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FOREWORD

Since the mid-1960s, computer simulations have come to dominate engineering mechanics analysis for all but the
simplest problems. This reliance on complicated simulations makes a systematic program of verification and validation
(V&V) necessary to ensure the accuracy of these simulations. This Standard describes such a program.
The concept of systematic V&V is not new. The software development community has long recognized the need for a

software quality assurance (SQA) plan for scientific and engineering products. The Institute of Electrical and Electronic
Engineers (IEEE) was the first to publish and adopt guidelines and standards for engineering SQA appropriate for
developers. SQA guidelines, while necessary, are not sufficient to cover the issues of computational physics and engi-
neering or the vast array of problems to which end users apply the codes. To fill this gap, the concept of application-
specific V&V was developed.
Scientific and engineering communities have been exploring application-specific V&V since the mid-1990s. The

Department of Defense’s Defense Modeling and Simulation Coordination Office (DMSCO) produced recommended prac-
tices suitable for large-scalemodeling and simulation in 1996. However, theseDMSCO guidelines do not directly focus on
the details of computational physics and engineering. The American Institute of Aeronautics and Astronautics produced
the first V&V guidelines tailored for detailed analyses in the area of computational fluid dynamics (CFD) in 1998.
Recognizing the need for a similar set of guidelines for computational solid mechanics (CSM), members of the CSM

community formed a committee under the auspices of the United States Association for Computational Mechanics in
1999. The American Society of Mechanical Engineers (ASME) Board on Performance Test Codes (PTC) granted the
committeeofficial status in2001anddesignated it thePTC60CommitteeonVerificationandValidation inComputational
Solid Mechanics. In 2008, an overarching committee for multiple V&V application areas was established by ASME as the
V&V Standards Committee on Verification and Validation in Computational Modeling and Simulation. ASME reorganized
the committees under theV&VStandardsCommittee, and thePTC60Committeewas renamed theV&V10Subcommittee
on Verification and Validation in Computational Solid Mechanics.
The V&V 10 Subcommittee (previously PTC 60 Committee) undertook the task of writing the proposed guidelines. Its

membership has consisted of solid mechanics analysts, experimenters, code developers, and managers from industry,
government, and academia. Represented industries include aerospace/defense, commercial aviation, automotive, bioen-
gineering, and software development; represented government agencies include the Department of Defense, the Depart-
ment of Energy, and the Federal Aviation Administration.
Early discussions within the V&V 10 Subcommittee revealed an immediate need for a common language and process

definition for V&V appropriate for CSM analysts and their managers and customers. The first edition of ASME V&V 10,
Guide for Verification and Validation in Computational Solid Mechanics, described the semantics of V&V and defined the
process of performingV&V in amanner that facilitates communication andunderstanding among the various performers
and stakeholders.
The Guide was approved by the V&V 10 Subcommittee and was approved and adopted by the American National

Standards Institute in 2006. Since that original edition was released, the issues and problems of V&V in CSM have been
studied through discussion and the generation of supporting documentation, including an example problem standard,
ASME V&V 10.1. That work contributed to the maturation of the discipline and influenced this revised edition, which is
now titled Standard for Verification and Validation in Computational Solid Mechanics.
This Standard is available for public review on a continuing basis. This provides an opportunity for additional public-

review input from industry, academia, regulatory agencies, and the public-at-large.
ASMEV&V10wasapprovedby theV&VStandardsCommitteeonMarch28, 2019andwasapprovedandadoptedby the

American National Standards Institute on July 23, 2019.
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CORRESPONDENCE WITH THE V&V COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned
interests. As such, users of this Standard may interact with the Committee by requesting interpretations, proposing
revisions or a case, and attending Committee meetings. Correspondence should be addressed to:

Secretary, V&V Standards Committee
The American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016-5990
http://go.asme.org/Inquiry

Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary
or desirable, as demonstrated by the experience gained from the application of the Standard. Approved revisions will be
published periodically.
The Committee welcomes proposals for revisions to this Standard. Such proposals should be as specific as possible,

citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal,
including any pertinent documentation.

Proposing a Case. Casesmay be issued to provide alternative rules when justified, to permit early implementation of
an approved revision when the need is urgent, or to provide rules not covered by existing provisions. Cases are effective
immediately upon ASME approval and shall be posted on the ASME Committee web page.
Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the

Standard and the paragraph, figure, or table number(s), and be written as a Question and Reply in the same format as
existing Cases. Requests for Cases should also indicate the applicable edition(s) of the Standard to which the proposed
Case applies.

Interpretations. Upon request, the V&V Standards Committeewill render an interpretation of any requirement of the
Standard. Interpretationscanonlyberendered in response toawritten request sent to theSecretaryof theV&VStandards
Committee.
Requests for interpretation should preferably be submitted through the online Interpretation Submittal Form. The

form is accessible at http://go.asme.org/InterpretationRequest. Upon submittal of the form, the Inquirer will receive an
automatic e-mail confirming receipt.
If the Inquirer is unable to use the online form, he/she may mail the request to the Secretary of the V&V Standards

Committee at the above address. The request for an interpretation should be clear and unambiguous. It is further rec-
ommended that the Inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry in one or two words.
Edition: Cite the applicable edition of the Standard for which the interpretation is being requested.
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for

general understanding and use, not as a request for an approval of a proprietary design or
situation. Please provide a condensed and precise question, composed in such away that a
“yes” or “no” reply is acceptable.

Proposed Reply(ies): Provide a proposed reply(ies) in the form of “Yes” or “No,” with explanation as needed. If
entering replies to more than one question, please number the questions and replies.

Background Information: Provide the Committee with any background information that will assist the Committee in
understanding the inquiry. The Inquirer may also include any plans or drawings that are
necessary to explain the question; however, they should not contain proprietary names or
information.
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Requests that arenot in the format describedabovemaybe rewritten in the appropriate formatby theCommitteeprior
to being answered, which may inadvertently change the intent of the original request.
Moreover, ASME does not act as a consultant for specific engineering problems or for the general application or

understanding of the Standard requirements. If, based on the inquiry information submitted, it is the opinion of
the Committee that the Inquirer should seek assistance, the inquiry will be returned with the recommendation
that such assistance be obtained.
ASMEprocedures provide for reconsideration of any interpretationwhen or if additional information thatmight affect

an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
Committee or Subcommittee. ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary
device, or activity.

Attending Committee Meetings. The V&V Standards Committee regularly holds meetings and/or telephone confer-
ences that are open to the public. Personswishing to attend anymeeting and/or telephone conference should contact the
Secretary of the V&V Standards Committee. Future Committee meeting dates and locations can be found on the
Committee Page at http://go.asme.org/VnVcommittee.

vii

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME V&V 10
 20

19

https://asmenormdoc.com/api2/?name=ASME V&V 10 2019.pdf


PREFACE

The ASME V&V 10 Subcommittee on Verification and Validation (V&V) in Computational Solid Mechanics is creating a
family of standards that together present a comprehensive picture of the standards and practices governing this process.
(a) ASMEV&V10-2006,Guide forVerificationandValidation inComputational SolidMechanics,was the first editionof

ASME V&V 10. Intended as an overview of V&V, it also included background material and definitions necessary to
understand the other standards in the series. It contains definitions of key terms associated with V&V, and it provides
context for the role of V&V in engineering as well as an overview of key aspects of application. ASME V&V 10-2019 is the
first revision of that Guide. Since publication of the first edition, the field of V&V hasmatured to the point that ASME V&V
10’s title has been changed from “Guide” to “Standard.”
(b) ASME V&V 10.1-2012, An Illustration of the Concepts of Verification and Validation in Computational Solid

Mechanics, is a follow-on publication that illustrates the steps in the V&V process described in ASME V&V 10-2019
through a worked example. This Standard is intended to provide a more concrete look at how to translate the
process of V&V 10-2019 into the reality of an engineering project.
(c) ASME V&V 10.2 is currently under development with the working title The Role of Uncertainty Quantification in

Verification and Validation of Computational Solid Mechanics. This Standard is intended to take a deeper look at the
importance of uncertainty quantification (UQ), types and characterization of uncertainties, introduction to UQ meth-
odologies, and how UQ is applied during each phase of the V&V process.
(d) ASMEV&V10.3 is currentlyunderdevelopmentwith theworking titleTheRoleofValidationMetrics inVerification

and Validation of Computational SolidMechanics. This Standard is intended to provide a primer ofmathematicalmetrics
tomeasure the difference between calculated results and either analytical or semianalytical solutions (in the case of code
verification) or experimental measurements (in the case of validation).
Readers are encouraged tobeginwithASMEV&V10-2019as it lays the groundwork, butmay find a concurrent reading

of ASME V&V 10.1-2012 beneficial, as it closely follows the V&V process described through an example. ASME V&V 10.2
and ASME V&V 10.3 should be read subsequent to ASME V&V 10-2019, as the foundation of ASME V&V 10-2019 is
necessary to understand the significance of the deeper treatments in ASME V&V 10.2 and ASME V&V 10.3.

viii
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STANDARD FOR VERIFICATION AND VALIDATION IN
COMPUTATIONAL SOLID MECHANICS

1 EXECUTIVE SUMMARY

Program managers need assurance that computational models of engineered systems are sufficiently accurate to
support programmatic decisions. This Standard provides the technical community — engineers, scientists, and
program managers — with guidelines for assessing the credibility of computational solid mechanics (CSM) models.
Verification and validation (V&V) are the processes by which evidence is gathered to determine the accuracy of the

computer model for specified conditions. These accuracy results, along with uncertainty quantification (UQ), contribute
to the determination of the credibility of the model for the conditions of its intended use.
Professional organizations differ in their definitions of V&V. The American Society of Mechanical Engineers (ASME)

V&V10Subcommittee onVerification andValidation inComputational SolidMechanics has chosendefinitions consistent
with those published by the Department of Defense (DoD) (ref. [1]) and by the American Institute of Aeronautics and
Astronautics (AIAA) (ref. [2]). Verification assesses the numerical accuracy of a computational model regardless of the
physics beingmodeled. Both code verification (addressing errors in the software and numerical algorithms) and calcula-
tion verification (estimating the numerical errors due to under-resolved discrete representations of the mathematical
model) are addressed. Validation assesses the degree to which the computational model is an accurate representation of
the physics beingmodeled. It is based on comparisons betweennumerical simulations and relevant experimental results.
Validation is essential in assessing the predictive capability of the model in the physical realm of interest, and it must
address uncertainties that arise from both experimental and computational procedures.
As shown in Figure 2.3-1, the general V&V process begins with a statement of the intended use of the model and

pertinent information about the systembeingmodeled so that the relevant physics are included inboth themodel and the
experimentsperformed tovalidate themodel.Modelingandexperimental activities areguidedby the responsequantities
of interest and the accuracy requirements for the intended use. Experimental outputs intended for validation for compo-
nent-level to system-level tests should, whenever possible, be provided to modelers only after verification and the
numerical simulations for those outputs have been performed.
Ideally, the V&V process for a particular application ends with acceptable agreement between model predictions and

experimental outputs, after the uncertainties in both have been taken into account. If the agreement betweenmodel and
experiment is not acceptable, an assessment should be performed to determine why agreement was not met and, poten-
tially, the processes of V&V repeated by updating the model and performing additional experiments. Successful comple-
tion of the validation process, demonstrated by satisfactory agreement between simulation and experiment, means that
the model adequately reproduces the experimental measurements that have been obtained.
Once the validation process is successfully completed, the model should be assessed to determine if its predictive

capability, including relevant uncertainties, is adequate for conditions where no experimental data are available. Since
mostmodels are developed for usewhere experimental data are not available, predictive capabilitymust address amuch
wider rangeofuncertainties thanvalidation. This Standard introduces the conceptof predictive capability butdoesnot go
into detail because of the early stage of development of this field.
Finally, it is important to document all V&V activities. In addition to preserving the compiled evidence of V&V, docu-

mentation records the justifications for important decisions such as selecting primary response quantities and setting
accuracy requirements. Documentation thereby supports the primaryobjective of V&V: to build confidence in the predic-
tive capability of computational models.
The guidance provided herein will enable managers and practitioners of V&V to better assess and enhance the cred-

ibility of CSMmodels. Upon reading about the process described in this Standard and illustrated in ASMEV&V10.1-2012,
engineers may be left with the sense that the real-world constraints of the engineering environment (i.e., schedule and
budget) do not allow for sufficient project scope to complete the V&V process to a satisfactory level of rigor. Users of this
Standard are nonetheless encouraged to provide a V&V foundation for their engineering calculations and identify any
associated uncertainties and risks.

ASME V&V 10-2019
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The ASME V&V 10 Subcommittee recognizes that program needs and resources vary and that the application of the
guidance provided herein to specific cases must accommodate budget, schedule, and risk considerations. This Standard
explains the principles of V&V so that practitioners can better appreciate and understand howdecisions concerning V&V
can affect their ability to assess and enhance the credibility of CSM models. It is the assertion of the ASME V&V 10
Subcommittee that some assessment of and improvement to credibility is better than none at all. The time and
budget spent on V&V/UQ should be judged based on how much influence modeling and simulation have on the
cost, design, safety, and reliability of the systembeing analyzed, aswell as themagnitudeof thedetrimental consequences
resulting from not meeting requirements relative to these aspects.
The V&V 10 Subcommittee advises users of this Standard to exercise caution when using statements such as “This

model has been validated” or “This is a validatedmodel.” These statements raise questions such as “Towhat experimental
measurementswas themodel compared?Overwhat set of conditions?Withwhatmodel and data uncertainties? Towhat
level of accuracy? Validated to what intended use?” In fact, there is much more value in that set of questions than in the
original statements. Perhaps as more and more engineers and stakeholders ask these questions of their own computa-
tional results, V&V will become part of standard engineering practice. This will help change the professional culture so
that V&V/UQ analyses are integrated into the project planning phase and considered inseparable from modeling and
simulation.

2 INTRODUCTION

CSM plays an increasingly important role in the design and performance assessment of engineered systems. Auto-
mobiles, aircraft, and weapon systems are examples of engineered systems that have becomemore reliant on computa-
tional models and simulation results to predict their performance, safety, and reliability. Although important decisions
aremadebasedonCSM, thecredibility (or trustworthiness)of thesemodelsandsimulationresults isnotoftenquestioned
by the general public, the technologists who design and build the systems, or the decisionmakers who commission their
manufacture and govern their use.
What is the basis for this trust? The public and decisionmakers do tend to trust graphical and numerical presentations

of results that are plausible and make sense, but their trust is founded on faith in the knowledge and abilities of the
engineers and scientists who develop, exercise, and interpret the models. Those responsible for the computational
models and simulations on which society depends so heavily are, therefore, keepers of the public trust with an
abiding responsibility for ensuring the veracity of their simulation results.
Engineers and scientists are aware that the computational models they develop and use are approximations of reality

and that thesemodels are subject to the limitations of available data, physical theory, mathematical representations, and
numerical solutions. Indeed, a fundamental approximation in solid mechanics is modeling the nonhomogeneous micro-
structure of materials as a mathematical homogeneous continuum. Another approximation that is commonly made
includes assuming the sections of a beam remain plane during bending. Additionally, a significant approximation
that must be made is the characterization of complex material behavior subject to extreme conditions. The use of
these approximations, along with their attendant mathematical formulations and numerical solution techniques,
has proved to be a convenient and acceptably accurate approach for predicting the behavior of many engineered struc-
tures.
Modelers need to ensure that their approximations of reality are appropriate for answering specific questions about

engineered systems. The primary goal for the modeler is to establish that the accuracy of the computational model is
adequate for themodel’s intendeduse. The required accuracy is related to the ability of a simulation to correctly answer a
question—ranging from a qualitative question that requires a simple “yes” or “no” response to a quantitative question
that requires a numerical value in response. Accuracy requirements vary fromproblem to problemand can be influenced
by public perception and economic considerations as well as by engineering judgment.
The truth of a scientific theory, or of a prediction made from such a theory, cannot be proved using deductive logic.

However, scientific theories and subsequent predictions can and should be tested for trustworthiness by the accumula-
tion of evidence. The evidence collected, corroborative or not, should be organized systematically through the processes
of computational model V&V. V&V/UQ addresses the issue of trustworthiness by providing a logical framework for
accumulating and evaluating evidence and assessing the credibility of simulation results to answer specific questions
about engineered systems.

2.1 Purpose and Scope

The purpose of this Standard is to provide the CSM communitywith a common language, a conceptual framework, and
general guidance for implementing the processes of computational model V&V. To this end, this Standard includes a
glossary of terms, figures illustrating the recommendedoverall approach toV&Vactivities, anddiscussionsof factors that
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should be considered when developing and executing a V&V program. In creating this Standard, the ASME V&V 10
Subcommittee benefited from the earlier contributions to the field of V&V by other groups, especially AIAA
(ref. [2]), as well as by Oberkampf et al. (ref. [3]) and Thacker et al. (ref. [4]).
Three related documents (see Preface) have been or are in the process of being generated that provide details not

presented in this overarching Standard. ASME V&V 10.1 describes a simple example of V&V to illustrate some of the key
concepts and procedures presented in this Standard; ASME V&V 10.2 will address uncertainty within the V&V process;
and ASME V&V 10.3 will provide an in-depth description of some of the metrics that can be used for validation compar-
isons and how to apply them.
To maximize the value to the engineering community, the ASME V&V 10 Subcommittee chose to write this Standard

from the perspective of V&V for high-consequence computational predictions of complex engineering systems. However,
the guidance provided here is also appropriate for simple applications, though it is understood that smaller budgets and
lower risks will reduce the scope of the V&V effort. While the concepts and terminology presented here are applicable to
all applied mechanics, the focus is on CSM.

2.2 General Concepts of V&V

2.2.1 Definitions. Some basic terms that provide the basis for the rest of this Standard include
(a) Code. A code is the computer implementation of algorithms developed to facilitate the formulation and approx-

imate solution of a class of problems.
(b) Model. A model is the representation of a system, phenomena, or process under specific physical conditions. The

representation includes conceptual, mathematical, and computational models.
(c) Simulation Results. Simulation results are raw or processed calculations obtained by running the computational

model.
(d) Verification and Validation. The terms “verification” and “validation” have been used interchangeably in casual

conversation as synonyms for the collection of corroborative evidence. The definitions used in this Standard are largely
consistent with those published by the DoD [ref (1)] and the AIAA [ref. (2)].

(1) Verification is the process of determining that a computational model accurately represents the underlying
mathematical model and its solution.

(2) Validation is the process of determining the degree to which the model is an accurate representation of corre-
sponding physical experiments from the perspective of the intended uses of the model.
Additional terms that form part of the shared language for V&V as used herein are found in Mandatory Appendix I.
In essence, verification entails gathering evidence to establish that the computational implementation of the math-

ematical model and its associated solution are correct. Validation, on the other hand, entails comparing simulation
outputs with experimental outputs to establish evidence that the appropriate and adequate models were used to
answer the questions of interest and to quantify the uncertainties within the process. Validation is attained
through meeting the criteria established specifically for determination of validation, i.e., acceptable agreement is
obtained.

2.2.2 Objectives. The general objectives of V&V are to assess the reliability of the computer software and numerical
methods used in the simulation and assesses the accuracy of the simulation with respect to available experimental
observations. Themodel builder considers themodel validated for those response quantities at the experiment locations
within the parameter space once predetermined requirements for demonstration of accuracy are met. For the decision
maker or other stakeholder, the intended use also defines limitations on the applicability of the model.
An example of an intended use is to predict the response of a particular make and model of automobile in frontal

impacts against a wall at speeds up to 30 mph. Validation might consist of numerically simulating the compaction of the
front end and the acceleration of the occupant compartment to within 20% for tests at 10, 20, and 30 mph. The model
could thenbeused to predict response quantities at other scenarios across the parameter space. A predicted response for
other makes or models of automobiles, for higher speeds, or for rear-end or side collisions would be away from the
locations atwhich themodelwas validated. For some of those cases, the predicted responsewould be very far away from
thevalidationpoints,whicharedescribed ingreaterdetail inpara. 2.3. Scenarios fartheraway fromthevalidation location
within the parameter space typically have a higher level of uncertainty and a corresponding lower level of confidence in
their predicted response. Requirements for accuracy and predictive capability would have to reflect the separation
between the validation points and the intended use point.
A detailed specification of the model’s intended use should include a definition of the criteria by which the model’s

predictive capability will be assessed. The criteria should be driven by application (i.e., intended use) requirements. For
instance, in the previous example, 20%accuracy at the validation points is based on consideration of how the predictions
will be used. Although criteria and other model requirements may have to be changed before, during, or after validation
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assessments of the entire system, it is best to specify validation criteria prior to initiating model-development and
experimental activities in order to establish a basis for defining how “good” is good enough.
The recommendedapproach tomodelV&Vemphasizes theneed todevelopaplan for conducting theV&Vprogram.For

complex, high-consequence engineered systems, the initial planning should be done by a team of experts. The V&V plan
shouldbepreparedbeforeanyvalidationexperiments areperformed,because it shouldguidehowthevalidation tests are
conducted and define the specifications of those tests. The plan should include, at a minimum, the following:
(a) a detailed specification of the intended use of the model to guide the V&V effort
(b) a detailed description of the full physical system and the hierarchy into which the system has been decomposed,

including the behavior of the system’s parts both in isolation and in combination
(c) a list of the experiments to be performed for both calibration and validation
(d) informationabouthowtheV&Vapproachrelates toprogramfactors suchas schedule, cost, andavailable resources
Key considerations in developing the V&V plan are discussed in Section 3, following presentation of the V&V approach

and process.

2.3 General Concepts of Predictive Capability

Prediction is defined herein as the use of a model to calculate a response where the modeler does not know the
experimentaloutputs. By thisdefinition, apredictioncanbemadeeitherduring thevalidationprocess and thencompared
to experimental results, or after the validation process is complete where no experimental results are, or are expected to
be, available. In the validation process shown in Figure 2.3-1, theModeling and Simulation Activities produce simulation
results and the Experimental Activities produce experimental measurements. The process of validation compares the
simulation results to the experimental measurements using a validation metric to quantify the difference between the
two. Once acceptable agreement is attained (i.e., a validated model has been obtained), that model may then be used to
generate simulation results for input conditions that are different fromwhat has been tested. This illustrates the defini-
tion of a prediction without experimental results referred to above, and is clearly separated from the simulation perfor-
mance that occurs during the validation process.

Figure 2.3-1 Elements of V&V/UQ Activities
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A model is validated against experimental results at a specific set of input conditions, which can be referred to as the
validation point. The input conditions are generally uncertain; therefore, the validation point will have uncertainty
associated with it as well. This concept is illustrated in Figure 2.3-2 for the case of a two–parameter input space,
where the validation points are represented by solid black dots and the associated input uncertainties by concentric
shaded ellipses. The region encompassed by the validation points is defined as the validation space and is conceptually
similar to an interpolation region in regression analysis. The boundary of this space,markedby dashed lines in the figure,
illustrates the extent of the parameter space that has been experimentally investigated.
Generally, the parameter space is farmore than two dimensions, creating a high-dimensional validation space that can

make it difficult to determine where a point of consideration is with respect to the entire validation space. Such high-
dimensional spaces are typically nonintuitive and difficult or impossible to visualize. It can also be difficult to determine
the correlation structureof a largenumberof input parameters inhigh-dimensional spaces. There are otheruncertainties
not shown in this figure; for example, the uncertainty in the measurement of the system response and the uncertainty in
the validation metric.
Models are typically developed to make predictions over a range of input conditions. In general, there is an “intended

use”domain, and thevalidationpoints can fall insideoroutsideof thisdomain. Fromaqualitative standpoint, theaccuracy
of predictions made with the model depend on the
(a) assumptions and approximations made in the formulation of the mathematical model
(b) number and location of the validation points relative to the location of the intended use domain
(c) degree of uncertainty associated with measurement of the system response at each validation point
(d) input uncertainties that exist in the intended use domain
Engineering experience or intuition may suggest that predictions within the validation space are more reliable than

predictionsmade outside the validation space. How tomathematically quantify this is problematic because the reliability
of predictions depends on how quickly the system response changes away from the validation points, yet for many well-
behaved problems this suggestion holds true.
Howpredictive accuracy relates to reality is represented inFigure 2.3-3. The graph shows theprediction (“Model”) and

the actual system response (“Reality”) as functions of a single input parameter. A single validation point is shown aswell
as a single intended use condition. Input parameter uncertainty is shown for both points; however, the validation condi-
tion uncertainty is typically smaller than our knowledge of the intended use condition uncertainty. The highest levels of
model accuracy typically occur at the validation points. As onemoves away from the validation points, the confidence in

Figure 2.3-2 Relationship Between Validation Points, Validation Space, and Intended Use Domain
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themodel accuracy commonly decreases, aswould be expected. The divergence between the predicted response and the
real response, which is unknown away from validation points, represents the increasing uncertainty due to both
systematic bias in themodel and randomvariability in the input data.While amore reliable prediction should be possible
within the validation space (as suggested by engineering experience or intuition), it is not guaranteed. A comprehensive
determination of the uncertainties of the problem, including both experimental andmodeling, are key in determining the
predictive accuracy of the model.
The decision maker using the simulation results must factor in the potential adverse consequences if the predictive

capability proves to be unreliable relative to the requirements of system performance, safety, and reliability. These
adverse consequences could be associated with corporate liability, loss of potential future business, environmental
impact, and public safety. This higher-level decision-making process is beyond the scope of this document and will
not be addressed further.

3 APPROACH

3.1 Modeling Complex Systems

Many real-world physical systems that would be the subject of model V&V are inherently complex. To address this
complexity andprepare adetaileddescriptionof the full system, it is helpful to recognize that the systembeingmodeled is
hierarchical in nature. As illustrated in Figure 3.1-1, the hardware of a physical system is typically composed of subsys-
tems,which contain assemblies. Each assembly consists of twoormore subassemblies; a subassembly, in turn, consists of
individual components. Each separate sectionof thehierarchycanbeseenasavalidationcase, oran instance thatneeds to
bevalidated.The top-level validationcase inFigure3.1-1 canbeviewedasany level of a real physical system.Forexample,
it could be a complete aircraft, or it could be thewing of an aircraft. If an aircraft is the top-level validation case, itmight be
composed of subsystems such as the propulsion system, the structure/body, the control system, and the passenger
system. Considering the structure as a subsystem, it might be composed of assemblies like the propulsion structure,
the nose section, the wings, the fuselage, and the tail section. Similarly, an assembly such as the wings might contain
subassemblies like the airfoil and the wing control surface, each of which is composed of components. Each of these
subsets at all levels of the hierarchy can be considered a validation case that could be subjected to the validation process.
In terms of V&V, the requirements for themodel for the top-level validation case, aswell as for all lower levels, depend on
the intended use of the model.

Figure 2.3-3 Depiction of the Increase in Uncertainty for Model Predictions Away From Validation Points
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3.2 Hierarchical Approach to V&V

A top-down decomposition of the physical system into its hardware constituents, as discussed in para. 3.1, is the basis
for developing a model of this system. However, the recommended approach to V&V is to develop such a hierarchy and
thenwork fromthebottomup, beginningat the lowest tier (i.e., the component level), to identify anddescribe thephysical
phenomena at each level that must be accurately simulated with the model. This bottom-up approach recognizes that,
while some of the physical responses of components may be representative of a single physical phenomenon (such as
deformation, natural frequencies, or buckling loads), at higher levels of the hierarchy, interaction effects not exhibited by
the individual components are likely (such as effects of frictional interfaces and joints). For example, a model of a
subassembly consisting of a welded automobile frame could introduce behavior that is not present when individual
struts are modeled separately.
Building amodel from the bottom upwill result in amultitiered set of individual models (a system-level model and its

embedded submodel[s]) and form the basis for defining validation experiments that need to be conducted at each tier of
thehierarchy to ensure that the constituentmodels at eachparticular tier functionappropriately.Models for components,
subassemblies, assemblies, and subsystems that have been validated previously can and should be reused if the response
mechanisms they have exhibited and the predictive accuracy they have demonstrated clearly meet the requirements of
the new system.
Figure 3.1-1 depicts an overview of the hierarchical approach to validation. The figure identifies themodels that could

be constructed at each tier, and highlights one potential path through the hierarchy starting with the “Aluminum Box
Structure” at the component level and culminating with the “Aircraft” at the complete system level. In this example,
validation of the system model will be achieved by consensus of the program experts if the responses of the complete
vehicle in laboratory or field experiments are successfully predicted.
The highest-tier validation experiments are typically either special cases of the expected operating conditions or

idealized versions of the real world system. It is important to complete V&V with computations and experiments
at the system level to assess whether the bottom-up approach adequately considered complex nonlinear interactions
at all levels of the hierarchy (i.e., that the appropriate hierarchical decomposition was used). It may be tempting to
performvalidation of systemmodels directly fromdata taken from tests of the complete systemwithout newor archived
validation at lower levels in the hierarchy. This can be problematic for a large number of components or if the subsystem
models contain complex connections or interfaces, energy dissipationmechanisms, or highly nonlinear behavior. If there
is poor agreement between the simulation results and the experiment, it is often difficult, if not impossible, to isolate
whichsubsystemmodel is responsible for thediscrepancy.Even if goodagreementbetweencalculationandexperiment is
observed, it is still possible that the model quality is poor because of error cancellation among the subsystemmodels. A
better strategy is to conduct a sequence of experiments that builds confidence in the model’s ability to produce accurate
simulations at multiple levels in the hierarchy.

Figure 3.1-1 Hierarchical Structure of Physical Systems
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3.3 V&V Activities and Products

Once the elements of the physical system’s hierarchy (whether one ormany tiers) have been defined and prioritized, a
systematic approach can be followed for establishing and increasing confidence inmodel predictions through the logical
combination of hierarchical model building, focused laboratory and field experimentation, and uncertainty quantifica-
tion. This process is discussed in this subsection.
Figure 3.3-1 illustrates the V&V process, identifying important steps and showing the relationships between the

various aspects. This process assumes the hierarchy has been decomposed into individual validation cases and the
process will be repeated for each of those cases. The V&V exercise is employed while progressing through the hierarchy
toward simulation of the top-level model and its validation experiment(s). This succession of activities will generate
evidence to assess confidence in subsequent predictions made using the top-level model for its intended use.
Activities are denoted by simple text, such as “Uncertainty Quantification”; the products of these activities are high-

lighted in rounded boxes (e.g., the “Simulation Results” are the product of the “Calculation” activity). The outlines for the
modeling and simulation and the physical experimentation branches parallel each other throughout the process. Mod-
elers follow the left branch to develop, exercise, and evaluate themodel. Experimenters follow the right branch to obtain
the relevant experimental results via physical testing.Modelers andexperimenters collaborate throughout the process in
developing the conceptual model, conducting preliminary calculations for the design of experiments, specifying initial
and boundary conditions for calculations for validation, and developing the validation experiments.
Theprocess shown in Figure 3.3-1 is repeated for each element of every tier of the hierarchy (i.e., every validation case)

in the system decomposition exercise discussed in para. 3.2, starting at the component level and progressing upward to
the complete system. In abottom-upapproach, bothpreliminary conceptualmodel development andV&Vplanning for all
levels in the hierarchy, especially the system level, are performed before the main validation activities for components,
subassemblies, assemblies, and subsystems begin to establish any interdependencies that may exist. Results of each
completed validation case are incorporated into the V&V of the top-level system, and then the next validation case is
addressed. This loop is repeated until the complete system has been exercised through the process. At that point the
validation process is complete and simulations for conditions of intended use of the system model can be performed.
Abstraction of each validation case into the conceptual model requires identifying the domain of interest, important

physical processes and assumptions, and response quantities of interest. The abstraction essentially produces the
modeling approach based on these considerations. It is also intimately connected to the development of the
overall V&V plan that establishes the validation requirements, including the types of experiments to be performed
and the required level of agreement between the experimental outputs and the simulation outputs. Thus, this activity
is typically iterative and involves a combined effort by modelers, experimenters, and decision makers.

3.3.1 The Modeling and Simulation Branch. Through idealization, the modeler constructs a mathematical interpre-
tation of the conceptual model. The resulting mathematical model is a set of equations and modeling data that describe
physical reality, including the geometric description, governing equations, initial and boundary conditions, constitutive
equations, and external forces. During the subsequent approximation, implementation, and input definition activity, the
modelerdevelops the computationalmodel,which is thesoftware implementationonaspecific computingplatformof the
equations developed in themathematicalmodel, usually in the formof numerical discretization, solution algorithms, and
convergence criteria. The computationalmodel includes numerical procedures, such as finite elementor finite difference,
for solving the equation prescribed in the mathematical model with specific computer software.
Modelers donot always develop and implement equations to create newcomputationalmodels; instead, they oftenuse

existing ones (e.g., commercial codes, graphical user interfaces, etc.). It is important for modelers to consider the steps
described herein when using these existing computational models and carefully think about any potential challenges
arising from them.Themodelermust ensure that tools heor shehasnot personally developedare specifying themodel he
or she really intends.
In the code verification assessment activity, the modeler uses the computational model to assess a separate set of

problemswith known solutions. These problems typically havemuch simpler geometry, loads, and boundary conditions
than the validation problems to identify and eliminate algorithmic and programming errors. This assessment activity is
appliednot to the validation case, but rather to establishedproblemswith known solutions. In the subsequent calculation
verification activity, the version of the computational model used for the validation case (i.e., with the geometries, loads,
and boundary conditions typical of that problem) is used to identify sufficient mesh resolution to produce an adequate
solution, including the effects of finite precision arithmetic. Calculation verification yields a quantitative estimate of the
numerical precision and discretization accuracy for calculations made with the computational model for the validation
experiments. In the calculation activity, themodeler runs the computationalmodel to generate the simulation results for
the validation case. The simulation results can also be post-processed to generate response quantities for comparison
with experimental results. A response quantity can be as simple as the maximum response for all times at a specific
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Figure 3.3-1 V&V Process

NOTE: (1) Code verification is performed using different models with closed-form or manufactured solutions.
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location in the object being tested, or as complex as a fast Fourier transform of the complete response history at that
location.
In the subsequent UQ activity, the modeler should quantify the uncertainties in the simulation results that are due to

inherent variability in model parameters or lack of knowledge of the parameters or model form. The results of the
parameter and model-form UQ should be combined with those of the calculation verification to yield an overall uncer-
tainty estimate associatedwith simulation results. Response quantities of interest extracted from simulation results and
estimates of uncertainty combine to form the simulation outputs that are used for comparison with the experimental
outputs.

3.3.2 The Experimental Branch. The experimenter first idealizes a physical representation of the conceptual model
and how to construct it. The resulting experimental design is a set of material specifications, boundary conditions, initial
conditions, and instrumentation requirements that are necessary to observe andmeasure the effect that changes to input
variables haveon the solidmechanics behavior of the validation case. Thepurpose of validation experiments is to provide
information needed to assess the accuracy of the model; therefore, all assumptions should be understood, well defined,
and controlled.
During the planning of the experiment, preliminary calculations (including sensitivity and uncertainty analyses) are

recommended to assist with the design of the experiment by, for example, identifying the most effective locations and
types of measurements required. These data should include not only response measurements, but also measurements
needed to definemodel inputs andmodel input uncertainties associatedwith loading, initial conditions, boundary condi-
tions, etc.
Themodelerand theexperimenter shouldwork together so that each is continually awareof assumptions in themodels

or the experiments. By observing the preparations for the experiment, for example, the modeler may be able to detect
incorrect assumptions in the model. However, experimental results should not be given to the modeler to preclude
inadvertent or intentional tuning of the model to match experimental results.
Implementing the experiment design into a validation experiment involves setting up the physical articles, installing

instrumentation, and confirming the setup. Instrumentation calibration is the process of evaluating the accuracy of the
instrument before and after the experiment. It is necessary to perform instrumentation quality assurance to ensure the
correctness of the data collection process; this is similar to the code verification performed on the modeling side of
Figure 3.3-1.
Instrumentation quality assurance is an assessment of whether the measurement system is acceptably accurate and

repeatable for its intended purpose. This is often called gage repeatability and reproducibility (gage R&R). When
conducted properly, these studies identify the measurement variation attributable to various parts of the complete
measurement system, such as the instruments, the operator, or the physical process under study. Performing these
studies helps identify the anticipated levels of variation and, if those prove unacceptably high, target the areas
where improvements can be made. With adequate measurement systems, most of the variation would be expected
within the test article itself and not the operator or the instrumentation. It is beyond the scope of this document
to lay out specific instrument quality assurance and gage R&R approaches, but there is a wealth of resources that
address this topic (ref. [5]).
Data acquisition involves the collection of raw data from various instruments used in the experiment (e.g., strain and

pressure gages and high-speed cameras) and the generation of processed data (e.g., time integrals, averages, or the
determination of velocity fromhigh-speed video). The experimental results can be transformed as necessary into experi-
mental quantities that aremoreuseful for direct comparisonwith simulationoutputs.Multiple experiments are generally
required to quantify uncertainty due to inherent variability.
Data quality assurance (Data QA) is an assessment of whether data captured during a validation experiment are a

reasonable representationofwhat occurredduring theexperiment.Manydifferent factors can causediscrepancies at this
stage of the process, including but not limited to loss of network connections, operator error, instrument saturation,
misalignment, and interference. Data QA represents a quality check on the data collected, not an in-depth analysis of
results. Many methods exist for providing basic checks on the quality and consistency of data and some of the most
effective are graphing or visualizing the data and searching for missing, out-of-range, or other impossible data, such as
errorcode inanumeric fieldornegativevalues ina timestamp. It is also important to search foroutliersandotherextreme
or improbable values not necessarily to eliminate them but to identify them as close to the time of capture as possible to
preserve context for further investigation.
Basic statistical summaries should be performed on the data to determine if the expected levels of variability exist. The

presenceof little tonovariability inexperimentalmeasurements canbean indicatorofpoorconnectivity toor functioning
of experimental instruments. Statistical summaries before and after processing should be compared for consistency if
data aggregation from multiple devices, transformations, or other processing occurred.
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The experimenter should next performUQ toquantify the effects of various sources of uncertainty on the experimental
results. These sources include measurement error, design tolerances, manufacturing and assembly variations, unit-to-
unit fabrication differences, and variations in performance characteristics of experimental apparatuses. Experimental
outputs, which are the product of this UQ activity, will typically take the form of experimental results plus quantified
uncertainties as a function of time or load.

3.3.3 Assessing Agreement. Once experimental and simulation outputs for the actual test conditions have been
generated, the modeler and experimenter perform the validation assessment activity by comparing these two sets
of outputs.
The metrics for comparing experimental and simulation outputs as well as the criteria for meeting the requirements

will havebeen specifiedduring the formulationof theV&Vplan. The essential result ofmodel validation assessment is the
quantitative assessment of the model’s ability to predict the experimental results obtained.
The diamond symbol asking “Requirements Satisfied?” near the bottom of Figure 3.3-1 provides an objective decision

point for initiating improvements in the conceptual, mathematical, and computational models and in the experimental
designs.
The block at the bottomof Figure 3.3-1 denotes that the process repeats for the next submodel to be validated, either at

the same tier or at the next higher tier of the hierarchy. Thus, as V&V is performed, the results of the component-level
activities (including theuncertainties) areaggregatedandpropagated to thenexthigher tierof thehierarchy, andsoonup
to the full-system level. Once all of the validation cases have been addressed (i.e., validation performed at all levels of the
hierarchy that were specified in the validation plan), then the validation process for that specified hierarchy is complete.

3.4 Development of the V&V Plan

AV&Vprogramshould be thoughtfully plannedbefore themajor activities inmodel development and experimentation
are initiated. In particular, it is essential to define the requirements for system-level validation in the V&V plan.

3.4.1 Validation Testing. In many instances, the most difficult part of V&V planning is establishing the relationship
between the validation experiments and the intended use cases. Itmay not be possible either to test the complete system
or to test subsystems and assemblies over the full range of conditions of interest. For example, when modeling the
response of a complete aircraft, it is unlikely that all of the important response quantities will be available for all
of the flight conditions of interest. Still, a plan that defines the set of conditions for which the systems, subsystems,
and assemblies should be tested at validation conditions of interest should bedeveloped by a consensus of experts. These
conditions must be balanced by what is achievable with the given resources and time constraints.

3.4.2 Selection of Response Quantities. Complex physical systems and their corresponding model simulations can
encompass an enormous array of response quantities. Because only a limited number of measurements can be made in
validation experiments, it is important to identify the response quantities of interest before the experiments aredesigned
or themodels developed. The selection ofwhich response quantities tomeasure and comparewith predictions should be
driven by application requirements. At the system level, this may require product safety or reliability parameters to be
defined in engineering terms. For example, occupant injury in automobile crashes may be related to occupant–compart-
ment accelerations and protrusions, and thus those quantities should be measured and predicted. The appropriate
responsequantities of theother levels of the systemhierarchydependonhowtheir responsesaffect the critical quantities
of the system response. Specifications should also bemade for themetrics used for comparisons of outputs, such as root-
mean-square differences of simulation and experimental acceleration histories.

3.4.3 Accuracy Requirements. The accuracy requirements for predicting the response quantities of interest with the
system-level model are based on the intended use and may rely on engineering judgment or a formal risk analysis.
Specification of accuracy requirements allows the question of acceptable agreement to be answered quantitatively. Only
with accuracy requirements can the decision be made to accept or revise a model. Without accuracy requirements, the
question of “How good is good enough?” cannot be answered.
System-level accuracy requirements are used to establish accuracy requirements for each submodel in the V&V hier-

archy. These requirements should be established such that models for subsystems, assemblies, subassemblies, and
components are refined at least to the degree required tomeet the accuracy goal of the system-level model. A sensitivity
analysis of the complete system can be used to estimate the contribution of eachmodel; the estimated contributions can
thenbeused toestablish commensurate accuracy requirements. It is reasonable toexpect that the accuracy requirements
for component behavior will be more stringent than the accuracy requirements for the complete system, due to the
simpler nature of problems at the component level and the compounding effect of propagating inaccuracy up through the
hierarchy. For example, a 10% accuracy requirement might be established for a model that calculates the axial buckling
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strength of a tubular steel strut in order to achieve 20% accuracy of the collapse strength of a frame made of many such
components.

3.5 Documentation of V&V

It is important to document both the rationale and the results of V&V not only for the current intended use but also for
future potential uses. V&V allow a knowledge base to be built from the various levels in the hierarchy and then reused in
subsequent applications. For example, inmany applications, derivative or closely related product designs are used in the
development of future designs. If a thorough execution and documentation of hierarchical V&V has been performed for
the model of the basic design, many of the hierarchical elements for V&V of the model for the derivative design might be
reusable. In thisway, the valueof investment inhierarchical V&Vcanbe leveraged to reduceV&Vcosts for futureprojects.
Documentation also provides the basis for possible limitations on reuse and thus prevents unjustifiable extrapolations.
The V&V documentation should be comprehensive, self-contained, retrievable, and citable.

3.6 Overview of Subsequent Sections

Sections2and3haveoutlined thebasicprinciples andcharacteristics of a careful and logical approach to implementing
modelV&V forCSM.Theguidelines for accomplishing thevarious activities inV&V formthecontentsof sections4 through
6. Model development activities are the focus of section 4. In section 5, the two assessment activities of code verification
and calculation verification are described. Section 6 discusses the experimental and assessment activities involved in
validating amodel. The concluding remarks in section 7 identify issues that need to be addressed so that V&V for CSMcan
evolve into amore robust andquantitativemethodology. The concluding remarksare followedbyaglossaryofV&V terms
(Mandatory Appendix I) and references (Mandatory Appendix II).

4 MODEL DEVELOPMENT

This section describes the activities involved in computational model development, starting with formulating the
conceptual andmathematicalmodels and then revising thesemodels duringV&Vand, finally, quantifying the uncertainty
in the resultingmodel.Model development activities beginwith the assumption that the validation case, the intendeduse
of the model, the response quantities of interest, and the accuracy requirements have been clearly defined for that
particular model. There will be some interplay between the development of the conceptual model and the V&V
plan. In general, the system model (conceptual to computational) is built up from subsystem, assembly, subassembly,
and component models, as illustrated in Figure 3.1-1. At the highest level of the hierarchy, the “validation case” within
Figure 3.3-1 is the real-world system, assuming that the experiment is conducted with the goal of model validation.
However, asdiscussed inpara. 3.4.1, this is commonlynotpossible. In that situation, it is necessary toexplicitly include the
estimated uncertainty in the prediction and rely on the predictive capability of the simulation.
Figure4-1 illustrates thepath fromaconceptualmodel to a computationalmodel. Anexampleof a conceptualmodel is a

classic Bernoulli-Euler beamwith the assumptions of elastic response and plane sections. This conceptual model can be
describedwith differential calculus and other mathematical assertions to produce amathematical model. The equations
can be solved by various numerical algorithms, but in CSM they are typically solved using the finite elementmethod. The
numerical algorithm is programmed into a software package, here called a “code.” With the specification of physical and
discretization parameters, the computational model is created.

4.1 Conceptual Model

The conceptualmodel is defined as the idealized representation of the solidmechanics behavior of the validation case.
Thismodel should therefore include thosemechanisms that affect the keymechanical and physical processes thatwill be
of interest for the intended use of the model. Conceptual model development involves the formulation of a mechanics-
based representation of the validation case that is amenable to mathematical and computational modeling, includes the
appropriate level of detail, and is expected to produce results with adequate accuracy for the intended use. Essentially, it
defines the modeling approach.
The formulation of the conceptualmodel is important to the overallmodel-development process becausemany funda-

mental assumptions that influence interpretation of the simulation results are made at this stage. These assumptions
include the
(a) determination of how many separate parts or components will be included in the model
(b) approach to modeling the material behavior
(c) elimination of unimportant detail features in the geometry
(d) selection of interface and boundary types (e.g., fixed, pinned, contact, friction, etc.)
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If an importantmechanical phenomenon is omitted from the conceptual model, the resulting simulationsmight not be
adequate for the intended use of the model.
An essential step in developing the conceptualmodel is to identify which physical processeswithin the validation case

are anticipated initially to have significant effects on the system’s response. Likewise, it is important to identify which
physical processesdonothaveasignificant effect and tonote that suchmechanicswill be ignored in the conceptualmodel.
Identifying the essential physical processes will help to ensure that the computational model sufficiently represents the
mechanics involved and does not waste computational effort modeling physical effects that do not affect the response
quantities of interest. Development of the conceptual model also requires knowledge of the range of operating envi-
ronments that are relevant to themodel’s intendeduse. The environments affect choices in themodeling, such aswhether
to include plasticity or thermal softening.
Response quantities are the characteristics of the response of the physical system that the computationalmodel has to

predict for the intended use. They could include characteristics such as the maximum tensile stress in bolts, the peak
acceleration of the center of a floor, the average value of pressure in a chamber, the deflection of the center of a glass
window, themodal frequencies of a radio tower, or the strain energy release rate at the tip of a fracture. Knowledge of the
response quantities is important in the conceptual modeling activity because interest in certain response quantitiesmay
influence decisions that are made during the mathematical and computational modeling activities. For example, if the
deflections of a particular part are of interest, the compliance ofmaterials surrounding that part should not be neglected.
Duringdevelopmentof the conceptualmodel, thebest tools available for identificationof thekeyphysical processesare

engineeringexpertise and judgment. Thoroughdocumentationof the rationale forwhat is included in—orexcluded from
—the conceptualmodel is an important part of propermodel development and traceability. Note that once the computa-
tional model has been developed, a sensitivity analysis can be used to investigate the importance of a physical process to
the response of the system (see para. 4.5).
Constructing a Phenomena Identification and Ranking Table (PIRT) is useful for identifying the key physical processes

(ref. [6]). The PIRT is both a process and a product. The process involves gathering a diverse group of subject-matter
experts together to rank the physical phenomena according to their importance to the system response quantities of
interest. The product is the table itself, which presents a summarized list of the physical phenomena alongwith a ranking
(e.g., high, medium, low) of the importance of each phenomenon to the system response quantities of interest. Sample
entries in a PIRT are shown in Table 4.1-1. The PIRT can be used either to construct a conceptual model (starting from
scratch)or toprioritize the conceptualmodel of a largegeneral-purpose code thatmayhave theability tomodel hundreds
of phenomena, only a subset of which are relevant to the subject model.
At this stage ofmodel development, the PIRT can include a qualitative judgment regarding the ability of either existing

or to-be-developed computational models to describe the physical processes accurately (see the last column in
Table 4.1-1). This information helps prioritize which physical processes will be investigated experimentally during
validation (i.e., it is part of the interplay between the development of the conceptual model and the development
of the V&V plan). For the example in Table 4.1-1, phenomenon B has a low priority for validation because it can

Figure 4-1 Path From Conceptual Model to Computational Model
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alreadybemodeledwithhigh confidence. Similarly, phenomenonDhas a lowprioritybecauseof its low importance to the
model response of interest.

4.2 Mathematical Model
The development of the mathematical model consists of specifying the mathematical descriptions of the mechanics

represented in the conceptualmodel. In themathematicalmodel, principlesofmechanics, thematerial behavior, interface
properties, loads, and boundary conditions are cast into equations and mathematical statements. For example, if the
property of an interface between two bodies is to be describedwith Coulomb friction, themathematical model would be

= , where
μ = the Coulomb friction coefficient
σ = the normal stress
τ = the shear stress

The specification of the mathematical model allows the model input parameters to be defined. The model input
parameters describe the various user-specified inputs to the model, such as material constants, applied loads, and
the Coulomb friction coefficient in the previous example. The domain of interest can then be expressed in terms of
these parameters. For example, if the application domain specifies a range of applied loads, a specific parameter
(or set of parameters) in the mathematical model can be used to define that range of loads.

4.3 Computational Model

Thecomputationalmodel is thenumerical implementationof themathematicalmodel thatwill be solvedonacomputer
to yield the computational predictions (simulation results) of the system response. As defined herein, the computational
model includes the type and degree of spatial discretization of the geometry (e.g., into finite elements), the temporal
discretization of the governing equations, the solution algorithms to be used to solve the governing equations, and the
iterative convergence criteria for the numerical solutions. With this inclusive definition, models employing solution-
adaptive mesh-generation methods are defined by their adaptive control parameters.
The computational model can be simple or complicated, and it can employ in-house or commercial finite-element

software to develop and solve the numerical equations. The modeler may be tempted to jump directly from a geometric
description of the validation case to the development of a computational mesh, especially given the availability of highly
automated preprocessing software. Meshing, however, is not modeling. The modeler must understand the underlying
conceptualmodel andmathematicalmodel in order to understand the effects on themodel outputs that are causedby the
assumptions and mathematical simplifications inherent in the computational model. Without this understanding, it is
difficult to knowwhether the computationalmodel is inadequate or inappropriate for the intended use. For example, the
modelermust consider the type of boundary conditions to be imposed in buckling problems, because buckling results are
sensitive to the end conditions used in the model.

4.4 Model Revisions

At some stage of modeling and simulation, the modeler may find that the computational model needs revisions to
achieve the desired accuracy or to account for new requirements. In a general sense, there are two classes of possible
revisions to themathematical and computationalmodels. The first class of revisions covers updates to parameters in the
mathematical or computational model that are determined by calibrating the computational model to experimental
results (e.g., apparent material parameters, modal damping coefficients for linear vibration, or friction coefficients
for a mechanical interface). The second class of revisions covers changes to the form of the mathematical or conceptual
model to improve the description of the mechanics of interest so that better agreement with the reference experimental
results can be achieved. The two classes of revisions are discussed in paras. 4.4.1 and 4.4.2.

Table 4.1-1 Phenomena Identification and Ranking Table (PIRT) Example

Phenomenon Type of Phenomenon
Importance to

Response of Interest
Level of Confidence

in Model
A Interface High Medium
B Plasticity Medium High
C Loads Medium Low
D Fracture Low Low
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4.4.1 Updates to Model Parameters by Calibration. Revision by parametric model calibration is extensively used in
the field of linear structural dynamics to bring computational predictions into better agreementwithmeasured response
quantities such as modal frequencies and mode shapes. This revision process is commonly known as “model updating,”
“model tuning,” “parameter calibration,” or “parameter estimation.” The process allows the most common sources of
modeling (and experimental) difficulties in linear structural dynamics — compliance in joints, energy loss/damping,
unmeasuredexcitations, uncertainboundaryconditions—toberepresentedassimplemechanicalmodelsandcalibrated
so that the global response of the computational model is in agreement with the experimental results. Calibration of the
model should be performed only after both code verification and calculation verification have been performed.
Parametric model calibration determines only the model’s fitting ability, not its predictive capability. A model cali-

brated to experimental resultsmay not yield accurate predictions over the range of its intended use. Thismeans that the
model shouldnot beusedas a calibration framework for someuncertainparameters if theseparameters canbe evaluated
in independent tests. Data used for model calibration must remain independent of data used to assess model validation.
The type of experiment used to determine the values of unknown or uncertain model input parameters is generally

referred to as a “calibration experiment.” The goal of a calibration experiment is distinct from the goal of a validation
experiment. The purpose of a calibration experiment is to generate values or quantified probability distributions for
model input parameters under specific types of experimental conditions. For example, an optimization approachmay be
used to determine the parameter values using a computational model of the calibration experiment and the measured
data from the calibration experiment. In contrast to calibration experiments, validation experiments are designed and
performed to provide an independent, objective assessment of the predictive capabilities of the computational model.
It is a reality ofmodeling, given cost and schedule constraints, thatmodel calibration is often performed after an initial

validation assessment has beenmade and the requirements have not been satisfied (as indicated in Figure 3.3-1). That is,
the modeler finds a set of parameter values that provides acceptable agreement with the validation test data, but only
after failing toachieve that agreementwithaprediction.Unfortunately, to thenassesspredictive capability (outsideof the
domain of the validation referent data), subsequent validation against other independent experiments may still be
necessary. Any revisions to the parameter values after V&V are applied signifies new model-development activity, trig-
gering a repetition of some model V&V.

4.4.2 Updates to Model Form. The second class of model revisions consists of changes to the form of the conceptual
model and, in turn, themathematical model and the computationalmodel. Typically, the need to revise themodel form is
observed during the quantitative comparison activity, when some characteristics in the response of the structure are not
consistentwith the corresponding characteristics of themodel output, and the differences are not attributable to reason-
able uncertainties in the model parameters.
The following are among themany common types of deficiencies in model form that can be responsible for inaccurate

simulation results:
(a) two-dimensional models that cannot represent three-dimensional response effects
(b) inappropriate form for representation of material behavior
(c) assumptions about contacting surfaces being tied when in reality a gap develops between the parts
(d) assumptions that twopartsdonotmoverelative tooneanotherwhen in reality theydo, resulting indevelopmentof

significant friction forces
(e) assumed rigid boundary conditions that turn out to have significant compliance
It is important to look forpossible violationof the assumptionsof the formof themathematicalmodelwhen reconciling

the measured data with the results of the computational simulation. As with parameter calibration, any revisions to the
model after V&V are applied signifies new model-development activity, triggering a repetition of some model V&V.

4.5 Sensitivity Analysis

Another way, besides intuition and experience, to identify important phenomena is to perform a sensitivity analysis
using the computational model. Sensitivity analysis is the general process of discovering the effects of model input
parameterson the responsequantitiesof interestusing techniques suchasanalysisof variance (ref. [7]).Whenperformed
before the computational model is validated (but not before it is verified), a sensitivity analysis can provide important
insight into the characteristics of that computationalmodel and can assist in the design of experiments as part of the PIRT
process. Model sensitivities, however, must eventually be subject to the same scrutiny of V&V as the main parameters of
interest. As with engineering judgment or even the initial PIRT prioritization, unvalidated model sensitivities may be
wrong inmagnitudeoreven in sign (i.e.,“+” and “−,” ordirection). Thus,model sensitivityanalysis shouldbe revisitedafter
model revision.
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Local sensitivity analysis is used to determine the character of the response quantities with respect to the input
parameters in a local region of the parameter space (i.e., in the vicinity of a single point). Finite difference techniques
or adjoint methods are used to determine the local gradients at points in the design space. Global sensitivity analysis is
concerned with some type of average behavior of the response quantities over a large domain of the parameters and is
often used to select a subset of the parameters for detailed local sensitivity analysis.

4.6 Uncertainty Quantification for Simulations

Validation for computationalmechanicsmodelsmust take into account the uncertainties associatedwith both simula-
tion results and experimental results. The uncertainties associated with experimental results are discussed in section 6.
Throughout themodelingprocess (see the left branchof Figure3.3-1), and especially during theUQactivity, all significant
sources of uncertainty in model simulations must be identified and treated to quantify their effects on predictions made
with the model. It is useful to categorize uncertainties as either irreducible or reducible.

4.6.1 IrreducibleUncertainty.Also called “aleatory uncertainty,” irreducible uncertainty refers to inherent variations
in the physical system being modeled. This type of uncertainty always exists and is an intrinsic property of the system.
Examples of irreducible uncertainty are variations in geometry, material properties, loading environment, and assembly
procedures. The inherent variability inmodel parameters is typically characterized by performing replicate component-
level tests that cover the range of conditions overwhich the individual parameterswill be exercised in the intendeduse of
the model. If no component-level validation testing is performed, estimates of the inherent variability in model param-
eters should be based on prior experience and engineering judgment. However, even the most complete set of test
informationwill not eliminate irreducible uncertainty,which can only be better quantified bymeans such as determining
a parameter’s mean value, distribution, and distribution form (e.g., normal, uniform, log-normal).
Using probabilistic analysis, inherent variability can be propagated through the simulation to establish an expected

variability in the simulation output quantities. Sampling-based propagation methods such as Monte Carlo and Latin
Hypercube are straightforward techniques for propagating variability (ref. [8]). Sampling-basedmethods draw samples
from the input parameter populations, evaluate the deterministic model using these samples, and then build a distribu-
tion of the appropriate response quantities. Well-known sensitivity-based methods include the first-order reliability
method (ref. [9]), advanced mean value (ref. [10]), and adaptive importance sampling (ref. [11]).

4.6.2 Reducible Uncertainty. Also called “epistemic uncertainty,” reducible uncertainty refers to deficiencies that
result from a lack of complete information or knowledge. Two important sources of reducible uncertainty are statistical
uncertainty andmodel formuncertainty. Statistical uncertainty arises from the use of limited samples. For example, if the
mean value of a material property is calculated with only two or three measurements of the material property, then the
mean value will contain statistical uncertainty, which can be reduced by considering additional measurements of the
material property. Model form uncertainty refers to the uncertainty associated with modeling assumptions and approx-
imations, such as a constant parameter assumption (regardless of its assigned numerical value) in the partial differential
equations (PDEs). In other words, a parameter in an equation in the computational model could be defined as having a
constant value,whereas in reality the value of the parameter varieswith time, temperature, or position. In general,model
formuncertainty is extremely difficult to quantify, but some innovative approaches to this problemhave been developed
(refs. [12], [13]).

4.7 Documentation of Model Development Activities

It is important to document model development activities to facilitate reuse of the model. The documentation should
explain the rationale for model development (e.g., modeling assumptions) and describe the conceptual, mathematical,
and computationalmodels. The description of themathematical model should include assumptions about themechanics
of interest and the sources of information for the model parameters. The description of the computational model should
include discretization assumptions, computational parameters, and other parameters of interest.

5 VERIFICATION

The process of verification assesses the fidelity of the computational model to the mathematical model. The math-
ematical model is commonly a set of PDEs and the associated boundary conditions, initial conditions, and constitutive
equations. The computational model is the numerical implementation of the mathematical model, usually in the form of
numerical discretization, solution algorithms, and convergence criteria. Verification assessments consider issues related
to numerical analysis, software quality engineering (SQE), programming errors in the computer code, and numerical
error estimation. Verification should precede validation activities because verification dealswith the numericalmapping
of the mathematical model into a reliable solution that is usable by engineers and scientists.
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Verification is composed of two fundamental activities: code verification and calculation verification. Code verification
ensures, to the degree necessary, that there are no programming errors in a computer code and that the numerical
algorithms for solving the discrete equations yield accurate solutions with respect to the true solutions of the PDEs.
Calculation verification estimates the numerical solution errors present in every simulation result; examples include
temporal andspatial discretizationerror, iterative error, and round-off error. Calculationverification is also referred toas
numerical error estimation. References [14] and [15] discuss the differences between and emphases of code verification
and calculation verification.
Mathematically rigorous verification of a code requires proof that the algorithms implemented in the code correctly

approximate the underlying PDEs and the stated initial conditions and boundary conditions. In addition, it would also
have to be proved that the algorithms converge to the correct solutions of these equations in all circumstances under
which the code is applied. Such proofs are not currently available for general purpose computational physics software.
Executing the elements of code verification and calculation verification identified as necessary in this document is critical
for V&V, but not sufficient in the sense of mathematical proof (ref. [16]).

5.1 Code Verification

The assessment activity of code verification can be logically segregated into the following two parts:
(a) numerical code verification, which focuses on the underlying mathematical correctness and specific implementa-

tions of discrete algorithms for solving PDEs
(b) SQE or software quality assurance (SQA), which addresses such matters as configuration management, version

control, code architecture, documentation, and regression testing (ref. [15])
Although CSM code users are typically not directly involved in developing and producing the modeling software they

use, it is important that these users provide feedback to the developers to ensure that the best software engineering
practices are consistently employed for the codes they use. Otherwise, unnecessary faults in the codemay affect simula-
tion results intermittently and unpredictably.

5.1.1 Numerical CodeVerification.Theobjective of numerical code verification is to verify that thenumerical solution
algorithms are correctly implemented (programmed) in the code and that these algorithms are functioning as intended.
Numerical code verification relies on careful investigations of topics such as spatial and temporal convergence rates,
iterative convergence rates, independenceofnumerical solutions to coordinate transformations, andappropriatepreser-
vation of symmetry related to various types of initial and boundary conditions. In CSM, the primary solution algorithms
are the finite-element method and the finite-difference method. Although the formal (theoretical) order of accuracy of
these algorithmsmay be known from power series expansions of the discrete equations, the observed order of accuracy
canbedifferent. Thus, an important part of code verification is determining theobservedorder of accuracy of the solution
algorithm, which is the rate at which the solution asymptotically approaches the exact solution as the discretization is
refined. This can be done by comparing two or more computational results with different discretizations to an exact
solution and observing the rate of convergence.
Many factors can degrade the observed order of accuracy relative to the formal order of accuracy that is reported as a

mathematical feature of an algorithm. These factors include programming errors, insufficientmesh resolution to achieve
the asymptotic range, mixed accuracy issues, singularities, discontinuities, contact surfaces, mesh clustering, inadequate
iterative convergence, and over-specified boundary conditions (refs. [14], [17]). In verification, all of these reasons for
degradation in the order of accuracy are evidence of possible algorithmic or code errors and must be understood.
The primary tasks in numerical code verification are defining appropriate test problems for evaluating the accuracy of

the numerical algorithms and assessing the performance of these algorithms on the test problems. Numerical code
verification depends on comparing computational solutions to the “correct answer,” which is provided by analytical
solutions or highly accurate numerical solutions for a set ofwell-chosen test problems. The correct answer to a physically
meaningful problem can only be known in a relatively small number of simple cases that generally exercise only a limited
portion of the code. Fortunately, the method of manufactured solutions (MMS) offers a technique for deriving a math-
ematically exact solution to a closely relatedproblem inorder to exercise all aspectsof the code thatwouldbeactivatedby
the physical problems of interest.
Because such cases assume a very important role in verification, they should be carefully formulated to provide a

comprehensive set of test problems for verification of the code.
Twopointsmust bemade regarding thepaucity of goodbenchmarks for complexmathematicalmodels. The first is that

some solutions are better than others; therefore, a hierarchy of confidence should be recognized. The following or-
ganization of confidence (from highest to lowest) for the testing of algorithms is similar to the one suggested in
the AIAA Guide (ref. [2]) and is advocated:
(a) exact analytical solutions (including manufactured solutions)
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(b) semianalytical solutions (reduction to numerical integration of ordinary differential equations [ODEs], etc.)
(c) highly accurate numerical solutions to PDEs
The second point is that some test problems are more appropriate than others, so application-relevant test problems

should be used. These test problems could be oneswithwhich users have a great deal of experience, or they could be ones
that are constructed to address specific needs that arise when planning the verification activities.
Paragraphs 5.1.1.1 through 5.1.1.4 provide additional information on the kinds of tests and techniques employed in

numerical code verification.

5.1.1.1 AnalyticalSolutions.Twocategoriesof analytical solutionsareof interest incodeverification. First, thereare
those that correspond to plausible — if often greatly simplified — real-world physics. Second, there are manufactured
solutions, which are defined and discussed in para. 5.1.1.2. “Physically plausible” analytical solutions are solutions to the
mathematical model’s PDEs, with initial conditions and boundary conditions that can realistically be imposed, such as
uniform pressure on a simply supported elastic plate. These solutions are sometimes exact (requiring only arithmetic
evaluations of explicit mathematical expressions), but are often semianalytical (represented by infinite series, complex
integrals, or asymptotic expansions). Difficulties can arise in computing any of these semianalytical solutions, especially
infinite series. The modeler must ensure that when used for code verification, numerical error has been reduced to an
acceptable level.
Forproblems that allowanalytical solutions,whetherexact or semianalytical, pass/fail criteria canbe stated in termsof

the following two types of comparison:
(a) the agreement between the observed order of accuracy and the formal order of accuracy of the numerical method
(b) the agreement of the converged numerical solution with the analytical solution using specified norms
When computational solutions are compared with analytical solutions, either the comparisons should be examined in

the regionsof interest or the errornorms shouldbe computedover the entire solutiondomain. Theaccuracyof eachof the
dependent variables or functionals of interest should be determined as part of the comparison.

5.1.1.2 MethodofManufacturedSolutions (MMS).TheMMS is a technique for developing a special type of analytical
solution (refs. [14], [18]). To apply it, the modeler prescribes solution functions for the PDEs and finds the forcing
functions that are consistent with the prescribed solution. That is, the prescribed solution functions are inserted
into the PDEs, and the equations are rearranged such that all remaining terms in excess of the terms in the original
PDEsaregrouped into forcing functionsor source terms. Initial conditionsandboundaryconditions are similarlyderived,
based on the prescribed solution on the boundary. For example, for the simply supported plate problem, one could
prescribe a solution of displacements that requires a highly variable pressure distribution or even applied internal
moments. If this pressure and moment “forcing function” can be derived, it can then be applied using a computational
model for the plate, and the computed displacement field can be compared to the prescribed solution.
The advantages of theMMS aremany. It can be applied to awide variety of highly nonlinear problems. It can test a large

number of numerical features in the code, such as the numerical method, the spatial-transformation technique for mesh
generation, themeshdistribution technique, and the correctnessof algorithmcoding (ref. [14]). TheMMSprovides a clear
assessment because, unless there are software errors, the computational results must agree with the solution used to
derive the forcing function.
The MMS is not without its disadvantages. In any nontrivial application of this method, the algebra and calculus

required to derive the forcing function can become very complex, and symbolic manipulation software may offer
the only practical recourse. Using the MMS can also require special coding and compilation if the code does not
admit separate externally applied nodal forces for every degree of freedom at every node, each with its own time
history. While the MMS can efficiently highlight the presence of errors, it cannot point to the sources of these
errors and cannot identify mistakes in algorithm efficiency (refs. [14], [18]).

5.1.1.3 Numerical Benchmark Solutions. When analytical solutions cannot be found or derived, the only other
option for benchmark solutions is numerically derived ones. There are two distinct categories of highly accurate numer-
ical benchmark solutions. One category consists of solutions in which the PDEs have been reduced by similarity trans-
formations or other means to one or more ODEs that must be integrated numerically. The other category consists of
solutions inwhich the PDEs have been solved directly by numericalmethods. The accuracy of such numerical benchmark
solutions has to be critically assessed to qualify them for use in code verification. For the numerical integration of ODEs,
well-established standard methods are available for assessing accuracy. In the case of numerically integrated PDEs, no
published solution can be considered a benchmark until the code used in producing that solution has been thoroughly
verified and documented. In addition, comprehensive numerical error estimation must be reported. Credibility will be
enhanced if independent investigators, preferablyusingdifferentnumerical approachesandcomputer software, produce
multiple solutions that agree. Using multiple independent sources for the solutions will mitigate the risk of errors in the
verification benchmark.
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5.1.1.4 Consistency Tests. Consistency tests can be used to verify numerical algorithms. Global as well as local tests
shouldbemade for theconservationofmass,momentum,andenergy (ref. [19]).Analgorithmcansatisfy theconservation
laws exactly, or it can satisfy the laws in the limit of infinite resolution; this distinction should be considered when
assessing the accuracy of an algorithm. Consistency tests can also be made that involve geometry (e.g., checking that the
same numerical solution is obtained in different coordinate systems or determiningwhether specific symmetry features
are preserved in the solution). Consistency tests should be considered complementary to the other types of algorithm
tests described herein for numerical algorithmverification. If they can be devised, consistency tests are especially impor-
tant because the failure of these tests indicates that there are unacceptable errors in the code.

5.1.2 Software Quality Engineering (SQE). The SQE part of code verification refers to procedures that provide
evidence that the software implementation of the numerical algorithms is free of programming errors and implementa-
tion faults. Such errors most commonly reside in the source code, but occasionally flaws in the compiler introduce them.
Evidence of error-free software from SQE is a necessary element of verification. SQE determines whether the software
system is reliable and produces reliable results on specified computer hardware with a specified software environment
(compilers, libraries). To optimize its influence on code verification, SQE should be planned and used during the devel-
opmentof the softwareproduct, not as a retrospective activity for a fielded software implementation (ref. [20]).However,
feedback from users to developers is highly encouraged.

5.2 Calculation Verification

Calculation verification is applied to a computational model that is intended to predict any simulation results. Thus,
each computationalmodel developed inavalidationhierarchy is subject to calculationverification.Thegoal of calculation
verification is to estimate the numerical error associated with the discretization. In most cases, exercising the computa-
tional model with multiple meshes is required to estimate this error. Another source of error is mesh bias, wherein the
arrangement of the elements can influence the results, especially if the mesh is coarse.
The two basic approaches for estimating the error in a numerical solution to a complex set of PDEs are a priori and a

posteriori. A priori approaches use only information about the numerical algorithm that approximates the partial differ-
ential operators and the given initial and boundary conditions. A posteriori error estimation approaches use all of the a
priori information plus the results from two or more numerical solutions to the same problem that have different mesh
densities and/or different time steps (refs. [14], [21], [22]). The discussion here focuses on a posteriori error estimates
because they can provide quantitative assessments of numerical error in practical cases of nonlinear PDEs.

5.2.1 A Posteriori Error Estimation. A posteriori error estimation has primarily been approached using either finite-
element–based error estimation techniques (refs. [23], [24]) or multiple-mesh solutions combined with Richardson
extrapolation and extensions thereof (ref. [14]).
Two fundamentally different types of finite-element–based discretization error estimators have been developed. The

most commonly used are recoverymethods,which involve post-processing of either solution gradients or nodal values in
patches of neighboring elements. These provide direct error estimates only in the global energy norm; however, they
provideorderederrorestimates for specific fieldquantitiesof interest (i.e., theestimate improveswithmesh refinement).
The second class of finite-element–based error estimators consists of residual-basedmethods. Like recoverymethods,

residual methods were originally formulated to provide error estimates in the global energy norm. Extension to error
estimates in response quantities of interest, such as deflections or stresses, generally require additional solutions
(ref. [25]).
Single-mesh finite-element–based error estimates,when applicable, offer a great advantage by reducingmesh-genera-

tion and computational effort. However, the estimates require that the convergence rate be assumed. Calculation of an
observed convergence rate always requires the generation ofmultiplemeshes. The single-mesh a posteriorimethods are
also important for finite element adaptivity,whereboth the spatialmeshdensity (knownash-adaptivity) and theorderof
the finite element scheme (known as p-adaptivity) can be adapted (refs. [23], [24]).
Standard Richardson extrapolation assumes that
(a) the observed order of accuracy (rate of convergence) is known
(b) two numerical solutions at different mesh resolutions have been computed
(c) both solutions are in the asymptotic convergence regime
To estimate a bound on thenumerical error, theRichardsonmethod then extrapolates to amore accurate value against

which to compare the original solution. Various elaborations of Richardson extrapolation use three or more meshes to
calculate an observedorder of accuracy (refs. [6], [14]). The observedorder of accuracy can beused to verify a theoretical
order of accuracy, test whether the solution is in the asymptotic regime, and estimate a zero-mesh-size converged
solution using extrapolation. A grid convergence index (GCI) based on Richardson extrapolation has been developed
and advocated to assist in estimating bounds on themesh convergence error (refs. [14], [26]). The GCI can convert error
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estimates that are obtained from anymesh-refinement ratio into an equivalentmesh-doubling estimate. More generally,
the GCI produces an error-bound estimate through an empirically-based factor of safety applied to the Richardson error
estimate (refs. [6], [14]).

5.2.2 Potential Limitations. The assumption of smoothness in solutions (i.e., the absence of singularities and discon-
tinuities) underliesmuch of the theory of existing error estimation techniques and is quite demanding in estimating local
errors in the solution domain; however, this assumption does not prevent the use of an empirical approach to error
estimationbasedonobservedconvergencerates. Experience shows that anempirical approach ismoredependablewhen
more than three meshes are used with a least squares evaluation of observed convergence rates and when functionals
rather than point values are considered.
Singularities and discontinuities commonly occur in solid mechanics; the crack tip singularity is an example. The

difficulties of singularities and discontinuities are compounded in very complex conceptual models, where multiple
space and time scales may be important and very strong nonlinearities may be present. Ideally, calculation verification
should be able to confront these complexities. However, the “pollution” of particular regions of a calculation by the
presence of singularities such as shock waves, geometrical singularities, or crack propagation is a subject of concern in
error estimation (refs. [14], [24], [27]), and there is a lack of rigorous theory for guidance in these situations.
Another complexity in numerical error estimation is the coupling that can occur between numerical error and the

spatial and temporal scales in certain types of physical models. Refining the mesh does not ensure that the physics
modeledwill remainunchangedas themesh is resolved. For example, an insufficiently refinedmesh inbucklingproblems
will prevent the model from exhibiting higher modes of buckling. This observation regarding mesh refinement directly
influences the accuracy and reliability of any type of a posteriori error estimation method, especially extrapolation
methods.

5.3 Verification Documentation

Documentationmust be an integral part of the verification process to facilitate reuse of themodel. The documentation
should explain the rationale and limitations of the code verification and calculation verification activities. It should
include descriptions of the error estimation techniques employed, the results of consistency tests, and the analytical
solutions, manufactured solutions, and numerical benchmark solutions used. SQE and SQA, configuration management,
and acceptable computational systems should also be described.

6 VALIDATION

The activities described in this section are performed for each validation case in the validation hierarchy developed
during preparation of the V&V plan.
Although the immediate goal of validation is to compare simulation results with experimental measurements, the

strategic goal is to increase confidence in the predictive capability of a computational model for its intended use. This is
accomplished by comparing computational predictions (simulation outputs) to observations (experimental outputs).
Three prerequisites for validation are
(a) a clear definition of the model’s intended use
(b) completed code verification and calculation verification activities conducted sufficiently so that the errors discov-

ered through validation can be isolated from those errors discovered through verification
(c) quantified uncertainties in both the simulation outputs and the experimental outputs
The approach of validation is to measure the agreement between the simulation outputs from a computational model

and the experimental outputs from appropriately designed and conducted experiments. These outputs should incor-
porate the experimental and modeling uncertainties in dimensions, materials, loads, and responses. In most cases, the
assessment of the predictive capability of a computational model over the full range of its intended use cannot be based
solely upon data already available at the beginning of the V&V program. Not only might existing data inadequately
represent the intended use of the model, it may also have been used in model calibration during the development
of the computational model. In such cases, new experiments and computational predictions are required. The challenge
is to define and conduct a set of experiments thatwill provide a test of themodel stringent enough that thedecisionmaker
will have adequate confidence to employ the model for predicting the validation case. If the model predicts the experi-
mental outputs within the predetermined accuracy requirements, themodel is considered validated for its intended use.
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6.1 Validation Experiments

Validation experiments are performed to generate data for assessing the accuracy of the mathematical model via
simulation outputs produced by the verified computational model. A validation experiment is a physical realization
of a properly posed applied mathematics problem with initial conditions, boundary conditions, material properties,
and external forces. To qualify as a validation experiment, the geometry of the object being tested (e.g., a component,
subassembly, assembly, or full system), the initial conditions and theboundary conditionsof the experiment, andall of the
othermodel input parametersmust be prescribed as completely and accurately as possible. Ideally, this thoroughness on
the part of the experimenter will provide as many constraints as possible, requiring few assumptions on the part of the
modeler. All of the applied loads, multiple response quantities, and changes in the boundary conditions should be
measured, and uncertainties in the measurements should be reported.

6.1.1 Experiment Design.Generally, data from the literature are from experiments performed for other purposes and
thus do not meet the requirements of a validation experiment. Experiments can have many purposes and are often
focused on assessing component performance relative to safety criteria or exploring modes of system response. Conse-
quently, themeasurement set inmany experiments may differ from themeasurements needed for model validation. For
example, a test may show that a component fails at a load higher than an acceptable threshold and thereby establish that
the component is acceptable for use. However, the test may not havemeasured the deformation as the forcewas applied
because that measurement was not needed for the purpose of the experiment. If both the component-failure measure-
ment and the deformation measurement were necessary to validate a computational model, the test measuring only
component failure could not be used for validation. Furthermore, predictions of experiments whose results are known
prior to the validation effort are influenced, even if subconsciously, by modelers’ assumptions, knowledge of the experi-
mental results, and the selection of unmeasured quantities. For these reasons, it is usually necessary to perform experi-
ments that are dedicated to model validation (refs. [3], [6]).
Themodeler should have input regarding the design of the validation experiments. The experimenter and themodeler

need to share an understanding of the responses that are difficult tomeasure or predict. Themodeler needs to be certain
that all the inputs (especially for constitutivemodels), boundary conditions, and imposed loads are beingmeasured. The
modeler should perform a parametric study with the verified model to determine model sensitivities that need to be
investigated experimentally. In addition, pretest analyses should be conducted to uncover potential problems with the
design of the experiment. However, credibility of the validation process will be greatly enhanced if themodeler does not
know the test results before the prediction is complete, with the exception that the modeler must be provided material
properties, applied loads, and initial and boundary conditions.
In summary, thevalidation experiments andmeasurement set shouldbedesigned to leave as fewunknownparameters

as possible. In the all-too-common case that some significant parameters are not measured, the modeler has to perform
multiple calculations to compare with the experiments by varying the values of those parameters. The modeler cannot
arbitrarily select a parameter value within its accepted range and base the validation comparison on that selection
because doing so can result in either false validation or false invalidation. If all of the calculation results using a realistic
range of the parameters are within the acceptable tolerance for validation, then validation may be claimed, even though
the experimenthaduncontrolled variables. But if the calculation results for a significant portionof the realistic parameter
range lie outside this tolerance, validation cannot be claimed, and progress can only be made by the experimenter
constraining the range of the unmeasured or poorly measured parameters.

6.1.2 Measurement Selection. Selection of the quantities to measure should be based primarily on the response
quantities of interest. When possible, these quantities should be measured directly rather than derived from other
measurements. For example, if strain is the quantity of interest, it is probably better to use a strain gage instead
of multiple measurements of displacement. Similarly, if velocity can be measured directly, that approach is better
than integrating a measurement of acceleration or differentiating a measurement of displacement. On the other
hand, consistency of the test data is an important attribute that increases confidence in the data.While it is recommended
to use direct measurements for the primary response quantity, data consistency can be established by supplementing
these with corroborative measurements derived independently (e.g., measuring displacement or acceleration to cor-
roboratemeasurements of velocity). Measurements of point quantities made in families that allow fields to be estimated
are also useful; for example, a displacement field can be used to corroborate measurements of strain (ref. [28]).
Another reason that variables or locations in the model other than those specified in the validation requirements

should be measured is that agreement between these measurements and the simulation results can contribute signifi-
cantly to overall confidence in the model. Although some quantities may be of secondary importance, accurate calcula-
tions of these quantities provide evidence that themodel accurately calculates the primary response for the right reason.
For example, confidence in amodel thatmatches the central deflection of a beam is greatly enhanced if it alsomatches the
displacements or strains all along the lengthof thebeam—even if central deflection is the only quantity of interest for the
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intended use. This can qualitatively or even quantitatively build confidence that themodel can be used tomake accurate
predictions for problem specifications that are different from those included inmodel development and validation. Thus,
validation experiments should produce a variety of data so that multiple aspects of the model can be assessed.

6.1.3 Sources of Error. It is important to calibrate the gages that will be used in validation experiments and to docu-
ment their inaccuracies related to nonlinearity, repeatability, and hysteresis. Many things can influence the output of a
gage. Pressure transducers, for example, should be calibrated in an environment similar to that of the validation experi-
ment (e.g., at elevated temperature). If a transducer is sensitive to the environment and the environment changes signifi-
cantly during a validation test, the transducer’s sensitivity to the environment must already have been established
(during previous calibration of the gage) so that the resulting data can be corrected to account for it (ref. [29]).
In addition, the experimenter needs to determine and account for effects such as the compliance or inertia of any test

fixtures if these effects contribute to the measurement of displacement or force, respectively. For example, the mass of a
piston in a hydraulic testingmachine can affect themeasurement of the force applied to the specimen and, if ignored, can
contribute to lack of agreement between the simulation results and the experimental results. Reporting the details of
operating, calibrating, and installing the gages used in an experiment helps the modeler understand the relationship
between gage output and model output. It may even be necessary in some cases for the modeler to build a model that
includes such parts as the test fixtures or measurement fixtures to accurately predict the measurements.

6.1.4 Repeated Measurements. For validation experiments, redundant measurements are needed to establish the
precision (scatter) in the validation test results and thus improve the quantification of uncertainty in experimental
measurements. One approach for obtaining redundant measurements is to repeat the test using different specimens.
The test-to-test scatter would then have contributions from differences in specimens (initial conditions) or material
properties, specimen installation (boundary conditions), gages, gage installation, and data acquisition. As an example, if
bending tests were performed on several members of a set of beams and the responses measured with strain gages
mounted on the tension and compression surfaces, not onlywould each beambe different, but eachmight be off center in
the testing machine by differing amounts. In addition, the strain gages would have different scatter in location and
orientation, and the signal-wire resistances would differ.
Another approach for obtaining redundantmeasurements is to repeat the test using the same specimen. This approach

may be taken if the cost of testing is high or the availability of test specimens is limited. Of course, specimen-to-specimen
response variability would not be obtained. Still another approach for obtaining redundant measurements is to place
similar transducers at symmetrical locations (if the test has adequate symmetry) to assess scatter. The data from these
transducers could also be used to determine whether the expected symmetry was indeed obtained.

6.2 Uncertainty Quantification in Experiments

In the UQ activity for experiments, the effects of measurement error, design tolerances, construction uncertainty, and
other uncertainties are quantified, resulting in the experimental outputs. Although published experimental results often
donot includean assessment of uncertainty, it is necessary to estimate and report theuncertainty in themeasurements in
validation experiments so that simulation results can be judged appropriately.
In experimental work, errors are usually classified as being either random (precision) or systematic (bias). An error is

classified as random if it contributes to the scatter of the data in redundant measurements or repeat experiments at the
same facility. Random errors are inherent to the experiment, produce nondeterministic effects, and cannot be reduced
with additional testing, although they can be better quantified with additional testing. Sources of random error include
dimensional tolerances on test parts, variability in assembly and measurement locations, variability of material proper-
ties, and mechanical equipment variances due to friction. Systematic errors can produce a bias in the experimental
measurements that is difficult to detect and estimate. Sources of systematic error include transducer calibration
error, data acquisition error, data reduction error, and test technique error (ref. [30]).
Either the experimenter or an independent reviewer must provide an uncertainty assessment of the results. The

assessment should consider all sources of experimental uncertainty, whether the sources were measured or estimated.
When possible, the uncertainties should take the formofmean valueswith standard deviations or distributions (ref. [3]).
Even when statistics are not available, an estimate of experimental uncertainty based on previous experience or expert
opinion is necessary before proceeding to comparisonswith simulation outputs. A commonpitfall is to neglect important
contributions tomodeling uncertainty, experimental uncertainty, or both, and then try to draw conclusions about predic-
tive accuracy based on inadequate information. Improper or inappropriate inferences could thus be made about the
accuracy of the computational model.

6.3 Model Accuracy Assessment

FollowingUQof the experimental results thatproduced theexperimental outputs, the final steps invalidationconsist of
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(a) comparing values of the metrics chosen tomeasure the agreement between simulation outputs and experimental
outputs
(b) making anassessment of the accuracy of the computationalmodel relative to the goals provided in theV&Vplan for

the model’s intended use
Recall that a model accuracy assessment (see Figure 3.3-1) is made for each component, subassembly, assembly, and

subsystem in every level of the validation hierarchy for which validation data are produced. The determination of the
system-levelmodel’s accuracy ismade after the hierarchy of validation experiments has been performed and the compo-
site computational model has been validated through the various hierarchical tiers.

6.3.1 ValidationMetrics.Avalidationmetricprovidesamethodbywhich the simulationoutputs and theexperimental
outputs can be quantitatively compared. Themetric result is compared to the accuracy requirements defined in the V&V
plan to determine whether acceptable agreement has been achieved. Validation metrics should incorporate the uncer-
tainties associated with the experimental outputs and the uncertainties associated with the simulation outputs (e.g., the
input parameter uncertainties propagated through the computationalmodel).Whenmultiple (repeat) experiments have
been performed, the mean and variance of the system response of interest can be quantified. Multiple metrics that
quantify the difference between uncertain model and test outputs have been proposed for scalar quantities (e.g.,
refs. [31], [32], and [33]).
Which experimental and simulation outputs to compare should be carefully considered. The outputs of interestmaybe

simple, such as tip deflection or quarter point strain, or more complex, such as a comparison of spatial or temporal
distributions (e.g., strain as a function of distance, or velocity at a point as a function of time). Many aspects of validation
metrics, including the comparison of spatial or temporal distributions, are active areas of research with no general,
proven methodology for real-world problems.
Validation metrics can sometimes be devised to incorporate the uncertainties associated with the experimental and

simulation outputs (e.g., the input parameter uncertainties propagated through the computational model). When
multiple (repeat) experiments have been performed, the mean and variance of the system response of interest can
be quantified. A metric for the special case of multiple experiments with no uncertainty in the simulation outputs
hasbeenproposed(refs. [34], [35], [36]). For thegeneral case,whereboth themeasurementandsimulationareexpressed
as ameanwithvariance, someresearchhasbeenperformed (ref. [32]), but this andotheraspectsof validationmetrics are
still active areas of research.

6.3.2 Determination of Accuracy. It is possible themodelwill fulfill only a portion of the validation requirements. The
accuracy may fall short of the requirements in general or for a certain portion of the intended use. For example, a 10%
accuracy goal may be unmet, but 15% accuracy may be established. Alternately, the 10% accuracy may be met for loads
under or over a given level or for all but a particular type, such as thermal. Assuming that the original criteria were
properly established for the intendeduse, this implies that furthermodel improvements areneeded. In themeantime, the
modelmayhaveutilityona limitedbasis (i.e., itmaybevalidated toa lowerstandard than that specified in theV&Vplan, or
it may be partially validated). In such cases, the technical experts and decision makers have the shared burden of
establishing partial acceptance criteria. They could establish a new and less-ambitious definition of the acceptable
level of agreement for validation, or they could define the limitations of the model’s use. Partial validation is not
uncommon,which underscores that a verdict or claim of “validation” is nevermeaningful without reporting the accuracy
criteria and the uncertainties in experiments and calculations.
Confidence in themodel’s predictions decreases as the conditions of application deviate from those used in the valida-

tion process. For example, a model of an engine block that has been developed to accurately predict the stresses on the
cylinder surfacesmay not adequately or accurately predict the stress near an internal cooling channel in the samemodel.
Confidence in the model’s output is limited to applications that are judged to be sufficiently similar to that for which
validation was performed. Confident use for other purposes requires additional validation.

6.4 Validation Documentation

Documentation of the overall validation process and the specific validation activity (for each validation case in the
hierarchy) conveys an understanding of the predictive capability of the model for its intended use and supports the
conclusion about whether or not the model was successfully validated for the set-points of the validation experiments.
The documentation also facilitates reuse of the knowledge base by enabling subsequent users to build upon the estab-
lished validation activity, regardless of whether the model was successfully validated for its original intended use.
For each validation case, the validation documentation should build upon the documentation of the conceptual model

and the documentation describing the verification process of the computational model. The resulting validation docu-
mentation is useful for answering essential questions such as “Are the approximations and uncertainties inherent in the
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