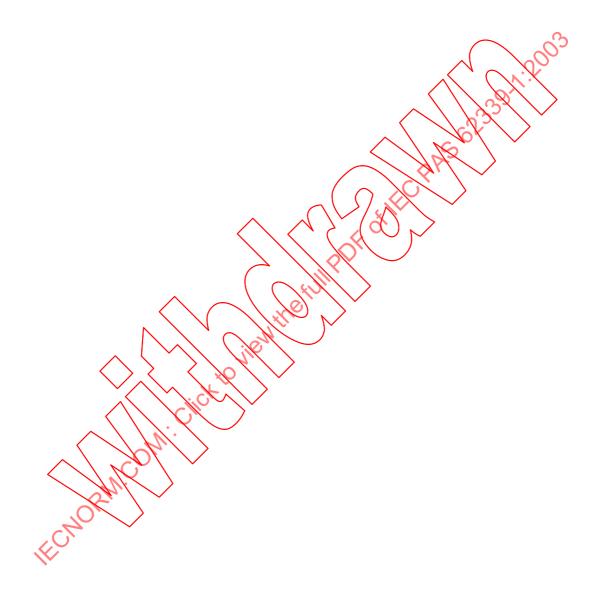
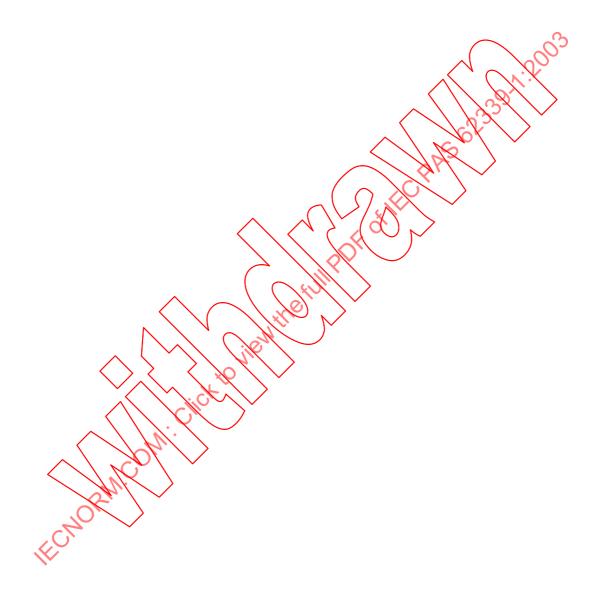

Edition 1.0 2003-08



PUBLICLY AVAILABLE SPECIFICATION

Reference number IEC/PAS 62339-1



ANSI/ISA-76.00.02-2002

Modular Component
Interfaces for SurfaceMount Fluid Distribution
Components - Part 1:
Elastomeric Seals

Approved 13 June 2002

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MODULAR COMPONENT INTERFACES FOR SURFACE-MOUNT FLUID DISTRIBUTION COMPONENTS –

Part 1: Elastomeric seals

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and an accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be removed responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normalive references sited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be field responsible by identifying any or all such patent rights.

A PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public and established in an organization operating under given procedures.

IEC-PAS 62339 1 was submitted by ISA (Instrumentation, Systems, and Automation Society) and has been processed by subcommittee 65D: Analyzing equipment, of IEC technical committee 65: Industrial-process measurement and control.

The text of this PAS is based on the following document:

This PAS was approved for publication by the P-members of the committee concerned as indicated in the following document:

Draft PAS	Report on voting
65D/99/PAS	65D/102/RVD

Following publication of this PAS, the technical committee or subcommittee concerned will investigate the possibility of transforming the PAS into an International Standard.

An IEC-PAS licence of copyright and assignment of copyright has been signed by the IEC and the ISA and is recorded at the Central Office.

This PAS shall remain valid for no longer than 3 years starting from 2003-08. The validity may be extended for a single 3-year period, following which it shall be revised to become another type of normative document, or shall be withdrawn.

Preface

This preface, as well as all footnotes and annexes, is included for information purposes and is not part of ANSI/ISA-76.00.02-2002.

This document has been prepared as part of the service of ISA—the Instrumentation, Systems, and Automation Society—toward a goal of uniformity in the field of instrumentation. To be of real value, this document should not be static but should be subject to periodic review. Toward this end, the Society welcomes all comments and criticisms and asks that they be addressed to the Secretary, Standards and Practices Board; ISA; 67 Alexander Drive; P. O. Box 12277; Research Triangle Park NC 27709; Telephone (919) 549-8411; Fax (919) 549-8288; E-mail: standards@isa.org.

The ISA Standards and Practices Department is aware of the growing need for attention to the metric system of units in general, and the International System of Units (SI) in particular, in the preparation of instrumentation standards. The Department is further aware of the benefits to USA users of ISA standards of incorporating suitable references to the SI (and the metric system) in their business and professional dealings with other countries. Toward this end, this Department will endeavor to introduce SI-acceptable metric units in all new and revised standards, recommended practices, and technical reports to the greatest extent possible. Standard for Use of the International System of Units (SI): The Modern Metric System, published by the American Society for Testing & Materials as IEEE/ASTM SI 10-97, and future revisions, will be the reference guide for definitions, symbols, abbreviations, and conversion factors.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and interests in the development of ISA standards, recommended practices, and technical reports. Participation in the ISA standards-making process by an individual in no way constitutes endorsement by the employer of that individual, of ISA, or of any of the standards, recommended practices, and technical reports that ISA develops.

CAUTION — ISA ADHERES TO THE POLICY OF THE AMERICAN NATIONAL STANDARDS INSTITUTE WITH REGARD TO RATENTS, IF ISA IS INFORMED OF AN EXISTING PATENT THAT IS REQUIRED FOR USE OF THE DOCUMENT, IT WILL REQUIRE THE OWNER OF THE PATENT TO EITHER GRANT A ROYALTY-FREE LICENSE FOR USE OF THE PATENT BY USERS COMPLYING WITH THE DOCUMENT OR A LICENSE ON REASONABLE TERMS AND CONDITIONS THAT ARE FREE FROM UNFAIR DISCRIMINATION.

EVEN IF ISA IS UNAWARE OF ANY PATENT COVERING THIS DOCUMENT, THE USER IS CAUTIONED THAT IMPLEMENTATION OF THE DOCUMENT MAY REQUIRE USE OF TECHNIQUES, PROCESSES, OR MATERIALS COVERED BY PATENT RIGHTS. ISA TAKES NO POSITION ON THE EXISTENCE OR WILDITY OF ANY PATENT RIGHTS THAT MAY BE INVOLVED IN IMPLEMENTING THE DOCUMENT, ISA IS NOT RESPONSIBLE FOR IDENTIFYING ALL PATENTS THAT MAY REQUIRE A LICENSE BEFORE IMPLEMENTATION OF THE DOCUMENT OR FOR INVESTIGATING THE VALIDITY OR SCOPE OF ANY PATENTS BROUGHT TO ITS ATTENTION. THE USER SHOULD CAREFULLY INVESTIGATE RELEVANT PATENTS BEFORE USING THE DOCUMENT FOR THE USER'S INTENDED APPLICATION.

HOWEVER, ISA ASKS THAT ANYONE REVIEWING THIS DOCUMENT WHO IS AWARE OF ANY PATENTS THAT MAY IMPACT IMPLEMENTATION OF THE DOCUMENT NOTIFY THE ISA STANDARDS AND PRACTICES DEPARTMENT OF THE PATENT AND ITS OWNER.

ADDITIONALLY, THE USE OF THIS DOCUMENT MAY INVOLVE HAZARDOUS MATERIALS, OPERATIONS OR EQUIPMENT. THE DOCUMENT CANNOT ANTICIPATE ALL POSSIBLE APPLICATIONS OR ADDRESS ALL POSSIBLE SAFETY ISSUES ASSOCIATED WITH USE IN HAZARDOUS CONDITIONS. THE USER OF THIS DOCUMENT MUST EXERCISE SOUND

PROFESSIONAL JUDGMENT CONCERNING ITS USE AND APPLICABILITY UNDER THE USER'S PARTICULAR CIRCUMSTANCES. THE USER MUST ALSO CONSIDER THE APPLICABILITY OF ANY GOVERNMENTAL REGULATORY LIMITATIONS AND ESTABLISHED SAFETY AND HEALTH PRACTICES BEFORE IMPLEMENTING THIS DOCUMENT.

THE USER OF THIS DOCUMENT SHOULD BE AWARE THAT THIS DOCUMENT MAY BE IMPACTED BY ELECTRONIC SECURITY ISSUES. THE COMMITTEE HAS NOT YET ADDRESSED THE POTENTIAL ISSUES IN THIS VERSION.

The following people served as members of ISA Committee SP76:

	<u> </u>
NAME	COMPANY
D. Lewko, Chair	Bantrel Inc.
I. Verhappen, Managing Director	Syncrude Canada Limited
C. Ackerman	Air Products & Chemicals Inc.
B. Anderson	Siemens Applied Automation
J. Burkland	Technical Automation Services Corporation
J. Dooley	Circle Seal Controls
G. Erk	Consultant
C. Foresti	Phillips 66 Company
P. Girling	P Skills_Ahalyzers
J. Harman	Beckman Coulter Inc.
G. Harms	Hemilock Semiconductor Corporation
D. Hasak	Swagelok Company .
R. Hughes	Autoflow Products Company
A. Iverson	Ivy Optiks
K. Konrad	Intek Corporation
D. Langham	Measurementation
M. Lanoue	Delta F Corporation
J. Lee	NEEC)
D. Merriman	MerTech Inc.
E. Mooney	Metrisa Inc.
M. Murray	Sunoco Inc.
R. Muston	Shell Chemical Company
G. Nichols	CDI Bayer Corporation
R. Ohlmeier	Merrick & Company
D. Podkulski	ExxonMobil Chemical Company
D. Ross	Camtec Environmental Consultants
D. Soleta	Monsanto Company
P. Street	Tescom Corporation
J. Tatera	Tatera & Associates Inc.
J. Thomas	Parker Hannifin Corporation
H. Tummala	Parsons
J. Twork	Eastman Chemical Company
M. Vickery	Lyondell Chemical
B. Vu	Dow Chemical Company
P. Wisneski	Chevron Research & Technology

- 4 -

This document was approved for publication by the ISA Standards and Practices Board on 10 June 2002.

NAME

G. Wood

COMPANY

M. Zielinski, Chair **Emerson Process Management** D. Bishop David N Bishop, Consultant D. Bouchard Paprican M. Cohen Consultant M. Coppler Ametek, Inc. B. Dumortier Schneider Electric W. Holland Southern Company E. Icayan ACES Inc Ivy Optiks A. Iverson **Dow Chemical Company** R. Jones Feltronics Corporation V. Maggioli ForeRunner Corporation T. McAvinew Chagrin Valley Controls, Inc. A. McCauley, Jr. Westinghouse Process Control oc. G. McFarland Rockwell Automation R. Reimer Factory Mutual Research Corporation J. Rennie Yamatake Corporation H. Sasajima Syncrude Canada Ltd. I. Verhappen POWER Engineers R. Webb Parsons Energy & Chemicals Group W. Weidman KEMA Consulting J. Weiss Stanford Linear Accelerator Center M. Widmeyer C. Williams Eastman Kodak Company

Graeme Wood Consulting

Contents

Sco	ppe	6
Pu	rpose	6
De	finitions	6
Re	ferences	6
Or	dering components with the modular interface	7
Ма	aterial requirements	7
6.1	Material certifications	7
6.2	Bolt torque requirements	7
Se	aling surface requirements	7
7.1	Surface roughness	7
7.2	Surface condition	7
7.3	Area required for sealing	7
Dir	mensional requirements.	7
	Pu De Re Or Ma 6.1 6.2 Se 7.1 7.2	Sealing surface requirements 7.1 Surface roughness 7.2 Surface condition 7.3 Area required for sealing

1 Scope

This standard applies to all types of surface-mount fluid distribution components with elastomeric sealing devices used within process analyzer and sample-handling systems. This includes components such as valves, filters, regulators, transducers, and controllers.

The scope of this document is limited as follows:

- This document addresses only surface-mount fluid distribution components and proper sealing methods. This document is limited to sealing methods using elastomeric material for the seals.
- b) The designs of the actual system components and the flow substrate are not specified in this standard. Any indication of mounting direction or other indexing is left to the manufacturer as required for its equipment.
- c) Users shall be aware that, based on the stream conditions of their processes, other technologies and components may be readily available.
- d) This standard does not address the effects of various stream conditions on the technical functionality of the component.
- e) This standard does not address maintenance concerns for the components
- f) This standard does not refer to design ssues pertaining to specific safety requirements. These issues shall be referenced to other standards, organizations, and recommended guidelines.
- g) International, national, and local codes, regulations, and laws shall be consulted to ensure that each component meets the user's regulatory requirements.

2 Purpose

This document establishes properties and physical dimensions that define the interface for surface-mount fluid distribution components with elastomeric sealing devices used within process analyzer and sample-handling systems. The interface controls the dimensions and location of the sealing surfaces to allow change of just one element of the system without modification of the entire system. This is what makes the system modula from both a design and a maintenance standpoint.

3 Definitions

3.1 modular interface.

the boundary between an independently operable part of a flow system and the flow substrate to which it is connected.

3.2 surface finish:

the final surface specifications of the substrate block, interface plate, sealing grooves, and seal devices.

3.3 surface mount:

the arrangement of independent flow conditioning system modules upon a defined flow substrate.

4 References

At the time of publication, the editions indicated in this clause were valid. All standards are subject to revision, and parties to agreements based on this document are encouraged to investigate the possibility of applying the most recent editions of the standards indicated in this clause. Members of the IEC and

ISO maintain registers of currently valid International Standards. ANSI maintains registers of currently valid U.S. National Standards.

- a) ASME Y14.5M (reaffirmed 1999), Dimensioning and Tolerancing
- b) ISO 4288:1996, Geometrical Products Specification (GPS) Surface Texture: Profile Method Rules and Procedures for the Assessment of Surface Texture.

5 Ordering components with the modular interface

This document may be used when specifying systems employing this modular component design? It conveys the concept of the modular system and provides "footprint" dimensions to permit interchangeability of components.

Purchase specifications for components in accordance with this document shall include the standard number, date of issue, and references to the correct figure number.

6 Material requirements

6.1 Material certifications

Material certifications shall be obtained and shall include chemical analysis and mechanical properties. For materials ordered to specifications that do not include mechanical properties, the manufacturer shall specify minimum mechanical properties.

6.2 Bolt torque requirements

To ensure the performance of these systems, users are cautioned to adhere to bolt torque requirements as specified by the manufacturer.

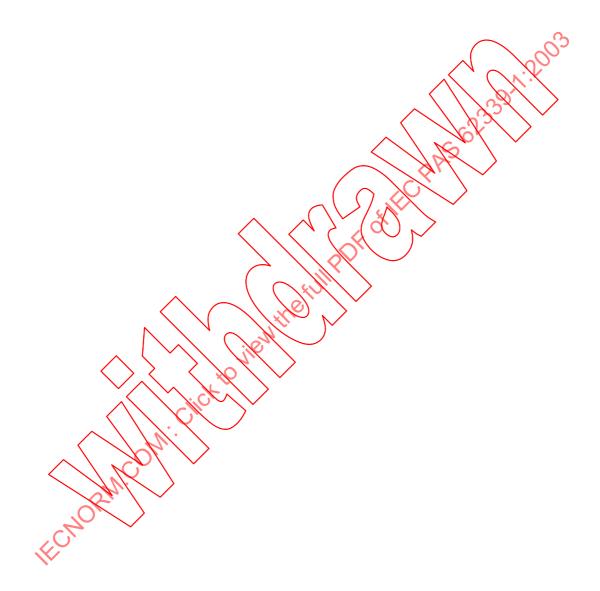
7 Sealing surface requirements

7.1 Surface roughness

The sealing surface (flat surface of the bottom of the mounting flange) shall have a maximum surface roughness of 0.8 micrometers (32 microinch) Ra max. in the area required for sealing.

7.2 Surface condition

The sealing surface shall not have any radial scratches in the area required for sealing that are visible to non-magnified normal vision.


7.3 Area required for sealing

The area required for sealing shall be defined as a surface with a diameter of 8.0 mm, with its center coincident with each required pressure connection.

8 Dimensional requirements

Surface-mount fluid distribution components designed to span multiple positions, regardless of function, shall be dimensioned to interface with:

- a) the 38.2-mm (1.5-inch) footprint, spaced on 38.9-mm (1.53-inch) centerlines, with flow and bolt locations positionally toleranced to the same numeric values as a single position component (see Figure 1); or
- b) the 57.2-mm (2.25-inch) footprint, spaced on 58.0-mm (2.28-inch) centerlines, with flow and bolt locations positionally toleranced to the same numeric values as a single position component (see Figure 2).

