity. This is
built using the default grove-plan modified to exclude the instabs module.

NOTE 40 This procedure is:typically used to specify the subgrove: argument to the subgrove{spec: procedure
when the source and result groves have different DTDs.

11.4 SGML Document Generator

The SGML document generator generates an SGML document or subdocument from a result
grove: The operation of the SGML document generator is specified in terms of a| verification
grove, which is the grove that would be built by parsing the SGML document or fubdocument
generated from the result grove using a grove plan that included all classes and pfoperties of the
SGML property set.

NOTE 41 An implementation is not required to build a verification grove.

A result grove is valid if it is possible to generate a conforming SGML document or
subdocument from the result grove such that there is a verification mapping from the result grove
to the verification grove which meets the requirements specified in 11.4.1. If the result grove is
valid, an implementation shall generate such a document or subdocument. An implementation
shall report that a result grove is not valid if and only if the result grove is not valid.

159

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

11.4.1

Verification Mapping
Any result grove satisfies the following requirements:

— A node in the result grove does not exhibit a value for a property with a declared data type
that is nodal unless the property is a subnode property.

—ATode T the Tesult grove mever exhibitsa-vatueforaproperty-that ts-inthe-dertved category.
The verification mapping, V, maps each node in the result grove to a node in the-verification
grove. V(n) denotes the result of applying V to the node n; n[p] denotes the walue that|n exhibits
for property p. A node n’ in the verification grove is said to be grounded if and only iff there is a
node 7 in the result grove such that V(n) is n’.
V shall satisfy the following requirements:
— If n is the root of the result grove, then V(n) shall be theroot of the verification grgve.
— For each distinct m and n in the result grove, V(m)shall be distinct from V(n).
— For each n in the result grove, V(n) shall have the same class as n.
— For each node n in the result grove, and’each non-intrinsic property p with a non-npdal
declared data type for which V(n) exhibits a null value, n shall exhibit a null value fpr p unless
p is in the derived or optional category.
— For each node n in the result grove, and each non-intrinsic property p for which V(1) exhibits
a non-null, non-nodal yalue, n shall exhibit a value for p unless p is in the derived ¢r optional

category.

— A node in theverification grove shall be grounded if its class is not in the mayadd [category
and either

— _dany-of its siblings are grounded, or

* the origin of the node is grounded, and

¢ the origin-to-subnode relatlonsmp property oI 1ts origin 1s not 1n the optiona category.

— For each node 7 in the result grove, and for each non-intrinsic property p for which n exhibits
a null value, V(n) shall exhibit a null value for p.

— For each node » in the result grove, and for each non-intrinsic non-nodal property p for which
n exhibits a non-null value, n[p] shall be equal, after any applicable string normalization
specified for the property by the property set, to V(n)[p].

— For each node » in the result grove and each subnode property p with a declared data type of
node for which n exhibits a non-null value, V(n[p]) shall be equal to V(n)[p].

160

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

— For each node n in the result grove and each subnode property p with a declared data type of
nodelist or nmndlist for which n exhibits a non-null value, and for each node s in n[p], V(s)
shall be in V(n)[p].

— For each node # in the result grove and each subnode property p with a declared data type of
nodelist for which n exhibits a value, and for any nodes r and s in n[p], if r precedes s in the
result grove, V(r) shall precede V(s) in the verification grove.

The transliteration property described in 11.4.2 is not considered in the verificatilon mapping.

As an exception to these rules, a node in the verification grove of class attribute-gssignment need
not be grounded if the rules of ISO 8879 that apply with an SGML declaration that specified
SHORTTAG YES would not require the attribute to be specified.

11.4.2 Transliteration

[156] transliteration-map-definition = (define-tr@nsliteration-map vgriable
transliteration-entry)

[157] transliteration-entry = (character character-list)
[158] character-list = (character+)

A transliteration-map-definition binds variable to an object of type transliteratiqn-map. The
transliteration-map specifies atransliteration in which certain characters are represented by
sequences of one or more other characters. Each transliteration entry specifies that the first
character is represented<by the sequence of characters in the character-list.

(transliteration-map? obj)
Returns #t if 0b7 is of type transliteration-map, and otherwise returns #f.

Eachmode in a result grove can have a non-nodal transliteration property whose [value is an
object of type transliteration-map. If no transliteration property is specified for 4 node, the value
of)the transliteration property is the value of the transliteration property of the origin of the node.
If no transliteration property is specified for the root node of a result grove, then|the value shall
be an empty transliteration map.

For each consecutive sequence of data-char nodes in the result grove with the same
transliteration property, the sequence of characters that the sequence of characters in the result
grove represents with respect to the transliteration-map shall be output instead of the sequence of
characters in the result grove. In case of ambiguity, the longest transliteration-entry shall be
used.

161

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

12

12.1

Style Language

This clause describes the DSSSL style language. Syntactically, the style language is a data
content notation, as defined in ISO 8879. The content of an element in this notation is parsed as a

Lrallivl Q> CLIINCA 112 22V Q0 O Lot ot 1 CiCil i1 i uVwaulY pPaiov

style-language-body.

characteristic-declaration* | application-char-characteristic+property-declaration*jinitial-
value-declaration* | reference-value-type-declaration* | page-model-definition* Veolumn-set-
model-definition* | added-char-properties-declaration* | character-property=declaration* |

language-definition* | default-language-declaration? 1]

The style language described in this International Standard uses the-core expression lapguage

described in 8.6 or, optionally, the full expression language described in clause 8, and the core
query language described in 10.2.4 or, optionally, the full query,language (SDQL) des¢ribed in
clause 10.
[160] style-language-expression = make-expression{ style-expression | with-mode-expjression

Within a style-language-body, an expression may‘be a style-language-expression.

NOTE 42 A style-expression is used to specify the yalues for inherited characteristics.

Features
The following features are optional in the style language:

— The expression feature allows the full expression language. Without this featurd only the
core expression Janguage shall be used.

— The multdSprocess feature allows the unrestricted use of process-childreh and
related procedures as described in 12.4.4.

— The.query feature allows use of the full query language described in 10 and related facilities
described in this clause. Without this feature only the core query language shall be ysed. This
implies the multi-process feature.

— The regexp feature allows the use of node regular expressions described in 10.3.2.
— The word feature allows the use of the facilities for word searching described in 10.3.1.

— The hytime feature allows the use of the facilities for HyTime location addressing described
in 10.2.1.

— The combine-char feature allows the combine-char element type form.

162

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

— The keyword feature allows # ! key in formal-argument-lists.

— The side-by-side feature allows use of the side-by-side and side-by-side-item flow object
classes.

— The sideline feature allows use of the sideline flow object class.

— The aligned-column feature allows use of the aligned-column flow object class.

— The bidi feature allows use of the right-to-left writing-mode and the embedded-text flow
object class.

— The vertical feature allows use of the top-to-bottom writing=mode.

— The math feature allows use of the flow object classes for mathematical formpilae described
in 12.6.26.

— The table feature allows use of the flow object.classes for tables described in 12.6.27.

— The table-auto-width feature allowsthé widths of table columns to be cpmputed
automatically. This implies the table fédture.

— The simple-page feature allows,use of the facilities for simple page layout described in
12.6.3.

— The page feature allows us¢’of the page-sequence and column-set-sequence flow object
classes and related features.

— The multi-column feature allows use of column-sets containing more than pne column.
This implies the-page feature.

— The nested-column-set feature allows use of a column-set-sequence flow object with a
column?set-sequence flow object ancestor. This implies the multi-column 4nd page
features.

—The general-indirect feature allows use of the general-indirect-gosofo
procedure.

— The inline-note feature allows use of the inline-note flow object class.

— The glyph-annotation feature allows use of the glyph-annotation flow object class.
— The emphasizing-mark feature allows use of the emphasizing-mark flow object class.
— The included-container feature allows use the included-container flow object class.

— The actual-characteristic feature allows use of the actual - c procedures for each
inherited characteristic c.

163

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

12.

12.

— The online feature allows use of the facilities described in 12.6.28.

— The font-info feature allows use of the facilities described in the 12.5.7.

— The cross-reference feature allows the use of the process-element-with-id

procedure.

repertoire, combine-char, features, and sgml-grove-plan.

2 Flow Object Tree

A flow object tree is an abstract representation of the merger of the formatting specifi

specification of the desired formatting behavior of the flow object.

Each flow object has a set of ports to each of which“an ordered list of flow objects car
attached. The set of ports may be empty. Oneport of each flow object that has any po

which uniquely identifies it in the context.of its flow object. The list of flow objects at

a single flow object in the flow objeot tree that is not a member of any stream. This flo
called the root of the flow objecttree. Every other flow object in the flow object tree
member of exactly one stream: This stream is referred to as the flow object's stream.

object to which a flow object's stream is attached is called the flow parent of the flow o
set of ports that a flow. object has is controlled by its class, and for some classes also t

class whose instances are always atomic is an atomic flow object class. The relative p

of flow objetts in different streams can be constrained by synchronizing the flow objg
addition,the value of a characteristic may result in the creation of a flow object.

3 Areas

—— The charset feature allows the nse of the declaration element type form other than char-

cation and

the source document. The nodes of the flow object tree are flow objects. Each flow dbject is of
a type called a flow object class. A flow object is said to be aniiustance of its class. A flow
object also has a set of characteristics. The characteristics that are applicable to a flow object
depend on the flow object's class. A flow object's class and-characteristics together cqnstitute a

be
rts may be

distinguished as the principal port. The principal port is unnamed. Every other port has a name

lached to a

port is known as a stream, and the members of the list are called members of the strean. There is

W object is
is a

The flow
bject. The
y its

characteristics. Atflow object that has no ports is called an atomic flow object, and a flow object

bsitioning
cts. In

an-—orao 1o aica 4 £1 Tha tac 1t aof formatt
17

Tha cancant-af s SEEPN Braants $ wi-abiact a Tt
LIIv \/Ull\/\/t}l VUl Al arva 1o uovu ity BIV\/ OVITIATIIUIV O tTU T1IUYVY UuJ\/ULO. LTIV TVOUIU UL ITVUILIIIALL.

ing a flow

object other than the root flow object is a sequence of areas. The nature of these areas is not fully
specified by this International Standard. An area is a rectangular box with a fixed width and
height. An area is also a specification of a set of marks that can be imaged on a presentation

medium. An area may contain other areas. In particular, an area may contain a glyph.

Information may be attached to areas depending on the flow object that produced the area and the

context in which it is to be used. Areas are of two types: display areas and inline areas.
of area is placed in a different way. For an illustration of the concept of displayed and
areas, see Figure 4.

Each type
inlined

164

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/TIEC 10179:1996(E)

This is DSSSL illustrative Text.
It will be used in various
forms in the DSSSL pictures
Iniine areq fo illustrate certain points.
(graphic in box) Here is an inline graphic

™~ that is run into the aea "
sentence. (formuta)

E=mc?

This is DSSSL illustrative Text:
It will be used in various
forms in the DSSSL pictures
Formuias to illustrate certain-points.
area. This paragraph includes an
\\ inline formulaias shown, such

as[E=mc?}

Figure“4 — Displayed and Inlined Areas
12.3.1 Display Areas

Display areas are areas:that are not directly parts of lines. A display area has an irfherent absolute
orientation.

NOTE 43 Infermally, the box has an arrow on it saying ‘this way up’.
The positioning of display areas is specified by area containers. An area contairjer has its own

coordinate system with its origin at the lower left corner, the positive x-axis extepding
horizontally to the right and the positive y-axis extending vertically upward.

An area container has a filling-direction specified in terms of its own coordinate pystem. The

iling-directiongi ing edge dinseds } i each other. The
size of an area container is always fixed in the direction perpendicular to the filling-direction.
This means that the lengths of the starting and ending edges are always fixed and equal to each
other.

165

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

Starting edge .
of area container Stamn?
» edge 0
area A
Display Area A
Display-Size
Solid gray box Ending
represents edge of
area area A
container
Starting
. edge of
Display Area B area B
Filling-direction of displayed
area placed inside an area
container
Ending
edge of
area B
Ending edge
of area container
Figure 5 - Area Containers and Display Areas

The size of an area ‘coritainer in the filling-direction may be fixed or it may be specified to grow
as necessary to ¢ontain the areas with which it is filled. The display areas with which 3n area
container is filled are always created so that their size in the direction perpendicular to the filling-
direction.i$:equal to the size of the area container in that direction. This is called the di§play-size
of the ar¢a. An area container is filled with a sequence of display areas as follows. Thg first
display area is positioned with its starting edge aligned with the area container’s starting edge.
Thenext display area is then positioned with its starting edge on the previous area’s ending edge,
and so on. This is illustrated in Figure 5

An area container resulting from an included-container-area flow object may also specify a
rotation to be applied to each of the display areas with which it is to be filled. The angle of
rotation is restricted to be a multiple of 90 degrees. This rotation is applied to each display area,
thus changing the display area’s starting and ending edges.

NOTE 44 It is possible to have paragraphs with lines with different placement directions on the same page without
using rotation. See Figure 15.

166

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

The direction between a display area’s starting and ending edges is the placement direction of the
display area. A display area also has an associated writing-mode that is perpendicular to the
area’s placement direction. This is illustrated in Figure 6.

Display-Size
- et o
This is DSSSL illustrative Text. lp.ccemem
It will be used in various Direction
forms in the DSSSL pictures
to illustrate certain points.
This paragraph includes an
inline formula as shown, such
as E=mcz

Left-to-right Writing Mode

Figure 6 — Placement Direction for Left-to-Right Writing-Mode

Writing-mode may be left-to-right, right-to-left, or top-to-bottom. See Figure 7.

Easterfy Western
e — = | Top-to-Bottom
Writing Mode L |
l l > —> 3
Left-to-Right 1 2
Writing Mode
|]
L
4 5
—
| 8 |

Figure 7 - Different Writing-modes

167

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

12.3.2 Inline Areas

Inline areas are areas that are parts of lines. An inline area has a position point that lies on one

edge of its box and an orientation called the escapement direction, which is perpendicular to the
edge of the box on which the position point lies. The point on the box which lies in the

CUEL Ui Uiv UUA Uii WiRLIZ LUL pPUSIRILVR pYasss 23, 2230 olLI 01 10 DU

alled the

escapement pomt of the inline area.

NOTE 45 Informally the box has an arrow pointing from the position point that says ‘place me so that thelarrow lies
parallel to the line I'm in’.

Inline areas are positioned to form lines in the following manner. The writing-mode for a
paragraph gives an inline-progression direction for the paragraph. There is a placement point
associated with the process of constructing a line. The first inline dr€a is oriented so that its
escapement direction is the same as the inline-progression diréction of the paragraph, and the
point on the inline area’s box opposite to the position point becomes the current placement point.
The next area is placed so that its position point is coincident with the current placement point
and oriented so that its escapement direction is the samie as the inline-progression directfon of the
paragraph. The point on the inline area’s box opposite to the position point becomes the current
placement point for placing the next area. Thisis.illustrated in Figure 8.

Inline-progression Left-to-right“writing mode
direction
1
N Placement
Posttion Point path
of second X

/ Posttion Point of
Escapement Point inline area containing Placement point
of second X piasement point for next Math fomula Escapement point of for next inline area

inline area containing

inine area (math formula) aih £ |
math formula

Figure 8 —Inline Area Placement and Positioning

The use of kerning modifies this positioning as illustrated in Figure 9.

168

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

Left-to-right writing mode
Inline-progression

direchb7
Placement

(a) Position point

(b) Nominal-escapement point

(c) Escapement point
adjusted for keming

Figure 9 - Positioning with Kerning

The path containing the position points of the inline areas, which have the direction determined
by the paragraph’s writing-mode, is known as the placement path. This is illustrafed in Figure 10
for the.left-to-right writing-mode and in Figure 11 for the right-to-left writing-mode.

169

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

‘ placement path

|

o

/

position point escapement point escapement.direction

Figure 10 - Glyph Positioning for the Left-to-Right Writing-Mode

escapement direction

/ position point
escapement point

placement path

Figure 11 =~ Glyph Positioning for the Right-to-Left Writing-Mode

There are additionalsteps in the process when the paragraph uses more than one writing-mode.
For example, inFigure 12, there is an inline-progression direction of left-to-right for the English
text and an inline-progression direction of right-to-left for the Hebrew text. In addition), line
breaking becomes more complex in this case.

__Standard generalized AN IDIT DIDNDIN NIX T ABW T4 T WAINO 18T o0 |
AT 12102 MR IRXI? SGML-2 W7 11 3 Markup Language (SGML)
DIYPIDR-ITIND AR TP, DI22IPHIT IR ARYITT IPIBRD 207790102
PIN3 12 WK TIWD DYIN0N T3P 03 WY SGML . YT IRND
DIDAPN? PTIMA NPT I DIRT Y ARSI D% 2w NN W
IR IR

Figure 12 — Mixed Writing-Mode for Hebrew and English

170

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

The alignment mode specified by the alignment mode property for the font resource also
influences how glyphs are positioned, as illustrated in Figure 13. There are characteristics on

inlined flow objects that can modify this process.

position point in
nominal alignment mode

\ [posffion point (shiftéd)

\ i int esg¢apement point (shifted)

position poin - .
placement path in nominal position poifit) * . » . [positioh point in nomindl
. in alignment~ Position point)
alignment mode alignment mode
mode used
escapement point escapement point

escapement point
in nominal
alignment mode

in nominal
alignment mode

Figure 13,—Scripts with Mixed Alignment Modes

An inline area also has a line-progression direction, which is perpendicular to th
progression direction for its paragraph. Certain characteristics of inline areas are
terms of the line-progression direction.

2.3.3 Inlined and Displayed Flow Objects

A flow pbject that is to be formatted so as to produce a sequence of inline areas i
inlined, ‘A flow object that is to be formatted so as to produce a sequence of disp

e inline-
specified in

5 said to be
ay areas is said

todbedisplayed. Instances of some flow object classes can only be inlined; instances of others

can only be displayed; and instances of others can be either inlined or displayed.
whether a flow object is to be inlined or displayed is controlled by the characteris
object or by whether the flow objects attached to its ports are themselves inlined

Tla] £ £1 Lo PRI DN M £] ‘- £+l £1 b 1 1 31
T TIASS U a TITUW UUJULT UTICTHHIITS TUT Talll pUIT UT UIdl TIOW OUJCCL WIITUICT U

In the last case,
tics of the flow
or displayed.

e flow objects

associated with that port shall be inlined, or whether they shall be displayed, or whether they may

be either inlined or displayed.

NOTE 46 The included-container-area flow object described in 12.6.16 allows a flow object that can only be

displayed to occur indirectly in a line without causing a break. For example, one may wish to mix vertical Japanese in

a line of English text without causing a break.

171

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

12.3.4 Attachment Areas

A display area can have a number of associated inline areas called attachment areas. These are
illustrated in Figure 14 which shows the use of sidelines and graphics as attachment areas on
either side of the display area.

NOTE 47 Attachment areas are used for sidelines, line numbers, and marginalia.

Sideline Left-to-right wriing mode
(changemark)

N (a) Separgfion
¢*/—~>

e

Alignment
poianor = (a)! b (@) Alignment Position
sideline point point

animals2.ttf

e

Pogtion Escapement Alignment
point point point

(a) Attachment
points

Figure 14 — Attachment Areas

Each attachment area is positioned relative to a point on the display area’s box called the
attachment point for the attachment area. The attachment point may be different for edch of the

attachment areas of the display area. An attachment point lies on an edge of the display area that
is’parallel to the placement direction.

There is a specification for each attachment area that indicates which such edge of the display
area it is attached to. Each attachment area has an alignment point and is positioned so that the
attachment area’s alignment point is at the same position in the placement direction as the
corresponding attachment point on the display area.

Each attachment area has a specified separation from the display area. If the attachment point is
on the edge that is at the start in the direction determined by the writing-mode, then the
separation is the distance in that direction from the attachment area’s alignment point to the
attachment point, and the attachment area’s alignment point is its escapement point. If the

172

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

12.4

attachment point is on the edge that is at the end in the direction determined by the writing-mode,
then the separation is the distance in that direction from the attachment point to attachment area’s
alignment point, and the attachment area’s alignment point is its position point.

NOTE 48 A negative value for the separation means that the attachment point is inside the display area.

Flow Object Tree Construction

241

Construction Rules

[161] construction-rule = query-construction-rule | id-construction-rule) element-construction-
rule | root-construction-rule | default-element-construction-rule

The construction-rules in a style-specification (see 7¢1) specify how a npde in the
source grove is to be processed. Each construction-rule matehies some (possibly empty) set of the
nodes in a source grove. Refer to 9 for information about groves and their use in this
International Standard.

A construction-rule includes a construct-expression, which is an expression retufning an object
of type sosofo. A sosofo is a specification ofja sequence of flow objects to be added to the flow
object tree. See 12.4.3. When a construction:rule is applied to a node, its construft-expression is
evaluated. The node to which it is applied becomes the current node for the evalpation of the
construct-expression.

The most specific construction-rule (as defined below) that matches the node is gpplied to the
node.

NOTE 49 Processing a nede has no side-effects; it just returns a value.

A node is processed with respect to a current processing mode. In addition to na
modes that are'specified with mode-construction-rule-groups, there is an initial

both when the processing mode is the initial processing mode and when itis an
mode:

A flow object tree is constructed from a source grove by processing the root nodg of the source
grove in the initial processing mode; the flow objects specified by the resulting spsofo are added

T 7 - j ift ts-sosofo shall all
be unlabeled, and shall either be all of class scroll, or shall be all of class page-sequence or
simple-page-sequence.

[162] mode-construction-rule-group = (mode mode-name construction-rule*)
[163] mode-name = identifier

A construction-rule in a mode-construction-rule-group matches a node only when the current
processing mode is mode-name.

173

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

The relative specificity of construction-rules is determined as follows:

— A construction-rule in a mode-construction-rule-group is more specific than any
construction-rule not in a mode-construction-rule-group.

— Among construction-rules that have the same specificity according to the preceding rule, a

construction-rule in one part of a style-specification is more specific than
construction-rule in a subsequent part (see 7.1)

— Among construction-rules that have the same specificity according to the preceding
each of the following is more specific than the next:

— query-construction-rule

— id-construction-rule

— element-construction-rule

— default-element-construction-rule

— root-construction-rule

priority.

than another element-constriction-rule with no qualified-gi or with a qualified-gi ¢
fewer gis.

It shall be considered an’error if there are two or more equally specific construction ru
match the node.

In addition to‘eonstruction-rules explicitly specified in style-language-bodys, there is a
default gonstruction-rule. The default construction rule matches any node in a source
is less'specific than any explicitly specified construction-rule. The result returned by t
corstruction-rule shall depend on the type of node to which it is applied:

any

rules,

— A query-construction-rule is more specific than another query-construction-rule with a lesser

— An element-construction-rule with a qualified-gi containing two or more gis is more specific

pntaining

es that

n implicit
grove but
he default

— for a node of class element, it shall return (process-children).

— for a node with a char property, it shall return (make character).

— for anode of class attribute-assignment, it shall return (process-children).

— for any other kind of node, it shall return (empty-sosofo).

174

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

[164] query-construction-rule = (query style-query-expression construct-expression priority-
expression?)

A query-construction-rule matches any node in the node-list returned by the style-query-
expression. query-construction-rules require the query feature.

[165] style-query-expression = expression

A style-query-expression shall return an object of type node-list. Within a style~guery-
expression, the current-root and current-node procedures both retur’ the grove root of
the grove being processed.

[166] construct-expression = expression

A construct-expression shall return an object of type sosofo/When the query fejture is enabled,
within a construct-expression, the current-node procedure shall return the cyrrent node.

[167] priority-expression = expression
The priority-expression specifies the priority©f\the query-construction-rule. It shall evaluate to a
number. If the priority-expression is omitted, then the priority shall be 0. Biggen numbers
indicate higher priorities.
[168] element-construction-rule =\(element (gi | qualified-gi) construct-exprefssion)
[169] gi = string | symbol
[170] qualified-gi = ((.gi+))
An element-construction-rule matches any node of class element that matches fthe gi or
qualified-gi, A.node matches a gi if its generic identifier is equal to the string or fymbol. A node
matches agualified-gi if it matches the last gi in the qualified-gi, and its parent njatches the next
to last gi,-and so on for each gi in the qualified-gi.

[171] default-element-construction-rule = (default construct-expression)

A default-element-construction-rule matches any node of class element.

[172] root-construction-rule = (root construct-expression)

A root-construction-rule matches any node of class sgml-document.
[173] id-construction-rule = (id unique-id construct-expression)
[174] unique-id = symbol | string

An id-construction-rule matches any node of class element that has a unique identifier equal to
unique-id.

175

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

12.4.2

Primary Flow Object

A flow object is associated with a node in a source grove if it was constructed when that node
was the current node and the flow object occurs in the flow object tree, that is, not within a
reference value or a characteristic value. Flow objects constructed using the implicit default

construction rule are considered to be associated with the nodes in the source grove for
rule was applied, just as for flow objects constructed using explicit construction rules.

which the

12.4.3

One flow object associated with a node is more closely associated with the node tha gnother

flow object associated with the node if:

— the one flow object was constructed when the current processing mode, was the init

al

processing mode, and the other flow object was constructed when the current processing

mode was some mode other than the initial processing mode, or
— the one flow object contains directly or indirectly the otherflow object.
If there is a flow object associated with a node that is more closely associated with the
any other flow object associated with the node, then that flow object is the primary flo

for the node.

Sosofos

An object of type sosofo is a specification of a sequence of flow objects to be added tq

object tree.

NOTES

50 The expression language-héver operates on flow objects directly; it only operates on their specificatig

sosofo data type.

51 An implementation will use the information in a sosofo to construct portions of the flow object tree w
is returned by a construct-expression 1n a construction-rule that has been applied to some node in a sour|

Each flow-object specified by a sosofo may be labeled with a symbol. A sosofo whose
are_allunlabeled is called an unlabeled sosofo.

NOTE 52 A flow object is labeled by specifying a Llabel : argument in a make-expression.

node than
W object

the flow

ns using the

hen a sosofo
Ce grove.

members

(sosofo? obj)

Returns #t if ob7 is a sosofo, and otherwise returns #f.

[175] make-expression = (make flow-object-class-name keyword-argument-list content-

expression*®)

[176] content-expression = expression

176

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

The result of evaluating a make-expression is a sosofo (the result sosofo) whose first specified
member is a flow object of the class named by the flow-object-class-name. This flow object is
called the constructed flow object. Each content-expression shall return an object of type sosofo.
The sosofos returned by the content-expressions are concatenated to form the content sosofo. No
content-expressions shall be specified if the flow-object-class-name is of an atomic flow object
class. If the flow-object-class-name is not of an atomic flow object class and the make-expression
contains no content-expressions, then a content-expression with the effect of (process-
children) shall be used.

Each make-expression has a content map that maps labels to ports. Each flow ebject specified in
the content sosofo is considered in turn. If it is unlabeled, it is appended. to the strgam attached to
the principal port of the constructed flow object, if the constructed flow ebject has a principal
port, otherwise this shall be an error. If it is labeled, and the labelds, one that is mapped by the
content map, then the flow object is appended to the stream attached to the port of|the flow object
to which that label is mapped. Otherwise, the flow object is‘appended to the resullt sosofo; these
flow objects are after the constructed flow object in the result’sosofo.

A keyword shall be treated as part of the keyword-argument-list rather than as a dontent-
expression. If the same keyword occurs more than ence in the keyword-argumentilist, it shall not
be an error, but all except the first occurrence shall be ignored. The following keywords are
allowed in the keyword-argument-list:

— A keyword that is the name of a characteristic and specifies the value of that characteristic for
the flow object (unless it is an intherited characteristic that is overridden) as ddscribed in
12.4.6. If the characteristic isthot inherited, then the characteristic shall be ond that is
applicable to the constructed flow object.

— A keyword force|c? where cis the name of an inherited characteristic that|specifies the
value of that charaeteristic for the flow object and prevents overriding of that yalue as
described in 12.4.6.

— A keyword that is the name of a reference value type and specifies that the constructed flow
object has a reference value of that type with the specified value.

+=lse: specifying a style to be used for the constructed flow object as described in 12.4.6. The
value shall be a style object or #f indicating that no style shall be used.

— content-map: specifying the content map for the make-expression. The value shall be a

list of lists of two objects, where the first object is a symbol that specifies a label and the
second object is either a symbol specifying the name of a port or #f specifying the principal
port. No label shall occur more than once in a content map.

If the content-map: argument is not specified, then a content map shall be used that for
each non-principal port of the flow object contains a list of two symbols both equal to the
name of the port.

— label: specifying the label for the constructed flow object in the result sosofo. This
argument shall be a symbol.

177

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/EC

[177] flow-object-class-name = identifier
Any identifier that is the name of a flow object class is a flow-object-class-name.

[178] application-flow-object-class-declaration = (declare-flow-object-class

identifier strina)
tEECRHTE—YHRES

This declares identifier to be a flow-object-class-name for a class with a public identifier
specified by string.

[179] with-mode-expression = (with-mode mode-specification expréssion)
[180] mode-specification = mode-name | # £

A with-mode-expression evaluates expression with the progessing mode specified by node-
specification. A mode-specification of #f indicates the initial unnamed processing mode. The
mode-name in mode-specification shall have been specified in a mode-construction-rufe-group.
(empty-sosofo)
Returns an empty sosofo.
(literal string ..)
Returns a sosofo containing ongyflow object of class character for every char in strigg, ... in
the same order. Each charagter flow object is constructed as if by evaluating a make-ejxpression
with character as theflow-object-class-name and a char : argument specifying the
character.
(process-children)
Returns the-sosofo that results from appending the sosofos that result from processing fin order

the children of the current node. When the current node is of class sgml-documentthe value
of thexdocument-element property is treated as being the children of the node.

(process-children-trim)

Returns the sosofo that results from appending the sosofos that result from processing in order
the children of the current node after removing any leading and trailing sequence of nodes that
have a char property with the input-whitespace property true.

(process-matching-children pattern ..)

Returns the sosofo that results from appending the sosofos that result from processing in order
those children of the current node that match any of pattern,... A pattern shall be an object

178

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© 1SO/IEC

ISO/IEC 10179:1996(E)

that is allowed as the second argument to the match-element ? procedure. It is interpreted as
itis by match-element?.

(process-first-descendant pattern ..)
Returns the sosofo that results from processing the first descendant in tree order of the current

node that matches any of pattern, ... A pattern shall be an object that is allowed as the
second argument to the match-element? procedure. It is interpreted as it is by match-

element?.
(process-element-with-id string)
Returns the sosofo that results from processing the element in the same grove as the current node
whose unique identifier is string, if there is such an element, and otherwise retyrns an empty
sosofo. This procedure requires the cross-reference featlre.

(process-node-1list ndlist)

Returns the sosofo that results from appending the sosofos that result from processing the
members of the nd1ist in order. This requiresthe query feature.

(map-constructor procedure node-=list)
For each node in node-1ist, procédure is evaluated with that node as a current node.
procedure shall be a procedure\of no arguments and shall return a sosofo. map+t
constructor shall return the’sosofo that results from concatenating the results pf evaluating
the procedure. This requires the query feature.
(sosofo-append .sosofo ..)

Returns the sosofo that results from appending sosofo ...
(sosofg=-label sosofo symbol)

Returnis a sosofo that results from labeling with symbo1 each member of sosof¢ that is

currently unlabeled. A new sosofo is constructed; neither the sosofo nor its members are
modified.

(SOSOIo-d1scard-labeled SO0SO0Iro symbol)

Returns a sosofo that results from discarding from sosofo any flow object that is labeled with
symbol. A new sosofo is constructed; the sosofo is not modified.

(next-match)
(next-match style)

179

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

12.4.4

Returns the sosofo that results from applying the next most specific construction rule that

matches the current node. If sty1le is specified, then that style shall become the current
overriding style for the evaluation of that construction rule.

Multi-process Feature

A call to any of the procedures process-children, process-children-trim,

process-matching-children, or process-first-descendant is a descending

12.4.5

recursive call if:

— it does not occur during the evaluation of a call to process-node-set or process-

element-with-id, and
— it does not occur during the evaluation of the value of a reference-value.

Unless the multi-process feature is enabled, it shall be an error if there occur two

descending recursive calls both made when the same node was the current node and when the

same processing mode was the current processing mode.

Styles

A style object contains a set of expressions specifying values for inherited characteristigs.

[181] style-expression = (style keyword-argument-list)

Evaluates to an object of type style."The following keywords are allowed in the keyword-

argument-list:

— A keyword that is the'name of an inherited characteristic and specifies the value of {hat

characteristic for the'style (unless overridden) as described in 12.4.6.

— A keyword-force! c: where c is the name of an inherited characteristic that specifies the
value of that'characteristic for the style and prevents overriding of that value as des¢ribed in

12.4.6:

—-Uge: specifying another style whose characteristics are to be added to this style as described

in 12.4.6.

NOTE 53 A style-expression is interpreted in a similar manner to a make-expression with an atomic flow object class

that has only inherited characteristics.

(style? obj)

Returns #t if ob7 is of type style, and otherwise returns #f.

(merge-style style ..)

180

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

12.4.6

Returns a style object constructed by merging style, ... The expression for a characteristic in
the returned style object is the expression for that characteristic in the first of the argument styie
objects that contains an expression for that characteristic.

Characteristic Specification

Every characteristic is inherited unless it is explicitly specified not to be in this International
Standard. For each inherited characteristic, there is an expression in this International Standard

specifying the initial value for that characteristic. Each non-inherited characteristic has a default
value.

While a construct-expression is being evaluated, a current overriding style is in effect. When the
processing of a node starts, the current overriding style is empty. The\next -matich procedure
can change the current overriding style during the evaluation of a‘construct-exprgssion. That
construct-expression may, in turn, call next-match to change the current overriding style, and
SO on.

The expression specifying an inherited characteristic ‘e for a flow object is determined when the
make-expression is evaluated using the first of the following rules that is applicable:

— If a keyword of force! c: was specified, then the corresponding expression shall be used.
— If the current overriding style contains an expression for c, then that expressign shall be used.
— If a keyword of c: was specified, then the corresponding expression shall be psed.

— If use: was specified,on the flow object, and the corresponding style object gpecifies an
expression for c, then'that expression shall be used.

— Otherwise, an'expression (inherited-c) shall be used.
The set of €haracteristics and corresponding expressions for a style object is detefmined in a
similar anner during the evaluation of the style-expression. For each inherited gharacteristic c,
the expréssion that the style object has for c is determined using the first of the following rules

that'is applicable:

— If akeyword of force! c: was specified, then the corresponding expression [shall be used.

— If the current overriding style contains an expression for ¢, then that expression shall be used.
— If a keyword of c: was specified, then the corresponding expression shall be used.

— If use: was specified on the flow object, and the corresponding style object specifies an
expression for c, then that expression shall be used.

If none of these rules are applicable, then the style object contains no expression for c.

181

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E) © ISO/IEC

For each non-inherited characteristic ¢ applicable to some flow object, if the make-expression for
that flow object specifies the c: keyword, then the corresponding expression shall be evaluated
and used; otherwise, the default for that characteristic shall be determined as specified for that
characteristic and flow object class.

The expression specifying the value of a characteristic in a make-expression or style-expression
shall not be evaluated immediately; instead the expression shall be associated with the
characteristic in the created flow object or style object. The values of the free variables in the
expression are remembered and are used when the expression is evaluated, as with algmbda
expression. The current node is also remembered and restored for the evaluationof-the
expression.

When the flow object tree has been sufficiently constructed so that the position of a flqw object
in the flow object tree has been determined, then the expressions specifying the values|for the
characteristics applicable to that flow object shall be evaluated.

An expression specifying the value of a characteristic shall be-evaluated with respect tq two flow
objects, which are referred to as the value flow object andithe specification flow object. [The value
of a characteristic for a flow object is determined by evaluating the expression specifyjng that

characteristic with both the value flow object and the)specification flow object equal tg that flow
object.

(inherited-c)

For any inherited characteristic, c, there is a procedure inherited-c. This procedure shall be
used only in the evaluation of an expression specifying a value for a characteristic. The
procedure returns the result of evaluating the expression that specifies c for the flow patent of the
specification flow object; this €xpression is evaluated with the value flow object unchgnged and
with the specification flow-object equal to the flow parent of the current specification flow
object. If the current specification flow object has no flow parent because it occurs as §
characteristic value'of some flow object, then that flow object shall be treated as the flpw parent
for this purposé. If the current specification flow object has no flow parent because it i§ used in a
generate-specification or a decoration-specification, then the page-sequence or colump-set-
sequence,flow object that is using the page-model or column-set-model in which that generate-
specification or decoration-specification occurs shall be treated as the flow parent for this
purpose. Otherwise, if the current specification flow object has no flow parent then
inherited-c returns the result of evaluating the expression specifying the initial va

error if it calls inherited-c for any inherited characteristic c.
The procedure inherited-c behaves differently when:
— the flow parent of the specification flow object is a table or a table-part;

— the value flow object is a table-cell of that table or table-part or is in a table-cell of that table
or table-part; and

182

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

— the table or table-part contains a table-column flow object that specifies ¢ and has the same

column number as that table-cell.

In this case, inherited-c shall return the result of evaluating the specification

of cin the

table-column; this expression shall be evaluated with the value flow object unchanged and with

the specification flow object equal to the table flow object.

(actual-c)

For each inherited characteristic ¢, actual -c shall return the value of c for the
object. This procedure shall be used only in the evaluation of an expression specif]
a characteristic. It shall be an error to call actual-c with a value flow object of]
of determining the value of ¢ for £. Use of this procedure require§the actual
characteristic feature.

(char-script-case string; obj; .. string,; obj,; obij,)

This procedure shall be used only in the evaluation ©f‘an expression specifying a

value flow
ying a value for
£ in the course

value for an

inherited characteristic. There shall be an odd pumber of arguments. All argum

nts other than

the last shall be interpreted as a series of pairs, Wwhere the first member of the paif is a string
specifying a public identifier, and the seconid member is any object. If the value flow object is
not a character flow object or is a character flow object that has a script property [that is not #f,

then char-script-case shall return'its last argument. Otherwise, the value 0|
characteristic shall be compared inturn against the first member of each argumer
matches, then the second member shall be returned; if there is no match, then the
shall be returned.

the script
t pair; if it
last argument

NOTE 54 For example, in formatting Japanese text, it is common to use different fonts for the Katakana, Han, and

Latin portions of the text.

[182] application-characteristic-declaration = (declare-characteristic i
expression™)

This.declares identifier to be an additional inherited characteristic. It also has thd
declaring procedures inherited-identifierand actual-identifier.]
public identifier specifying the semantics of the characteristic. If an implementat
recognize the specified public identifier, it shall ignore uses of the characteristic.

dentifier string

effect of
[he string is a
ion does not
The expression

is the specification of the initial value of the characteristic.

[183] application-char-characteristic+property-declaration = (declare-char-
characteristic+property identifier string expression)

This declares identifier to be an additional non-inherited characteristic of a character flow object
and also declares identifier to be an additional character property. The string shall be a public
identifier specifying the semantics of the characteristic. The default value of the characteristic is
the value of the identifier property of the character that is the value of the char : characteristic
of the flow object. The default value of the property is the value of expression. This expression

183

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISO/IEC

12.4.7

shall be evaluated normally; it shall not be evaluated in the special way that the values of
characteristics are evaluated, nor shall it be evaluated with respect to a current node.

[184] initial-value-declaration = (declare-initial-value identifier expression)

This declares the initial value of the inherited characteristic identifier to be an expression. This
shall not be used for characteristics declared with an application-characteristic-declaration.

Synchronization of Flow Objects
Facilities in this clause require the page feature.

It is sometimes necessary to constrain the relative positioning of flow objects in differgnt
streams. For example, a footnote might be constrained to be on thesame page as the
corresponding reference, or a sidenote might be constrained to be‘at the same vertical position as
its reference. Such constraints are specified by creating a synchronization set. A
synchronization set is a set of flow objects whose relative positioning is constrained. A flow
object contains information describing the synchronization sets to which it belongs. Afflow
object can belong to any number of synchronization sets.” For every synchronization sgt, there
shall be a flow object, the synchronizing flow object, that is a flow ancestor of all the flgw objects
in the synchronization set. In addition, each streant of that flow object can contain (eith¢r directly
or as a descendant) at most one flow object inthe synchronization set.

(sync sosofo; sosofo,
#lkey type: min: maxs)

Creates a synchronization set.whiose members are the first member of sosofo; and the first
member of sosofo,. syneireturns a sosofo comprising:

a) a copy of the first-flow object of sosofo; with added synchronization information
b) any remaiping flow objects of sosofoy,
c¢) acopy.of the first flow object of sosofo, with added synchronization information; and

d)-any remaining flow objects of sosofo,.

Fhe-type—argumentis-a-symbel-speeifying-the-type-of-constraint-on-the-areas-ereated by
formatting the synchronized flow objects. The min: and max: arguments are integers that
further specify the type of constraint. The value of max: shall be greater than or equal to that of
min:. min: and max: default to 0. The permitted values for type: are:

— page specifying that the number of pages separating

a) the first of the areas created from the first synchronized flow object from

b) the first of the areas created from the second synchronized flow object

184

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

shall not be less than min: nor greater than max :. The synchronizing flow object shall be a
page-sequence flow object or a column-set-sequence flow object with a page-sequence flow
object as an ancestor. The number of pages from one area to another area is defined to be the
index, among all the pages of the page-sequence, of the page on which the second area lies

minus the index of the page on which the first area lies.

NOTE 55 If min: were -1 and max: were 2, then the first of the areas created from the second

synchronized flow

object would be constrained to be either on the page before the first of the areas created from the first synchronized

125

flow object, on the same page as the first of the areas created from the first synchronized flow pbject, on the page

after the first of the areas created from the first synchronized flow object, or on the next page

ter that.

— spread specifying that the number of spreads from the first of the afeas creat]:i from the first

synchronized flow object to the first of the areas created from second synchr
object shall not be less than min: nor greater than max : . The)synchronizing f]

ized flow
ow object shall

be a page-sequence flow object or a column-set-sequence flow object with a page-sequence

flow object as an ancestor.

— column specifying that the first of the areas createdfrom the first synchroni

ed flow object

and the first of the areas created from the second'synchronized flow object shall be in the
same column-subset and that the number ofcolumns from the first of the areds created from
the first synchronized flow object to the first of the areas created from the second
synchronized flow object shall be between min: and max:. The synchronizing flow object

shall be of class column-set-sequernice.
The default value of type: is page.
(side-sync 1list)

Creates a synchronization set containing the first members of each of the membe
which shall be a listof two or more sosofos. side-sync returns the sosofo that
concatenating the members of the list except that the first member of each sosofo
copy with added synchronization information. The first areas produced by each
synchronization set are constrained to be positioned in the same column-set so th
of their placement paths is the same in the filling-direction, possibly adjusted for|
inalignment mode.

Common Data Types and Procedures

rs of 1ist,
results from

is replaced by a
member of the
at the position
any difference

12.5.1

Layout-driven Generated Text

This clause describes the facilities for generating text when the value of the text to be generated

at some point in the flow object tree may not be known until some formatting has
facilities in this clause require the page feature.

been done. The

NOTE 56 Examples of layout-driven generated text include page numbers, per-page footnote numbers, and dictionary

heads.

185

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

12.5.1.

Each such piece of generated text is represented by an indirect flow object. An indirect flow
object contains a specification for a list of flow objects. The result of formatting an indirect flow
object is the result of formatting the list of flow objects it specifies. Indirect flow objects are
created only by using the procedures in 12.5.1.1 and are not created using the normal flow object
creation mechanism. The content of the indirect flow object is defined to be the list of flow
objects that it specifies. For the purposes of inheritance, the contents of an indirect flow object
have the indirect flow object as their flow parent.

The geflerated-object data type is the specification of an expression-language objeet{JThe kernel
of a generated-object is defined to be the object that is specified. The kernel of a’géngrated-
object is not available directly but only through the procedures in 12.5.1.1.

(generated-object? obj)
Returns #t if obj is of type generated-object, and otherwise returns #f.

Constructing Indirect Sosofos

(general-indirect-sosofo procedure genéerated-object ..)

Returns a sosofo containing a single indirect flowobject, the content of which is an unlabeled
sosofo that is the result of applying the procedure to a list of the kernels of the genprated-
objects. This requires the general-indirect feature.

(asis-indirect-sosofo generated-object)

Returns a sosofo containing a single indirect flow object whose content is the kernel of
generated-object. The Kernel of generated-object shall be a sosofo.

NOTE 57 Typically, the generated-object is created by one of the procedures in 12.5.1.3.
(number-indirect-sosofo generated-object #!key format: add: multiple:)
Returns a sosofo containing a single indirect flow object whose content is the kernel of

generated-object, which shall be an integer converted to a string and then to a sgsofo. The
keyword arguments control the conversion of the integer to a string as follows:

& format : is a string specifying the format to use for conversion of the number as ||n the
Tormat-number procedure. 1he detaultis I.

— add: is an integer to be added to the kernel of generated-object before conversion. The
default is 0.

—multiple: is aninteger. The integers to be converted that are not multiples of this integer
shall be converted to the empty string. The integer specified in the add: argument shall be

added to the kernel of generated-object before testing whether it is a multiple. The
default is 1.

186

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/TEC 10179:1996(E)

12.5.1.2 Layout Numbering

The following procedures all return a generated-object whose kernel is a number that may
depend on the result of formatting. When the first-area-of-node: and last-area-of-
node : arguments are allowed, the number is specified relative to a reference area. At most one
of the first-area-of-node: and last-area-of-node: arguments shall be supplied. If
the first-area-of-node: argument is supplied, then its value shall be a node, and the
reference area is the first area resulting from the primary flow object of that node. If the last -

area-of-node: argument is supplied, then its value shall be a node, and thereference area is
the last area resulting from the primary flow object of that node. One of first-garea-of-
node: or last-area-of-node: shall be supplied unless either:

— there is a current node when the procedure is evaluated, in which-Case the refer¢nce area is the
first area resulting from the primary flow object of the current node, or

— the procedure is used within a generate-specification, in which case the reference area is the
generated area, or

— the procedure is used in the construction of a deéoration area, in which case the{ reference area
is the decorated area.

Although a column is not an area, in this clause it is treated as an area, and an areg is deemed to
be in a particular column if it is in the column-set of that column and if that column is the first

column in the column-set that the aréa spans.

It shall be an error to use one 0f the procedures defined in this clause in such a way that it
requires the primary flow ebject of a node that has no primary flow object.

(page-number #!Key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of pages before or the samie as the
reference area.

(category-page-number #'!key first-area-of-node: last-area-of|-node:)

Returns a generated-object whose kernel is the number of pages before or the samg as the
reference area that has the same category as the page that is or that contains the reference area.

(page-number-in-node nd)
Returns a generated-object whose kernel is the number of pages that:

— are before or contain the first of the areas generated by the indirect-sosofo in which the
generated-object is used, and

— contain areas from the flow object that corresponds to nd.

NOTE 58 This procedure could be used within a table header or footer.

187

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

12.5.1.1

(total-node-page-numbers nd)

Returns a generated-object whose kernel is the total number of pages that contain an area from
the primary flow object associated with nd.

(column-number #'!key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of columns in the same column-subset as

the reference area that is before or the same as the reference area.
(footnote-number symbol #'!'key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of footnote areas-that are befor¢ or the
same as the reference area and are descendants of the nearest ancestor of\the reference afea that is
of the type specified by symbol, which is one of page, page-region, or column. |For this
purpose, a footnote area is an area which is the first in the sequence’of areas produced from a
flow object whose stream is directed into the footnote zone pf a/column-set-sequence flow
object.

(line-number symbol #!key first-area-pf<node: last-area-of-nodef)

Returns a generated-object whose kernel is the namber of line areas that are before or the same as
the reference area and are descendants of the nearest ancestor of the reference area that is of the
type specified by symbol, where symbglis one of page, page-region, columnjor
paragraph. Line areas from paragraphs for which the numbered-1lines?: characteristic
was #f shall not be counted.

Reference Values
A flow object may have a number of named objects associated with it called reference|values.

[185] reference-value-type-declaration = (declare-reference-value-type identifier)
A reference-value-type-declaration declares identifier to be the name of a reference-vglue type.

The identifier shall not be the name of a characteristic or of any other keyword argumgnt
accepted by a make-expression.

(first-area-reference-value symbol #!key default: inherit:)

(last-area-reference-value symbol #!key default: inherit:)
(last-preceding-area-reference-value symbol #'!key default:)
(all-area-reference-values symbol #!key unique: inherit:)

Each of these procedures may be used only in a generate-specification or in the construction of a
decoration area. The context in which these procedures are used determines a list of areas, the
associated-areas list, on which these procedures operate.

When the procedures are used in the construction of a decoration area, the associated-areas list
contains just the decorated area. When the procedures are used in a generate-specification in a

188

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

header-specification, footer-specification, or footnote-separator-specification in a column-
specification, then the associated-area list contains the areas that are placed in the same column-
set area container and that are in the body-text zone and that overlap the column. When the
procedures are used in a generate-specification in a header-specification or footer-specification,
or in a page-region-specification, then the associated-area list contains the areas that are placed
in the same page-region area container as the generated area.

A flow object is eligible if

— it has a reference value symbol, or
— it has an ancestor with a reference value symbo1l, and inherit :/is-Specified and is not #f.

The relevant reference value for an eligible flow object is the reférénce value symbol of the
eligible flow object, if the eligible flow object has the reference value symbol, apd otherwise is
the reference value symbol of the nearest ancestor of the €ligible flow object that has the
reference value symbol.

first-area-reference-value does a pre-ofder traversal of the flow objec} tree searching
for the first eligible flow object that produces, anarea that

— is one of the areas in the associated-area list, or
— is contained in one of the areas ifrthe associated-area list

and returns a generated-objectwhose kernel is the value of the relevant reference{value for that
flow object. When a flow object has more than one stream, then each stream is sgarched
separately. If the search finds flow objects in more than one stream, then the flow object that is
earlier in the layout drder of the area is returned. If the search finds no flow obje¢t, the value of
the default: argument is returned, which shall be a generated-object.

last-area~reference-value behaves the same as first-area-refergnce-value
except that the order of the search is reversed.

last-preceding-area-reference-value does a pre-order traversal of the flow object
tree searching for the last eligible flow object, all of whose areas are before all thg areas in the
associated-areas list, and returns a generated-object whose kernel is the value of the relevant
reference value for that flow object. If no flow object is found, the value of the default:

argument is returned, which shall be a generated-object.

NOTE 59 This procedure might be used in the default: argument for the first-area-reference-value
procedure.

all-area-reference-values does a pre-order traversal of the flow object tree searching
for all eligible flow objects that produce an area that is, or is contained in, one of the areas in the
associated-area list; it returns a generated-object whose kernel is a list containing the value of the
relevant reference value for each such eligible flow object in the order in which it was found. If
unique: is not #f, then duplicate (in the sense of equal ?) values shall be discarded.

189

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

12.5.2

Length Specification

An object of type 1length-spec specifies a length as a linear combination of other lengths that
may not be currently known. Whenever a value of type length-spec is required, a length (a
quantity of dimension 1) may always be used.

(+ length-spec ..)
(- length-spec ..)

12.5.3

(*
(*
(/
(/

length-spec x)
x length-spec)
length-spec x)
x length-spec)

These procedures behave in the same way as their counterparts on quantities, except that they
shall return a length-spec if any of their arguments is a length-spec/(as opposed to just p length).

(display-size)
This procedure shall be used only in the evaluation of an‘expression specifying a value{for a
characteristic. The value flow object shall be a displayed flow object. It returns a length-spec
specifying the display-size of the value flow object.
Decoration Areas

Facilities in this clause require the page feature.
An area container may be ‘decérated’ with one or more other areas called decoration dreas.
Decoration areas do not affect how parent areas treat the decorated area; in particular, they shall

not change the width or-height of the decorated area.

(decoration-axea sosofo #!key placement-point-x:
placement-point-y: placement-direction:)

Returns amrobject of type decoration-area. The sosofo can specify a single flow objeg
class that'can be used inline. The result of formatting the sosofo is used as the decora

t of any
ion area.

Thewdecoration area has a placement point and a placement direction specified by the other

arguments. The inline area produced by the sosofo is placed so that its position poinf lies on

€ placement point o e @ Orafion area and escapement dire Qo n the placement

direction of the decoration area.

placement-point-x: is alength-spec specifying the distance between the bottom left corner
of the decorated area and the placement point of the decoration area in the x-direction of the
decorated area. placement-point-y: is a length-spec specifying the distance between the
bottom left corner of the decorated area and the placement point of the decoration area in the y-
direction of the decorated area. placement-direction: is one of the symbols left-to-
right, right-to-1left, or top-to-bottom giving the placement direction of the

190

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

decoration area relative to the orientation of the decorated area. In this case, the line-progression
direction of the decoration area is the placement direction of the decorated area.

(decorated-area-width)
(decorated-area-height)

decorated-area-width and decorated-area-height return a length-spec specifying,
respectively, the width and height of the are in the
specification for the placement-point-x: and placement-point-y: arguments of a
decoration-area.

12.5.4 Spaces
12|5.4.1 Display Spaces
Objects of type display-space are used to describe the desired space between displayed areas.
(display-space? obj)

Returns #t if ob3J is an object of type display-space, and otherwise returns #f.
(display-space length-spec #!kéy min: max: conditional?: prfority:)

Returns an object of type display-space. 1ength-spec specifies the nominal size of the space.
min: and max: are length-specs:specifying the minimum and maximum size of tHe space. These
both default to the nominal siz€/ priority: is either an integer or the symbol florce. The
default is 0. Higher integers indicate higher priorities. When two display-spaces are adjacent,
then if one has a higher priority than the other, the minimum, nominal, and maxirhum values
from the higher prierity space shall be used, and the lower priority space shall be fignored. If the
priorities are equal,/but one display-space has a higher nominal value than the other, then the
minimum, nothinal, and maximum values from the space with the higher nominal value shall be
used, and the other space shall be ignored. Otherwise, the priorities and nominal Yalues are both
equal; in\this case, that nominal value, the lesser of the maximum values, and the |greater of the
minifaum values shall be used. A priority of force is considered greater than any| other priority.
However, if both priorities are force, then the nominal, minimum, and maximum values shall
be added together. The conditional: argument is a boolean; if true, the spacq shall be
discarded if it starts an area. The default is #t.

NOTE 60 This allows spaces to disappear at page or column breaks.

12.5.4.2 Inline Spaces
Objects of type inline-space are used to describe the desired space between inline areas.
(inline-space? obj)

Returns #t if ob3j is an object of type inline-space, and otherwise returns #f.

191

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

b
N
[
()

(inline-space length-spec #!key min: max:)

Returns an object of type inline-space. Iength-spec specifies the nominal size of the space.
min: and max: are length-specs specifying the minimum and maximum size of the space. These

A =

both default to the nominal size.

Glyph ldentifiers

12.5.6

Glyph identifiers are represented by objects of type glyph-id.
(glyph-id? obj)

Returns #t if ob7 is a glyph-id, and otherwise returns #f.
(glyph-id string)

Returns a glyph-id with public identifier string.

[186] glyph-identifier = afii-glyph-identifier

[187] afii-glyph-identifier = #Adigit-10+

An dfii-glyph-identifier is a single token; therefore, no whitespace is allowed between the #A and

the digits. An afii-glyph-identifier represents the glyph-id returned by

(glyph-id "ISO/IEC 10036/RA//Glyphs::n")

where n is the same sequence<of digits occurring in the afii-glyph-identifier with leadipg zeros

removed. The value represe€nted by the digits shall be between 1 and 2321,

Glyph Substitution Tables

An object of type glyph-subst-table represents a one-to-one mapping from glyph-ids t
ids.

(glyph-subst-table? obj)

Returns #t if ob7j is of type glyph-subst-table, and otherwise returns #f.

glyph-

(glyph-subst-table 1list)

Returns an object of type glyph-subst-table. 11ist shall contain a list of pairs of glyph-ids. In the
resulting glyph-subst-table, the substitution for the first member of each pair is the second
member. The substitution for any glyph-id that does not occur as the first member of a pair is
itself. If a glyph-id occurs as the first member of more than one pair, then the substitution for that
glyph-id is the second member of the first pair that has that glyph-id as its first member.

(glyph-subst glyph-subst-table glyph-id)

192

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/IEC 10179:1996(E)

Returns the glyph-id that substitutes for g1yph-id in the glyph-subst-table.

12.5.7 Font Information

Facilities in this clause require the font-info feature.

(font-property string list
proportionate-width: writing-mode:)

Returns the value of a property in a font resource. The arguments name.:) familly-name:,
weight:, posture:, structure:, or proportionate-width “select the font in the
same manner as the corresponding characteristics, with a prefix of font - added, of a character
flow object. The size: argument is a length specifying the size of the font, whych shall be
supplied if the ISO/IEC 9541-1 data type of the value is REL>-RATIONAL. stxingis a string
representing a public identifier specifying the name of the property. 1ist is a lis}, each of whose
members is either:

— astring, or
— a list of three strings and an object.

The property value to be returned shall be determined as follows. Initially, the actjve property-list
is the font-resource property-list.«Each member of 1ist in turn shall set the actjve property-list
to a property-list nested in the dctive property-list, as follows:

— If the member is a string, then it shall set the property-list to the property-list fhat is the value
of the property of‘that name in the active property-list.

— Otherwise, the-active property-list shall be searched for a property whose name is equal to the
first string:The value of the property shall be a property-list. The active propgrty-list shall be
set to_the value of the property in that list whose name is equal to the second sfring and whose
value-is a property-list that contains a property whose name is equal to the third string and
whose value is equal to the fourth member of the list.

Finally, the value of the property whose name is string in the active property-list shall be
returned.

The optional writing-mode: argument shall have one of the values left-to-right,
right-to-left, or top-to-bottom. The value left-to-right is equivalent to
prefixing 1ist with the list

("ISO/IEC 9541-1//WRMODES"
"ISO/IEC 9541-1//WRMODE"
"ISO/IEC 9541-1//WRMODENAME"
"ISO/IEC 9541-1//LEFT-TO-RIGHT")

and so on for the other allowed values.

193

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

The object returned shall depend on the data type of the value of the property as defined in ISO/

IEC 9541-1:

— for a BOOLEAN property, a boolean value shall be returned.

— for a STRUCTURED-NAME, a string containing the ISO 9070 canonical representation shall

be returned.

12.5.8

— for MATCH-STRING or MESSAGE, a string shall be returned.

— for OCTET, INTEGER, CARDINAL, or CODE, a number shall be returned.

— for REL-RATIONAL, a length shall be returned which is obtained by scaling the fd
— for ANGLE, a number shall be returned corresponding to the dngle in degrees.

— for an OCTET-STRING, a list of integers shall be returnied.

— for a value-list or an ordered-value-list, a list containing the result of converting the
of the value-list or ordered-value-list shall be returned.

Other types of values shall cause an error tocbe signaled.

Addresses

An address object shall be used as'the destination of a hypertext link. An address objeq
represents the address of one ef.more objects.

(address? obj)

Returns #t if obj4ds\an object of type address, and otherwise returns #f.
(address~+local? address)

Returnis #t if the address is local to the current document, and otherwise returns #f.

(address-visited? address)

Returns #t if address has been visited, and otherwise returns #f.

(hytime-linkend)

nt size.

members

Returns an object of type address. The current node shall be an element conforming to the clink
architectural form as defined in ISO/IEC 10744. The address identifies the linkend of the current

node.

(idref-address string)

194

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

The stringis divided into one or more space-separated tokens, and an object of type address
shall be returned representing the elements whose unique ID is one of the tokens.

(current-node-address)
Returns an address object representing the current node.

(entity-address string)

The stringis divided into one or more space-separated tokens, and an object)of| type address
shall be returned representing the entities whose names are the tokens.

(sgml-document-address string; string,)
stringy shall be the system identifier of an SGML document.entity and string, shall be a
unique ID in that SGML document. Returns an address objectfepresenting the el¢ment in the
SGML document that has that unique ID.

(node-list-address node-list)

Returns an address object representing the nodes in node-11ist. This procedure fequires the
query feature.

NOTE 61 External procedures may be used-ts-allow other addressing mechanisms.
Color

A color shall always be specified with respect to a color-space.
(color-space §tring arg ..)

Returns an object of type color-space. The string specifies a public identifier identifying the

color-space family. The remaining arguments specify parameters to the color-spage family. The

type and number of the remaining arguments depend on the color-space family as|described
below.

(color-space? obj)

Returns#tif ob7tsacolor =Space, alnd Otherwise Teturns #.

(color color-space arg ..)

Returns an object of type color. color-spaceis the color-space relative to which color is to be
specified. The type and number of the remaining arguments depend on the color-space family to
which color-space belongs. If no arguments other than color-space are specified, then
the default color in color-space is returned.

NOTE 62 This is normally black.

195

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

(color? obj)
Returns #t if ob7 is a color, and otherwise returns #f.
This International Standard defines the following color-space families:

— ISO/IEC 10179:1996//Color-Space Family::Device Gray

— ISO/IEC 10179:1996//Color-Space Family::Device RGB

— ISO/IEC 10179:1996//Color-Space Family::Device CMYK
— ISO/IEC 10179:1996//Color-Space Family::Device KX

— ISO/IEC 10179:1996//Color-Space Family::CIE LAB

— ISO/IEC 10179:1996//Color-Space Family::CIE LUV

— ISO/IEC 10179:1996//Color-Space Family::CIE Based ABC
— ISO/IEC 10179:1996//Color-Space Family:;:CIE Based A

The semantics of each of these color-space families is that of the corresponding color-§pace
family in ISO/IEC 10180. The additionallarguments required by color-space when one of
these color-space families is specified:as the first argument are determined by the parameters of
the corresponding Color-Space Objéct in ISO/IEC 10180. When the ISO/IEC 10180 Color-
Space Object has no parameters; color-space takes no additional arguments. When the ISO/
IEC 10180 Color-Space Object has a single parameter of type Dictionary, color-space
accepts a keyword argument for each key allowed in the Dictionary. The name of each keyword
is derived from the name’of the Dictionary key by inserting a hyphen before each uppgr-case
letter in the name that is not the first letter and that is followed by a lower-case letter, and by then
mapping all chdracters to lower-case. The type of each keyword argument shall be defermined
by the type of.the corresponding Dictionary value:

— If the ISO/IEC 10180 type is a number, then the argument type shall be a number.

« L Jf the ISO/IEC 10180 type is a procedure, then the argument type shall be a procedyire.

— If the ISO/IEC 10180 type is a reference to a vector of numbers, then the argument type shall
be a list of numbers of the same length.:

— If the ISO/IEC 10180 type is a reference to a vector of procedures, then the argument type
shall be a list of procedures of the same length.

The number and type of the additional arguments required by the color procedure when the
first argument is a color-space that belongs to one of these families shall be determined by the
number and type of the argument required by the ISO/IEC 10180 SetColor operator to specify a
color in the corresponding ISO/IEC 10180 color-space. These additional arguments are all

196

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

required arguments (not keyword arguments). Their types are determined from the ISO/IEC
10180 types in the same manner as the arguments for color-space. The default color for each

color-space is determined by the value that ISO/IEC 10180 defines the CurrentC
State Variable to have immediately after execution of the SetColorSpace operato
corresponding ISO/IEC 10180 color-space.

olor Graphics
r for the

NOTE 63 A color specified in a color-space with a procedure argument may be transformed in a device-independent

manner to a color specified in a color-space without any procedure arguments. There is, therefore,

no need when

implementing the style language with output to an ISO/IEC 10180 device to be able to compile an grbitrary expression

into the language defined in ISO/IEC 10180.

12.6 Flow Object Classes
2.6.1 Sequence Flow Object Class

A sequence flow object class is formatted to produce the concatenation of the arg
each of its children. It has a single principal port. Itschildren may be inlined or

NOTE 64 A sequence flow object is useful for specifying inherited characteristics. For example,

as produced by
displayed.

h sequence flow

object with a specification of a font-posture: charaetefistic may be constructed for an emphasiged phrase element

in a paragraph.

A port of a flow object shall accept a sequence flow object if and only if it would
the flow objects in that sequence.

2.6.2 Display-group Flow Object

A display-group flow object class is formatted to produce the concatenation of th
produced by each of its-children. It has a single principal port. Its children shall 4
and it is itself displayed.

NOTE 65 It.will; therefore, cause a line break in a paragraph even if the display-group has no con
The following characteristics are applicable:
‘—Jcoalesce-id: is a string specifying the coalesce-id of the flow object, or #

object has no coalesce-id. This characteristic is not inherited. The default va
areas from two or more flow objects with the same coalesce-id are flowed intq

accept each of

e areas
11 be displayed,

ent.

f if the flow
ue is #f. If the
the same top-

~a 2 - £ 1 1 1
L10atli, .L)UL,L,UJ.[I_J':".LUGI.L, Ul LOOLIIOLE LUIIC U1 a COIUILIII=SCTl aITda, UITI UHIC

areas from the

second and subsequent such flow objects shall be discarded. A value other than #f is allowed
for this characteristic only if the flow object is flowed into a top-float, bottom-float,

or footnote zone of a column-set.

— position-preference: is either #f or one of the symbols top or botto
if the flow object is directed into a port on a column-set-sequence flow object

m. This applies
that is flowed

into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not

inherited. The default value is #f.

197

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) ©ISONEC

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

- space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keép—wi th-previous?: is a boolean specifying whether the flow object shdllybe kept in
the same area as the previous flow object. This characteristic is not inherited.(The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow objé€ct shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default yalue is #{.

— break-before: is #f or one of the symbols page, page<region, column, or|[column-
set specifying that the flow object shall start an area ofithat type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols pdge, page-region, column, or golumn-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbol pageindicating that the areas produced by the flow object shall lie within the
same page; in this'case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbol column-set indicating that the areas produced by the flow object ghall lie
within the same column set; in this case, the flow object shall have an ancestor ¢f class
column-set-sequence.

ie within

= the symbol column indicating that the areas produced by the flow object shall
: : e-Hi ma-that-each-areaspansin-the set shall

= c-cotd >t d S o1 o 0 o o g vage

be t same.
— #f indicating that this characteristic is to be ignored.
This characteristic is not inherited. The default value is #f.
— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of

this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

198

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #{.

12.6.3 Simple-page-sequence Flow Object Class

A simple-page-sequence flow object class is formatted to produce a sequence of page areas. A
simple-page-sequence flow object has a single principal port that accepts-any displayed flow
object.

NOTE 66 The simple-page-sequence flow object is intended for systems that wish to provide a very simple page
layout facility. More complex page layouts can be obtained with the pagesequence and column-sef-sequence flow
object classes.

A simple-page-sequence flow object shall not be allowed within the content of arly other flow
object class.

A simple-page-sequence may have a single-line’header and footer containing text that is constant
except for a page number.

NOTE 67 A document can contain multiple-simple-page-sequences. For example, each chapter ofja document could
be a separate simple-page-sequence; this,would allow the chapter title within a header or footer ling}

The page shall be filled from'top to bottom. The display-size for the contents of the simple-page-

sequence shall be the value'of the page-width: less the value of the left-majrgin: and
right-margin: characteristics.

A simple-page-sequence flow object has the following characteristics:

— page=width: is a length specifying the total width of the page. The initial vhlue is system-
dependent.

<~ bage-height: is a length specifying the total height of the page. The initial| value is
system-dependent.

—freft=marginisafengthrspecifying the teftmarginThe initiat vatue s Opt.
— right-margin: is a length specifying the right margin. The initial value is Opt.

— top-margin: is a length specifying the distance from the top of the page to the top of the
area container used for the content of the simple-page-sequence. The initial value is Opt.

NOTE 68 The header line is within the top margin.

199

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

— bottom-margin: is a length specifying the distance from the bottom of the page to the

bottom of the area container used for the content of the simple-page-sequence. The
value is Opt.

NOTE 69 The footer line is within the bottom margin.

initial

— header-margin: is a length specifying the distance from the top of the page to the

placement path for the header line. The initial value is Opt.

— footer-margin: is a length specifying the distance from the bottom of the-page to the

placement path for the footer line. The initial value is Opt.

— left-header: is an unlabeled sosofo containing only inline flow objects that is

hligned

with the left margin of the page in the header line. This characteristic is not inheritgd. The

default value is an empty sosofo.

— center-header: is an unlabeled sosofo containing only-inline flow objects that is centered

between the left and right margins of the page in the header line. This characteristi
inherited. The default value is an empty sosofo.

— right-header: is an unlabeled sosofo containing only inline flow objects that i
with the right margin of the page in the header line. This characteristic is not inher
default value is an empty sosofo.

— left-footer: is an unlabeled.sosofo containing only inline flow objects that is
with the left margin of the page.in the footer line. This characteristic is not inherite
default value is an empty sosofo.

— center-footer ;is.ah unlabeled sosofo containing only inline flow objects that i
between the left and-right margins of the page in the footer line. This characteristig
inherited. The default value is an empty sosofo.

— right-fodter: is an unlabeled sosofo containing only inline flow objects that i
with the‘right margin of the page in footer line. This characteristic is not inherited

defauit value is an empty sosofo.

—~writing-mode: is one of the symbols left-to-right or right-to-left.

 is not

5 aligned
ited. The

aligned
d. The

s centered
18 not

s aligned
The

This

determines the writing-mode of the header and footer lines. The initial value is 1e

right.

(page-number-sosofo)

ft-to-

Returns an indirect-sosofo whose content is a sequence of character flow objects representing the
page number of the page on which the first area resulting from the indirect flow object specified

by the indirect-sosofo occurs.

(current-node-page-number-sosofo)

200

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

12.6.4

Returns an indirect-sosofo whose content is a sequence of character flow objects representing the

page number of the primary flow object of the current node.

NOTE 70 This is intended to handle cross references in conjunction with process-element-with-id.

Page-sequence Flow Object Class

A page-sequence flow object is formatted to produce a sequence of page areas. The structure and

positioning of the page areas shall be controlled by page-models.
A page-sequence flow object has the following characteristics:

— initial-page-models: is a list of page-models used for the initial pages
value is the empty list.

. The initial

— repeat-page-models: is a list of page-models used\for pages after the infitial pages. The

initial value is the empty list.

— force-last-page: is either #f or one of.the-symbols front or back spe
required type of the last page of the page-s€quence. If the last page is not of th
then an additional blank page shall be generated. A value of #f indicates that
may be of either type. The initial value-is #f.

required type of the first page‘of the page-sequence. If the value is not #f, the
flow object shall be of typé-toot; if there is a preceding flow object, then it sh
page-sequence. If thevalue of the force-last-page: characteristic of th
page-sequence is not #f, it shall have the opposite type to the specified value
characteristic, . If\the last page of the preceding page-sequence is not of the of
the value specified for this characteristic, then the preceding page-sequence s
additional'blank page added. If there is no preceding flow object and the valy
it shall be ‘an error if the specified type of the first page is not the actual type a
the first-page-type: characteristic. The initial value is #f.

first-page-type: is either one of the symbols front or back indicatin

cifying the
e required type,
the last page

force-first-page: is either#f or one of the symbols front or back specifying the

n the parent

all be of type

e preceding

bf the

posite type to
hall have an

e is not #f, then
5 determined by

g that the first

page of the page-sequence is a front or back page, or the symbol parent in
type of the first page shall be determined by the parent flow object. The initi

object. In this case, if there is a preceding flow object, then it shall be of type

icating that the
value is

is the root flow
page-sequence,

and the first page shall be a front or back page if the last page of the preceding page-sequence

was a back or front page; if there is no preceding flow object, then the first page shall be a
front page. This characteristic does not cause additional pages to be generated; it merely
states that this page will be of the specified type when it is printed and bound. The value shall
be parent unless the value of the force-first-page: characteristic is #f.

NOTE 71 This information makes it possible to determine which pairs of pages are spreads.

201

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E) © ISO/EC

— blank-back-page-model: is a page-model that shall be used for the final page if it was a
back page and was required only because of the force-last-page: or force-first-
page: characteristics, or it is #f if the normal page-model should be used for the final page.
The initial value is #f.

— blank-front-page-model: is a page-model that shall be used for the final page if it was
a front page and was required only because of the force-last-page: or force-first-
S ha eristies-or-i-sH#-ifthe-normal-page-model-should-be-used-for-the-final page.

— justify-spread?: is a boolean specifying whether the bottom of each page infa spread
shall be justified. The initial value is #f.

a
1

— page-category: specifies the category of the page areas resulting from this pag
sequence flow object. It may be any expression language object for which the equal?
procedure is defined. The category of an area is used by procedures defined in 12.5}1.2.

— binding-edge: is one of the symbols left, right, top, or bottom specifying the edge
of a front page to be bound. This affects whetherd side of the page is considered tg be on the
inside or outside. The initial value is left.

There shall be an applicable page-model forievery page produced by the page-sequende.

The ports of a page-sequence flow object are determined by the page-models.

12.6.4.] Page-model

A page-model is the specification of a set of possible hierarchies of areas.

(page-model? oby)

Returns #t if obj’is of type page-model, and otherwise returns #f.

[188] page-model-definition = (define-page-model page-model-name [[page-ragion-

specification+ | width-specification | height-specification | filling-direction-specificatiqn? |
decoration-specification*]])

define-page-model binds page-model-name to a page-model object.

The top-level area is the page area. The page area contains a number of sub-areas called page-
regions. The layout order of the page-regions corresponds to the order of their specification in
the page-model-definition. Page-regions may overlap.

[190] page-region-specification = (region [[x-origin-specification | y-origin-specification |
width-specification | height-specification | decoration-specification* | filling-direction-
specification? | header-specification? | footer-specification? | page-region-flow-map?]])

202

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

&
i} o
2 1)
£ 2]
o [~
Po% . § 2
s o o D0 k u—
um =4 & £ O 5 g ° _w L
Now _.—n._ B mn ‘m .mW .“wv o 195}
o«) uoc o 8
\ - :
2 3
= o)
S ‘
B e &
3 g &
2w 1
=
£ [S
= o=
g ealy Jo o =)
az1$-Aeldsiq »o o0
o
- o .I"
L T =
=
W
—
=
- v~ =
— o
H Mc -
£ = 7
58 o8 [
g eauy Aejdsiq .Mw m TS) o
o @0 -]
¢ o ° g
EZ0 €0 0
f i T vt S W
@ © T ®©
L. C. o
wo wo =
1
- , =
'~)
) Q ©
N - .
= &b
2
)
50
<
Dl
—
y—
o\
—
b d

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

If a port-specifier occurs in more than one page-region-flow-map in a page-region-specification
in a page-model-definition, then the page-regions shall be filled in the order in which their page-
region-specifications occur in the page-model-definition.

[192] port-specifier = identifier | # £

A port-specifier that is an identifier specifies a port with that name; a port-specifier of #£

specifies-the nrincinal port
P m) i) il o

[193] header-specification = (header generated-area-clauses)

A header-specification specifies areas to be generated at the beginning of a\page-regi¢n or
column.

[194] footer-specification = (footer generated-area-clauses)
A header-specification specifies areas to be generated at the-end of a page-region or cplumn.

[195] generated-area-clauses = [[height-specification? 'width-specification? | filling-direction-
specification? | contents-alignment-specification generate-specification]]

generated-area-clauses specifies areas to begenerated.

[196] generate-specification = (genekate expression)
The expression shall evaluate to-an unlabeled sosofo specifying only displayed flow gbjects.
[197] x-origin-specification—= (x-origin expression)

The expression shall evaluate to a length which specifies the x component of the origin of the
area container with\respect to its parent’s coordinate system.

[198] y-origin-specification = (y-origin expression)

The. éxpression shall evaluate to a length which specifies the y component of the origin of the
area.container with respect to its parent’s coordinate system.

. s . T . \
| 199' WIﬂ&l-SpClelcatIUﬂ el ‘ WITCIT CAPTESSLUTL

The expression shall evaluate to a length which specifies the width (size in the positive x
direction) of the area container with respect to its parent’s coordinate system.

[200] height-specification = (height expression)

The expression shall evaluate to a length which specifies the height (size in the positive y-
direction) of the area container with respect to its parent’s coordinate system.

[201] decoration-specification = (decorate expression)

204

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

The expression shall evaluate to a decoration-area object. The area is decorated
explained in 12.5.3.

[202] filling-direction-specification = (filling-direction expression)

by the object as

The expression shall evaluate to one of the symbols left-to-right, right-to-left, or

top-to-bottom specifying the filling-direction of the area container.

If the filling-direction is not specified on the page-region, it shall be inherited(fr

The expression shall evaluate to one of the symbols start, end, center, or j

area container. The defaultis start.

|2.6.5 Column-set-sequence Flow Object Class

may be used to fill page-regions; howgever, column-set areas may also be used tdg
column-set areas. The structure and positioning of each column-set area shall b
the column-set-model to which'it conforms. A column-set-sequence flow objec
displayed.

A column-set-sequence has the following characteristics.
and the second a column-set-model; whenever an area from this column-set-
placed.in an area whose nearest ancestor of type page-region uses the specifi

then the specified column-set-model shall be used. The initial value is the em

— column-set-model: is a column-set-model specifying the default colum
use if none of the column-set-models specified in the column-set-model

bm the page-

model. It shall be an error if it is not specified on either the page-region or the page-model.

[203] contents-alignment-specification = (contents-alignment\expression)

ustify

specifying the alignment of the child areas within the area cOntainer in the fillingrdirection of the

A column-set-sequence flow object is formatted to produce a sequence of column-set areas. A
column-set area is a display area. A column-set area is produced by creating andl filling an area
container. A column-set area contains a'set of parallel columns. Typically, colymn-set areas

fill other
e controlled by
shall only be

— column-set<model-map: is a list of lists each with two members, the fifst a page-model

equence is
ed page-model,
pty list.

n-set-model to

characteristic are applicable or #f if there is no default column-set-model. If ¢

is not listed in the value of the column-set-model-map: characteristic.
is #f.

Hose page-model
The initial value

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

205

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed-o-aportopacobinp-set-sequence How-objectthatis Howednto-thetop-float,
bottom-float, or body-text zone of a spannable column-subset and has a span :-characteristic
with a value greater than 1. The initial value is #f.

— space-before: is an object of type display-space specifying space to be inserted|before, in
the placement direction, the areas produced by the flow object. This ‘characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted fafter, in
the placement direction, the areas produced by the flow ‘@bject. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall pe kept in
the same area as the previous flow object. Thi$ characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object:~This characteristic is not inherited. The default yalue is #f.

— break-before: is #f orone of the symbols page, page-region, column, or|column-
set specifying that the-flow object shall start an area of that type. This characteristic is not
inherited. The defaultis #f.

— break-aftery'is #f or one of the symbols page, page-region, column, or golumn-
set specifying that the flow object shall end an area of that type. This characteristic is not

inherited. The default is #f.

— kéep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the

e 1.1
SHIAITIL PUSSIUIC alTd.

— the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

206

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

12

— the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall

be the same.
— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

6.5.1

— may-violate-keep-before?: is a boolean which, if true, specifies that
imposed by the keep: characteristics of ancestor flow objects on the relative

this flow object and its previous flow object may not be respected. Thi$§ charag
inherited. The default value is #f.

— may-violate-keep-after?: is a boolean which, if true, specifies that c
imposed by keep: characteristics of ancestor flow objects.on the relative pos
flow object and its next flow object may not be respected. This characteristic i
The default value is #f.

A column-set-sequence flow object has a port for each port listed in a column-sul
for any of its column-set-models.

Column-set-model

A column-set-model specifies the possible hierarchy of areas for each column-set
possible examples of column-sets,and column-subset configurations, see Figures

Constraints
positioning of
teristic is not

nstraints
tioning of this
5 not inherited.

set-flow-map

. For some
16 and 17.

207

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

Column-Sets and Column-Subsets

Filing-direction
of column-set

Column 1

Column 2

Column A

Column‘B

Cplumn-Subset 1

Column-Subset 2

Figure 16 — An Example of Column-Subsets

208

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

2a la 1b 2b

l_and 2 are column-subsets

a and b are consecutive columns
in the sets

Figure 17 — Another Example of Column-Subsets

The top-level area in the hierarchy is the column-set area. A column-set area shalll have a filling-
direction. If the column-set-model-definition does not contain a filling-direction-specification,
then the filling-direction of the parent area shall be used. The size of the column-set area shall be
fixed in the direction perpendicular to the filling-direction. It can be fixed either by a width-
specification or a height-specification or because this direction is the direction perpendicular to
the area’s placement direction. The size of a column-set area in the filling-direction may be
fixed, or it may grow according to the areas flowed into it.

The area container that produces the column-set shall be filled in a more complicated way than
normal area containers. Areas are placed in the column-set area in such a way that they satisfy a
number of different constraints.

209

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

The most basic constraint is that the areas shall not overlap. This constraint does not apply to

decoration areas.

There is a partial ordering defined on the areas that have been placed in a column-set area. This

is called the layout order.

NOTE 73 The layout order corresponds to the order in which the areas should be read.

A fundamental constraint on the filling of an area container is that if two areas placed

n the

column-set area container come from the same stream, then they shall be placed so-thalt their

layout order is consistent with their order in the stream.

The column-set area is divided geometrically in a direction parallel to the. filling-direction into a

number of columns.

NOTE 74 When an area is said to be divided in some direction, this means thatutis divided in such a way
dividing line is in that direction.

A column is not an area container. Each column has an@extent that is fixed in the dired
perpendicular to the filling-direction.

Each column is a member of exactly one column-subset. The layout order of columns
column-subset is the order of the column-spécifications in a column-subset specificatig
is no layout order defined between columns’in different column-sets.

NOTE 75 It is for this reason that the layout’order is a partial order.

that the

tion

in a
n. There

210

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

©ISO/IEC ISO/MEC 10179:1996(E)

/

column-subset 2

column-subset 1

Figure 18 — Multiple Column-Subsets

A column/subset is defined to be spannable unless a column in the column-subset is

geomietrically between any two other consecutive columns in the column-subset. | For example,
see Figure 19.

211

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISOMEC
la Ic b
Non-spannable
columnsin a
column-subset
a, b, and c are consecutive
columns in the column-subset
Figure 19 — Non-spannable Column-Subsets
Each area to be placed in a column-set area shall be associated with a single column-spbset. If
the filling=direction of the column-set area is top-to-bottom, each area that is placed in the
columin;set area shall be placed so that the left edge is aligned with the left edge of a golumn in
thescolumn-subset and the right edge is aligned with the right edge of a column in the [same
column-subset. If the filling-direction of the column-set area is left-to-right or right-tg-left, each
area that is placed in the column-set area shall be placed so that its top edge is aligned| with the

top edge of a column in the column-subset and its bottom edge is aligned with the bottom edge of
a column in the same column-subset. An area may span more than one column only if the
column-subset is spannable. The number of columns in the column-subset that an area spans
shall be equal to the value of the span: characteristic of the flow object from which the area

comes.

An area that is to be placed in a column-set area shall be created in such a way that its

size in the

direction perpendicular to the filling direction is such that it exactly spans the required number of
columns. In other words, the display-size of the area shall be equal to the distance between one

edge of the first column it spans and the opposite edge of the last column it spans.

212

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC ISO/IEC 10179:1996(E)

NOTE 76 This is an exception to the general principle that an area to be placed in an area container is created so that
the area’s size in the direction perpendicular to the area’s placement direction is equal to the size of the area container in
the direction perpendicular to the area container’s filling-direction.

Each area that is to be placed in a column-set area container is labeled with a zone, which
constrains the placement of the area relative to other areas. The allowed zones are top-float,
body-text, bottom-float, and footnote. An area labeled with one zone shall be
positioned so that it precedes, in the filling-direction, an area that is labeled with a zone that is
[later in the 1ist, unless there is no column that is spanned by both areas. For example, see Figure
20.

Page

Body-text
zone

Body-text
zone

N XN o)

Column Column

Figure 20 — Column-set areas

An area labeled with the footnote zone shall span exactly one column.

213

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

NOTE 77 Full-width footnotes in a multi-column layout may be achieved using a nested-column-set.

An area that spans more than one column may span either weakly or strongly depending on the
value of the span-weak? : characteristic on the flow object from which the area comes. An
area that spans more than one column strongly is defined to follow in the layout order any areas
that:

— are in the same column-snbset as the area

— precede the area geometrically in the filling-direction,
— have a span that is completely included in the span of the area, and
— are labeled with the same zone as the area.

An area that spans more than one column weakly is defined to-follow in the layout order exactly
those areas that it would follow if it occupied only the first(of the columns that it spang.

Two or more column-subsets may be tied rogether. [Column-subsets that are tied together shall
have the same number of columns. When an areadspans strongly more than one column of a
column-subset, then the layout order of each column-subset that is tied to that column-subset
shall be modified as if an empty area had beenycreated and placed at the same positior} in the
filling-direction as the spanning area and with the same size in the filling-direction as |the
spanning area so that it spans the corresponding columns of the tied-column-subset; thfs area can
overlap the spanning area.

NOTE 78 A sequence of columns cantaining sidenotes is usually tied to the sequence of columns contaiping the text
to which the sidenotes refer.

When the spanning arealis synchronized using the side-sync procedure with an arda in a tied-

column-subset that.does not span, then it shall be placed in the first column in the tied column-
subset:

— whosegeorresponding column in the other column-subset is spanned by the spanninlg area, and

—which is not covered by the spanning area.

[204] column-set-model-definition = (define-column-set-model variable [[cdlumn-

subset-specification* | fill-out-specification? | tied-column-subset-specification* | filling-
direction-specification? | width-specification? | height-specification? | decoration-
specification*]])

A column-set-model-definition defines variable to be an object of type column-set-model.

(column-set-model? obj)

Returns #t if obj is of type column-set-model, and otherwise returns #f.

214

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

[205] fill-out-specification = (fill-out expression)

The expression shall evaluate to a boolean. If it is #t, then each column-set area shall be filled
out in the filling-direction to the maximum size allowed by the area in which it is placed.

[206] column-subset-specification = (column-subset [[column-specification+ | column-
subset-flow-map | top-float-space-below-specification? | bottom-float-space-above-
specification? | balance-specification? | justify-specification? | justify-limit-specification? |

Justify-last-limit-specification? | length-deviation-specification? | length-decreasef
specification? | align-lines-specification?]])

order-

For each column-subset in the column-set-model, there shall be a coluimn'subset- specification.

[207] column-subset-flow-map = (£1low ((port-specifier zone-name+))+)

[208] zone-name = top-float | body-text | bottom=fToat | footnote

A column-subset-flow-map specifies that areas resulting from flow objects directdd in port-
specifier shall be labeled with one of the specified zone-names. Multiple zone-names may be

specified for a single port-specifier only if thezone-names are top-float and X
float.

ottom-

[209] top-float-space-below-specification = (top-£float-space-below expression)

The expression shall evaluate to dn object of type display-space specifying the size of a space to

be added. For each column in'the column-set that is spanned by an area in the to

-float zone, a

space of the specified sizeshall be added immediately after all the areas that span the column and

that are in the top-float zone.

[210] bottom-float-5pace-above-specification = (bottom-float-space-above

expression)

The expression shall evaluate to an object of type display-space specifying the sizg of a space to
be added. For each column in the column-set that is spanned by an area in the bottpm-float zone,
asspace of the specified size shall be added immediately before all the areas that span the column

and that are in the bottom-float zone.

[211] balance-specification = (balance? expression)

The expression shall evaluate to a boolean. A value of #t indicates that a column-s

ubset in the

last column-set produced by a column-set-sequence shall be balanced. A value of #f indicates
that it shall not be. If a column-subset is balanced, then free space shall be allocated evenly
among all the columns in the column-subset. If a column-subset is not balanced, then free space
shall be allocated to the columns in reverse order. The default is for the column-subset not to be

balanced.

[212] justify-specification = (justify? expression)

215

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

The expression shall evaluate to a boolean specifying whether the column-subset is to be
justified. If a column subset is to be justified, the free space shall be distributed before and after
the areas in the column-subset according to the minimum and maximum allowed space specified
in the display spaces. Otherwise, all free space shall be distributed at the end of each column.
The default is for the column-subset not to be justified. A column-subset may only be justified if
the fill-out-specification specifies that the column-set is to be filled out.

[213] justify-limit-specification = (justify-1limit expression)

The expression shall evaluate to a number between 0 and 100. If the amount of free’sppce in a
column as a percentage of the total size of the column exceeds this, then that column shpll not be
justified. The default is 100.

[214] justify-last-limit-specification = (justify-last-limit expression)
The expression shall evaluate to a number between 0 and 100. A\column shall not be jystified if
the amount of free space in a column in the last column-set in.a-Column-set-sequence a(E a
percentage of the total size of the column exceeds the number returned by the expression. The
default is 0.

[215] length-deviation-specification = (length<¥deviation expression)

The expression shall evaluate to a positive length. When a column-subset is being justified or
balanced, then the lengths of the column$.may differ by up to this amount. The default|is Opt.

[216] length-decrease-order-specification = (length-decrease-order expressiop)
The expression shall evaluate to one of the following symbols:

— forward specifying-that as columns progress in the forward direction their length ghall not
increase,

— backward.specifying that as columns progress in the backward direction their length shall
not increase,

or #fimplying no additional constraint on the relative length of the columns.

[217] align-lines-specification = (align-lines? expression)

The expression shall evaluate to a boolean specifying, if true, that an attempt shall be made in the
course of distributing free space to keep lines in different columns aligned.

[218] column-specification = (column [[width-specification? | height-specification? | x-origin-
specification? | y-origin-specification? | footnote-separator-specification? | header-specification?
| footer-specification?]])

If the column-set filling-direction is top-to-bottom, then the column-specification shall contain a
width-specification and an x-origin-specification. If the column-set filling-direction is right-to-

216

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

left or left-to-right, then the column-specification shall contain a height-specification and a y-

origin-specification. These specifications give the geometry of the column.

[219] footnote-separator-specification = (footnote-separator generated-a

rea-clauses)

A footnote-separator-specification specifies areas that shall be generated immediately before the

areas in the footnote zone if the footnote zone contains any areas.

1R.6.6

[220] tied-column-subset-specification = (tie column-subset-specification coly
specification+)

A tied-column-subset-specification specifies two or more column-subsets’ that are
See Figure 18.

NOTE 79 This may be used, for example, with sidenotes.

Paragraph Flow Object Class

mn-subset-

tied together.

A paragraph flow object represents a paragraph., Ithas a single principal port. T:[e contents of
0

this port may be either inlined or displayed. Inline flow objects are formatted t
areas. Displayed flow objects implicitly specify a break, and their areas shall be a
resulting sequence of areas. A paragraph-flow object may only be displayed.
NOTE 80 Typically, a break implies that.a‘new line is to be started.

The following characteristics-ate applicable:

— lines: is a symbol specifying how the content of the paragraph shall be brok
the formatted output, as follows:

- asis specifying that lines shall be broken only after character flow object
record-end?: characteristic is true.

— asis-wrap specifying that lines shall be broken after character flow obje
the record-end?: characteristic is true, and as necessary to make lines f

roduce line
dded to the

en into lines in

wrap specifying that lines shall be broken so that they fit in the available space.

for which the

cts for which
it in the

available space.

— asis-truncate specifying that lines shall be broken only after character flow objects
for which the record-end? : characteristic is true, and that lines that do not fit the in the

available space shall be truncated.

— none specifying that lines shall not be broken at all.

NOTE 81 This is useful in tables when the table-auto-width feature is present to ensure that the width

of a column is made large enough so that the content of a cell fits on a single line.

217

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

In all cases, line breaks shall also be allowed where explicitly specified with the break-
before: or break-after: characteristics. The initial value is wrap.

— asis-truncate-char: is either #f or a char object that determines the glyph to be
inserted when the 1ines: characteristic has the value asis-truncate and a line is
truncated. The initial value is #f.

asis-u % ;| ines the glyph to be inserted at
the end of a line when the 1ines: characteristic has the value asis-wrap andthe line is

broken other than after a character flow object for which the record-end? ¢ characteristic
is true. The initial value is #f.

ap-— id

— asis-wrap-indent: is a length-spec giving an indent to be added to the start-indent when
the lines: characteristic has the value asis-wrap for a line following a break ofher than
after a character flow object for which the record-end? : chatacteristic is true. The initial
value is #f.

— first-line-align: is either #f, #t, or a char object.“If it is not #f, then the quadding:
and last-line-quadding: characteristics are-ignored for the first line of the paragraph,
and the first line shall be aligned using an alignment point in the line. If the value ip a char
object, then the alignment point shall be the pesition point of the first area produced by the
first occurrence on the line of a character, flow object with a char : characteristic egual to
that char object; otherwise, the alignment point shall be the position of the first alighment-
point flow object in the line. If alignment-point-offset: is not #f, then the|first line
of the paragraph shall be aligned so‘that the percentage of the line length (that is, the display-
size less the applicable start and-end indents) before the alignment point is equal to|the value
of alignment-point-offset:. Ifalignment-point-offset: is #f, then the
paragraph is an externally aligned paragraph and shall have an ancestor of class table-cell or
aligned-column. Furthermore, the area container in which the areas from this paragfaph are
placed shall be the same as the area container in which the areas from that ancestor afe placed;
in this case, the paragraph shall be aligned so that its alignment point is aligned with other
such paragrdphs in the table-column or aligned-column. If an externally aligned paragraph
occurs in a-table-cell, then the table-auto-width feature shall be enabled. The initial
value-iS#f.

— aldignment-point-offset: is either #f or a number between 0 and 100 speciflying the
percentage of the line length (that is, the display-size less the start and end indents) before the
alignment point. The initial value is 50

— ignore-record-end?: is a boolean specifying whether a record-end shall be ignored. If
this characteristic is true, then a character with the record-end? property true shall be
ignored. The initial value is #f.

— expand-tabs?: is either #f or a strictly positive integer specifying the tab interval. When
a tab interval is specified, each character flow object that has the input-tab?:
characteristic true shall be treated as equivalent to the smallest strictly positive number of
spaces that when added to the number of character flow objects following the last preceding
record-end character flow object shall be a multiple of the tab interval. The initial value is 8.

218

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 101

79:1996(E)

lines in the paragraph as described in 12.6.6.1. The initial value is 12pt.

— line-spacing: is alength-spec giving the normal spacing between the placement paths of

— line-spacing-priority: is either an integer or the symbol force specifying the

priority of any conditional space before the line. This shall be interpreted in the same manner

as the priority: argument for the display-space procedure. The initial

value is 0.

min-pre-line-spacing: is a length-spec specifying the minimum size of the line in the

placement direction before the placement path as described in 12.6.6.1. A valu
also be allowed, specifying that the value is determined from the paragraph’s f
value is #f.

min-post-line-spacing: is a length-spec specifying the minimum size

e of #f shall
bnt. The initial

bf the line in

the placement direction after the placement path as described in-12.6.6.1. A var,ue of #f shall

also be allowed, specifying that the value is determined from-the paragraph's f
value is #f.

min-leading: is either #f or a length-spec specifying the minimum space bq

nt. The initial

tween the line

areas in the placement direction as described in 12.6.6.1. A value of #f means that the line

spacing shall not be automatically adjustedto‘take into account the size of the
lines. The initial value is #f.

first-line-start-indent: is'a length-spec giving an indent to be adde
indent for the first line. The length may be negative. The initial value is Opt.

last-line-end-indent”: is a length-spec giving an indent to be added to
for the last line. The length may be negative. The initial value is Opt.

hyphenation=ghar: is a char that is used to determine the glyph that is ins
hyphenation is'performed. The characteristics of the character flow object prec|
hyphenatiof.point shall determine the mapping of the character to a glyph, as W
resource¢ and font-size of the glyph. The initial value is #\ - (the hyphen charag

hyplienation-ladder-count: is a strictly positive integer specifying the

content of the

d to the start-

the end-indent

erted when
eding the

ell as the font
ter).

maximum

lumber of consecutive lines ending with the same glyph as the glyph determined by the value
of the hyphenation-char: characteristic, or #f indicating that there is no limit. The

initial value is #f.

hyphenation-remain-char-count: is a positive integer specifying the

minimum

number of characters in a hyphenated word before the hyphenation character. This is the
minimum number of characters in the word left on the line ending with the hyphenation

character. The initial value is 2.

hyphenation-push-char-count: is a positive integer specifying the minimum number
of characters in a hyphenated word after the hyphenation character. This is the minimum
number of characters in the word pushed to the next line after the line ending with the

hyphenation character. The initial value is 2.

219

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

— hyphenation-keep: is either #f or one of the following symbols:
— spread means that both parts of a hyphenated word shall lie within a single spread.
— page means that both parts of a hyphenated word shall lie within a single page.

— column means that both parts of a hyphenated word shall lie within a single column.

The initial value is #f.

— hyphenation-exceptions: is a list of strings. Each string is a word which mgy contain
hyphen characters, #\ -, indicating where hyphenation may occur. If aord to be
hyphenated occurs in the list, it may only be hyphenated in the specified places. The initial
value is the empty list.

NOTE 82 The determination of a word is system-dependent.

— line-breaking-method: is #f or a string specifyinig-a public identifier for the|line-
breaking-method to be used for this paragraph. The initial value is #{.

— line-composition-method: is #f or a string specifying a public identifier fof the line-
composition-method to be used for this paragraph. The initial value is #f.

NOTE 83 Typically, the 1ine-composition=-method: uses characteristics declared using an application-
characteristic-declaration or an application-char-characteristic+property-declaration.

— implicit-bidi-method:is #f or a string specifying a public identifier for the method to
be used for implicitly detétmining the directionality of the content of the paragraph. This
includes both the writing-mode of characters, which, when this characteristic is #f,is
specified with the writing-mode characteristic, and how portions of content with a fommon
writing-mode are‘nested within each other, which, when this characteristic is #f, is specified
with embedded-text flow objects. It is part of the semantics of the method which
characteristics of character flow objects, if any, it uses. A method may be specific fo a
particular character repertoire, in which case, it may not make use of any characterjstics. It
maybe part of the semantics of a method for certain glyph substitutions to be applied
depending on the writing-mode that is determined for a character, and possibly als¢ on
¢haracteristics of the character. The initial value is #f.

— glyphn-alignment-m | " " " h, or font
specifying the alignment mode to be used for glyphs. font means that the nominal alignment
mode of the font in the flow object's writing-mode should be used. The initial value is font.

— font-family-name: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial value is iso-
serif.

NOTE 84 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso-serif,
iso-sanserif, and iso-monospace.

220

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

This characteristic is applicable when the glyph-alignment-mode: is font or when
min-pre-line-spacing: ormin-post-line-spacing: are #f.

font-weight: is either #f, indicating that any font weight is acceptable, or one of the
symbols not-applicable, ultra-light, extra-light, 1light, semi-1ight,
medium, semi-bold, bold, extra-bold, orultra-bold, giving the weight property
of the desired font resource. The initial value is medium. This characteristic is applicable
when the glyph-alignment-mode: is font or when min-pre-line-spacing: or
min-post-line-spacing: is #f.

font-posture: is either #f, indicating that any posture is acceptable) or'one] of the symbols
not-applicable, upright, oblique, back-slanted-obligue, italic, or
back-slanted-italic, giving the posture property of the desired font regource. The
initial value is upright. This characteristic is applicable when'the glyph-glignment-
mode: is font or when min-pre-line-spacing: ormin-post-linelspacing: is
#f.

font-structure: is either #f, indicating that any’structure is applicable, or one of the
symbols not-applicable, solid, or outldne. The initial value is sol3d. This
characteristic is applicable when the glyph~alignment-mode: is font of when min-
pre-line-spacing: ormin-post<lie-spacing: is #f.

font-proportionate-width: 1§ either #f, indicating that any proportionate width is

acceptable, or one of the symbols\iot-applicable, ultra-condensed,
condensed, condensed, semi-condensed, medium, semi-expande(
extra-expanded, or ul€ra-expanded. The initial value is medium. Th
is applicable when the glyph-alignment-mode: is font or when min-j
spacing: ormin-poést-line-spacing: is #f.

font-name :(1g either #{, indicating that any font name is acceptable, or a stri
public identifier for the font name property of the desired font resource. When
string, the'values of the font-family-name:, font-weight:, font-pg
font-structure:, and font-proportionate-width: characteristics
font'selection. The initial value is #f. This characteristic is applicable when th
aTignment-mode: is font or when min-pre-line-spacing: ormin
spacing: is #f.

font-size: is a length specifying the body size to which the font resource

extra-

, expanded,
s characteristic
re-line-

pg which is the
the value is a
sture:,

are not used in
e glyph-
-post-line-

thould be

scaled. The in1tial value 1s 10pt. This characteristic 1s applicable when min-pre-line-
spacing: ormin-post-line-spacing: is #f.

numbered-lines?: is #t if the lines produced by this paragraph shall be considered for the
purposes of line numbering, and #f otherwise. The initial value is #t.

line-number: is either #f or an unlabeled sosofo containing only inline flow objects. If it
is a sosofo, then for each line in the paragraph, the sosofo is formatted to produce a single
inline area that is positioned as an attachment area for the line. See 12.3.4. The initial value
is #f.

221

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

NOTES

85 The sosofo may include indirect flow objects that refer to the line’s number by using the 1ine-number

procedure.

86 The rules for the positioning of an attachment area mean that line numbers are usually positioned so that the
edges nearest the line are aligned. Different alignments can be achieved by using the line-field flow object class.

line-number-side: is one of the symbhols start end spread-inside spread-

——7last-line-justify-limit: is a length-spec specifying the maximum amour

outside, page-inside, or page-outside specifying the side of the line for
attachment specified with the 1 ine-number : characteristic. A value of spread
or spread-outside shall be allowed only if the flow object has an ancestor of ¢
sequence. A value of page-inside or page-outside shall be allowed only if
object has an ancestor of column-set-sequence.

he
-inside
ass page-
he flow

line-number-sep: is a length-spec specifying the separation for the attachmen{ specified

with the 1 ine-number : characteristic.

quadding: is one of the symbols start, end, spread-inside, spread-outside,

page-inside, page-outside, center, or justify specifying the alignmen

I of lines

other than the last line in the paragraph in the diréction determined by the writing-mode. A
value of spread-inside or spread-out&ide shall be allowed only if the floy object

has an ancestor of class page-sequence. A wvalue of page-inside or page-outs
be allowed only if the flow object has arrancestor of column-set-sequence. The initi
start.

last-line-quadding: is.@ne of the symbols relative, start, end, spre
inside, spread-outside, page-inside, page-outside, center, or ju
specifying the alignmentlof the last line of the paragraph in the direction determine
writing-mode. This shall apply also to any line in the paragraph that immediately p
break. A value of relative means that the value of the quadding: characteristi
used, except when that value is justify, in which case, a value of start shall b
value of spread-inside or spread-outside shall be allowed only if the flov
has an ancestor of class page-sequence. A value of page-inside or page-outs
be allowed only if the flow object has an ancestor of column-set-sequence. The initi
relative.

1 de shall
h] value is

d_
tify

1 by the
recedes a
c shall be
e used. A
object
ide shall
al value is

t of free

by the last-1line-quadding: characteristic. The initial value is 0.

may be added between glyphs in order to justify a line. The initial value is Opt.

specified

— Jjustify-glyph-space-max-add: is a length-spec specifying the maximum space that

— Justify-glyph-space-max-remove: is a length-spec specifying the maximum space

that may be removed between glyphs in order to justify a line. The initial value is Opt.

222

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/EC ISO/IEC 10179:1996(E)

— hanging-punct?: is a boolean specifying whether the paragraph shall be formatted with
the punctuation characters hanging into the margin or gutter of a column. The initial value is
#f.

— widow-count: is a positive integer specifying the minimum number of lines of the
paragraph that shall be kept together at the beginning of an area. If the widow-count: is n,
then no break shall be allowed between the last n lines of the paragraph. The initial value is 2.

— orphan-count: is a positive integer specifying the minimum number of lines of the
paragraph that shall be kept together at the end of an area. If the orphan<douynt : is n, then
no break shall be allowed between the first n lines of the paragraph. The.initia] vaiue is 2.

— language: is #f or a symbol specifying the ISO 639 language-code in uppertcase. This
affects line composition in a system-dependent way. The initiakvalue is #f.

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way.- The initial value is #f.

— position-preference: is either #f or one of the symbols top or bot tom. This applies
if the flow object is directed into a port on a-column-set-sequence flow object that is flowed
into both the top-float and bottom-float Zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This charjcteristic is not
inherited. The default value is #f.

— writing-mode: is one of the symbols left-to-right, right-to-leflt, or top-
to-bottom. The directiofdetermined by the writing-mode shall be perpendjcular to the
placement direction. Theinitial value is left-to-right. This controls the prientation of
the placement path of the lines.

— start-indent! is a length-spec specifying the indent for the edge of the areh at the start in
the direction of the writing-mode. The initial value is Opt. This applies only to [lines from the
paragraph itself.

— end~indent: is a length-spec specifying the indent for the edge of the area af the end in the
direction of the writing-mode. The initial value is Opt. This applies only to lines from the
paragraph itself.

— span: is a strictly positive integer specifying the number of columns that the preas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f.

223

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E) ©ISO/IEC

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall-he kept in
the same area as the previous flow object. This characteristic is not inherited. FFhe dgfault
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited: The default value is #f.

— break-before: is #f or one of the symbols page, page=region, column, or folumn-
set specifying that the flow object shall start an area of that'type. This characteristjc is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page; page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristig is not
inherited. The default is #f.

— keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbol page indicating that the areas produced by the flow object shall lie yithin the
same page; in this-case, the flow object shall have an ancestor flow object of claps page-
sequence.

— the symbdl column-set indicating that the areas produced by the flow object ghall lie

within ‘the same column set; in this case, the flow object shall have an ancestor gf class
column-set-sequence.

2 the symbol column indicating that the areas produced by the flow object shall lje within
the same column set, and that the first column that each area spans in the colum£ set shall

be the same.

— #f indicating that this characteristic is to be ignored.
This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

224

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep : characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.

The default value is #f.

The line-progression direction for inline areas in the paragraph is the placement direction of the

paragraph.

12}6.6.1

12.6.7

Line Spacing

The size of the line areas produced by the paragraph shall be min-pre-line-gpacing:
before the placement path and min-post-line-spacing: after the'placement path. If min-

leading: is not #f, the size of the line shall be increased to cover-all-the areas if

previous area is a line, then conditional space shall be added, if neeéssary, before

the line. If the
the line so that

the total distance between the previous line's placement path-and this placement path is the value
of the 1ine-spacing: characteristic. If the previous aréa.s not a line, then conditional space

shall be added, if necessary, before the line so that the total distance between the

previous area and this placement path is the value ofithe”line-spacing: charag
value of the min-post-line-spacing: charatferistic. If min-leading: iS

additional conditional space shall be added, if réquired, to make the space betweg
area and this one no less than the value of min-1leading:. The conditional spa
priority specified by the 1ine-spacing-priority: characteristic.

Paragraph-break Flow Object Class

end of the
teristic less the
not #f, then

n the previous
e has the

Paragraph-break flow objects.¢an be used to make a paragraph flow object repregent a sequence
of paragraphs. The paragraphs are separated by paragraph-break flow objects, whjch are atomic.

Paragraph-break flow-objécts are allowed only in paragraph flow objects. All the

characteristics

that are applicable toa paragraph flow object are also applicable to a paragraph-break flow
object. The characteristics of a paragraph-break flow object determine how the portion of the
content of the'paragraph flow object following that paragraph-break flow object yp to the next

paragraphébreak flow object, if any, is formatted.

NOTE:87 The paragraph-break flow object inherits from its containing paragraph flow object in th

e usual way.

The first-line-start-indent: characteristic is applicable to the line following a

paragraph-break flow object, and the last-line-end-indent: characteristi
to the line preceding a paragraph-break flow object.

C is applicable

12.6.8

NOTE 88 It is recommended that paragraph-break flow objects be used only if there is no other wa
desired formatting.

Line-field Flow Object Class

y of specifying the

The line-field flow object class is inlined and has inline content. It produces a single inline area.
The width of this area is equal to the value of the field-width: characteristic. If the content
of a line-field area cannot fit in this width, then the area grows to accommodate the content and,

if the line-field occurs in a paragraph, there shall be a break after the line-field.

225

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/TEC 10179:1996(E)

© ISO/IEC

It has a single principal port.

It has the following characteristics:

— field-width: is a length-spec specifying the width of the area produced by the flow

object. The initial value is Opt.

— field-align: is one of the symbols start, end, or center specifying the ali

onment of

12.6.9

the contents of the field. The initial value is start.

— writing-mode: is one of the symbols left-to-right, right-to-left, or
to-bottom. The direction determined by the writing-mode shall be p€rpendicula
placement direction. The initial value is left-to-right.

— inhibit-line-breaks?: is a boolean specifying whether’line breaks shall be
before and after each area produced by this flow object. This\applies only to line br
introduced by the formatter to make lines fit in the available’space. The initial valug

— break-before-priority: is an integer that affects whether a break is allowed
this flow object. The break priority of a potential\breakpoint is the maximum of th
after-priority of the flow object immediately,_preceding the potential breakpoint and
before-priorities of the flow object immediately following the potential breakpoint,

characters immediately following that character for which the drop-after-line

top-
r to the

nhibited
eaks
> 1S #f.

before
e break-
the break-
and any

b —

break?: characteristic is true. A break shall be allowed at a potential breakpoint ¢nly if the

break priority is even. This characteristic is not inherited. The default value is 0.
— break-after-prioritysy is an integer that affects whether a break is allowed §
flow object as described.in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.
A line-break shall be allowed immediately before and after a line-field used in a parag
Sideline Flow Object Class

Use of this flow object requires the sideline feature.

A'sideline flow object is used to contain flow objects that have an attachment area (see

Wfter this

faph.

12.3.4)

consistine of a line Pm‘a"P] to the p]ar‘PmPnt direction. A _sideline flow nhjpnf has a sin
=4

ple

principal port which can contain both inlined and displayed flow objects. For each display area
produced by its content, the sideline flow object adds an attachment. For each inline area
produced by its content, the sideline flow object annotates that area so as to cause the paragraph
in which the flow object occurs to add an attachment area to the line in which that inline area

occurs.
NOTE 89 Sidelines are often used to mark changes.

This is illustrated in Figure 14.

226

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

A sideline flow object has the following characteristics:

— sideline-side: is one of the symbols start, end, both, spread-inside, spread-
outside, page-inside, or page-outside, specifying the side of the line area for the
sideline attachment. A value of spread-inside or spread-outside is allowed only if

the flow object has an ancestor of class page-sequence. A value of page-ins
outside is allowed only if the flow object has an ancestor of column-set-sequ

ide or page-
ence. A value

of both means that there shall be a sideline attachment on both sides of the line area

containing the text.

— sideline-sep: is a length-spec specifying the separation for the sidéline aftachment. A

negative value is allowed.

— color: is an object of type color that specifies the color in which the flow oblject's marks

should be made. The initial value is the default color in the Dévice Gray color

— layer: is an integer specifying the layer of the marks-of the areas resulting f}
object. An area shall be imaged after any area whos€ layer has a lower value.
value is 0.

— line-cap: is one of the symbols but trdund, or square specifying the c
line. The initial value is butt.

— line-dash: is a list of one or:fiiore lengths that specifies the dash pattern of
first length specifies the number component of the CurrentDashPattern graphic
in ISO/IEC 10180. The rémdining lengths specify the vector component of thg

space.

om the flow

The initial

hp style for the

the line. The
state variable

CurrentDashPattern graphics state variable. The initial value is a list containing the length

Opt.

— line-thickness: is a length that specifies the thickness of the line or lines| The initial

value is 1pt;

— linecrepeat: is astrictly positive integer that specifies the number of para
drawn. For example, a value of 2 indicates a double line. The initial value is 1

=="line-sep: is a length that gives the distance between the centers of parallel
initial value is 1pt.

12.6.10

lel lines to be

ines. The

Sidelines on consecutive areas in a single area container which have no space between them

should be drawn as a single line.

Anchor Flow Object Class

Use of this flow object requires the page feature.

An anchor flow object is atomic and serves only as a flow object to be synchronized. It may be
either inlined or displayed. If inlined, it produces a single area with zero size in the escapement

direction. If displayed, it produces a single area with zero size in the placement di

rection. The

227

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

resulting area will be kept with the first area resulting from the flow object that follows
anchor-keep-with-previous?: characteristic is true.

Anchor flow objects have the following characteristics:

unless the

— anchor-keep-with-previous?: is a boolean specifying whether the resulting area
shall be kept with the last area of the previous flow object instead of the first area resulting

12.6.11

£ 4l £-11 - £1 h P PRlLs Al } ISP | 1 - bl
IO UHIC TUITUWIIT S TTOW UUjJULL. - LIIU ITIItal varae 15 .

— display?: is a boolean specifying whether the flow object is displayed rathep tha
This characteristic is not inherited. The default value is #f.

— span: is a strictly positive integer specifying the number of columns that the area
from this flow object shall span. This characteristic shall apply if the flow object is
into a port on a column-set-sequence flow object that is flowed/into the top-float, b
float, or body-text zone of a spannable column-subset. Theinitial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow o

h inlined.

resulting
directed
bttom-

bject span

directed into a port on a column-set-sequence flow object that is flowed into the to
bottom-float, or body-text zone of a spannable ‘column-subset and has a span: ch
with a value greater than 1. The initial value is #f.

weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow oIect is

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be
before and after each area produced by this flow object. This applies only to line by
introduced by the formatter to-make lines fit in the available space. The initial valu

— break-before-prioxity: is an integer that affects whether a break is alloweq
this flow object. The break priority of a potential breakpoint is the maximum of th
after-priority of the flow object immediately preceding the potential breakpoint and
before-priorities of the flow object immediately following the potential breakpoint,
charactersiimmediately following that character for which the drop-after-1ing
break 2\ characteristic is true. A break shall be allowed at a potential breakpoint
break priority is even. This characteristic is not inherited. The default value is 0.

—~break-after-priority: is an integer that affects whether a break is allowed
flow object as described in the specification of the break-before-priority:

-float,
acteristic

inhibited
eaks
e 1s #f.

| before
e break-
the break-
and any

b

bnly if the

hfter this

CNaracCleristic. 1nis cnaracCteristic 1S not innerited. 1he derault value 1S U.

Character Flow Object Class

A character flow object is atomic. Flow objects of this class can only be inlined. Flow
this class have the following characteristics:

objects of

— char: is an object of type char specifying the character. This characteristic is not inherited.
If it is not specified, and there is a current node, and the current node has a char property,
then the value of the char property shall be used as the value of this characteristic. If the
value of the char-map: characteristic is not #f, then it is applied to the value of the char

228

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 10179:1996(E)

property, and the result is used as the value of the characteristic. This characteristic may be
used to control hyphenation as well as possibly being used in the selection of the glyph.

— char-map: is either #f or a procedure that is applied in the construction of the default value
of the char : characteristic. The initial value is #f.

— glyph-id: is an object of type glyph-id specifying the glyph that shall be imaged in the

i i i i i i i i cteristic is not

inherited. If this characteristic is not specified, it is computed using the valug-g
characteristic: if the blank? property of the character is true, then the valie of
characteristic shall be #f; otherwise, the value of the characteristic shall be the

f the char:
the
value of the

glyph-id property of the character, which shall not be #f in this c¢ase.

ibst-tables
h-1id:
he specified

— glyph-subst-table: is either #f or a glyph-subst-table or a‘list of glyph-s
specifying substitutions to be performed on the glyph-id speeified by the glyp
characteristic. If the value is a list, then the substitutions shall be performed in
order. The initial value is #f.

— glyph-subst-method: is either #f or a string’or a list of strings. Each strif shall be a
public identifier specifying a method for performing glyph substitution. The initjial value is #f.

NOTE 90 This allows for context-dependent glyph substitution and for glyph substitutions that
glyphs.

nvolve multiple

— glyph-reorder-method:.is either #f or a string or a list of strings. Each string shall be a

public identifier specifying.@method for reordering glyphs. The initial value is|#f.
NOTE 91 This is typically used for Indic scripts.
— writing-mode): is one of the symbols left-to-right, right-to-1leff, or top-

to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This controls whi¢h writing-
mode (of; the font resource is used for the metrics of the glyph.

— font-family-name: is either #f, indicating that any font family is acceptal
giving the font family name property of the desired font resource. The initial v
serif.

le, or a string
hlue is iso-

NOTE 92 ISO/IEC 018U delines a mandatory T0nt Set 10T interchange comprising the 1ont famil
iso-sanserif, and iso-monospace.

ies iso-serif,

— font-weight: is either #f, indicating that any font weight is acceptable, or one of the
symbols not-applicable, ultra-light, extra-light, light, semi-1light,
medium, semi-bold, bold, extra-bold, orultra-bold, giving the weight property
of the desired font resource. The initial value is medium.

— font-posture: is either #f, indicating that any posture is acceptable, or one of the symbols
not-applicable, upright, oblique, back-slanted-oblique, italic,or

229

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E) © ISO/IEC

back-slanted-italic, giving the posture property of the desired font resource. The
initial value is upright. In addition, the value math is allowed specifying that the font
posture shall be the value of the math-font-posture: characteristic.

— math-font-posture: specifies the posture property of the desired font resource to be
used when the font-posture: characteristic has the value math. It shall have the value #f
or one of the symbols not-applicable, upright, oblique, back-slanted-
nh'l‘w' gue italic orback-glanted-italic This characteristicis notinherited. The
default value is the value of the math-font-posture character property of the g¢har:
characteristic.

— font-structure: is either #f, indicating that any structure is applicable, or one |of the
symbols not-applicable, solid, or outline. The initial valueys solid.

— font-proportionate-width: is either #f, indicating that any proportionate width is
acceptable, or one of the symbols not-applicable, ulgxa-condensed, extyra-
condensed, condensed, semi-condensed, medidm, $emi-expanded, expanded,
extra-expanded, or ultra-expanded. The inifial*value is medium.

— font-name: is either #f, indicating that any fontyname is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of the font-family-name:, font-weight:, font-posture:,
font-structure:, and font-propertionate-width: characteristics are npt used in
font selection. The initial value is #f:

— font-size: is a length specifying the body size to which the font resource should be
scaled. The initial value is,10pt.

— stretch-factor:\is-a number specifying the factor by which the character should be
stretched. This charaeteristic is not inherited. The default is 1.

NOTES
93 It is implementation- and font-dependent how this is achieved.

94\ This is designed primarily for math delimiters of various kinds. The size of the delimiter is deternjined by the

product of the font-size and the stretch-factor, but the visual appearance is designed to be consistent wiith glyphs
with that font-size.

— hyphenate?: is a boolean specifying whether hyphenation is allowed. The initial value is
#f£.

— hyphenation-method: is a string specifying a public identifier for a hyphenation method
or #f. The initial value is #f.

— kern?: is a boolean specifying whether kerning (escapement adjustment) is allowed. If true,
then kerning shall be performed as specified in 8.8.1.6 of ISO 9541-1 according to the kern-

230

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

© ISO/IEC

ISO/IEC 101

79:1996(E)

mode : characteristic. Escapement adjustment is not performed for glyphs whose escapement
adjustment indicator property has the value non-adjusting. The initial value is #f.

kern-mode: is one of the symbols loose, normal, kern, tight, or touch specifying

the escapement adjustment mode. The initial value is normal.

ligature?: is a boolean specifying whether ligatures are allowed. The initial value is #f.

allowed-ligatures: is alist of allowed ligatures. Each member of thé liist shall be

either a glyph-id or a char. Only ligatures whose result is one of the glyph=ids

in the list or is

equal to the glyph-id property of one of the chars in the list shall be used: The finitial value is

the empty list.

space?: is a boolean specifying whether the flow object is a Space. This chdracteristic is

not inherited. This affects only whether the inline-space specified as the valud

of the

inline-space-space: characteristic is applicable to-this flow object. The¢ default value

is the value of the space? character property of the.¢har : characteristic.

inline-space-space: is an object of type inline-space which is applicable to the flow
object if it is a space. This is in addition toany space from the escapement 4space-

before: and escapement-space-dfter: characteristics.

escapement-space-before:.is'an object of type inline-space specifying

space to be

added before the first result ared‘in the escapement direction. The initial value fis (inline-

space Opt).

escapement-space~after: is an object of type inline-space specifying space to be

added after the last.result area in the escapement direction. The initial value is
space Opt).

(inline-

record-énd?: is a boolean specifying whether the flow object is a record-epd. Flow
objects for'which the record-end?: characteristic is true shall be treated differently by

paragraphs for which the 1ines: characteristic has the value asis or for wh
ignore-record-end?: characteristic is true. This characteristic is not inhd

default value is the value of the record-end? character property of the chay :

characteristic.

ch the
rited. The

input-tab?: is a boolean specifying whether the flow object is a tab on inpht. This

characteristic is not inherited. Character flow objects that are tabs shall be treated differently
by paragraphs for which the expand-tabs property is not #f. The default value is the value

of the input-tab? character property of the char : characteristic if the cha
characteristic was not explicitly specified, and otherwise #f.

— input-whitespace-treatment: is one of the following symbols:

— preserve specifying no special action.

r:

231

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

ISO/IEC 10179:1996(E)

© ISO/IEC

— collapse specifying that a character flow object for which the input-

whitespace?: characteristic is true shall be ignored if the preceding flow object was a

character flow object also with the input-whitespace?: characteristic true.

— ignore specifying that any character flow object for which the input-whitespace?:

characteristic is true shall be ignored.

Xz

Theinitialvaliaic oo o
e ntrar-varat T s—pTreotTv

input-whitespace?: is a boolean specifying whether the character shall'be’cgnsidered
as whitespace on input. This characteristic is not inherited. The default yalue is the value of
the input-whitespace? character property of the char: characteristic if the ghar:

characteristic was not explicitly specified, and otherwise #f.

punct?: is a boolean specifying whether the character should be treated as punctpation for
the purposes of formatting the paragraph with hanging punctuation. This shall only take
effect if the hanging-punct?: characteristic of the paragraph is true. This characteristic is
not inherited. The default value is the value of the punct ? character property of the char:

characteristic.

break-before-priority: is an integer that affects whether a break is allowed before

this character. The break priority of a potential breakpoint is the maximum of the hreak-after-
priority of the character immediately préceding the potential breakpoint and the brgak-before-
priorities of the character immediatély following the potential breakpoint, and any characters

immediately following that character for which the drop-after-line-break?:

characteristic is true. A breakis allowed at a potential breakpoint only if the break|priority is
even. This characteristic is-ot inherited. The default value is the value of the break-

before-priority eharacter property of the char : characteristic.

NOTE 95 For example, for ideographs, the break-before-priority: and break-after-pgiority:

characteristics would typically be 0 and 0, for a Latin letter 1 and 1, and for a space character 2 and 3.

break-after-priority: is an integer that affects whether a break is allowed |after this

character as described in the specification of the break-before-priority:

characteristic. This characteristic is not inherited. The default value is the value of| the

break-after-priority character property of the char: characteristic.

drop-after-line-bhreak?: isaboolean cpe(‘ifving whether this character sh

uld be

discarded if it follows a line break. This characteristic is not inherited. The default value is

the value of the drop-after-line-break? character property of the char:
characteristic.

drop-unless-before-line-break?: is a boolean specifying whether this character
shall be discarded unless it precedes a line break. This characteristic is not inherited. The

default value is the value of the drop-unless-before-1line-break? character

property of the char: characteristic.

232

https://iecnorm.com/api/?name=d50389cbeb1b94b243321084b3184b5d

