

INTERNATIONAL STANDARD

**Power transformers –
Part 16: Transformers for wind turbine applications**

IECNORM.COM : Click to view the full PDF of IEC/IEEE 60076-16:2018

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2018 IEC, Geneva, Switzerland
Copyright © 2018 IEEE

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing being secured. Requests for permission to reproduce should be addressed to either IEC at the address below or IEC's member National Committee in the country of the requester or from IEEE.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue
New York, NY 10016-5997
United States of America
stds.ipr@ieee.org
www.ieee.org

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About the IEEE

IEEE is the world's largest professional association dedicated to advancing technological innovation and excellence for the benefit of humanity. IEEE and its members inspire a global community through its highly cited publications, conferences, technology standards, and professional and educational activities.

About IEC/IEEE publications

The technical content of IEC/IEEE publications is kept under constant review by the IEC and IEEE. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 21 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

INTERNATIONAL STANDARD

**Power transformers –
Part 16: Transformers for wind turbine applications**

IECNORM.COM : Click to view the full PDF of IEC/IEEE 60076-16:2018

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 27.180; 29.180

ISBN 978-2-8322-5807-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD.....	4
1 Scope	6
2 Normative references	6
2.1 IEC references.....	6
2.2 IEEE references.....	6
2.3 ISO references.....	7
2.4 CENELEC references	7
3 Terms and definitions	7
4 Use of normative references	8
5 Rating.....	8
6 Service conditions	8
6.1 Normal service conditions	8
6.1.1 General	8
6.1.2 Temperature of external cooling medium	8
6.2 Particular service conditions for transformers installed in a tower or nacelle	9
6.2.1 General	9
6.2.2 Temperature rise correction.....	9
6.3 Content of harmonic currents in the transformer.....	10
6.4 Over-excitation	11
6.5 Harmonic distortion of voltage.....	11
6.6 Transient voltages	11
6.7 Humidity and salinity.....	11
6.8 Level of vibration	12
6.9 Corrosion protection	12
6.10 Consideration for hermetically sealed transformers	12
6.11 Flammability issues with transformers mounted in the tower or nacelle	12
6.12 Thermal cycling of transformer.....	12
7 Electrical characteristics	12
7.1 Highest voltage for equipment.....	12
7.2 Tappings (tap-changer).....	12
7.3 Connection group.....	13
7.4 Dimensioning of neutral connection	13
7.5 Short-circuit impedance	13
7.6 Insulation levels for high and low voltage windings	13
7.7 Overload capability	13
7.8 Inrush current	14
7.9 Frequency of energization.....	14
7.10 Ability to withstand short circuit.....	14
7.11 Operation with forced cooling.....	14
7.12 Over-temperature protection	14
8 Rating plate	14
9 Tests	15
9.1 List and classification of tests (routine, type and special tests).....	15
9.2 Additional tests for wind turbine transformers.....	15

9.2.1	General	15
9.2.2	Lightning impulse type tests.....	15
9.2.3	Lightning impulse routine sample tests	15
9.2.4	Partial discharge test for liquid-immersed transformers.....	15
9.2.5	Climatic and environmental tests for dry-type transformers	15
Annex A (informative)	Effects of voltage harmonics	16
A.1	Design and specification considerations.....	16
A.2	Effects of voltage harmonics	16
Bibliography.....		19
Table 1 – Recommended minimum values of short-circuit impedance for transformers with two separate windings		13
Table A.1 – Example of voltage harmonic order		17

IECNORM.COM : Click to view the full PDF of IEC/IEEE 60076-16:2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

POWER TRANSFORMERS -

Part 16: Transformers for wind turbine applications

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary. *IEEE documents are made available for use subject to important notices and legal disclaimers (see <http://standards.ieee.org/IPR/disclaimers.html> for more information).*

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two organizations. This Dual Logo International Standard was jointly developed by the IEC and IEEE under the terms of that agreement.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE-SA) Standards Board.

3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual experts and members of technical committees and IEC National Committees, or volunteers of IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE Publication or any other IEC or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of material covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

International Standard IEC/IEEE 60076-16 has been prepared by IEC technical committee 14: Power transformers, in cooperation with Performance Characteristics Subcommittee of the IEEE Power and Energy Society ¹, under the IEC/IEEE Dual Logo Agreement between IEC and IEEE.

This second edition of IEC/IEEE 60076-16 cancels and replaces IEC 60076-16:2011, and constitutes a technical revision.

The main changes with respect to the previous edition are as follows:

- 1) relationship between transformer rated power and the output current from the associated generator is introduced;
- 2) thermal correction of the effective cooling medium has been introduced;
- 3) testing regime has been strengthened to ensure transformers are suitable for the harsh electrical environment to which they are subjected.

This publication is published as an IEC/IEEE Dual Logo standard.

The text of this standard is based on the following IEC documents:

FDIS	Report on voting
14/959/FDIS	14/965/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

A list of all parts in the IEC/IEEE 60076 series, published under the general title *Power transformers*, can be found on the IEC website.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

¹ A list of IEEE participants can be found at the following URL: <https://standards.ieee.org/project/60076-16.html>

POWER TRANSFORMERS –

Part 16: Transformers for wind turbine applications

1 Scope

This part of IEC 60076 applies to dry-type and liquid-immersed transformers for wind turbine step-up applications having a winding with highest voltage for equipment up to and including 72,5 kV. This document applies to the transformer used to connect the wind turbine generator to the wind farm power collection system or adjacent distribution network and not the transformer used to connect several wind turbines to a distribution or transmission network.

Transformers covered by this document comply with the relevant requirements prescribed in the IEC 60076 standards or IEEE C57 standards.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

2.1 IEC references

IEC 60076-1, *Power transformers – Part 1: General*

IEC 60076-2, *Power transformers – Part 2: Temperature rise for liquid-immersed transformers*

IEC 60076-3, *Power transformers – Part 3: Insulation levels, dielectric tests and external clearances in air*

IEC 60076-5, *Power transformers – Part 5: Ability to withstand short circuit*

IEC 60076-7, *Power transformers – Part 7: Loading guide for mineral-oil-immersed power transformers*

IEC 60076-11, *Power transformers – Part 11: Dry-type transformers*

IEC 60076-12, *Power transformers – Part 12: Loading guide for dry-type power transformers*

IEC 60076-14, *Power transformers – Part 14: Liquid-immersed power transformers using high-temperature insulating materials*

IEC 61378-1, *Converter transformers – Part 1: Transformers for industrial applications*

2.2 IEEE references

IEEE Std C57.12.00™, *IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers*

IEEE Std C57.12.01™, *IEEE Standard for General Requirements for Dry-Type Distribution and Power Transformers*

IEEE Std C57.12.80™, *IEEE Standard Terminology for Power and Distribution Transformers*

IEEE Std C57.91™, *IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators*

IEEE Std C57.96™, *IEEE Guide for Loading Dry-Type Distribution and Power Transformers*

IEEE Std C57.110™, *IEEE Recommended Practice for Establishing Liquid-Filled and Dry-Type Power and Distribution Transformer Capability When Supplying Nonsinusoidal Load Currents*

IEEE Std C57.154™, *IEEE Standard for the Design, Testing, and Application of Liquid-Immersed Distribution, Power, and Regulating Transformers Using High-Temperature Insulation Systems and Operating at Elevated Temperatures*

ANSI C84.1, *Electric Power Systems and Equipment – Voltage Ratings (60 Hz)*

2.3 ISO references

ISO 12944 (all parts), *Paints and varnishes – Corrosion protection of steel structures by protective paint systems*

ISO 12944-4, *Paints and varnishes – Corrosion protection of steel structures by protective paint systems – Part 4: Types of surface and surface preparation*

2.4 CENELEC references

EN 50588-1:2015, *Medium power transformers 50 Hz, with highest voltage for equipment not exceeding 36 kV – Part 1: General requirements*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at <http://www.electropedia.org/>
- ISO Online browsing platform: available at <http://www.iso.org/obp>

3.1

wind turbine transformer

generator step up transformer connecting the wind turbine to the power collection system of the wind farm or the adjacent distribution network for single turbine installations

3.2

tower

supporting structure of the wind turbine on top of which the nacelle with generator and other equipment is located

3.3

nacelle

housing that contains the drive-train and other elements on top of a horizontal-axis wind turbine tower

[SOURCE: IEC 60050-415:1999, 415-01-07]

3.4**effective cooling medium**

ambient air, either internal or external to the tower or nacelle, or cooling water that comes into contact with the cooling surface of the transformer

3.5**compartmentalized type transformer**

transformer with integral enclosure comprised of multiple independent compartments, usually with separate entrances into the HV and LV termination compartments

3.6**sealed transformer**

transformer which is so constructed that the external atmosphere is not intended to gain access to the interior

3.7**routine sample test**

test which is usually defined as a type test or special test but carried out as an additional routine test on a random sample of transformers

4 Use of normative references

This standard can be used with either the IEC or IEEE normative references but the references shall not be mixed. The purchaser shall include in the enquiry and order which normative references are to be used. If the choice of normative references is not specified, then IEC standards shall be used except for wind turbine transformers intended for installation in North America where IEEE standards shall be used.

5 Rating

The transformer rating specified by the purchaser shall take into account the maximum current delivered to the transformer by the associated wind turbine generator system irrespective of the operating voltage and power factor.

6 Service conditions

6.1 Normal service conditions

6.1.1 General

The normal service conditions detailed in IEC 60076-1 or IEEE Std C57.12.00 for liquid-immersed transformers or the normal service conditions in IEC 60076-11 or IEEE Std C57.12.01 for dry-type transformers shall apply unless otherwise stated in this document or specified by the purchaser.

6.1.2 Temperature of external cooling medium

If the transformer is installed external to the tower or nacelle, the normal conditions specified in IEC 60076-1 or IEEE Std C57.12.00 for liquid-immersed transformers and IEC 60076-11 or IEEE Std C57.12.01 for dry-type transformers shall apply, unless otherwise specified. If the transformer is installed within the tower or nacelle then particular conditions apply as shown in 6.2.

6.2 Particular service conditions for transformers installed in a tower or nacelle

6.2.1 General

Where the transformer is installed in a tower or nacelle then higher temperatures of the cooling medium local to the transformer may be expected.

6.2.2 Temperature rise correction

Based on the ambient conditions of the installation, the purchaser shall specify the yearly average and maximum temperature of the effective cooling medium (e.g. air or water). If the yearly average or maximum temperature of the cooling medium exceeds the relevant value in the respective standard, the difference between the values and the “normal service conditions” values shall be subtracted from the temperature rise limits specified in IEC 60076-2, IEC 60076-11 or IEEE Std C57.12.00 as follows:

$$K_{\max} = T_{\max \text{ ecm}} - T_{\max \text{ std}}$$

$$K_{\text{av}} = T_{\text{av ecm}} - T_{\text{av std}}$$

where

- K_{\max} is the temperature correction for the maximum ambient temperature;
- K_{av} is the temperature correction for the yearly average ambient temperature;
- $T_{\max \text{ ecm}}$ is the maximum temperature of the effective cooling medium;
- $T_{\max \text{ std}}$ is the maximum ambient temperature of the effective cooling medium according to the relevant standard;
- $T_{\text{av ecm}}$ is the average temperature of the effective cooling medium;
- $T_{\text{av std}}$ is the yearly average ambient temperature of the effective cooling medium according to the relevant standard.

K_{av} can be used in determining the temperature rise limit of average winding and winding hot-spot temperatures in all transformers. In liquid-immersed transformers K_{\max} can be used in determining the temperature rise limit for the top liquid temperature.

If the only available information is the maximum ambient temperature, the increase of the yearly average ambient temperature can be assumed to be the same as the increase of the maximum ambient temperature, making K_{av} and K_{\max} equal.

For example, for a transformer using insulation material of thermal class 105 (regular kraft paper immersed in mineral oil) installed in an environment where the average temperature is 32 °C and the maximum ambient temperature is 48 °C, the corrected temperature rise limits based on IEC 60076-2 would be:

$$K_{\text{av}} = (32 - 20) = 12 \text{ K}$$

$$\Delta\theta_w = 65 - K_{\text{av}} = 65 - 12 = 53 \text{ K}$$

$$\Delta\theta_h = 78 - K_{\text{av}} = 78 - 12 = 66 \text{ K}$$

For liquid-immersed transformers K_{\max} can be applied:

$$K_{\max} = (48 - 40) = 8 \text{ K}$$

$$\Delta\theta_o = 60 - K_{\max} = 60 - 8 = 52 \text{ K}$$

Another example, for a transformer using thermally upgraded insulation material (thermally upgraded kraft paper immersed in mineral oil) with similar conditions to the previous example, the corrected temperature rise limits based on IEEE Std C57.12.00 would be:

$$K_{\text{av}} = (32 - 30) = 2 \text{ K}$$

$$\Delta\theta_w = 65 - K_{\text{av}} = 65 - 2 = 63 \text{ K}$$

$$\Delta\theta_h = 80 - K_{\text{av}} = 80 - 2 = 78 \text{ K}$$

For liquid-immersed transformers K_{\max} can be applied:

$$K_{\max} = (48 - 40) = 8 \text{ K}$$

$$\Delta\theta_o = 65 - K_{\max} = 65 - 8 = 57 \text{ K}$$

where,

$\Delta\theta_w$ is the average winding temperature rise;

$\Delta\theta_h$ is the winding hot-spot temperature rise;

$\Delta\theta_o$ is the top liquid temperature rise.

For the transformers installed in a tower or nacelle, the purchaser shall carefully consider the influence on the temperature of the enclosure, heat generated by other equipment and by the transformer itself, and the cooling system / air renovation system, if applicable. As reference, if no better information is available, the thermal loading of the transformer, in kilowatts, can be estimated as 1,5 % of its rated power (kVA).

The effect of external direct solar radiation should be taken into account by the purchaser when calculating the temperature of the effective cooling medium. Methods for determining the effect are given in IEC 60721-3-4.

6.3 Content of harmonic currents in the transformer

The purchaser shall evaluate the magnitude and frequency of the harmonic currents supplied to the transformer.

Where total harmonic content is less than 5 % of rated current no additional information is required.

Where total harmonic content is greater than 5 % the purchaser shall specify the magnitude and frequencies of all harmonic currents supplied to the transformer. The manufacturer shall calculate the additional losses at rated power caused by these currents using the method given in IEC 61378-1 or IEEE Std C57.110 or as agreed between the purchaser and manufacturer.

During the temperature rise test the transformer shall be supplied with an additional current to represent the additional harmonic losses for the purpose of determining the temperature rises.

A method to calculate the impact of the harmonic currents on the design of the transformer is given in IEC 61378-1 or IEEE Std C57.110.

6.4 Over-excitation

Unless otherwise specified by purchaser, transformers shall be capable of operating continuously above rated voltage or below rated frequency, at maximum rated power (kVA) for any tap, without exceeding the limits of temperature rise when all of the following conditions prevail.

- a) When operating under load:
 - 1) secondary voltage and volts per hertz do not exceed 115 % of rated values and with a minimum frequency of 95 % of rated value;
 - 2) power factor is 0,8 or higher.
- b) When operating under no load, transformers shall be capable of operating continuously above rated voltage or below rated frequency, on any tap, without over-exciting or exceeding limits of observable temperature rise, when neither the voltage nor volts per hertz exceed 120 % of rated values.

6.5 Harmonic distortion of voltage

When supply voltage harmonics are expected to be in excess of 5 % of rated voltage the purchaser shall specify the magnitude and frequency of any harmonic voltages present in the supply. The transformer shall be designed to withstand the specified condition or 5 % of rated voltage, whichever is higher, without damage.

6.6 Transient voltages

- a) Normal impulse protection

Transformer lightning impulse (LI) (see IEC 60076-3) or basic lightning impulse level (BIL) (see IEEE Std C57.12.80) shall be specified. Increased transformer BIL levels by one step should be considered unless system study indicates otherwise.

- b) Switching induced overvoltages

Switching transient voltages, produced by vacuum interrupters and/or SF₆ switching devices, have resulted in dielectric failures of some wind turbine transformers. The first and last transformers in a daisy chain are typically the most vulnerable and are most at risk when currents are light and power factor is particularly low. IEEE Std C57.142 addresses this issue in depth and relates the vulnerability to current chops and voltage restrikes by vacuum or SF₆ interrupters. This is a complex phenomenon that is not covered in depth in this document but should be evaluated by a system study. If system study warrants action, mitigation techniques should be employed.

NOTE The above reference to IEEE Std C57.142 is applicable to both IEC and IEEE applications as there is no current IEC standard that covers this issue.

6.7 Humidity and salinity

The purchaser shall define the maximum levels of humidity and salinity to which transformers will be exposed.

Levels of humidity and salinity associated with coastal or off-shore applications have led to issues on transformers. These can include:

- salt spray;
- excessive moisture and humidity;
- dripping water;
- condensation.

The effects of these issues will affect different transformer technologies in different ways (e.g. liquid immersed vs dry type).

Some of the areas of possible mitigation include:

- a) increased and more comprehensive maintenance cycles;
- b) avoidance of air insulated terminals and exposed conductors, for example, by applying bushing covers or elbow connectors;
- c) increased creepage distances.

6.8 Level of vibration

Vibrations of the structure where the transformer is to be installed shall be taken into account when designing the transformer.

The purchaser shall specify the vibration spectrum at the enquiry stage. The procedure of vibration test, if any, should be agreed at enquiry stage between purchaser and manufacturer.

6.9 Corrosion protection

Depending on the kind of installation, the purchaser shall specify a protection class defined in ISO 12944 (all parts), IEEE Std C57.12.28, IEEE Std C57.12.29 or otherwise agreed between purchaser and manufacturer. Unless specified otherwise, level C4 (ISO 12944-4) shall be used except for coastal or off-shore installation where level C5-M (ISO 12944-4) or higher may be appropriate.

6.10 Consideration for hermetically sealed transformers

A hermetically sealed transformer shall be designed to withstand without permanent deformation the expected pressures that occur over the specified temperature range during full loading of the transformer (see CENELEC EN 50588-1:2015, 9.4).

6.11 Flammability issues with transformers mounted in the tower or nacelle

For transformers mounted in the tower or nacelle, less-flammable insulating liquids or dry-type construction are recommended. For dry-type transformers specified according to IEC 60076-11, fire class F1 shall be specified as a minimum.

6.12 Thermal cycling of transformer

Wind turbine transformers are exposed to significant thermal cycling leading to mechanical weakening of the tank in liquid-immersed transformers or in damage to the winding coils in cast resin dry-type transformers. Purchasers should consider an increase in the number of cycles required during endurance testing, particularly where forced air cooling is applied.

Thermal endurance testing for liquid-immersed transformers shall be in accordance with EN 50588-1:2015, 9.4.5. Thermal endurance tests for dry-type transformers shall be subject to agreement between the purchaser and the manufacturer. The number of cycles for the thermal endurance test shall not be less than 2 000 cycles.

NOTE Thermal cycling is usually assumed to be related to the level of load, but during constant load at rated power frequent thermal cycles can be experienced when using switched forced air cooling.

7 Electrical characteristics

7.1 Highest voltage for equipment

The highest voltage for equipment shall be specified in accordance with IEC 60076-3 and ANSI C84.1.

7.2 Tappings (tap-changer)

Unless otherwise specified, no tappings shall be provided.

Where a transformer is provided with tappings on a winding these shall all be full-power tappings. When specified, tappings other than full-power tappings may be provided, and this shall be stated on the nameplate.

NOTE The provision of tappings on a transformer can increase size, weight and cost and can decrease reliability and therefore are only generally used where specifically required.

7.3 Connection group

Unless otherwise specified by the purchaser, the connection group for a two winding three-phase transformer shall be Dyn11 or LV lagging HV by 330 degrees. Other combinations of windings shall be subject to agreement between the purchaser and the manufacturer.

7.4 Dimensioning of neutral connection

The neutral connection shall be capable of carrying full phase rated current unless otherwise specified by the purchaser.

7.5 Short-circuit impedance

Commonly recognized minimum values for the short-circuit impedance of transformers at the rated current (principal tapping) are given in Table 1. If lower values are required, the ability of the transformer to withstand short circuit shall be subject to agreement between the manufacturer and the purchaser.

Table 1 – Recommended minimum values of short-circuit impedance for transformers with two separate windings

Short-circuit impedance at rated current	
Rated power kVA	Minimum short-circuit impedance %
25 to 630	4,0
631 to 1 250	5,0
1 251 to 2 500	6,0
2 501 to 6 300	7,0
6 301 and above	8,0

For auxiliary windings when the combined impedance voltage of the tertiary winding and the system result in short-circuit current levels for which the transformer cannot feasibly or economically be designed to withstand, the manufacturer and the purchaser shall mutually agree on the maximum allowed over-current. In this case, provision should be made by the purchaser to limit the over-current to the maximum value determined by the manufacturer and shall be stated on the rating plate.

7.6 Insulation levels for high and low voltage windings

The insulation level for the high voltage and low voltage windings shall be in accordance with IEC 60076-3 or IEEE Std C57.12.00 and IEEE Std C57.12.01. Insulation levels may be increased as detailed in 6.6.

7.7 Overload capability

The maximum sustained power output (including reactive power) of the wind turbine shall not be considered an overload condition for the transformer and shall be provided for in the nominal rating. The maximum sustained and peak loading cycle(s) including the worst case power factor shall be defined by the purchaser.

The principles in the appropriate loading guides shall be applied to the defined loading cycle:

- for liquid-immersed transformers, in IEC 60076-7 or IEEE Std C57.91;
- for dry-type transformers, in IEC 60076-12 or IEEE Std C57.96;
- for high temperature liquid-immersed transformers, in IEC 60076-14 or IEEE Std C57.154.

Transformer connections and any switches (e.g. de-energized tap changer) shall be suitably rated to carry peak overloads.

7.8 Inrush current

Unless otherwise specified by the purchaser, the short-circuit apparent power of the system shall be assumed to be in accordance with IEC 60076-5:2006, 3.2.2.4. Any limitations in the peak value of inrush current or the duration of such current shall be specified by the purchaser.

7.9 Frequency of energization

Where the frequency of energization is in excess of 24 events per year, the expected value shall be given by the purchaser.

7.10 Ability to withstand short circuit

Transformers shall comply with the requirements of IEC 60076-5, IEEE Std C57.12.00 or IEEE Std C57.12.01.

7.11 Operation with forced cooling

When additional cooling by means of fans or pumps is provided, the nominal rated power with and without forced cooling shall be in accordance with IEC 60076-1 or IEEE Std C57.12.00 for liquid-immersed transformers or with IEC 60076-11 or IEEE Std C57.12.01 for dry-type transformers unless otherwise agreed by the purchaser and the manufacturer.

For dry-type transformers forced air cooling should not affect temperature of sensors. Direct air flow on the sensors should be avoided.

Control of the forced cooling equipment for liquid-immersed transformers should be by means of winding temperature monitoring and/or top oil temperature monitoring by either direct methods or simulation.

7.12 Over-temperature protection

Unless otherwise specified, for transformers mounted in the tower or nacelle, the manufacturer shall provide a suitable over-temperature detector that can provide an alarm or trip signal.

8 Rating plate

Rating plate requirements are detailed in IEC 60076-1 or IEEE C57.12.00 for liquid-immersed transformers or in IEC 60076-11 or IEEE C57.12.01 for dry-type transformers.

In addition, the number of this document shall be stated on the nameplate.

9 Tests

9.1 List and classification of tests (routine, type and special tests)

The lists and classification of tests are detailed in IEC 60076-1 or IEEE Std C57.12.00 for liquid-immersed transformers or in IEC 60076-11 or IEEE Std C57.12.01 for dry-type transformers.

9.2 Additional tests for wind turbine transformers

9.2.1 General

Due to the harsh operating environment for wind turbine transformers, a number of tests in addition to the standard tests applied shall be carried out.

9.2.2 Lightning impulse type tests

Transformers shall be subjected to full lightning impulse type testing including chopped wave. Chopped wave tests are not required on transformers specified to IEEE standards where separable high voltage connectors are fitted.

9.2.3 Lightning impulse routine sample tests

A lightning impulse test, comprising full wave tests only, shall be applied to a minimum 10 % sample of the contract chosen on a random basis, unless otherwise agreed between the purchaser and the manufacturer. Chopped wave lightning impulse tests may be applied together with the routine lightning impulse tests where specified by the purchaser.

9.2.4 Partial discharge test for liquid-immersed transformers

Where specified by the purchaser, a partial discharge test in accordance with the method specified in IEC 60076-11 or IEEE Std C57.12.01 shall be carried out. The maximum acceptable level of partial discharge shall be 100 pC.

NOTE 1 The test specified here is in the document for dry-type transformers but for the purposes of this clause is applied to liquid-immersed transformers.

NOTE 2 This test has been specified in accordance with the dry-type routine test method due to the impractical nature of a full partial discharge test to IEC 60076-3 or IEEE Std C57.12.01 being applied to multiple units in production.

9.2.5 Climatic and environmental tests for dry-type transformers

The following additional tests shall be performed when specified by the purchaser at time of enquiry when no relevant test evidence is available:

- a) climatic tests for dry-type transformers in accordance with IEC 60076-11;
- b) environmental tests for dry-type transformers in accordance with IEC 60076-11.

Annex A (informative)

Effects of voltage harmonics

A.1 Design and specification considerations

Special consideration needs to focus on the effects of a rapid ramp-up of power due to a rapid increase of current during a quick change of wind speed to which the blade pitch motors are slow to react. IEC 60076-14:2013, Annex B refers to bubbling effect that can be caused by rapid ramp-up effect and needs to be considered. Additionally, consideration should be given to the following:

- harmonic current filtering;
- harmonic impact on the neutral;
- power factor correction equipment;
- electrostatic shielding;
- harmonic spectrum analysis;
- winding design to mitigate heat attributed to eddy currents;
- losses when performing temperature rise calculations;
- switching transients.

Further consideration needs to be given for power flow reversal, heat rise during LVRT, and harmonic loading due to power factor control equipment.

NOTE IEEE Std C57.12.00 requires these transformers to be considered to be a hybrid transformer which is a Class 1 compartmentalized type power transformer with step-up capabilities and never energized from the LV terminals.

A.2 Effects of voltage harmonics

The effect of this voltage distortion leads to an increasing of:

- magnetic flux density;
- no load losses;
- no load current;
- noise level;
- magnetic core temperature;

The following example of the voltage harmonic order in Table A.1 highlights this issue.

B _h :	Flux density corresponding to harmonic h	(T)
B _n :	Flux density at nominal voltage	(T)
V _h :	Voltage harmonic components	(V)
V ₁ :	Rated voltage.	(V)

Table A.1 – Example of voltage harmonic order

Harmonic order (<i>h</i>)	Magnitude (%)	V _h /V ₁	(V _h /V ₁) ²	B _h /B _n	(B _h /B _n) ²
1	100	1	1	1	1
2	4	0,04	0,001 6	0,02	0,000 4
3	16	0,16	0,025 6	0,053 333	0,002 844 44
4	6	0,06	0,003 6	0,015	0,000 225
5	20	0,2	0,04	0,04	0,001 6
6	2	0,02	0,000 4	0,003 333	1,111 1 × 10 ⁻⁵
7	11	0,11	0,012 1	0,015 714	0,000 246 94
8	2	0,02	0,000 4	0,002 5	0,000 006 25
9	5,8	0,058	0,003 36	0,006 444	4,153 1 × 10 ⁻⁵
10	4,2	0,042	0,001 76	0,004 2	0,000 017 64
11	2,6	0,026	0,000 68	0,002 364	5,586 8 × 10 ⁻⁶
13	1,9	0,019	0,000 36	0,001 462	2,136 1 × 10 ⁻⁶
15	1,6	0,016	0,000 26	0,001 067	1,137 8 × 10 ⁻⁶
29	1,2	0,012	0,000 14	0,000 414	1,712 2 × 10 ⁻⁷
31	0,8	0,008	0,000 06	0,000 258	6,659 7 × 10 ⁻⁸

	Σ	1,090 3		1,005 402 014
RMS voltage	1,044			
THD (voltage)	30,05 %			
RMS flux density	1,003			
THD (flux density)	7,35 %			

Total harmonic distortion (THD).

Root mean square (RMS) voltage is the square root of the sum of $(V_h/V_1)^2$.

RMS flux density is the square root of the sum of $(B_h/B_n)^2$.

The consequences of this high voltage distortion (THD < 5 % is considered to be practically sinusoidal) are not considered significant as flux density is distorted much less than voltage.

Magnetic flux density is time integral of voltage and thus each harmonic flux density component is inversely proportional to the harmonic order. The increase in RMS flux value is close to zero, therefore no correction is needed for the measured no load losses in regard to voltage harmonics.

The following parameters are also related to the design of the transformer under non-sinusoidal voltage:

- no load current (especially under presence of DC component);
- noise level (especially under presence of DC and second harmonics);
- magnetic core temperature (especially under presence of DC and second harmonics).

NOTE The harmonic frequency flux density components are increased mainly by eddy current no load losses. With grain oriented core materials, this accounts for approximately 50 % of total no load losses. Hysteresis losses also accounts for approximately 50 % of total no load losses and is influenced by an increase in hysteresis loop area and frequency. In practical cases this influence is negligible.

IECNORM.COM : Click to view the full PDF of IEC/IEEE 60076-16:2018